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Combinatorial growth in the modular group

Ara Basmajian and Robert Suzzi Valli

Abstract. We consider an exhaustion of the modular orbifold by compact subsurfaces and show
that the growth rate, in terms of word length, of the reciprocal geodesics on such subsurfaces (so
named low lying reciprocal geodesics) converges to the growth rate of the full set of reciprocal
geodesics on the modular orbifold. We derive a similar result for the low lying geodesics and their
growth rate convergence to the growth rate of the full set of closed geodesics.

1. Introduction

Consider the modular surface; that is, the .2; 3;1/ triangle orbifold, S D H=PSL.2;Z/.
A reciprocal geodesic on the modular surface is a closed geodesic that begins and ends
at the order-two cone point, traversing its image twice. Its lift is the conjugacy class in
PSL.2;Z/ of a hyperbolic element with axis passing through an order-two fixed point.
Specifying the geometric length of a geodesic is equivalent to specifying the absolute
trace of such a hyperbolic element by way of the formula, T D 2 cosh `./

2
. Sarnak [27]

showed
j¹ a primitive reciprocal geodesic with T � T ºj �

3

8
T:

Let C � S be the cusp with its natural horocycle boundary of length one. The depth of a
point in C is its distance to the natural horocycle of length one. For a positive integer m,
we define the m-thick part of S , denoted by Sm, to be S with the points a depth larger
than log mC1

2
deleted. Thus the m-thick parts form a compact exhaustion of S . We are

interested in the reciprocal geodesics that lie in the m-thick part (so called m-low lying
reciprocal geodesics). See Figure 1. Bourgain and Kontorovich [3] showed (in our termi-
nology) that for any " > 0, there is anm > 0 so that the number of fundamental reciprocal
geodesics in them-thick part having absolute trace� T has growth rate at least T 1�" (fun-
damental geodesics correspond to certain classes of binary quadratic forms, see [2, 3, 18]
for the definition). In particular, as " goes to zero,m goes to infinity and we have a nested,
increasing set of compact subsets that converge (in an appropriate sense) to the modular
orbifold S . Combined with the Sarnak result this shows that the growth rates of the low
lying reciprocal geodesics converge (for each T , as m! 1) to the growth rate of the
reciprocal geodesics. Using the fact that Z2 � Z3 is isomorphic to the modular group we
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Figure 1. A reciprocal geodesic  on Sm

give a combinatorial analogue of the above results using word length, instead of absolute
trace, with respect to the generators of the factors in Z2 �Z3. For  a closed geodesic on S
we define its word length, denoted by j j, to be the minimal word length in the conjugacy
class of a lift in PSL.2;Z/, which is necessarily even.

Our main results are given in the following theorem.

Theorem 1.1. The following hold:

(1) j¹ a primitive reciprocal geodesic with j j � 2tºj � 2b
t
2 c.

(2) j¹ a primitive reciprocal geodesic in Sm�2 with j j � 2tºj

�
�

˛m
2C.mC1/.˛m�2/

�
˛
b t2 c

m .

(3) j¹ a primitive closed geodesic with j j � 2tºj � 2tC1

t
.

(4) j¹ a primitive closed geodesic in Sm�3 with j j � 2tºj & 2t.1�1=m/

t
.

We use the notation f � g to denote that the ratio of f .t/ and g.t/ approaches one,
as t goes to infinity. We use the symbol f & g to mean that there exist a constant C and
a t0 so that f .t/ � Cg.t/ for all t � t0.

The constant ˛m in item (2) of Theorem 1.1 is the unique positive root of the polyno-
mial

zm � zm�1 � zm�2 � � � � � z � 1:

The ¹˛mº1mD2 are increasing in m, satisfy 2.1 � 1
2m
/ � ˛m � 2, and go to 2 as m!1.

See [6] for the details and the proofs of these algebraic properties. Using these properties
on the functions in Theorem 1.1, we get the following result.

Corollary 1.2. The asymptotic growth rate of the primitive reciprocal geodesics in the
m-thick part, Sm, converges to the asymptotic growth rate of the primitive reciprocal
geodesics on the modular orbifold, as m ! 1. Similarly, the asymptotic growth rate
of the primitive closed geodesics in Sm converges, up to a multiplicative constant, to
the asymptotic growth rate of the primitive closed geodesics on the modular orbifold, as
m!1.
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Geodesic set Bijection to Cardinality

Geodesics of length 2t Lyndon binary words
(primitive and non-primitive)
of length t

1
t

tX
jD1

2gcd.j;t/
� 2

Reciprocal geodesics of
length 4t

Compositions of t 2t�1

Geodesics in Sm of length 2t m-Lyndon binary words of
length t

�
2t�

t
m�1

t

Reciprocal geodesics in Sm
of length 4t

Compositions of t with parts
bounded by m

j
1
2 C

˛m�1
2C.mC1/.˛m�2/

˛tm

k

Table 1. Cardinality of geodesic classes

Remark 1.3. We derive the exact size of the full set of the low lying reciprocal geodesics,
reciprocal geodesics, and closed geodesics of word length exactly 2t (see Table 1), allow-
ing us to achieve tight coarse bounds, and hence in the limit the asymptotic growth rates for
word length� 2t ; thus proving the results of Theorem 1.1. As these are asymptotic growth
rates, rough approximations such as quasi-isometries between growth rates involving geo-
metric length and combinatorial length of geodesics are not applicable. In particular, our
results do not follow in any obvious way from the results of Sarnak [27].

The study of asymptotic growth rates of geometric lengths of various classes of closed
geodesics has a long and storied history beginning with Huber’s result for all closed
geodesics, to Mirzakhani’s growth rate of the simple closed geodesics, to more general
results for non-simple closed geodesics and reciprocal geodesics [1–4, 8, 9, 21, 23, 27].
Concurrently there is the study of such geodesics in terms of word length or equivalently
primitive conjugacy classes and their word length growth rates leading to more abstract,
algebraic investigations of groups such as surface groups or free groups [5, 7, 16, 22, 25,
26,29]. Papers involving normal forms, enumeration schemes for curves, Farey arithmetic,
and generating elements in a non-abelian free group include [10–15, 28].

Our focus in this paper is on so called low lying and reciprocal words in the modular
group. These are the lifts of the low lying and reciprocal geodesics, respectively. Although
neither of these sets forms a group, they have the minimal properties needed to consider
the growth rate of their primitive conjugacy classes. Namely, these subsets of the modular
group are comprised of infinite order elements, are conjugacy invariant, are closed under
taking powers, and the unique positive power primitive element in the modular group is
also a member of the subset.

We take, for the most part, a combinatorial approach to determine the growth rate of
the primitive conjugacy classes. Typically in such arguments a convenient normal form
for the conjugacy classes is used and then counted. Of course, one needs to determine
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when two elements in normal form represent the same conjugacy class. In the case of
reciprocal words we prove a crucial lemma (Lemma 3.6) showing exactly two elements in
normal form are conjugate and identifying these two elements. The fact that there are two
primitive conjugates was first proven by Sarnak [27] using different methods.

This normal form using the isomorphism from Z2 � Z3 to PSL.2;Z/ allows us to
represent a closed geodesic as a product of parabolic elements. How deep a geodesic
wanders into the cusp is directly related to the exponents of these parabolics. See Lemma
7.1 for a precise statement. For the connection between geodesic excursions into the cusp
and number theoretic quantities see [17] and the references therein.

The paper is organized as follows. In Section 2, we derive some of the elementary
but key lemmas as well as set up notation. In Section 3, we talk about the normal form
of a reciprocal word and prove a crucial lemma which identifies when two such words in
normal form are conjugate. In Sections 4 and 5, we determine the size of the conjugacy
classes of elements in Z2 �Z3 of length 2t and reciprocal words of length 4t as well as the
primitive classes of these sets. In Section 6, we identify the low lying conjugacy classes of
length 2t with so called m-Lyndon words of length t , and derive an effective lower bound
for the growth of such words. We next construct a bijection between the conjugacy classes
of m-low lying reciprocal words and compositions with parts bounded by m allowing us
to count these classes. Section 7 relates the cusp geometry of the modular orbifold with
geodesic excursions into the cusp. Finally, in Section 8, we put the work of the previous
sections together to prove our main theorem.

2. Basics and notation

We use the notation f � g to mean asymptotic to and the symbol f & g to mean that
there exist a constant C and a t0 so that f .t/ � Cg.t/ for all t � t0.

Consider the groupGDZ2 �Z3. Assume the generator of Z2 is a and the generator of
Z3 is b. An element g 2 G is primitive if it is not a non-trivial power of another element
of G. The word length of g, denoted by kgk, is the minimum length among all words
representing g using the symmetric set of generators ¹a;b; b�1º. Set W D ¹reduced words
in the generators of Gº, that is, where the exponent of a is alwaysC1 and the exponent of
b is always ˙1. The conjugacy class of g 2 G is denoted by Œg�. For a positive integer s,
since conjugation commutes with taking powers, we may define Œg�s WD Œgs�. The length
of a conjugacy class Œg� is given by kŒg�k Dmin¹khk W h 2 Œg�º. A word in W is cyclically
reduced if any cyclic permutation of it is a reduced word. Though cyclically reduced words
in a conjugacy class are not unique they do realize the minimum length in the conjugacy
class. In fact, all conjugates of a cyclically reduced word are cyclic permutations of each
other. For the basics on combinatorial group theory see [19, 20].

We call a reduced word that begins with a and ends with b or b�1 an .ab/-word.
Similarly, we have .aa/-, .bb/-, .ba/-words. We remark the obvious but important fact
that an .ab/- or .ba/-word is cyclically reduced but an .aa/- or .bb/-word is not.
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We have the following fundamental lemma.

Lemma 2.1. Let x 2 W where x is not conjugate to one of the generators, that is, not
conjugate to a, b, or b�1. Then:

(1) x is conjugate to an .ab/-word y with kxk � kyk.

(2) The only conjugates of the word ab"1 : : : ab"t , "i D ˙1, that are .ab/-words are
its even cyclic permutations. That is, ab"tab"1 : : : ab"t�1 and so on.

(3) If y is an .ab/-word and xs D y for a positive integer s, then x is an .ab/-word
and skxk D kyk.

(4) If Œx�s D Œy�, then skŒx�k D kŒy�k.

Proof. Items (1)–(3) follow immediately. To prove item (4) we may assume, by conju-
gating if necessary, that y is an .ab/-word. Now, by assumption there exists an x so that
xs D y, and hence x is an .ab/-word by item (3). Moreover, we have kŒy�k D kyk D
skxk D skŒx�k, where the second and third equalities also follow from item (3).

Remark 2.2. In the group G D Z2 � Z3 each infinite order element is a positive power
of a unique, primitive element. Although this can be proven using purely combinatorial
methods, the easiest way to see this is by the fact that G has a discrete, faithful represen-
tation into PSL.2;Z/. In particular, every infinite order element is contained in a maximal
cyclic subgroup of G, and hence, there is a corresponding maximal primitive root.

Throughout this work we consider subsets of G that have the following minimal
properties.

Definition 2.3. A set A�G made up of infinite order elements is said to satisfy condition
(�) if the following properties are satisfied.

• All positive and negative powers of any element in A are also in A.

• For any element in A, the corresponding unique primitive root in G of which it is a
positive power is also in A.

• A is conjugacy invariant.

In the sequel the subsets A will denote either infinite order words in G, reciprocal
words (to be defined later), or low lying words (to be defined later). For now we proceed
abstractly with any set A satisfying condition (�), we fix notation, and derive some basic
facts.

As in Section 2, let W be the set of reduced words in the generators of G. Setting
Ap D ¹primitive elements of Aº, we have Ap � A � W . Since each of these subsets
is closed under conjugation by elements of G, we define the conjugacy classes of these
subsets by capitals: Ap , A, and W , respectively. Note that W is the full set of conjugacy
classes in G. We denote the non-primitive conjugacy classes in A by Anp .

For various choices of A we are interested in the growth rate of primitive conjugacy
classes in A. Here growth is measured by word length in terms of the generators.
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For a positive integer t we use t as a subscript to denote the elements in that set
of length t . Similarly, we use � t as a subscript to denote the elements in the set of
length � t . For example, At denotes the conjugacy classes in A of length t , and A�t
denotes the conjugacy classes in A of length less than or equal to t . The growth function
for the set A is denoted by jA�t j. A proper divisor of t is a positive integer that divides t
but is not 1 or t .

We next define a map from primitive conjugacy classes to non-primitive conjugacy
classes given by a power map.

Lemma 2.4. The map � W
S
sjt A

p
s !A

np
t given by Œx� 7! Œxt=s� is well-defined and a bijec-

tion. That is, the non-primitive conjugacy classes in At are in one-to-one correspondence
with elements of P

S
sjt A

p
s , where the union is over all proper divisors, s, of t .

Proof. � is well-defined since powers commute with conjugation. To prove surjectivity,
suppose Œy� 2Anpt and hence there exists Œx� 2Aps so that Œx�n D Œy�, where n is a positive
integer greater than 1. By item (4) of Lemma 2.1, nkŒx�k D kŒy�k and hence s divides t .
If s D 1, then n D t and kŒx�k D 1. So x is conjugate to a or b˙1, which implies x has
finite order. Thus s properly divides t .

Injectivity follows from establishing the following two items, which we leave to the
reader.

(1) If Œx1� ¤ Œx2� in Aps , then �.Œx1�/ is not conjugate to �.Œx2�/.

(2) If s1 and s2 divide t , s1 ¤ s2, then �.Aps1/ \ �.A
p
s2/ D ;.

We have established the following result.

Proposition 2.5. Suppose A � G satisfies condition (�). Then

A
p
t D At �

P[
sjt

�.Aps / and jA
p
t j D jAt j �

X
sjt

jAps j

where the union and sum are over all proper divisors, s, of t .

Our goal in the next few sections is to compute the asymptotics as t ! 1 of the
functions jAp2t j and jAp�2t j for various choices of A.

Set
R D ¹xy W x; y are distinct order-two elements in Gº:

Denoting the commutator of x and y by Œx; y�, and noting that there is one conjugacy
class of order-two elements, we may write

R D
®
Œxax�1; xyx�1� W x; y 2 G; y ¤ a

¯
D
®
xŒa; y�x�1 W x; y 2 G; y ¤ a

¯
:

We call the elements of R reciprocal words. We remark that R is closed under taking
powers. Moreover, if an element of R is a power of the unique, primitive y 2 G, then y
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is also in R. Thus R satisfies condition (�). Denote the primitive conjugacy classes in R
by Rp . The conjugacy classes of R correspond exactly to the set of reciprocal geodesics
on the modular orbifold. This is because a lift of a reciprocal geodesic is the product of a
pair of order-two elements in PSL.2;Z/.

Remark 2.6. Any reciprocal word conjugated to an .ab/-word has the form

w D Œa; � D ab"1 : : : ab"tab�"t : : : ab�"1 ;

where "i D ˙1 and  is a .bb/-word. With this in mind we define the normal form of
a reciprocal word to be Œa; � where  is a .bb/-word. The full set of normal forms is
denoted by

N D
®
Œa; � W  a .bb/-word

¯
:

Note that non-primitive elements of N are powers of elements of the same form. That is,
Œa; � D Œa; ˇ�n, where Œa; ˇ� is primitive.

3. Binary words and the normal form for a reciprocal word

Our interest is in counting words in G. To make our computations less cumbersome
we identify .ab/-words in G with binary words. Namely, we identify the .ab/-word
ab"0ab"1 : : : ab"t�1 with the binary word ."0; "1; : : : ; "t�1/, where "i D ˙1. Denote the
set of all binary words of length t by Xt . We define a cyclic permutation map

˛ W Xt ! Xt ; ."0; : : : ; "t�1/ 7! ."t�1; "0; : : : ; "t�2/:

Focusing on reciprocal words, the length of a reciprocal word in normal form, N , is a
multiple of 4. Hence we identify N with the subset

Y2t D
®
."0; : : : ; "2t�1/ W "j D �"2t�j�1 for all j D 0; : : : ; 2t � 1

¯
� X2t :

Conjugate words of an .ab/-word in the same .ab/-form are cyclic permutations of
even order. With this in mind, using the bijection, we use the cyclic action h˛i on X2t
given by ˛k."0; : : : ; "2t�1/D ."00; : : : ; "

0
2t�1/, where "0j D "j�k for all j D 0; : : : ; 2t � 1.

Here we use the convention that the subscripts are modulo 2t .

Lemma 3.1. Fix k. For any ."0; : : : ; "2t�1/ 2 X2t we have:

• ˛k."0; : : : ; "2t�1/ D ."0; : : : ; "2t�1/ if and only if "j D "j�k for all j .

• ˛k."0; : : : ; "2t�1/ 2 Y2t if and only if "j�k D �"2t�j�1�k for all j .

• If ."0; : : : ; "2t�1/ 2 Y2t , then ˛t ."0; : : : ; "2t�1/ 2 Y2t .
In general, ˛k."0; : : : ; "2t�1/ 2 Y2t if and only if "j D "j�2k for all j .

The proof of Lemma 3.1 is straightforward, we leave it to the reader.
With an eye toward applications to elements in the group G we define a notion of

primitivity for a binary word.
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Definition 3.2. For any positive integer t , an element x 2 Xt is called non-primitive if
there exists s which properly divides t so that x is the juxtaposition of s-subtuples where
each subtuple is the same. That is, there exists z 2 Xt=s so that x D zs . Otherwise, we say
x is primitive.

An element in Xt is the positive integer power of some primitive subtuple. Moreover,
if x 2 Y2t � X2t is non-primitive then x D ys , where y 2 Y2t=s .

Let O D O.x/ be the orbit in X2t of an element x 2 Y2t � X2t under the action of ˛.
We are interested in O \ Y2t . We set k0 to be the smallest power of ˛ for which an element
of O \ Y2t maps back to O \ Y2t . Note that k0 is an invariant of the orbit and 1 � k0 � t .

Lemma 3.3. The following hold:

(1) For any integer n, ˛nk0.O \ Y2t / D O \ Y2t .

(2) ˛l .O \ Y2t / \ .O \ Y2t / D ; for l not a multiple of k0.

(3) ˛k0.x/ ¤ x for any x 2 O \ Y2t .

Proof. Set x D ."0; : : : ; "2t�1/ 2 O \ Y2t throughout this proof.
To prove item (1), it is enough to show that ˛nk0.O \ Y2t /�O \ Y2t for any integer n.

Noting that ˛k0.x/ 2 O \ Y2t , we have, by Lemma 3.1, "j D "j�2k0 D � � � D "j�2nk0 for
all j . Therefore, again by Lemma 3.1, ˛nk0.x/ 2 O \ Y2t .

For item (2), suppose for contradiction ˛l .x/ 2 O \ Y2t and nk0 < l < .nC 1/k0.
Then ˛l�nk0.˛nk0.x// D ˛l .x/ 2 O \ Y2t . On the other hand by item (1), ˛nk0.x/ 2
O \ Y2t and so ˛l�nk0.O \ Y2t / \ .O \ Y2t / ¤ ;, contradicting our assumption that k0
is minimal.

To prove item (3), assume ˛k0.x/D x and hence, by Lemma 3.1, "j D "j�k0 for all j ,
and there is a repeating subtuple y of length k0 which fills out x. Moreover, this subtuple
must lie in Yk0 and since the elements of Yk0 have even length, k0 must be even. On the
other hand, setting k D k0

2
we have "j�2k D "j�k0 D "j for all j , where the last equality

follows from Lemma 3.1. This contradicts the minimality of k0 and thus ˛k0.x/ ¤ x.

Proposition 3.4. Assume x 2 Y2t . Then the following hold:

(1) ˛nk0.x/ D x for n even, and ˛nk0.x/ D ˛k0.x/ for n odd. Namely, O \ Y2t con-
sists of two distinct elements, ¹x; ˛k0.x/º.

(2) The element x is primitive if and only if k0 D t .

Proof. Set xD ."0; : : : ; "2t�1/ 2 Y2t . To prove (1), we note by items (1) and (2) of Lemma
3.3, that all the points in O \ Y2t are of the form ˛nk0.x/. Since ˛k0.x/ 2 O \ Y2t and
assuming n is even, we have "j D "j�2k0 D "j�4k0 D � � � D "j�nk0 by Lemma 3.1, and
hence ˛nk0.x/ D x. For odd n D 2mC 1, we have that

˛nk0.x/ D ˛.2mC1/k0.x/ D ˛k0.˛2mk0.x// D ˛k0.x/:

However, ˛k0.x/ ¤ x by item (3) of Lemma 3.3.
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To prove (2), we first remark that x is non-primitive if and only if there exists a minimal
subtuple y 2 Y2s repeated t

s
-times, where s properly divides t , giving x. We have k0 <

2s � t , where the left inequality follows from item (3) of Lemma 3.3. Thus k0 < t . On
the other hand, if x is primitive then there is no proper s and thus k0 D t .

Remark 3.5. A schematic picture emerges. We picture Y2t as the diagonal in X2t and
the h˛i-orbit of a point in Y2t as intersecting Y2t in exactly two distinct points, and the
number of all orbit points in X2t being 2k0.

We now return to the main objective of this section to consider the normal form of
reciprocal words. We remind the reader of the bijection

N4t D
®
Œa; � W  a .bb/-word of length 2t � 1

¯
! Y2t

given by

ab"0 : : : ab"t�1ab�"t�1 : : : ab�"0 7! ."0; : : : ; "t�1;�"t�1; : : : ;�"0/:

Using the bijection with Proposition 3.4, and noting that when Œa;ˇ� is primitive, ˇ cannot
be of order two, we have proven the following result.

Lemma 3.6. Each conjugacy class of an element of R has exactly two representatives in
the normal form N . Namely, the two conjugates in N are Œa; ˇ�n and Œa; ˇ�1�n, where
Œa; ˇ� is primitive, n is a unique positive integer, and ˇ is a unique .bb/-word not of order
two.

Remark 3.7. In proving Lemma 3.6 we largely took a combinatorial point of view. How-
ever, using different methods in [27], this lemma is proven for primitive reciprocals by
considering conjugacy classes of infinite maximal dihedral subgroups of PSL.2;Z/.

4. Counting conjugacy classes in Z2 � Z3

The goal of this section is to investigate the growth rate of primitive conjugacy classes
in G. Fix a positive integer t , recall that Xt D ¹."0; : : : ; "t�1/ W "i D ˙1º, and consider
the cyclic permutation map, ˛ WXt !Xt , given by ."0; : : : ; "t�1/ 7! ."t�1; "0; : : : ; "t�2/.
Appealing to the Burnside lemma we have

jXt=h˛ij D
1

t

tX
jD1

2gcd.j;t/: (4.1)

Denote the set of all words in G of .ab/-form with length 2t by

W2t .ab/ D
®
ab"0 : : : ab"t�1 W "i D ˙1º:
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Consider the action

ˇ W W2t .ab/! W2t .ab/; ab"0 : : : ab"t�1 7! ab"t�1ab"0 : : : ab"t�2 :

The group hˇi is cyclic of order t .

Lemma 4.1. We have

jW2t .ab/=hˇij D
1

t

tX
jD1

2gcd.j;t/:

Proof. Note that ."0; : : : ; "t�1/ 7! ab"0 : : : ab"t�1 is an equivariant bijection between the
h˛i action on Xt and the hˇi action on W2t .ab/. The result follows using (4.1).

Recall that W2t is the full set of conjugacy classes in G of length 2t .

Theorem 4.2. The following hold:

(1) jW2t j D 1
t

Pt
jD1 2

gcd.j;t/.

(2) jW2t j � 2t

t
, as t !1.

(3) jW�2t j � 2tC1

t
, as t !1.

Proof. A proof of item (1) appears in [29], however for completeness we supply a proof.
Suppose Œw� 2W2t . Then in the conjugacy class ofw there is a representative in W2t .ab/.
Now the only other conjugates in W2t .ab/ are the ones equivalent under the action of
hˇi. There is a one-to-one correspondence between the set of conjugacy classes W2t and
W2t .ab/=hˇi, and hence by Lemma 4.1 the result follows.

To prove item (2) we begin by noting that gcd.t; t/ D t and gcd.j; t/ � t
2

for j < t .
It follows that

2t

t
� jW2t j D

1

t

� t�1X
jD1

2gcd.j;t/ C 2t
�
�

� t � 1
t

�
2t=2 C

2t

t
:

The claimed asymptotic follows since�
t�1
t

�
2t=2

2t

t

! 0:

For item (3) note that

jW�2t j D 3C

tX
nD1

jW2nj D 3C

tX
nD1

1

n

nX
jD1

2gcd.j;n/:

We remark that the term 3 appears above since there are 3 length-one conjugacy classes.
Using the same reasoning from item (2), we have

tX
nD1

2n

n
� jW�2t j � 3C

tX
nD1

2n

n
C

tX
nD1

2n=2:
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Since Pt
nD1 2

n=2Pt
nD1

2n

n

! 0;

we have that jW�2t j �
Pt
nD1

2n

n
. Finally, an application of the Stolz–Cesaro theorem [24]

yields
tX

nD1

2n

n
�
2tC1

t C 1
:

Recall that W np
2t is the full set of conjugacy classes of non-primitive elements in G of

length 2t .

Lemma 4.3. The following hold:

(1) jW np
2t j �

1
2
t2t=2.

(2) jW np
�2t j �

1
2
t22t=2.

Proof. For item (1), using Proposition 2.5, we have

jW
np
2t j D

X
sjt

jW
p
2sj �

X
sjt

jW2sj D
X
sjt

1

s

sX
jD1

2gcd.j;s/

�

X
sjt

1

s

sX
jD1

2s D
X
sjt

2s �
t

2
2t=2;

where the last inequality follows from the fact that the largest proper divisor of t is t
2

and
there are at most t

2
divisors. For item (2) we apply item (1):

jW
np
�2t j D

tX
nD1

jW
np
2n j �

tX
nD1

1

2
n2n=2 �

1

2
t2t=2

tX
nD1

1 D
1

2
t22t=2:

Recall that W p
2t is the full set of conjugacy classes of primitive elements in G of

length 2t .

Theorem 4.4. The following hold:

(1) jW p
2t j � jW2t j �

2t

t
, as t !1.

(2) jW p
�2t j � jW�2t j �

2tC1

t
, as t !1.

Proof. Applying Lemma 4.3, we have

jW2t j �
1

2
t2t=2 � jW

p
2t j � jW2t j:

Dividing by jW2t j and noting that jW2t j � 2t

t
, we get

1 �

1
2
t2t=2

2t

t

�
jW

p
2t j

jW2t j
� 1;

which yields the desired asymptotic.
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For part (2), we use an analogous argument. From Lemma 4.3 we deduce

jW�2t j �
1

2
t22t=2 � jW

p
�2t j � jW�2t j:

Dividing by jW�2t j and using that jW�2t j �
Pt
nD1

2n

n
�

2t

t
, we have

1 �

1
2
t22t=2

2t

t

�
jW

p
�2t j

jW�2t j
� 1;

giving the desired asymptotic.

5. Counting conjugacy classes of reciprocal words

In this section, we compute the growth rate of conjugacy classes of reciprocal words R in
G D Z2 �Z3. The conjugacy classes of reciprocal words have length a multiple of 4. For
this reason we use the parameter 4t for ease of computation.

Lemma 5.1. The following hold:

(1) jR4t j D 2t�1.

(2) jR�4t j D 2t � 1.

Proof. Let Œw� 2 R4t . We pick as representative a cyclically reduced word of the form

w D ab"0 : : : ab"t�1ab�"t�1 : : : ab�"0 ;

where "i D ˙1. The result follows since there are exactly two conjugates of this form
(Lemma 3.6) and there are 2t words of this form.

For the second claim,

jR�4t j D

tX
nD1

jR4nj D
1

2

tX
nD1

2n D
1

2

h
2
�1 � 2t
1 � 2

�i
D 2t � 1:

Lemma 5.2. The following hold:

(1) jRnp4t j �
1
4
t2t=2.

(2) jRnp�4t j �
1
4
t22t=2.

The proof of the lemma follows in an analogous way to the proof of Lemma 4.3. We
leave the details to the reader.

Theorem 5.3. The following hold:

(1) jRp4t j � jR4t j D 2
t�1, as t !1.

(2) jRp�4t j � jR�4t j D 2
t � 1, as t !1.
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Proof. For part (1), we apply Lemma 5.2 to get

jR4t j �
1

4
t2t=2 � jR

p
4t j � jR4t j:

Dividing by jR4t j D 1
2
2t and letting t !1 yields the claimed asymptotic.

For part (2), we again apply Lemma 5.2 to get

jR�4t j �
1

4
t22t=2 � jR

p
�4t j � jR�4t j:

Dividing by jR�4t j D 2t � 1 and letting t !1 yields the claimed asymptotic.

6. Lying low

In this section, we would like to count the low lying geodesics. In other words, we consider
the growth rate of conjugacy classes of low lying words as well as low lying reciprocal
words. For a positive integer m we say that a word in W is an m-low lying word if, when
conjugated to an .ab/-word ab"1ab"2 : : : ab"t with "i D ˙1, no .m C 1/ consecutive
"i considered cyclically have the same sign. Put another way, the highest exponent of
ab or ab�1 considered cyclically in an m-low lying word is at most m. When the m is
understood we simply say that the word is low lying. We denote the conjugacy classes of
m-low lying words of word length 2t by L2t;m, and the m-low lying primitive conjugacy
classes of words by Lp2t;m. We note that the property of being m-low lying is preserved
under conjugation, taking powers, and taking roots; it hence satisfies condition (�).

6.1. Low lying words

We fix a positive integerm � 2. We now consider the growth rate of the conjugacy classes
of all m-low lying words. Let L2t;m.ab/ be the set of normalized m-low lying words of
length 2t . That is, a word of the form w D ab"1ab"2 : : : ab"t , where "i D ˙1, and no
.mC 1/ consecutive "i considered cyclically have the same sign.

As before we identify such a word w with the t -tuple of ˙1’s, ."1; : : : ; "t /, and of
course via this identification we have the notion of a primitive and non-primitive t -tuple.
The cyclic action on the word w induces a cyclic action on this t -tuple. With this in mind,
we consider the t -tuple of ˙1’s on a circle oriented counterclockwise. Within the cyclic
equivalence class we identify a distinguished element. Namely, using the lexicographical
ordering (�1 precedes 1), among cyclic permutations of ."1; : : : ; "t / choose the smallest
and call such a word an m-Lyndon binary word. An m-Lyndon binary word is primitive
if and only if none of its non-trivial cyclic permutations are equal to it. Note that an m-
Lyndon binary word selects a representative in the conjugacy class of an m-low lying
word. For example, the Lyndon binary word .�1;�1;�1; 1;�1;�1;�1; 1;�1;�1; 1; 1/
selects the low lying word Œw� D Œ.ab�1/3.ab/.ab�1/3.ab/.ab�1/2.ab/2� 2 L24. We
have established the following.
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Proposition 6.1. Fix a positive integer m � 2. Then L2t;m is bijectively equivalent to the
m-Lyndon binary words of length t .

Remark 6.2. In the case thatm � t and we restrict to primitive binary words, such words
are known as Lyndon words in the literature.

Our next goal is to derive an effective lower bound on the number ofm-Lyndon words
or equivalently the m-low lying conjugacy classes of length 2t . We consider the normal
form of the m-low lying words ab"1ab"2 : : : ab"t or equivalently ."1; : : : ; "t / with cyclic
runs of length at mostm. In order to achieve a lower bound we construct a subset ofm-low
lying words of length 2t or equivalently m-low lying t -tuples. To that end, we picture t
ordered slots and we group them into the first m, second m, and so on. There are exactly
d
t
m
e groups where the last grouping has less than or equal to m slots. We color all these

slots black except the following which are colored red: the first one in the second group
of m slots, the first one in the third group of m slots, and so on. If the t -th slot (that is, the
last slot) is not red, it should also be colored red. Let B2t;m be the subset of m-low lying
words where any black slot can be C1 or �1, and the red slots are determined to insure
there are no runs of length greater thanm. Hence there are at least t � b t

m
c � 1 black slots,

and since the worst case up to cyclic conjugacy is that all t of the cyclic conjugates are
distinct and in B2t;m, we have that the conjugacy classes of these elements satisfy

jB2t;mj �
2t�b

t
m c�1

t
:

Theorem 6.3. The following hold:

(1) jL2t;mj � jB2t;mj � 2t�
t
m�1

t
, for m � 2.

(2) For m � 3, jLp2t;mj � jL2t;mj, as t !1.

(3) There exists t0 > 0 so that jLp2t;mj �
1
2

�
2t�

t
m�1

t

�
, for t � t0 and m � 3.

(4) There exists t0 > 0 so that jLp�2t;mj �
1
4

Pt
sDt0

2s�
s
m

s
, for t � t0 and m � 3.

Proof. Item (1) was proven in the discussion before the theorem. To prove item (2), we
first use Lemma 4.3 to bound the non-primitive low lying growth rate:

jL
np
2t;mj � jW

np
2t j �

1

2
t2t=2:

Hence,

1 �
jL
p
2t;mj

jL2t;mj
D 1 �

jL
np
2t;mj

jL2t;mj
� 1 �

1
2
t2t=2

2t�
t
m�1

t

� 1 �

1
2
t2t=2

2
t� t3�1

t

; (6.1)

where we have used m � 3 in the right-hand inequality.
Noting that the lower bound in expression (6.1) does not depend onm, item (3) follows

from item (1) and by choosing t0 large enough so that

jL
p
2t;mj

jL2t;mj
�
1

2
:
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Finally, to prove item (4),

jL
p
�2t;mj D

tX
sD1

jL
p
2s;mj D

t0X
sD1

jL
p
2s;mj C

tX
sDt0

jL
p
2s;mj

�

t0X
sD1

jL
p
2s;mj C

1

2

tX
sDt0

�2s� s
m�1

s

�

�
1

2

tX
sDt0

�2s� s
m�1

s

�
D
1

4

tX
sDt0

2s�
s
m

s
:

Remark 6.4. Since our eventual goal is to prove Theorem 1.1 and Corollary 1.2, it is
critical that t0 in the above theorem does not depend on m.

6.2. Low lying reciprocal words

In this section, we count the low lying reciprocal words. Recall that

N4t D
®
Œa; � W  a .bb/-word of length 2t � 1

¯
;

where Œa; � is the group commutator of a and  . We define � W N4t ! R4t to be the
map taking elements in N4t to its conjugacy class. From Section 3 we know that there are
exactly two conjugacy class representatives in normal form for reciprocal words, hence �
is a surjective 2-1 mapping.

Definition 6.5. Fix an integer t > 0. A composition of t is an ordered sequence of positive
integers .k1; : : : ; kl /which sums to t . The ki ’s are called the parts of the composition. The
set of all compositions of t is denoted by Ct . Compositions of t having parts bounded by
a fixed positive integer m are denoted by Ct;m.

Next, define

g W N4t ! Ct ; Œa; b"1ab"2 : : : ab"t � 7! .k1; : : : ; kl /:

Here .k1; : : : ; kl / is the ordered sequence of lengths of .C1/ and .�1/-runs starting from
the left in the "i ’s. For example, if ! D Œa; b�1ab�1ab�1ab1ab1ab�1ab1� 2 N28, then
g.!/ D .3; 2; 1; 1/ 2 C7. We remark here that g is a surjective 2-1 mapping. Namely,
suppose ! D Œa; b"1ab"2 : : : ab"t � 2 N4t so that g.!/ D .k1; : : : ; kl / 2 Ct . Then there
exists exactly one other element in N4t whose image under g is .k1; : : : ; kl /, namely,
Œa; b�"1ab�"2 : : : ab�"t �.

N4t Ct

R4t

g

�

L4t;m \N4t Ct;m

L4t;m \R4t

gm

�m
ˆm

(6.2)
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The set of reciprocal words is filtered by low lying reciprocal words. This is because
the set of all words W has filtration,

L4t;1 � L4t;2 � � � � � L4t;m � � � � :

This induces a filtration of each of the spaces in the left diagram of (6.2) to yield restricted
mappings in the right diagram. Noting that the maps gm and �m are surjective 2-1 maps,
even though the preimage of a point in L4t;m \ R4t is generically not the same as the
preimage of a point in Ct;m, we have

2jL4t;m \R4t j D jL4t;m \N4t j D 2jCt;mj:

Thus we have the following result.

Theorem 6.6. For each positive integerm � 2, there is a bijection ˆm from L4t;m \R4t
to Ct;m, given by the right diagram of (6.2).

We have now reduced the problem to counting Ct;m, whose computation involves
using the recursion relation: jCt;mj D

Pm
iD1 jCt�i;mj. The combinatorial analysis solving

this problem follows from [6, Theorem 2], where Ct;m is denoted by F .m/tC1. We have

jCt;mj D rnd
� ˛m � 1

2C .mC 1/.˛m � 2/
˛tm

�
; (6.3)

where rnd.x/ D bx C 1
2
c and ˛m is the unique positive root of zm � zm�1 � � � � � 1 D 0.

We remark that the coefficient ˛m�1
2C.mC1/.˛m�2/

in equation (6.3) only depends on m and
thus we denote it by dm. We note that 2.1� 2�m/ � ˛m < 2 and the ˛m are increasing as
m increases. For the details see [6].

We have proven the following theorem.

Theorem 6.7. The following hold:

(1) dm˛tm �
1
2
� jL4t;m \R4t j � dm˛

t
m C

1
2

for all t � 1.

(2) jL4t;m \R4t j � dm˛tm, as t !1.

Corollary 6.8. We have

jL�4t;m \R�4t j �
� ˛m

2C .mC 1/.˛m � 2/

�
˛tm; as t !1:

Proof. First, note that

jL�4t;m \R�4t j D

tX
nD1

jL4n;m \R4nj:

Applying item (1) of Theorem 6.7 gives us

tX
nD1

�
dm˛

n
m �

1

2

�
� jL�4t;m \R�4t j �

tX
nD1

�
dm˛

n
m C

1

2

�
:
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Simplifying, we have� ˛m

2C .mC 1/.˛m � 2/

�
.˛tm � 1/ �

t

2

� jL�4t;m \R�4t j �
� ˛m

2C .mC 1/.˛m � 2/

�
.˛tm � 1/C

t

2
:

The result follows by dividing by . ˛m
2C.mC1/.˛m�2/

/˛tm and letting t !1.

7. Representation and geodesic excursion into the cusp

Consider the group G D Z2 � Z3 with generators a and b of the first and second factors,
respectively. This group is isomorphic to the modular group. We consider the following
representation of G: a 7! A and b 7! B where,

A D

�
0 �1

1 0

�
and B D

�
1 �1

1 0

�
:

This is a discrete, faithful representation with image PSL.2;Z/. Let S DH=PSL.2;Z/ be
the associated orbifold surface. It follows that S is a generalized pair of pants. In particular,
S has zero genus and signature .2; 3;1/.

It is well known that if an orbifold surface has a cusp then it has an embedded cusp of
area one and boundary a horocycle segment of length one. A closed geodesic that wanders
into (and hence out of a cusp) has a maximal depth in which it enters. More precisely, let
 be a closed geodesic on the modular orbifold and let C be the cusp of area one. The
closed geodesic may wander in and out of the cusp a number of times, and each time it
enters and exits the cusp we call this an excursion of  . The depth of an excursion is the
furthest distance into the cusp the excursion goes.

Lemma 7.1. Let  be a closed geodesic on S .

(1) An excursion of  winds k � 2 times around the cusp if and only if the depth of
the excursion is strictly between log k

2
and log kC1

2
.

(2)  is contained in the m-thick part of S if and only if some, and hence any, repre-
sentative g 2 PSL.2;Z/ of  is an m-low lying word.

Proof. Let z be a lift of  normalized so that its endpoints at infinity are �r and r and
the parabolic associated to the cusp normalized to be f .z/ D z C 1. The depth for this
excursion into the cusp is log r . Now if the excursion winds around the cusp k-times then
f k. Q/ \ Q ¤ ; and f kC1. Q/ \ Q D ;. That is, k

2
< r < kC1

2
. See Figure 2. Note that

equality is not included as that would violate the fact that two hyperbolic elements in a
Fuchsian group can not share a unique fixed point. Equivalently, log k

2
< log r < log kC1

2
.

These steps are reversible. Hence we have proven item (1).
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Q

0�r r

H

i

ik

ir

i.k C 1/

Figure 2. The hyperbolic plane

To prove item (2), the word g written as a product of the generators in normal form
is the product of the inverse conjugate parabolic elements AB and AB�1. Suppose g is
m-low lying. Then the longest run of AB or AB�1 (considered cyclically) is at most m.
Now, a run in the word g, say k, corresponds to  winding around the cusp k times. By
item (1), we know that the depth of this excursion is at most log kC1

2
� log mC1

2
. Thus 

is contained in the m-thick part of S . For the converse, if  is in the m-thick part, item (1)
again guarantees that there is no run of AB or AB�1 longer than m. Therefore g is an
m-low lying word.

8. All together now: The proof of Theorem 1.1

In this section, we put together the work of the previous sections to prove Theorem 1.1.
The closed geodesics on S correspond to conjugacy classes of hyperbolic elements in
PSL.2; Z/. Similarly, reciprocal closed geodesics correspond to hyperbolic elements
whose axes pass through an order-two fixed point. Finally, low lying closed geodesics
correspond to conjugacy classes of low lying words, as in Lemma 7.1. Using the notation
from the previous sections, we have the following correspondence between geodesics and
conjugacy classes of words in the group:®

 a primitive reciprocal geodesic with j j � 2t
¯

 ! R
p
�2t ;®

 a primitive reciprocal geodesic in Sm�2 with j j � 2t
¯

 ! L
p
�2t;m \R

p
�2t ;®

 a primitive closed geodesic with j j � 2t
¯

 !
®
Œw� 2 W

p
�2t W kŒw�k > 2

¯
;
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and ®
 a primitive closed geodesic in Sm�3 with j j � 2t

¯
 !

®
Œw� 2 L

p
�2t;m W kŒw�k > 2

¯
:

Proof of Theorem 1.1. To prove item (1), we first note that

jR�2t j D

b t2 cX
nD1

jR4nj D 2
b t2 c � 1;

where the last equality follows as in the proof of the second part of Lemma 5.1. Using
the fact that jR2t j � 1

2
2
t
2 , we can establish jRp�2t j � jR�2t j in a similar way to what was

done for length 4t .
To prove item (2), note that

jL�2t;m \R�2t j D

b t2 cX
nD1

jL4n;m \R4nj:

As in the proof of Corollary 6.8, applying item (1) from Theorem 6.7 yields

jL�2t;m \R�2t j �
� ˛m

2C .mC 1/.˛m � 2/

�
˛
b t2 c

m :

Using the fact that jL2t;m \R2t j � rnd.dm˛
t
2
m/, it is not difficult to show that

jL
p
�2t;m \R

p
�2t j � jL�2t;m \R�2t j:

Item (3) follows from Theorem 4.4 and the fact that the primitive hyperbolic conjugacy
classes have the same growth as all primitive conjugacy classes.

Lastly, item (4) follows from Theorem 6.3, item (4), and an application of the Stolz–
Cesaro theorem to show

tX
sDt0

2s�
s
m

s
�

2

2 � 2
1
m

�2t� t
m

t

�
:
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