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Random walks on convergence groups

Aitor Azemar

Abstract. We extend some properties of random walks on hyperbolic groups to random walks
on convergence groups. In particular, we prove that if a convergence group G acts on a compact
metrizable space M with the convergence property, then we can provide G [M with a compact
topology such that random walks on G converge almost surely to points in M . Furthermore, we
prove that if G is finitely generated and the random walk has finite entropy and finite logarithmic
moment with respect to the word metric, then M , with the corresponding hitting measure, can be
seen as a model for the Poisson boundary of G.

1. Introduction

Consider a countable group G equipped with a probability measure �. We can define a
random walk on G by fixing a starting point and successively multiplying it by indepen-
dent elements of G according to the probability �, that is, by fixing a starting point g0
and successively multiplying it with elements gi chosen independently according to the
distribution �, thereby arriving at some element

wn WD g0g1 : : : gn

after n steps. In this paper, we study the asymptotic behavior of such processes for a class
of hyperbolic-like groups.

In the case where G is a ı-hyperbolic group, we can embed G into the compact space
G [ @G, where @G is the Gromov boundary of G. Kaimanovich showed in [10] that,
under mild assumptions on the measure �, the sample paths .wn/ converge almost surely
to points in the Gromov boundary. Furthermore, he showed that @G, together with the
corresponding hitting measure �, forms a model for the Poisson boundary of .G; �/ (see
[11] for a formal definition of this concept). That is, (@G; �) seen as a measure space
encodes all the asymptotically relevant information regarding the sample paths. Similar
results have been proved for many hyperbolic-like groups (see, for example, [12, 17]).

We extend these results to convergence groups. Roughly speaking, these are groups
that act on a space in the same way that hyperbolic groups act on their Gromov boundary.
More formally, a convergence group is a countable group G acting on a compact metriz-
able spaceM in such a way that for every infinite sequence .gn/ � G of distinct elements
there exist a subsequence .gnk / and points a; b 2 M such that gnk jMna converges to b
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locally uniformly. That is, for every compact set K � M n a and every open neighbor-
hood U of b, there is an integerN such that gnk .K/�U whenever nk >N . We write that
G is a convergence group onM ifG acts onM as a convergence group. Random walks on
convergence groups have been previously studied by Gekhtman, Gerasimov, Potyagailo,
and Yang in [7, Section 9].

It is fairly easy to see that hyperbolic groups act as convergence groups on their Gro-
mov boundaries (see [2] for example), so in this definitionM plays the role of the Gromov
boundary of the group. Hence, it is reasonable to hope that the aforementioned results
about random walks on Gromov hyperbolic groups extend to convergence groups if we
replace @G by M . Indeed, we prove the following.

Theorem 1.1. Let G be a discrete convergence group acting on a compact metrizable
space M . If the action of G is non-elementary and minimal, then there exists a compact
topology on G [M such that the inclusions G ,! G [M , M ,! G [M are topolog-
ical embeddings. For any generating measure � on G, almost every sample path of the
associated random walk converges to a point in M .

By non-elementary action, we mean that there is no invariant subset consisting of 1
or 2 points. To prove the above result, we use a construction of Tukia from [19] which
consists in observing that, just as M is the analogue of the Gromov boundary, the space
of distinct triples

T D
®
.a; b; c/ 2M 3

j a ¤ b ¤ c ¤ a
¯

is the analogue of the hyperbolic space upon which G acts. Generalizing from the case
of Kleinian groups, Tukia gives a compact topology on T [M and from here we get, in
Section 4.1, a compact topology on G [M . To see that the random walk converges to the
boundary, we use similar methods as in [10].

Our next main result is seeing that .M; �/ works as a model for the Poisson boundary
of .G;�/ in some cases. Specifically, we prove the following.

Theorem 1.2. LetG be a non-elementary, minimal, finitely generated convergence group
on a compact, metrizable spaceM , and let � be a probability measure generating G with
finite entropy and finite logarithmic moment with respect to the word metric. Then, .M; �/
is the Poisson boundary of .G; �/, where � is the �-stationary Borel probability measure
on M .

One of the key ingredients that we use to prove the previous result is a theorem proven
by Maher and Tiozzo in [15]. This states that given a hyperbolic space S , an action of
G on S satisfying certain properties, and a measure � on G satisfying some conditions,
then the Gromov boundary of S together with its hitting measure forms a model for the
Poisson boundary of .G; �/. To apply this result, we use a quasimetric � on T which
makes .T; �/ quasi-isometric to a hyperbolic space .S; d/ upon which G acts satisfying
the properties of Maher–Tiozzo’s theorem. This quasimetric was introduced by Sun in
[16]. The other thing we need to apply Maher–Tiozzo’s theorem is the restrictions on �,
however, these are automatically satisfied whenever G is finitely generated, and � has
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finite entropy and finite logarithmic moment with respect to the word metric. As .S; d/
and .T; �/ are quasi-isometric, we can identify the Gromov boundary of .T; �/ as the
Poisson boundary. However, the Gromov boundary @T of T may be a complicated object,
and a priori we have no direct way to relate it with M . Our final step is to see that @T
and M together with their corresponding hitting measures are equivalent as G-measure
spaces. We do this by building aG-equivariant homeomorphism between subsets with full
measure.

As a corollary of the proof (in particular, of Proposition 3.21) we get an alternative
proof of the fact that the set of conical limit points of M introduced by Tukia in [19] has
full measure under the stationary measure. A more quantitative statement of this fact has
been proven by Gekhtman, Gerasimov, Potyagailo, and Yang in [7, Theorems 9.14 and
9.15].

Many results about a group apparently not related to random walks can be obtained
by studying their asymptotic behavior. For example, we say that a function f W G ! R is
�-harmonic if f .g/ D

P
h2G �.h/f .gh/, that is, if the value at each point is the average

(with respect to�) of the values at neighboring points. If .M;�/ is the Poisson boundary of
.G;�/, then there exists an explicit isomorphism from L1.M; �/ to the space of bounded
�-harmonic functions on G. Also, using the convergence of the random walks to M , one
can show that the action of G on .M; �/ is strongly almost transitive, that is, given any
" > 0 and A � M with �.A/ > 0, there exists some g 2 G such that �.gA/ > 1 � ".
Having a non trivial strongly almost transitive action has interesting implications, and we
refer to [8] for a compilation of some.

2. Preliminaries

2.1. Hyperbolicity and quasi-metric spaces

Let .X; d/ be a geodesic metric space, i.e., a metric space such that for any two points
a; b 2 X there exists a path Œa; b� joining them, with length equal to the distance between
a and b. That path may not be unique, and by Œa; b� we mean any of them. Given a
set A � X and r > 0, we will denote by N.A; r/ the closed r-neighborhood of A, that
is, N.A; r/ D ¹x 2 X j d.x; A/ � rº. Given ı > 0, we say that X is ı-hyperbolic if its
triangles are ı-slim, meaning that for any three points a; b; c 2 X and any three geodesics
Œa; b�, Œb; c�, and Œc; a� we have Œa; b� � N.Œb; c� [ Œc; a�; ı/. We say that X is Gromov
hyperbolic if there exists a ı � 0 such that X is ı-hyperbolic.

In this paper, we will deal with a relaxation of the notion of metric, where we soften
the triangle inequality by an additive constant and allow pairs of distinct points to be at
distance 0. At large scales, this notion is indistinguishable from a metric, so many results
about hyperbolicity go through. Here is a precise definition:

Definition 2.1. Given r � 0, an r-quasimetric � on a set Q is a function � W Q2 !

Œ0;C1/, satisfying �.x; x/ D 0, �.x; y/ D �.y; x/ and �.x; y/ � �.x; z/C �.z; y/C r
for all x; y; z 2 Q.
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A quasimetric is an r-quasimetric for some r � 0. Given s � 0 and a quasimetric space
.Q; �/, an s-geodesic segment is a finite sequence of points x0; x1; : : : ; xn, such thatˇ̌

�.xi ; xj / � ji � j j
ˇ̌
� s

whenever 0 � i , j � n. We will also denote by Œa; b� any s-geodesic segment between a
and b, that is, such that a D x0 and b D xn. A quasimetric is a path quasimetric if there
exists s � 0 such that every pair of points can be connected by an s-geodesic segment. A
path quasimetric is called hyperbolic if, taking s-geodesic segments instead of geodesics,
triangles are ı-slim for some ı � 0. To ease the notation, we will always assume that
r D s D ı.

For an introduction on quasimetric space we refer to [1]. In there, Bowditch shows
that every hyperbolic path quasimetric space is quasi-isometric to a Gromov hyperbolic
space. Hence, most results about Gromov hyperbolic spaces extend to hyperbolic path
quasimetric spaces. We now detail the ones we are going to use.

Given a hyperbolic path quasimetric space .Q; �/, and a point p 2 Q, the Gromov
product on X is defined by

.x � y/p D
1

2

�
�.p; x/C �.p; y/ � �.x; y/

�
:

A useful feature of this product is that .x � y/p is equal to the distance between p and any
geodesic between x and y, up to additive error. That is,ˇ̌

.x � y/p � �
�
p; Œx; y�

�ˇ̌
� �; (1)

where � is a constant depending only on r .
Another important property we will use about the Gromov product is the reverse tri-

angle inequality, which gives us a lower bound on the Gromov product up to an additive
error bounded by a constant depending solely on r . This constant can be made equal to
the one on equation (1) by choosing the largest value needed between the two. That is, we
can write the reverse triangle inequality as

.x � y/p � min
®
.x � z/p; .y � z/p

¯
��: (2)

An .L; C /-quasigeodesic  is an .L; C /-quasi-isometric embedding of an interval
I � R into Q, that is, such that for all s and t in I ,

1

L
jt � sj � C � �

�
.s/; .t/

�
� Ljt � sj C C:

The following important stability result about quasigeodesics is known as Morse lemma.

Lemma 2.2 (Morse lemma). Let .Q; �/ be a hyperbolic path quasimetric space and
L; C > 0. There is D > 0 such that for any two points x; y 2 Q, any two .L; C /-
quasigeodesics connecting x and y are contained in D-neighborhoods of each other.
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A proof for Gromov hyperbolic metric spaces can be found in [3, Theorem III.1.7].
The Gromov boundary of a hyperbolic path quasimetric space Q, which we will

denote by @Q, can be defined in the same way as it is done for Gromov hyperbolic
spaces. That is, given two sequences .xn/; .yn/ � Q, we say that they are equivalent,
and write .xn/ � .yn/, if for some (and hence any) p 2 Q we have .xn; yn/p ! 1.
The Gromov boundary is defined as the equivalence set of sequences .xn/ � Q such that
.xn; xm/p !1 for any p 2 Q, with the defined relation. The Gromov product between
two elements of the boundary can be defined by

.x � y/p WD sup lim inf
m;n!1

.xm � yn/p;

where the supremum is taken over all sequences .xm/, .yn/ related to x; y. Furthermore,
if x 2Q and y 2 @Q, we can use the same definition replacing the sequence .xm/ by x. A
sequence .xn/ �Q [ @Q converges to some y 2 @Q if .xn � y/p goes to infinity for some
(and hence any) p. As one can see in [3, Chapter III.3], a quasi-isometry between two
hyperbolic spaces induces a homeomorphism between the corresponding Gromov bound-
aries. The cited proof can be easily extended to quasi-isometries between path quasimetric
spaces, getting the analogous result.

For any point x 2 .Q; �/ and r-geodesic Œa; b�, the nearest point projection px is
well defined up to bounded constant. An important property of this point is that, for any
y 2 Œa; b�, ˇ̌

�.x; y/ �
�
�.x; px/C �.px ; y/

�ˇ̌
� �; (3)

where we can choose the constant� from equations (1) and (2) again simply by redefining
it as the largest needed value (which again, only depends on r).

A proof of these facts for ı-hyperbolic spaces, as well as the following proposition,
can be found in [13, Section 3]. These proofs can be easily extended to hyperbolic path
quasimetric spaces with respect to the r-geodesics.

Proposition 2.3. Let r > 0. There exist constants K; � � 0 depending solely on r such
that, for any r-hyperbolic path quasimetric .Q; �/, any r-geodesic  in such space, and
any x;y 2Q with nearest points px and py , respectively, on  satisfying �.px ; py/ �K ,ˇ̌

�.x; y/ �
�
�.x; px/C �.px ; py/C �.py ; y/

�ˇ̌
� �:

Once again, we can choose the � from this last proposition to coincide with the ones
on equations (1), (2), and (3) simply by choosing the largest one.

If G is a group acting by isometries on Q, we say that g 2 G is a loxodromic element
if the map Z! Q defined by n! gnx is an .L.x/; C.x//-quasi-isometric embedding
for some (equivalently, any) x 2 Q; that is, t ! gbtcx is a quasi-geodesic. Of interest
to us will be the following property of these elements, well known when Q is a proper
hyperbolic metric space.
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Proposition 2.4. Let G be a group acting by isometries on a hyperbolic path quasimetric
space .Q; �/, and let g be a loxodromic element. Then, there exist N 2 N and M > 0

such that, for any n 2 N, infx2Q �.x; gnNx/ � nM .

Proof. Fix s 2Q. By definition of loxodromic element, the set ¹gns j n 2Zº is an .L;C /-
quasigeodesic for some L; C . Given x 2 Q, consider k 2 Z such that one of the closest
point projections of x to ¹gns j n 2Zº is gks. By definition of the nearest point projection,
we have that �.x; gks/ � �.x; gns/ for all n 2 Z. The group G acts by isometries and the
set ¹gnsº is g-invariant, so for any m 2 Z the nearest point projection of gmx can be
chosen to be gmCks. Consider now the r-geodesic  between gks and gmCks, and the
projections px and pgmx of x and gmx to  . By Morse lemma, there is a constantD such
that the geodesic  is at D distance from the points ¹gns; k � n � k C mº, so by the
triangle inequality,

�.x; px/ � �
�
x; ¹gns j k � n � mC kº

�
� �

�
¹gns j k � n � mC kº; px

�
� r

� �.x; gks/ � r �D:

Adding equation (3), we obtain

�.px ; g
ks/ � �.x; gks/ � �.x; px/C� � D C r C�:

The same result can be obtained in the same way for the distance between gmCks and
pgmx . Hence, we get

�.px ; pgmx/ � �.g
ks; gmCks/ � 2D � 2r � 2� �

m

L
� C � 2D � 2r � 2�:

Since L, C , and D depend only on s, we can take m such that �.px ; pgmx/ � K for any
x 2Q, where K is the same constant from Proposition 2.3. Hence, we get, for any x 2Q,

d.x; gmx/ � d.x; px/C d.px ; pgmx/C d.pgmx ; gmx/ ��

�
m

L
� C � 2D � 2r � 3�:

So, the proposition is satisfied for 0 < M < 1
L

and

N > L.M C C C 2D C 2r C 3�CK/:

We say that an element h 2 G is weakly properly discontinuous (WPD) if for every
s 2 S and " > 0 there exists K 2 N such thatˇ̌®

f 2 G j d.s; f s/ < " and d.hKs; f hKs/ < "
¯ˇ̌
<1:

Finally, we recall that a group is called hyperbolic if it is finitely generated and any
Cayley graph obtained from a finite set of generators is hyperbolic in the word metric.
Since two Cayley graphs generated by different finite sets of generators are quasi-iso-
metric, and the hyperbolicity property and Gromov boundary are invariant by quasi-iso-
metries, the notion of hyperbolic group is well defined and one can talk about the Gromov
boundary of the group. By the Švarc–Milnor lemma, any group acting by isometries, prop-
erly discontinuously and cocompactly on a proper hyperbolic space is hyperbolic.
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2.2. Random walks

Let G be a discrete group and � a probability measure on G. The step space � WD GN

is the space of infinite sequences of group elements, which we consider as a probability
space with the product measure P WD �N . We will denote random walk on G starting
at g0 the stochastic process (indexed by N [ ¹0º) obtained by associating to each n, the
G-valued random variable wn W �! G defined by

.g1; g2; : : : / 7! wn WD g0g1 � � �gn:

In other words, a random walk on G is a time homogeneous Markov chain with transition
probabilities given by p.g; h/ D �.g�1h/. Our random walks will always start at the
neutral element, that is, g0 D e.

In this paper, the group G will act by isometries on some metric space .X; d/, and
we will be interested in the process we get by applying the random walk to some starting
point x 2 X , i.e., in the process .wnx/n2N . We will refer to this new process as random
walk on X (generated by .G; �/). This can also be seen as the projection of the random
walk on G to X .

We will be interested in the asymptotic behavior of the random walks, in particular,
whether they converge to some boundary at infinity, and in which way they converge.
Assume that G can be embedded into a G-space of the form G [ B (that is, a topological
space upon which G acts by homeomorphisms), and that for almost every ! 2 �, the
sample path .wn.!// converges to some point w1.!/ 2 B . We say that a measure � on B
is �-stationary if for any measurable A � B we have �.A/ D

P
g2G �.g/g�.A/, where

g�.A/ WD �.g�1A/. Furstenberg shows in [4] that the resulting hitting measure � in B is
�-stationary and the measure wn� converges in the weak-* topology to a point measure.
With this in mind, Furstenberg defines the following.

Definition 2.5. LetG be a group acting on a measure space .B; �/ and � a measure onG.
Then, .B; �/ is a �-boundary (or Furstenberg boundary) of .G;�/ if

(1) � is a �-stationary probability measure;

(2) for almost every sample path .wn/, the sequence of measures .wn�/ converges
weakly to a ı-measure.

Furstenberg also shows that whenever .B; �/ is a �-boundary we can endow G [ B

with a topology such that the sample paths of the random walks converge almost surely to
points in the boundary. However, the inclusion G ,! G [ B might not be an embedding.

Furstenberg shows that, given .G; �/, there exists a unique �-boundary .�; �/ such
that every other �-boundary can be realized as a quotient of .�; �/. That is, for every �-
boundary .�� ; ��/ we have a G-equivariant map � W � ! �� such that ��� D �� . The
measure space .�; �/ is called the Poisson boundary of .G;�/.

Using the strip criterion developed by Kaimanovich in [12, Theorem 6.4], and as-
suming that the measure � has finite logarithmic moment (that is, the measure satisfies
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g2G �.g/j log.d.x; gx//j <1), Maher and Tiozzo prove in [15] the following theo-

rem, where they determine the Poisson boundary for a wide variety of groups.

Theorem 2.6 (Maher and Tiozzo). Let G be a countable group which acts by isometries
on a hyperbolic metric space .X; d/, and let � be a non-elementary probability measure
on G with finite logarithmic moment and finite entropy. Suppose that there exists at least
one WPD element h in the semigroup generated by the support of �. Then, the Gromov
boundary ofX with the hitting measure is a model for the Poisson boundary of the random
walk .G;�/.

Just as it happens with hyperbolic groups, the Gromov boundary, together with a sta-
tionary measure, is a model for the Poisson boundary. This result is an improvement of
their previous result, proven in [14], where they required the action to be acylindrical.

2.3. Convergence groups

The notion of convergence group was originally introduced by Gehring and Martin in [6],
where they axiomatize the dynamical properties of Kleinian groups acting on the Gromov
boundary of Hn. In particular, they give the following definition.

Definition 2.7. Let G be a discrete countable group acting on a compact metrizable
spaceM . Then,G is called a convergence group if for every infinite sequence .gn/�G of
distinct elements, there exist a subsequence .gnk / and points a; b 2M such that gnk jMna
converges to b locally uniformly, that is, for every compact set K � M n a, and every
neighborhood U of b, there is N such that gnk .K/ � U whenever nk > N .

The points a and b are respectively called the repelling and attracting points of the
subsequence .gnk /. We say that G is a convergence group on M if it acts on M as a
convergence group.

Convergence groups appear naturally when dealing with groups acting on hyperbolic
spaces. Indeed, Bowditch proves the following result in [2].

Proposition 2.8 (Bowditch). Let G be a group acting by isometries and properly discon-
tinuously on a proper hyperbolic spaceX . Then,G is a convergence group on the Gromov
boundary @X . In particular, all hyperbolic groups are convergence groups.

Adapting the definition for hyperbolic spaces, we say that G is non-elementary if
there is no invariant subset of M consisting of at most two points. We say that the action
is minimal if M has no proper closed invariant set. We will always assume that the action
of G is non-elementary and minimal. Note that while requiring the action to be non-
elementary is a restriction on G, the minimality is not, as we can always take a subset of
M such that the restricted action of G is minimal.

2.3.1. Kleinian groups and the space of distinct triples. A Kleinian group is a discrete
group of Möbius transformations of the n-sphere Sn. The action can be extended to act
on the .n C 1/-ball BnC1, and the ball can be equipped with a hyperbolic metric dH
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such that the extension of the Möbius transformations act by isometries. Hence, Kleinian
groups are discrete groups acting by isometries on the hyperbolic space .BnC1;dH /. Since
the extension is always properly discontinuous, by Proposition 2.8 Kleinian groups act as
convergence groups on @BnC1 D Sn.

In this case where M D Sn is the Gromov boundary of some hyperbolic space, we
can define a map from the space of distinct triples

T WD
®
.a; b; c/ 2M 3

j a ¤ b ¤ c ¤ a
¯

to M by p.a; b; c/ WD z, where z is the projection of the boundary point c on the unique
geodesic between a and b. Endowing T with the induced topology, we have that the
diagonal action by G defined by g.a; b; c/ D .ga; gb; gc/ is continuous. It is easy to see
that p commutes with G, that the preimage of a point under p is compact, and that given
two points in BnC1, their preimages by p are homeomorphic. Therefore, in the case of
Kleinian groups, T can be seen as a bigger version ofBnC1. As Tukia points out in [19], T
works as a rough equivalent to the hyperbolic space for convergence groups. For example,
Bowditch shows in [2, Lemma 1.1] that the action of G on M is a convergence action if
and only if the induced action on T is properly discontinuous, bearing some similarity to
Proposition 2.8. Tukkia also pastes M to T in an analogous way to that of the Gromov
boundary. Before explaining how the pasting goes, it is convenient to see the following
lemma.

Lemma 2.9. Let .xn/ � BdC1 be a sequence such that xn ! � 2 @BdC1 D Sd . Then,
given a neighborhood U of � in Sn, there exists n0 such that for all n � n0, every member
of p�1.xn/ has at least two components inside U .

Proof. Fix x 2 BnC1 and consider R > 0 such that the neighborhood V.�; R/ WD ¹y 2
xBnC1 j .�; y/x > Rº of � in BdC1 satisfies V.�; R/ \ Sn � U . Since xn ! �, for any
E > 0 there exists n0 such that xn � V.�;RC E/ for all n � n0. Fix E > K C 3�C r ,
where K and� are as in Proposition 2.3 and r is the hyperbolicity constant. Furthermore,
pick n � n0 and .a; b; c/ 2 p�1.xn/. Consider the Gromov products .� � a/x , .� � b/x
and .� � c/x . If all of them are greater than R, then we are done. Assume .� � c/x to
be the smallest and that it is smaller than R. By the reverse triangle inequality, we have
.� � c/x �min..c � xn/x ; .xn ��/x/��. Hence, using that .xn ��/x is greater than .� � c/x ,

d
�
x; Œc; xn�

�
� .c � xn/x C� � .� � c/x C 2� � RC 2�:

The geodesics Œa; b� and Œc; xn� meet orthogonally at xn, so given any y 2 Œa; b�, the clos-
est point projection of y to the geodesic Œc; xn� is xn. Recall that .xn � �/x � R C E , so
d.x; xn/ � R C E and if q is the projection of x to Œc; xn�, then d.xn; q/ � d.x; xn/ �
d.x; q/ � � � E � 3�. By our pick of E , Proposition 2.3 applies and we have that
d.x; y/ � d.x; xn/ C d.xn; q/ C d.q; y/ � � � R C E � �. Hence, .a � xn/x � R C
E � 2�. Finally, .a � �/x � min..a � xn/x ; .xn � �/x/ � � > R C E � 3� � R C r , so
a 2 U . Similarly, .b � �/x > RC r and b 2 U .
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If .a � �/x is smaller than .c � �/x and .b � �/x , we can use that the distance between
p.b; c; a/ and p.a;b; c/ is at most r , so we can repeat the reasoning using that p.b; c; a/ 2
V.�;RC E � r/, getting .b � �/x > R and .c � �/x > R, so b; c 2 U . The reasoning for
when .b � �/x is smaller than .c � �/x and .a � �/x follows the same path.

This lemma shows that the notion of convergence to the boundary on xBnC1 can be
translated to T [M via the following neighborhoods. Given U � M an open set, we
define the associated set on T [M by

zU D
®
x 2 T j x has at least two components in U

¯
[ U:

Adding to these sets the open sets of T we get a basis for a unique topology on T [M .
From Lemma 2.9, if xn! �2Sd in xBdC1, then any sequence of preimages Qxn 2p�1.xn/
will also converge to the same � 2M D Sd in the above topology on T [M . Conversely,
if . Qyn/ converges to � in T [ Sn, then .p. Qyn// will be �-close to a geodesic with two
endpoints that are close to � so it also converges to � in xBnC1. Therefore, just as T can
be regarded as a rough equivalent of the hyperbolic space, M can be seen as a rough
equivalent of its Gromov boundary, and this way of pasting them together works as an
equivalent of Gromov’s topology.

2.3.2. The metric of the space of triples. Sun shows in [16] that the analogy from the
last section can be taken a step further by actually endowing T with a hyperbolic path
quasimetric � in such a way that G acts by isometries on .T; �/. The quasimetric is based
on a construction done by Bowditch in [1]. To define the quasimetric we first have to
introduce some concepts.

Definition 2.10. An annulus A is an ordered pair .A�; AC/ of disjoint closed subsets of
M such thatM n .A� [AC/¤ ;. A set of annuli A is an annulus system. It is symmetric
if A 2 A implies that �A WD .AC; A�/ 2 A.

For a g 2 G, we denote by gA the annulus .gA�; gAC/.
For any subset K � M , we define the relations K < A if K � intA� and A < K if

K � intAC. If B is another annulus, then we write A < B if intAC [ intB� DM . Since
BC � .B�/c , this implies that AC � BC and A� � B�.

For an annulus system A on M and K;L �M , we define .KjL/ D n 2 N [ ¹1; 0º,
where n is the maximal number of annuli Ai in A such that we can build the chain

K < A1 < A2 < � � � < An < L:

By n D 1, we mean that the previous chain can be arbitrarily large. This gives us two
sequences of inclusions,K �A�1 �A

�
2 � � � �A

�
n �L

c andKc �AC1 � � � � �A
C
n �L. For

finite sets, we drop the braces and write .a; bjc; d/ to mean .¹a; bºj¹c; dº/. The function
.�; �j�; �/ from M 4 to N [1 we just defined is called the cross-ratio. With all of this, we
can define the function which will give us the quasimetric.
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Definition 2.11. Given an annulus system A on M , define the function � W T 2 ! Œ0;1�

by
�
�
.x1; x2; x3/; .y1; y2; y3/

�
WD max

®
.xi ; xj j yk ; yl / W i ¤ j; k ¤ l

¯
:

In [1], it is shown that if the annulus system is G-invariant, symmetric and such that
A=G is finite, then the previous function takes values in Œ0;1/ and is aG-invariant hyper-
bolic path quasimetric. The geometric realization of the graph obtained by considering the
points of T as vertices and joining them by edges whenever their � distances are smaller
than some number s, defined in Sun’s paper [16], is a hyperbolic metric space .S; �0/. The
action induced byG on this space is isometric and the inclusion T ,! S is aG-equivariant
quasi-isometry.

The remaining step is to choose a convenient annulus system. The following result,
found in [18], will play an important role in that.

Theorem 2.12 (Tukia). If G is a non-elementary convergence group on M , then there is
an element g 2G such that g fixes two distinct points a, b and such that gnjMna converges
to b locally uniformly as n!1.

Consider such an element g and two closed sets A�, AC such that A� \ AC D ; and
a 2 intA�, b 2 intAC. These exist sinceM is metrizable. Fix the annulus A WD ¹A�;ACº
and the annuli system generated by A:

A WD
®
g.˙A/ j g 2 G

¯
:

Then, A is symmetric and A=G is finite. Sun proves in [16] that there exists someN 2N
such that h WD gN is a loxodromic and WPD element with respect to the quasi-metric
given by this annulus system.

3. Random walks on convergence groups

Let G be a non-elementary convergence group on a compact metrizable space M . Given
a probability measure � on G we have, as shown in [7, Theorems 9.7 and 9.8], that there
exists a unique �-stationary measure � on M and that .M; �/ forms a �-boundary of G.

It will be useful for us to know the behavior of the random walk on the space T . In
particular, we will require the following result.

Proposition 3.1. Let G be a non-elementary, minimal, convergence group on a compact
metrizable space M and let � be a probability measure on G such that its support gen-
erates G. Then, for any x 2 T , the sample paths .wnx/ of the associated random walk
converge almost surely to M , where the topology on T [M is the one defined after
Lemma 2.9.

Proof. As .M; �/ is a �-boundary, wn� converges to ıp.w/ for some p.w/ 2 M almost
surely. Assume that we have w 2 � such that wn� converges to ıp but wnx does not
converge to p. Then, there exists a neighborhood U of p in M such that wnkx … zU for
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infinitely many nk . We havewnk�! ıp so if .wnk / has finitely many elements, then there
exists some s such that wns� D ıp . Then, � D ıw�1ns p which cannot be as � is non-atomic,
as proven in [7, Theorem 9.4]. Hence, .wnk / has infinitely many elements and we may
take a convergent subsequence relabeled .wi /. If the attracting point p0 of wi is p, then
we may take a neighborhood V around the repelling point small enough so its closure
contains at most one component of x. By the definition of convergence action, there exists
i0 such that for i > i0 we have wi .M n V /� U , so for any neighborhood U of p we have
wix 2 zU and wix ! p.

Assume then that p0 is not p. By definition, we havewi�! ıp0 if for every continuous
function f on M ,Z

x2M

f .x/wi�.dx/!

Z
x2M

f .x/ıp0.dx/ D f .p
0/:

Fix such an f and choose an arbitrary " > 0. For any measurable set A � M , we have
defined wi�.A/ D �.w�1i A/, so applying directly this definition we getZ

M

1A.x/wi�.dx/ D �.w
�1
i A/ D

Z
M

1A.wix/�.dx/:

This equality can be extended to our function f , giving us thatˇ̌̌̌ Z
x2M

f .x/wi�.dx/ � f .p
0/

ˇ̌̌̌
�

Z
x2M

ˇ̌
f .x/ � f .p0/

ˇ̌
wi�.dx/

D

Z
x2M

ˇ̌
f .wix/ � f .p

0/
ˇ̌
�.dx/ D .�/:

By continuity, we can consider a neighborhood U of p0 such that jf .x/ � f .p0/j < " for
all x 2 U . Furthermore, � is non-atomic and Borel, and M is metrizable, so � is regular
and we can consider a neighborhood V around the repelling point a such that �.V / � ".
By the convergence property, there exists i0 such that for i � i0 we have wi .M n V /� U .
Hence,

.�/ D

Z
x2MnV

ˇ̌
f .wix/ � f .p

0/
ˇ̌
�.dx/C

Z
x2V

ˇ̌
f .wix/ � f .p

0/
ˇ̌
�.dx/

� �.M n V / sup
x2U

ˇ̌
f .x/ � f .p0/

ˇ̌
C �.V / sup

x2M

ˇ̌
f .x/ � f .p0/

ˇ̌
� "C "2K;

where K is the maximum value of f . Hence, wi� converges to ıp0 ¤ ıp , and we have the
contradiction.

3.1. The Gromov boundary of .T; �/

Applying Theorem 2.6 to Sun’s construction, we get that the Gromov boundary @T of
.T; �/, together with the corresponding hitting measure, is a model for the Poisson bound-
ary of our walk. We would like to relate this with the �-boundary given by .M; �/. For
this, we compare the two possible boundaries using the relations between the correspond-
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ing pastings to T , that is, the pasting on T [M corresponding to Tukia’s topology, and
the one on T [ @T corresponding to Gromov’s topology.

We analyze sequences of T converging to points in the boundaries. In particular, we
first see that given a sequence .xn/ � T such that xn ! � 2 @T , there exists a p 2 M ,
which only depends on �, such that xn ! p. This gives us a map � W @T ! M , which
actually is G-equivariant and continuous. It is not possible to repeat the process in the
other direction as some sequences converging to some points in M might be bounded
in .T; �/ and hence not converging to any point in @T . However, we are able to create
a continuous inverse restricted to the points of M , where such sequences do not exist.
Therefore, we get a homeomorphism between that subset and the corresponding subset
of @T .

Before starting to build �, we prove some lemmas that we will use on many occasions.

Lemma 3.2. LetG be a convergence group onM . Also let A�, AC be two disjoint closed
sets and B1; C1; B2; C2 � M be such that Bi , Ci have separating neighborhoods (i.e.,
there exist open sets such that Bi � Vi , Ci � Ui , clVi \ clUi D ;). Then,ˇ̌®
g 2 G j gA� \ B1 ¤ ;; gA

�
\ C1 ¤ ;; gA

C
\ B2 ¤ ;; gA

C
\ C2 ¤ ;

¯ˇ̌
<1:

Proof. Assume that we have infinitely many elements on that set. Take a sequence .gn/n2N

(with gi ¤ gj for i ¤ j ) and a convergent subsequence relabeled as .gn/. Assume that the
repelling point of the subsequence is not in A�. Since gnA� intersects B1 and C1, we can
choose an open set W around the repelling point, not intersecting A�, and n0 big enough
such that gn0.M �W / � O , whereO is an arbitrary open set around the attracting point.
Therefore, gn0A

� � O , so taking an open set small enough such that O \ V1 D ; or
O \ U1 D ; (which we can do, since the closures do not intersect) we get a contradiction
to the definition of the set. Hence, the repelling point has to be in A�. However, doing the
same reasoning for i D 2, we get that the repelling point also has to be in AC, which is
not possible since A� \ AC D ;.

This lemma allows us to get some relations between the values of cross-ratios.

Lemma 3.3. Let B1, B2, C1, and C2 be as in Lemma 3.2. There exists a

K D K.B1; B2; C1; C2/ <1

such that if x 2 B1, y 2 C1, z 2 B2, and t 2 C2, then .x; yjz; t/ � K.

Proof. Recall that our annulus system A is a union of annuli of the form .gA�; gAC/ and
.gAC; gA�/. We have thatˇ̌®
Aj 2 A j A�j \ B1 ¤ ;; A

�
j \ C1 ¤ ;; A

C

j \ B2 ¤ ;; A
C

j \ C2 ¤ ;
¯ˇ̌

�
ˇ̌®
g 2 G j gA� \ B1 ¤ ;; gA

�
\ C1 ¤ ;; gA

C
\ B2 ¤ ;; gA

C
\ C2 ¤ ;

¯ˇ̌
C
ˇ̌®
g 2 G j gAC \ B1 ¤ ;; gA

C
\ C1 ¤ ;; gA

�
\ B2 ¤ ;; gA

�
\ C2 ¤ ;

¯ˇ̌
D K <1;
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where the last inequality follows from Lemma 3.2. Hence, the maximum chain between
¹x; yº and ¹z; tº is smaller than K.

A simple application of this result is as follows. Given sequences .xn/, .yn/, .zn/, and
.tn/ in M converging to x, y, z, and t with x ¤ y and z ¤ t , there exists some n0 such
that, for n � n0 we have .xn; ynjzn; tn/ � K.x; y; z; y/ <1.

Another application is as follows.

Lemma 3.4. Let I �M be an open set and let b; c … cl I be distinct points. Then, there
exists K D K.I; b; c/ <1 such that, for any x; y; a 2 I , we have

.x; yja; c/ � .x; yjb; c/CK:

Proof. Consider an open set O � I such that cl I � O and b; c 2 Oc . We can choose
such a set, asM is metrizable. By Lemma 3.2 (taking B1 D B2 D I and C1 D C2 D Oc)
we have K 0 D K 0.I;Oc/ <1 such thatˇ̌®

Aj 2 A j ¹a; cº � A�j ; A
C

j \ I ¤ ;; A
C

j \O
c
¤ ;

¯ˇ̌
� K 0: (4)

Assume that .a; cjx; y/ D r � K1 C 2. Then, we have a sequence

¹a; cº < A1 < � � � < Ar < ¹x; yº:

We will show now that ACK0C1 is contained in O . To see this, recall that the definition
of the relation between annuli implies that ACi � A

C

iC1. Hence, if ACi is contained in O
for some i � K 0, we are done. Assume that ACi is not contained in O for any i � K 0;
that is, ACi \O

c ¤ ; for all i � K 0. We have, not just for i � K 0 but for all i � r , that
ACi intersects I , since x 2 I , and that A�i contains a and c. Hence, by (4), ACK0C1 cannot
intersect Oc . By definition of the relation, A�K0C2 contains Oc , so we have the chain

¹b; cº < AK0C2 < � � � < Ar < ¹x; yº:

Then, since .x; yjb; c/ is the length of the maximal chain between ¹x; yº and ¹b; cº, we
have .x; yjb; c/ � r � .K 0 C 2/ or, reorganizing, .x; yja; c/ � .x; yjb; c/CK 0 C 2 and
K D K 0 C 2. Finally, we note that the dependency of K 0 is on Oc , which depends on b
and c, and on I .

In particular, if xn and yn converge to some a, and b, c are different from a, then there
is some n0 such that, for n � n0, we have that xn and yn are in some open set as in the
lemma, so we have .xn; ynja; c/ � .xn; ynjb; c/CK.a; b; c/.

Finally, the last application of the previous results is as follows.

Lemma 3.5. Let I , I 0 be open subsets of M with disjoint closures and let a 2 I , b …
cl I [ I 0, and c 2 I 0. Then, there exists K D K.I; I 0; a; b; c/ < 1 such that, for all
w; x 2 I and y; z 2 I 0,

.w; xjy; z/ � .w; xjb; c/C .a; bjy; z/ �K:
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Proof. Let O , O 0 be open sets with cl I � O , cl I 0 � O 0, clO \ clO 0 D ; and b is
not contained in the closure of any. Since M is metrizable, we can choose such sets. Let
.w; xjb; c/ D r . By definition of the cross-ratio, we have the sequence ¹w; xº < A11 <

� � � < A1r < ¹b; cº. Hence, doing the same reasoning as before,

¹w; xº < A11 < � � � < A
1
r�K1�2

< Oc ;

where K1 is the constant obtained by applying Lemma 3.2. If .a; bjy; z/ D s, for the
sequence ¹a; bº < A21 < � � � < A

2
1 < ¹y; zº, we will have

.O 0/c < A2K2C2 < � � � < A
2
s < ¹y; zº;

where K2 is once again the constant obtained by applying Lemma 3.2. Therefore, since
O � .O 0/c and Oc � O 0, we can concatenate both sequences and we get

¹w; xº < A11 < � � � < A
1
r�K1�2

< A2K2C2 < � � � < A
2
s < ¹y; zº:

Hence, the lemma is satisfied with K.I; I 0; a; b; c/ D K1 CK2 C 4.

3.1.1. One direction, from the Gromov boundary @T to M . Given � 2 @T , take any
sequence .an/D ..a1n; a

2
n; a

3
n// such that .an/� �. Since each component of the sequence

is in the compact space M , we can take a subsequence, relabeled an, such that a1n ! a1,
a2n ! a2, and a3n ! a3 as n!1. If .a1; a2; a3/ 2 T , then we can apply Lemma 3.3 to
see that every possible combination of �.x; an/ is bounded in n, and hence an does not
converge to a point in the Gromov boundary. Therefore, at least two components converge
to the same point p. We will define the map �.�/ WD p, so we have to show that p does
not depend on the sequence .an/ (or the convergent subsequence).

Lemma 3.6. Given � 2 @T and a representing sequence .an/n2N D ..a
1
n; a

2
n; a

3
n//n2N

such that two elements converge to p, then every other .bn/ � T converging to � with
Gromov topology converges to p with Tukia’s topology. In particular, we can define the
map � W @T !M by �.�/ D p.

Proof. Assume that the lemma is false; i.e., that there exists .bn/ D .b1n; b
2
n; b

3
n/ with

.an � bn/x !1 for some x 2 T , but .bn/ does not converge to p in Tukia’s topology. By
definition of the topology, given an open set V around p, there exists a subsequence of
.bn/ (which we relabel as .bn/) such that there are always two components outside that
open set. Hence, by compactness, we can take again a converging subsequence of .bn/
(relabeled again .bn/) such that two components converge to points outside V and, since
�.x; bn/!1, we can assume that they converge to the same point p0 ¤ p. Fixing some
t 2 M different from p and p0, and denoting x D .p; t; p0/, we compute the Gromov
product

2.an � bn/x D �.an; x/C �.x; bn/ � �.an; bn/:

Assume, reordering the components if necessary, that the first two components of an and
bn are the ones that converge to p and p0, respectively. If the third component of .an/
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converges to ˛ ¤ p, then by Lemma 3.3 we get that

max
®
.ain; a

3
njv;w/ W v;w 2 ¹p; t; p

0
º; i 2 ¹1; 2º

¯
< K1:

Since �.an; x/! 1, we have �.an; x/ D max¹.a1n; a
2
njv; w/ W v; w 2 ¹p; t; p

0ºº for n
greater than some n0. If a3n ! p, we can reorder the components of each an such that the
distance to x is max¹.a1n; a

2
njv;w/ W v;w 2 ¹p; t; p

0ºº.
Applying Lemma 3.4, we get K2 <1 and n0 such that, for n � n0, we have

.a1n; a
2
njp; p

0/ � .a1n; a
2
njt; p

0/CK2 and .a1n; a
2
njp; t/ � .a

1
n; a

2
njt; p

0/CK2:

Hence, for n big enough, �.an; x/�.a1n; a
2
njt; p

0/CK2. Doing the same reasoning for bn
we get, for n big enough,

2.an � bn/x � .a
1
n; a

2
njt; p

0/C .p; t jb1n; b
2
n/ � �.an; bn/CK2 CK3:

To bound from below the remaining term, we use that �.an; bn/ � .a1n; a
2
njb

1
n; b

2
n/.

There exists some n0 such that for n � n0 the sets ¹a1n; a
2
nº and ¹b1n; b

2
nº are inside some

sets I , I 0 as described in Lemma 3.5, with p, t 0, and p0 acting as a; b; c. Hence, applying
the aforementioned lemma, we get

.a1n; a
2
njb

1
n; b

2
n/ � .a

1
n; a

2
njt; p

0/C .p; t jb1n; b
2
n/ �K4;

from which it follows that

2.an � bn/x � K2 CK3 CK4:

By the reverse triangle inequality, we have min..an � �/x ; .� � bn/x/ � .an � bn/x C �.
Since the bound does not depend on n and .an � �/x goes to infinity, for n big enough we
get .� � bn/x � K C�, and hence bn does not converge to � in the Gromov topology.

As � has been defined by using the convergence of the sequence, we can get the
following.

Lemma 3.7. The map � is G-equivariant and continuous.

Proof. Since G respects the convergences to the boundaries on T [ @T and T [M ,
we get that � is G-equivariant. That is, if xn ! � 2 @T , then gxn ! g� 2 @T and if
xn ! p 2M , gxn ! gp 2M , so �.g�/ D g�.�/.

To see the continuity, we take �n ! � and assume that �.�n/ does not converge to
p WD �.�/. Since .�.�n// is contained in a compact set, we can take a convergent sub-
sequence converging to some p0 ¤ p, which we relabel as .�.�n//. Consider sequences
.anm/m associated to each �n, and a sequence .bm/m associated to �. The same reasoning
as in the last part of the proof of Lemma 3.6 can be repeated for each pair of sequences
.anm/m and .bm/m. Since �.�n/ converges to p0 ¤ �.�/, we can take I and I 0 to be fixed
neighborhoods of the points p and p0, respectively, with disjoint closures, and such that
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the chosen point t is not contained in the closures. There exists n0 such that for n � n0,
m � m.n/, we have anm 2 I and bm 2 I 0. Then, doing the same reasoning as in the last
proof, we get the bound

.anm � bm/.p;t;p/ � K.I; I
0; p; t; p0/;

which contradicts the hypothesis �n ! �.

3.1.2. Finite boundary points. As at the beginning of the section, we would like to be
able to do the same for going from M to @T . That is, given p 2 M , take any sequence
.xn/ � T with xn ! p and see that, in T [ @T , xn ! � 2 @T . However, there may be
problematic points for which �.x0; xn/ can be bounded. We give the following definition.

Definition 3.8. Let p 2M and let � be a quasimetric on T defined using Sun’s construc-
tion. We say that p is a finite boundary point if there exist a sequence .xn/ � T and a
number R <1 such that xn ! p in Tukia’s topology, and �.x0; xn/ � R for every n.

It is immediate to check, using the triangle inequality, that the notion of finite boundary
point does not depend on the basepoint x0. It might, however, depend on the choice of
quasimetric, that is, on the annulus we chose to define it. The set of all finite boundary
points will be called finite boundary and will be denoted by MF . If a point is not a finite
boundary point, we will call it infinite boundary point, and the set of all infinite boundary
points will be denoted by M1 (DM c

F ).
To see that MF is not empty in some cases, we recall a classical definition in the

context of Kleinian groups, which can be easily generalized for convergence groups.

Definition 3.9. Let p 2M . We say that p is a conical limit point if there exist a; b 2M
distinct, and a sequence .gn/ � G such that gnp converges to a but gnx converges to b
for all x ¤ p.

On the context of uniformly convergence group, Tukia shows in [19] that parabolic
fixed points (that is, points fixed by some parabolic element) are exactly the non-conical
limit points. We will show that non-conical limit points are finite boundary points, and
hence that MF can be non-empty.

First, we introduce a sufficient condition for being a finite boundary point. We will see
in Lemma 3.18 that it is actually an equivalent condition.

Lemma 3.10. Let p 2 M . If there are two points a; b 2 M n p and R > 0 such that
.a; bjp/ < R, then p 2MF .

Proof. Fix xD .a;b;p/2T . We need to find .xn/�T such that xn!p and �.x; xn/�K.
We take as candidate xn D .a; tn; p/, where tn ! p. We have

�.x; xn/ D max
®
.a; bjtn; p/; .b; pja; tn/

¯
:

By hypothesis, .a; bjtn; p/ is bounded, as any chain between ¹a; bº and ¹tn; pº is also
a chain between ¹a; bº and ¹pº. Hence, the only possibility for p to be in the infinite
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boundary is .b;pja; tn/!1, which cannot happen by Lemma 3.3 applied withB1D¹bº,
C1 D ¹pº, C2 D ¹aº, and B2 an open set around p separated from a.

Proposition 3.11. Let p 2M1. Then, there exists a sequence .gk/�G such that gkp!
c 2 A˙, and gkx ! b 2 A� for all x ¤ p. In particular, p is a conical limit point.

Proof. Since p 2M1, the quantity .a; bjp/ is unbounded for any a; b 2M n p. Hence,
we can build arbitrary long chains of the form

¹a; bº < A1 < � � � < A2R < ¹pº:

Then, we can take subchains such that

¹a; bº < g1�.R/A < � � � < gR�.R/A < ¹pº;

where �.R/ D ˙1. That is, we can take a subchain such that all annulus of the chain
are either translates of A or of �A. Assume that as R !1, �.R/ D 1 infinitely many
times. Then, we have infinitely many h 2 G such that ¹a; bº � hA� and p 2 hAC. Taking
a convergent subsequence .hi /, by the reasoning of Lemma 3.2, the repelling point is
in A�. Also, p 2 hiAC, so h�1i p 2 A

C. Since M is compact, we can take a subsequence
such that h�1ik p converges and, since AC is closed, it converges to a point in AC. Then,
the sequence .gk/ D .h�1ik / has its attracting point in A�, and gkp converges to a point
inAC, so the proposition is satisfied. If instead we have �.R/D�1 infinitely many times,
following the same reasoning we get gkp! c 2A� and gkx! b 2AC for all x ¤ p.

So, in particular, parabolic fixed points are finite boundary points andMF is not empty
in some cases.

3.1.3. Inverse, fromM1 to ��1.M1/. We have defined a continuous G-invariant map
� from @T to M . This has been built by observing that, given � 2 @T , any sequence
converging to � in Gromov’s topology converges to a fixed point �.�/ 2 M in Tukia’s
topology. As we have seen, the same reasoning cannot be used to build the inverse, as some
sequences converging to finite boundary points may be bounded and hence not converge
to @T in Gromov’s topology. To get around this, we simply forget about the problematic
points and build the inverse from M1 to ��1.M1/. Later we will see that, under the
stationary probability measure, the mass of the set we are leaving out is 0, so we have an
equivalence between G-measure spaces.

Given p 2M1, we will associate a really particular kind of sequence .xn/� T which
converges to p in Tukia’s topology and prove that, in the Gromov topology, .xn/ converges
to some � 2 @T only depending on p. The associated sequence we choose is based on a
construction found in [19]. Given a bi-infinite geodesic on the Kleinian space between
two boundary points a; b 2 Sn, one considers a subset of the preimage to T , L.a; b/ D
¹.a;b; t/; t 2M n ¹a;bºº, denoted by line (between a and b). On the Kleinian example, we
have that a line projects to a whole bi-infinite geodesic. For a general convergence group,
we expect that lines have some similarities with quasigeodesics in .T;�/. In particular, if a
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and b are infinite boundary points, the Gromov boundary of L.a; b/ � T , @L.a; b/ � @T
consists of two points. Furthermore, if we fix a and move b, one of the two Gromov
boundary points does not change, effectively providing a well-defined point in the Gromov
boundary associated to a.

With this in mind, given p 2 M1, we consider any ˛ ¤ p and a sequence tn ! p.
Since p is not a finite boundary point, the sequence ..˛; tn; p//n � T goes to infinity
in the quasimetric, as .˛; tn; p/! p in Tukia’s topology. If our reasoning from before
is correct, the sequence ..˛; tn; p//n � T is a Gromov sequence (or at least contains a
Gromov subsequence) converging to some point in @T , which we denote by  .p/. All the
claims we made in the previous paragraph can be deduced from the following lemma.

Lemma 3.12. The map  WM1 ! @T is well defined.

Proof. Fix x D .˛; t0; p/, choose .tn/ � M with tn ! p, and denote xn D .˛; tn; p/.
Since p 2M1 and xn ! p, we have �.x; xn/!1. By definition, we have �.x; xn/ D
max..p; t0jtn; ˛/; .˛; t0jtn; p//. Since tn ! p ¤ ˛, we can apply Lemma 3.3 to get that
.p; t0jtn; ˛/ is bounded. Hence,

�.x; xn/ D .˛; t0jtn; p/

for n large enough. Then, the Gromov product of the sequence .xn/ results in, for n and
m large enough,

2.xn � xm/x D .˛; t0jtn; p/C .˛; t0jtm; p/ �max
�
.˛; tnjtm; p/; .p; tnjtm; ˛/

�
:

Take a neighborhood I around p, separated from ˛ and t0. There is some n0 such that for
n;m � n0 we have tn; tm 2 I , so applying Lemma 3.4 we have some K <1 such that,
for any n;m � n0,

.˛; tnjtm; p/ � .˛; t0jtm; p/CK and .˛; tmjtn; p/ � .˛; t0jtn; p/CK:

Therefore, �.xn; xm/ � max..˛; t0jtn; p/; .˛; t0jtm; p//CK, and

2.xn � xm/x � min
�
�.x; xn/; �.x; xm/

�
�K;

which goes to infinity as n, m go to infinity. So, .xn/ converges to some � 2 @T in Gro-
mov’s topology, which we define as  .p/. The same reasoning can be applied to see that
any other sequence with t 0m ! p satisfies .xn � .˛; t 0m; p//x0 !1, so the corresponding
sequence converges to the same �.

The only remaining thing to check to see that  is well defined is that � does not
depend on ˛. For this, we see that a different ˛ displaces the tail of the sequence by a
bounded distance. That is, we see that for n big enough,

�
�
.˛; tn; p/; .ˇ; tn; p/

�
D max

�
.˛; tnjˇ; p/; .˛; pjˇ; tn/

�
< K 0:

This follows easily from applying Lemma 3.3.
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The next thing we want to see is that  is actually the inverse of the previous map �.
That is, all Gromov sequences converging to p 2 M1 are actually similar and hence
related to the same � 2 @T .

Lemma 3.13. The restriction of the map � W @T ! M to � W ��1.M1/! M1 has an
inverse, given by the map  described above.

Proof. Since  .p/ D ..˛; tn; p//n with tn ! p, we have �. .p// D p.
We have to check that  .�.�//D �, i.e., that given � 2 ��1.p/ where p is not a finite

boundary point and a sequence .an/ D ..xn; yn; zn//n � �, we have ..xn; yn; zn//n �
..˛; tn; p//n.

The first step will be to show that ..xn; yn; zn//n � ..˛; yn; zn//n. We begin by fixing
x D .˛; t; p/ and taking a subsequence of .an/ such that each of the three elements con-
verges to some point. By Lemma 3.12, at least two of these have to converge to p, which
we assume are the last two components. By Lemma 3.3, if the first component converges
to ˇ¤ p, the tails of the sequences .xn; yn; zn/ and .˛;yn; zn/ are separated by a bounded
distance, so the sequences are similar. If xn ! p, shuffling the components if necessary,
we may assume that the distance from x is always achieved with the last two components
(i.e., �.x; an/ D max¹.v; wjyn; zn/ W v; w 2 ¹˛; t; pºº). Evaluating the Gromov product,
we get

2
�
an � .˛; yn; zn/

�
x
D �.x; an/C �

�
x; .˛; yn; zn/

�
� �

�
.xn; yn; zn/; .˛; yn; zn/

�
:

The last term is equal to max..xn; ynj˛; zn/; .xn; znj˛; yn// so, applying Lemma 3.4, we
have some K <1 such that

.xn; ynj˛; zn/ � .xn; ynj˛; t/CK and .xn; znj˛; yn/ � .xn; znj˛; t/CK;

which are both smaller than �.x; an/CK. Hence,

2
�
an � .˛; yn; zn/

�
x
� �

�
x; .˛; yn; zn/

�
�K:

Since we assumed that the distance between x and an is achieved with the last two compo-
nents of an, we have �.x; .˛; yn; zn// � �.x; an/, so the Gromov product goes to infinity
and both sequences are similar.

The next step is checking that ..˛; yn; zn//n � ..˛; yn; p//n. The Gromov product is

2
�
.˛; yn; zn/ � .˛; yn; p/

�
x

D �
�
x; .˛; yn; zn/

�
C �

�
x; .˛; yn; p/

�
� �

�
.˛; yn; zn/; .˛; yn; p/

�
:

By the definition of the distance, the first term satisfies

�
�
x; .˛; yn; zn/

�
� .yn; znj˛; p/:

The second term is �..˛; t;p/; .˛;yn;p//Dmax..˛; t jyn;p/; .t;pj˛;yn//. By Lemma 3.3,
we have that .t;pj˛;yn/ is bounded. Since p is in the infinite boundary, .˛; t jyn; p/!1
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as yn ! p. By Lemma 3.4, for n big enough

�
�
.˛; t; p/; .˛; yn; p/

�
D .˛; t jyn; p/ � .˛; znjyn; p/ �K

0:

Using these last two inequalities, we get

�
�
.˛; yn; zn/; .˛; yn; p/

�
D max

�
.˛; znjyn; p/; .yn; znj˛; p/

�
� max

�
�
�
x; .˛; yn; p/

�
; �
�
x; .˛; yn; zn/

��
CK 0:

Then, we have

2
�
.˛; yn; zn/ � .˛; yn; p/

�
x
� min

�
�
�
x; .˛; yn; p/

�
; �
�
x; .˛; yn; zn/

��
�K 0;

which goes to infinity since the p is an infinite boundary point (and the first possible value
goes to infinity) and we had chosen yn and zn such that �.x; .˛;yn; zn//� �.x;an/!1.

Finally, by the proof of Lemma 3.12, for p in the infinite boundary all sequences of
the form .˛; tn; p/ with tn ! p are equivalent so we have .an/ � ..˛; tn; p// and hence
 .�.�// D �.

The only thing remaining to get a homeomorphism is the continuity of  .

Lemma 3.14. The map  WM1 ! @T is continuous.

Proof. Consider .pm/ � M1 converging to p 2 M1. We want to show that .�m/ D
. .pm// converges to � D  .p/, that is, that .�m � �/x converges to infinity. Fix x D
.˛; t; p/, take L > 0, and consider V around p separated from ˛ and t and such that
..˛; s; p/ � .˛; s0; p//x � L for all s; s0 2 V . If there is no such neighborhood, we get a
contradiction with the proof of Lemma 3.12, since we could make a sequence .tn/ con-
verging to p where .˛; tn; p/ does not converge to  .p/.

Fix then tn ! p. For each n, we have a maximal sequence

¹˛; tº < A1;n < � � � < Ak.n/;n < ¹tn; pº

associated to .˛; t jtn; p/. For the last term of the sequence, we have p 2 intAC
k.n/;n

, so
we can take m.n/ such that pm is inside intAC

k.n/;n
\ V for all m � m.n/. Then, for all

y 2 intAC
k.n/;n

\ V , we have

¹˛; tº < A1;n < � � � < Ak.n/;n < ¹y; pmº:

Hence, �.x; .˛; y; pm// and �.x; .˛; y; p// are both greater than .˛; t jtn; p/. Evaluating
the Gromov product, we obtain

2
�
.˛; y; pm/ � .˛; y; p/

�
x

D �
�
x; .˛; y; pm/

�
C �

�
x; .˛; y; p/

�
� �

�
.˛; y; pm/; .˛; y; p/

�
:
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By definition of the distance, the first term satisfies

.y; pmj˛; p/ � �
�
x; .˛; y; pm/

�
:

The second term is �..˛; t; p/; .˛; y; p// D max..˛; t jy; p/; .t; pj˛; y//. By definition
of the distance, �..˛; t; p/; .˛; y; p// � .˛; t jy; p/, which by Lemma 3.4 is greater than
.˛; pmjy; p/ �K.V; ˛; t/. That is, we have

.˛; pmjy; p/ � �
�
x; .˛; y; p/

�
CK:

Using these last two inequalities, we get

�
�
.˛; y; pm/; .˛; y; p/

�
D max

�
.˛; pmjy; p/; .y; pmj˛; p/

�
� max

�
�
�
x; .˛; y; p/

�
; �
�
x; .˛; y; pm/

��
CK:

Hence,

2
�
.˛; y; pm/ � .˛; y; p/

�
x
� min

�
�
�
x; .˛; y; pm/

�
; �
�
x; .˛; y; p/

��
�K

� �
�
x; .˛; tn; p/

�
�K:

Take j big enough so tj 2 V , denote by U D intAC
k.j /;j

, and take m � m.j / big
enough so pm 2 V \ U . For all points s; s0 2 U \ V , we have�

.˛; s; pm/ � .˛; s; p/
�
x
� �

�
x; .˛; tj ; p/

�
�K � L �K

and �
.˛; s; p/ � .˛; s0; p/

�
x
� L:

So, by the triangle inequality for the Gromov product,�
.˛; s; pm/ � .˛; s

0; p/
�
x
� L �K ��:

Therefore, for any sequence tmn ! pm and tpn ! p, we have that the Gromov products
between elements of the tails of the associated Gromov sequences .˛; tmn ;pm/ and .˛; tpn ;p/
are bigger than L �K ��. We can repeat the proof with a larger L and make sure that
the V we pick is smaller than the first one, getting a smaller K. Hence, for any L > 0,
there exists m0 such that, for m � m0, we have .�m � �/x � L �K ��, so �m ! �.

Joining Lemmas 3.6, 3.7, 3.12, 3.13, and 3.14, we have the following.

Proposition 3.15. Let G be a minimal, non-elementary convergence group on a compact
metric space M . Let .T; �/ be the set of distinct triples equipped with the quasimetric
described by Sun. Then, there exists a G-equivariant continuous map � W @T ! M such
that the restriction to ��1.M1/ is a homeomorphism between ��1.M1/ and M1.
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3.2. Zero sets ofM under the stationary measure

In this section, we will show that, under the stationary measure, the finite boundary has
zero mass. The main ingredient we use is the following lemma, found in [14, Lemma 4.5].

Lemma 3.16. Let G be a countable group acting by homeomorphisms on a metric space
M , � a probability distribution on G whose support generates G, and � a �-stationary
probability measure on M . Moreover, let us suppose that Y � M has the property that
there is a sequence of positive numbers ."n/ such that for any translate f Y of Y there
is a sequence .gn/ of group elements (which may depend on f ), such that the translates
f Y; g�11 f Y; g�12 f Y; : : : are all disjoint, and for each gn, there is an m 2 N , such that
�m.gn/ > "n. Then, �.Y / D 0.

Given x 2 T and R > 0, we will consider the sets of finite boundary points which
are at “distance” smaller than or equal to R from x, that is, the points p 2 M such that
there exists a sequence .xn/ � T with �.x; xn/ � R such that xn ! p. In other words,
we define

DM .x;R/ WD B.x;R/ \M;

where the closure is with respect to Tukia’s topology. A critical observation is that, by the
definition of MF , if .Ri /i2N is an ascending sequence going to infinity, we get

DM .x;Ri / � DM .x;RiC1/ and
[
i2N

DM .x;Ri / DMF :

Hence, if we prove that each ofDM .x;R/ has zero measure, then the ascending limitMF

also has zero measure.
The first step we need to take to apply the lemma is proving that these balls behave

well under the action G.

Lemma 3.17. We have gDM .x;R/DDM .gx;R/ or, equivalently, p 2DM .x;R/ if and
only if gp 2 DM .gx;R/.

Proof. The point p belongs in DM .x; R/ if and only if there exists a sequence .xn/ �
B.x;R/ with xn ! p. Since G acts by isometries on T and by homeomorphisms on M ,
the previous is equivalent to .gxn/ � gB.x; R/ D B.gx; R/ and gxn ! gp, which is
equivalent to gp belonging in DM .gx;R/.

Next, we need to see that if the centers of the balls are far enough with respect to the
radius, then the balls are disjoint. To prove that we first need a small lemma, which will
come up later.

Lemma 3.18. If x D .x1; x2; x3/ and p 2 DM .x; R/, then .xi ; xj jp/ � R whenever
i ¤ j , 1 � i , j � 3.

Proof. Assume that p 2 DM .x; R/ and that the conclusion is false. That is, assume that
there exists xn!p with �.x;xn/�R and that there are i , j such that .xi ;xj jp/�RC 1.
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Then, there is an annulus sequence of length RC 1 such that

¹xi ; xj º < A1 < A2 < � � � < ARC1 < ¹pº:

By definition of the order relation, p 2 intACRC1, so intACRC1 is a neighborhood of p. By
definition of the convergence to the boundary, there exists n0 big enough such that for all
n � n0 at least two components of xn are in int.ACRC1/. Therefore, we also have the chain

¹xi ; xj º < A1 < A2 < � � � < ARC1 < ¹x
k
n ; x

l
nº;

and hence �.x; xn/ � RC 1, which is a contradiction.

As a side note, coupling this last result with Lemma 3.10, we get an equivalent defini-
tion of finite boundary point.

Corollary 3.19. Let p 2M . Then, p is a finite boundary point if and only if there are two
points a; b 2M n p such that .a; bjp/ <1.

Next we prove that if the centers of the balls are far enough, then the balls are disjoint.

Lemma 3.20. If �.x; y/ � 2RC 2, then DM .x;R/ \DM .y;R/ D ;.

Proof. Write xD.x1;x2;x3/, yD.y1;y2;y3/ and assume that p2DM.x;R/\DM.y;R/.
Assume that the distance between x and y is realized by .x1; x2jy1; y2/. Then,

.x1; x2jy1; y2/ � 2RC 2;

and hence we have the chain

¹x1; x2º < A1 < A2 < � � � < A2RC2 < ¹y
1; y2º:

By definition of the relation, intA�iC1 [ intACi DM so, for each i , the point p belongs to
either intA�iC1 or intACi . Let i0 be the biggest i such that p 2 intACi . We have the chain

¹x1; x2º < A1 < A2 < � � � < Ai0 < ¹pº;

so if i0 � R C 1 we get a contradiction with Lemma 3.18, since .x1; x2jp/ � R C 1. If
i0 � R, we have that p … intACi0C1, so, by definition of the relation, p 2 intA�i0C2. We get
the chain

¹pº < Ai0C2 < Ai0C3 < � � � < A2RC2 < ¹y
1; y2º;

and we have again a contradiction with Lemma 3.18.

With this we can prove the result we anticipated at the beginning of the section.

Proposition 3.21. Let G be a minimal, non-elementary convergence group on a compact
metrizable space M , and � a probability measure on G such that its support generates
G. If � is the �-stationary Borel probability measure, then �.MF / D 0.
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Proof. We want to apply Lemma 3.16 with Y D DM .x; R/, where x 2 T is fixed. By
Lemma 3.17, all translations of Y are of the formDM .y;R/. Let g 2G be the loxodromic
element determined by Sun in [16]. By Proposition 2.4, we can take N > 0 such that

inf.�.x; gnNx// � n.2RC 2/:

By Lemma 3.20, for any f 2 G the sets f Y; g�Nf Y; g�2Nf Y; : : : are disjoint, since
the distance between any of the centers of the balls is greater than or equal to 2R C 2.
Since the support of � generates G, there is m.n/ such that �m.n/.gnN / > 0, so labeling
"n WD �m.n/.g

nN /, we can apply Lemma 3.16 and we get �.DM .x; R// D 0. We finish
by recalling that DM .x;R/!MF as R!1.

The set where the measure has all of its mass can be restricted a little further. To do this,
we observe thatM1, which has full mass, may depend on the metric �, which in turn only
depends on the chosen annuli system. Since we always deal with annuli systems generated
by a single annulus A WD ¹A�;ACº, the infinite boundary depends only on the annulus A,
or more specifically, on the sets A�, AC, so we can write M1.A�; AC/. Therefore, if we
choose a countable family of annuli ¹A�i ; A

C

i ºi2N such that Sun’s construction works, we
will get a countable family of sets, M i

1 WD M1.A
�
i ; A

C

i /, where �.M i
1/ D 1, and by

intersecting them we still get �.
T
i2N M

i
1/ D 1.

Looking at Sun’s construction we see that, for the construction to work, the conditions
on A� and AC are the following:

• A� and AC are closed, and A� \ AC D ;;

• there exists an element g 2 G behaving like the one described in Theorem 2.12, such
that if a�; aC 2M are its fixed points, a� 2 intA� and aC 2 intAC.

Choosing a particular family of acceptable generating annuli, we get the following.

Proposition 3.22. Let � be the Borel �-stationary measure on M and let g 2 G be such
that it fixes two distinct points a�, aC and that gnjMna� converges to aC locally uniformly
as n ! 1. Denote by M g

1 the set of points p 2 M such that there exists a sequence
.gn/ (depending on p) with either gnjMnp converging locally uniformly to aC and gnp
converging to a�, or gnjMnp converging locally uniformly to a� and gnp converging to
aC. Then, �.M g

1/ D 1.

Proof. Equip M with a metric dM , and define the sets

A�i D B.a
�; dM .a�; aC/=i/ and ACi D B.a

C; d.a�; aC/=i/:

For i�3, these sets define admissible annuli, and we get a family of annuli systems as de-
scribed above and an associated family of infinite boundary points M i

1. The countable
intersection eM g

1 WD
T
i�3M

i
1 has full mass, so let us see how any p 2 eM g

1 behaves. By
Proposition 3.11, for each i we will have .gin/n with either ginp ! A�i and ginx ! ACi
for all x ¤ p or ginp ! ACi and ginx ! A�i for all x ¤ p. We assume now that the first
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one happens infinitely many times for .ik/, and we take a convergent subsequence of each
.g
ik
n / (which we relabel as .gikn /). Taking V an open set around p, for each ik there exists

nk big enough so that giknkp � A
�
ik

and giknk .M � V / � A
C

ik�1
. By definition of the sets,

as k !1 we have

giknkp ! a� and giknk .M � V /! aC:

So, taking a convergent subsequence .hj / � .g
ik
nk /k , we get a sequence with aC as the

attracting point and a� as the repelling. Hence, eM g
1 �M

g
1, so �.M g

1/ D 1.

3.3. The Poisson boundary of convergence groups

By Sun’s construction [16], the action of G on .T; �/ (or rather, on the quasi-isometric
metric space .S; �0/) has a WPD element and is non-elementary. So, using Maher and
Tiozzo’s theorem [15, Theorem 1.4], if � satisfies the required conditions, then the Gro-
mov boundary of S coupled with the hitting measure � is a model for the Poisson boundary
of .G;�/. Using Propositions 3.15 and 3.21, we are able to prove Theorem 1.2.

Proof of Theorem 1.2. Let .S; �0/ be the hyperbolic space quasi-isometric to T by a G-
equivariant quasi-isometry f obtained in [16]. To apply Theorem 2.6 to .S;�0/, we need to
see that the measure � has finite logarithmic moments. For this we denote by dw the word
metric with reference to some finite generating set H . By definition of the word metric,
for each g we have h1; h2; : : : ; hdw .e;g/ 2 H such that g D h1h2 � � �hdw .e;g/. Hence, as �
is a quasimetric, using the triangle inequality and the invariance of �, we obtain

�.x0; gx0/ �

dw .e;g/X
iD1

�.x0; hix0/C r �
�

sup
h2H

�
�.x0; hx0/

�
C r

�
dw.e; g/ D Cdw.e; g/:

Using this, we get a bound for the logarithmic moment of� under the distance �0. Looking
at the definition of �0 in Sun’s construction, we see that if �.x; y/ D 0, then �0.x; y/ D 1,
and that �0.x; y/ � 1 whenever x ¤ y. Hence,

E
�

log
�
�0.x0; gx0/

��
D E

�
log

�
�0.x0; gx0/

�
I �.x0; gx0/ � 1

�
:

Therefore, using the upper bound �0.x0; gx0/ � K�.x0; gx0/CK, we get

E
�

log
�
�0.x0; gx0/

��
� E

�
log

�
K�.x0; gx0/CK

�
I �.x0; gx0/ � 1

�
� E

�
log

�
KC dw.e; g/CK

��
� log.KC/CK C E

�
log

�
dw.e; g/

��
;

which is finite by hypothesis. Hence, we can apply Theorem 2.6 and, denoting the hitting
measure on @S as QQ�, we have that .@S; QQ�/ is the Poisson boundary of the random walk
.G;�/. Recall that @S and @T are homeomorphic by the induced action of f , which isG-
equivariant, so Q� WD f�. QQ�/ is �-stationary, and .@T; Q�/ is equivalent to .@S; QQ�/ as measure
space (and hence it is the Poisson boundary).
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Let � be the G-equivariant map built in section 3.1, and  the inverse on M1. By
G-equivariance, the probability measure � WD ��. Q�/ on M is also �-stationary, and by
continuity it is Borel so, by Proposition 3.21, �.M1/ D 1. Therefore,  �.�/ D Q� so the
two spaces are equivalent as measure spaces via a G-equivariant map, and hence .M; �/
is the Poisson boundary.

4. Applications

4.1. Compactification of G

Using the topology, we used to pasteM to T . We can pasteM toG in a similar way. That
is, fix x 2 T and for any U �M open we can consider the subset of G [M given by

zUG WD
®
g 2 G j gx has two components in U

¯
[ U:

The family B of sets of this form, together with P .G/ (that is, all open sets of G, as it
has the discrete topology), forms a basis for a topology on G [M . Therefore, we may
consider the generated topology.

Proposition 4.1. The topology on G [M defined above does not depend on the base-
point x.

Proof. Given a point in M , we can take a countable neighborhood basis in M , and we
get a corresponding countable neighborhood basis in G [M . Since G has the discrete
topology, a point inG itself is a neighborhood, so we have a countable neighborhood basis.
Therefore, G [M is first countable, and the topology is characterized by convergence
along sequences.

Consider a sequence .gn/ � G with gn ! p, which by definition is equivalent to
gnx ! p in Tukia’s topology. Take y 2 T and assume that gny does not converge to p.
Then, there exist an open neighborhood of p in T [M of the form zU and a subsequence
of .gnk / � .gn/ such that gnky does not enter zU . However, by the convergence property,
we can take a convergent subsequence of gnk (in the sense of convergence groups) which,
since gnx! p, has p as attracting point. Hence, gnky enters zU eventually and hence gnk
enters zUG . That is, gn converges to p in the topology generated by taking y as a basepoint,
so doing the same reasoning the other way, gn converges to p in the topology generated
by taking y as basepoint if and only if it also converges to p with the topology generated
by taking x as basepoint.

We observe that G acts by homeomorphisms on G [M since

h zUG D
®
hg 2 G j gx 2 zU

¯
[ hU D

®
g 2 G j gx 2ehU ¯ [ hU DehUG ;

for any h 2 G.

Proof of Theorem 1.1. It is straightforward to see that the inclusions G ,! G [M and
M ,! G [M are topological embeddings.
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We now show thatG [M is compact. We observe that if .gn/ is a convergent sequence
in the sense of convergence group with attracting point a 2M , then .gnx/ converges to a
for any x 2 T , so .gn/ converges to a in the topology of G [M . Therefore, by definition
of convergence group, any sequence of distinct elements .hn/�G has a converging subse-
quence (in the sense of convergence groups) which converges (in the topology ofG [M ).
Adding thatM is also compact, and that it is topologically embedded intoG [M , we get
that any sequence gn 2 G [M has a converging subsequence.

For a sequence .gn/ � G, we have convergence to a point p 2 M if and only if
.gnx/ � T converges to the same point p 2M . Hence, by Proposition 3.1, random walks
on G converge almost surely to points in M .

Whenever G is a hyperbolic group, we can consider a finite set of generators S and
the Cayley graph �.G; S/. Then, we can add the Gromov boundary to �.G; S/, getting
�.G; S/ [ @G, and then we can take the induced topology on G [ @G. As changing the
generating set S induces a quasi-isometry, this topology on G [ @G does not depend on
S , so it is well defined. The topology we have explained for a convergence group can be
seen as an extension of Gromov’s topology. Indeed, we have the following.

Proposition 4.2. Let G be a hyperbolic group, and assume that its Gromov boundary
M has more than two points. Then, the topology we obtain on G [M by considering G
acting as a convergence group on M following the procedure explained in this section
coincides with Gromov’s topology.

Proof. Both restrictions to M and to G have the same topology in both cases. Hence, we
only have to check if the sequences of G converging to points inM have the same limit in
both topologies, as there are no sequences of elements ofM converging to elements ofG.

Consider .gn/n2N �G converging to � 2M with the topology of convergence groups
and assume that the sequence does not converge to � in Gromov’s topology. Then, given a
finite set of generators S , there exists a subsequence .gnk /� .gn/ such that .gnk ��/e �K,
where the Gromov product is taken with respect to the path metric on �.G; S/. Taking
a convergent subsequence (in the sense of convergence groups), we get a subsequence
.hi / � .gnk / which, since it converges to � in the convergence group topology, has �
as attracting point. Take ˛ 2 M different from the repelling point of .hi /. Then, hi˛
converges to �, so .hi˛ � �/e goes to infinity. Hence, by the reverse triangle inequality,

K � .hi � �/e � min
�
.hi˛ � hi /e; .hi˛ � �/e

�
�� D .hi˛ � hi /e ��:

Hence, K C � � d.e; Œhi˛; hi �/ D d.h�1i ; Œ˛; e�/. Therefore, .h�1i / converges to ˛ in
Gromov’s topology. As ˛ can be any point in M (except the repelling point of .hi /),
we get a contradiction, so .gn/ converges to � in Gromov’s topology.

Assume now that .gn/ converges to � 2M in Gromov’s topology but that it does not
converge to � in the convergence group topology. Then, there exists a subsequence .gnk /
which converges to �0 ¤ � with the convergence group topology, and by the previous
paragraph, .gnk / converges to �0 with Gromov’s topology, giving us a contradiction.
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4.2. The Dirichlet problem

We have that .M; �/ is a � boundary of .G; �/ with � being the hitting measure of the
random walk .wnx/ � T . That is, we have wnx ! p 2 A � M with probability �.A/.
Hence, for the random walk .wn/ � G, we have wn ! p 2 A with probability �.A/,
that is, the random walk wn converges pointwise to a random variable w1 on M , with
distribution �. We can define the hitting measures of the random walk starting at any g 2G
by

�g.A/ WD P Œgw1 2 A j w0 D e� D P Œw1 2 g
�1A j w0 D e� D g�e.A/:

Given this setting, a frequent question is whether the Dirichlet problem at infinity is
solvable, that is, whether every continuous function f W M ! R admits a continuous
extension to G [M harmonic on G with respect to the transition probability. For this we
will use the following theorem, a proof of which can be found in [20, Theorem 20.3].

Theorem 4.3. The Dirichlet problem with respect to a measure � and a compactification
G [ B of G is solvable if and only if

(1) the random walks .wn/ converge almost surely to the boundary B;

(2) for the corresponding harmonic measures,

lim
g!p

�g D ıp weakly for every p 2 B:

We have already seen that the first requisite is satisfied. For the second one, we just
have to observe that every sequence with gn ! p has a convergent subsequence (in the
sense of convergence groups), for which gnk� converges to ıp . Therefore, gn� ! ıp ,
since every subsequence has a convergent subsequence, and hence we cannot take a fully
non-converging subsequence. Hence, we get the following.

Proposition 4.4. Assume thatG is a non-elementary convergence group acting minimally
on a metrizable spaceM . Then, the Dirichlet problem on G [M solvable with respect to
the topology defined above.

If f WM ! R is the continuous function on the boundary, the extension to G is given
by the Poisson formula

h.g/ D

Z
M

f .p/g�:

4.3. Strongly almost transitive actions

Let G be a second countable group acting measurably on a standard probability space
.X;B; �/ in such a way that the action preserves the measure class of � (that is, for all
g 2 G and A 2B we have �.A/D 0 ” �.gA/D 0). We say that the action is strongly
almost transitive if, given a set A � X such that �.A/ > 0 and " > 0, there exists g 2 G
such that �.hA/ > 1 � ". That is, the action is strongly almost transitive if every set of
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positive measure can be blown up to almost full measure. These actions were introduced
by Jaworski in [9], where he proves the following theorem.

Theorem 4.5 (Jaworski). Let .M; �/ be a �-boundary of G. Then, the action of G on
.M; �/ is strongly almost transitive.

Corollary 4.6. Let G be a non-elementary, minimal convergence group on a compact
metrizable space M , and � a measure on G such that its support generates G. Then,
there exists a measure � such that the action on the probability space .M; �/ is strongly
almost transitive.

This result is in fact a consequence of previous results by Gekhtman, Gerasimov,
Potyagailo, and Yang [7]. We refer to the paper by Glasner and Weiss, [8], for a recom-
pilation of some implications of having a nontrivial strongly almost transitive action. We
write here one of the consequences explained in that paper, which we find particularly
interesting.

Corollary 4.7 (of [8, Proposition 4.3]). Let G be a non-elementary, minimal convergence
group on a compact metrizable spaceM . Then, there is no non-constant Borel measurable
equivariant map � WM ! Z, where .Z; d/ is a separable metric space on which G acts
by isometries (that is, M is ergodic with isometric coefficients).

4.4. F�-proximality

Given a measure � on a discrete countable group G, we can define the Cesàro averages

�n WD
1

n
.�C �2 C � � � C �n/:

We say that a compact metric G-space X is F�-proximal if for each x; y 2 X ,

�n
®
g W d.gx; gy/ > "

¯
! 0

as n!1 for any " > 0. Furstenberg introduced this notion in [5], where he also shows
(among other equivalences, see Theorem 14.1 of that same article; see also [8, Theorems
8.4 and 8.5] for a slightly larger list) that X is F�-proximal if and only if for any �-
stationary Borel probability measure � on X , the couple .X; �/ is a �-boundary of G.
This is indeed the case for convergence groups, so we get the following result, as it is
shown in [7].

Corollary 4.8. Let G be a non-elementary, minimally convergence group on a compact
metrizable spaceM , and � a measure onG such that its support generatesG. Then,M is
F�-proximal.
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