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Two generalisations of Leighton’s theorem

Sam Shepherd
(with an appendix by Giles Gardam and Daniel J. Woodhouse)

Abstract. Leighton’s graph covering theorem says that two finite graphs with a common cover
have a common finite cover. We present a new proof of this using groupoids, and use this as a
model to prove two generalisations of the theorem. The first generalisation, which we refer to as the
symmetry-restricted version, restricts how balls of a given size in the universal cover can map down
to the two finite graphs when factoring through the common finite cover – this answers a question
of Neumann (2010). Secondly, we consider covers of graphs of spaces (or of more general objects),
which leads to an even more general version of Leighton’s theorem. We also compute upper bounds
for the sizes of the finite covers obtained in Leighton’s theorem and its generalisations. An appendix
by Gardam and Woodhouse provides an alternative proof of the symmetry-restricted version, that
uses Haar measure instead of groupoids.

1. Introduction

Theorem A (Leighton’s theorem). LetG1 andG2 be finite connected graphs with a com-
mon cover. Then they have a common finite cover.

This theorem was proven for k-regular graphs by Angluin and Gardener [1], and the
general case was proven by Leighton [7]. An alternative proof was given by Bass and
Kulkarni [3] using Bass–Serre theory. Walter Neumann revisited both proofs in the context
of coloured graphs, and investigated generalisations to “symmetry-restricted graphs” [11].
In this paper we solve Leighton’s theorem for Neumann’s notion of symmetry-restricted
graph.

There have been several applications of Leighton-type theorems in recent years. Levitt
used the original Leighton’s theorem to solve the commensurability problem for cer-
tain generalised Baumslag–Solitar groups [8]. Behrstock–Neumann employed Neumann’s
symmetry-restricted version of Leighton’s theorem to prove quasi-isometric rigidity for
certain non-geometric 3-manifold groups [4]. Woodhouse proved a version of Leighton’s
theorem for “graphs with fins”, and used this to prove pattern rigidity for free groups with
line patterns [15]; and the construction of the finite cover from that paper was recently
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used by the author and Woodhouse to prove quasi-isometric rigidity for certain graphs of
virtually free groups with two-ended edge groups [12]. And Stark and Woodhouse used
the symmetry-restricted Leighton’s theorem from this paper to prove action rigidity for
free products of hyperbolic manifold groups [13].

We formulate symmetry-restriction by working in the universal cover. Indeed, if T
is a tree that covers finite graphs G1 and G2 via maps pi W T ! Gi , then Leighton’s
theorem gives us a common finite cover G of G1 and G2, and by elementary covering
space theory we can draw the following commutative diagram of covering maps, where g
is an automorphism of T :

T T

G

G1 G2

p1

g

p2

If the coverings pi W T ! Gi have deck transformation groups �i , then this diagram
implies that the conjugate �g1 is commensurable to �2 in Aut.T /, because their intersec-
tion is the deck transformation group of the (right-hand) covering T ! G. Note that for
� 6 Aut.T /, � being the deck transformation group of a covering T !G of a finite graph
is equivalent to � acting freely cocompactly on T , which is also equivalent to � being a
free uniform lattice in Aut.T / (with respect to the compact-open topology on Aut.T /).
So Leighton’s theorem is equivalent to saying: for T a tree, and �1; �2 6 Aut.T / free
uniform lattices, there exists g 2 Aut.T / with �g1 commensurable to �2. However we
have no control over the conjugating element g, and this is exactly the issue addressed by
symmetry-restriction. We need the following definition, which, as was later pointed out to
us, is the same as [2, Definition 3.1].

Definition 1.1. Let T be a tree, let H 6 Aut.T /, and let R be an integer. For a vertex
v 2 V.T /, we denote the R-ball centred at v by BR.v/. Given some g 2 Aut.T / and a
vertex v 2 V.T /, we let gv WBR.v/!BR.gv/ be the restriction of g toBR.v/. We define
the R-symmetry-restricted closure of H to be

SR.H/ WD
®
g 2 Aut.T / j 8v 2 V.T /; 9h 2 H s.t. hv D gv W BR.v/! BR.gv/

¯
:

The symmetry-restricted Leighton’s theorem can then be stated as follows. Neumann
solved the special case where R D 1 and T=H is a tree [11, Theorem 2.4].

Theorem B (Symmetry-restricted Leighton’s theorem). Let T be a tree, andH 6 Aut.T /,
and let �1; �2 6 H be free uniform lattices in Aut.T /. Then for all R 2 N there exists
g 2 SR.H/ such that �g1 is commensurable to �2 in Aut.T /.
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Figure 1. A graph of polygons.

This theorem was proven by the author, and independently by Gardam and Wood-
house. The proof of Gardam and Woodhouse, which uses the Haar measure on subgroups
of Aut.T /, is given in Appendix A. The particular way we have stated the theorem here
is also due to Gardam and Woodhouse. The proof of the author is given in Section 5, and
deduces it from a more general version of Leighton’s theorem, concerning what we call
graphs of objects, which we now go on to describe. A simple motivating example is the
following.

Example 1.2. Define a graph of polygons to be a space consisting of solid regular poly-
gons with some edges joining vertices of the polygons (see Figure 1). A covering of
graphs of polygons is a topological covering that restricts to isometries between polygons.
Leighton’s theorem holds for graphs of polygons: if two finite graphs of polygons (i.e.
with finite underlying graphs) are covered by the same tree of polygons, then they have
a common finite cover. This can be deduced from Theorem B, but it also follows from a
more general version of Leighton’s theorem as we describe below – both deductions are
given in Proposition 5.3.

Graphs of polygons can be thought of as graphs of spaces where the vertex spaces
are polygons and the edge spaces are points. It is natural to ask if Leighton’s theorem
also holds for more complicated graphs of spaces. One difficulty is that a general cov-
ering between graphs of spaces induces coverings between the vertex spaces rather than
isometries. In fact, one can exploit this difficulty to construct a pair of finite graphs of
spaces with a common universal cover but no common finite cover; this can be done with
Baumslag–Solitar groups or with a graph of graphs due to Wise, which are discussed fur-
ther in Section 4. The other difficulty that arises is when the isometry group of an edge
space is infinite. A way of solving this for many examples is by working in a different cat-
egory of spaces; graphs of polygons are defined in the category of metric spaces, and the
edge spaces are points so have trivial isometry groups, but for other examples one might
need to work in the category of simplicial complexes and consider automorphism groups
of edge spaces rather than isometry groups.
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To deal with both problems we define a graph of objects to be a graph of spaces with
respect to a given category of spaces, and we define coverings of graphs of objects to
be coverings of graphs of spaces that restrict to isomorphisms between edge and vertex
spaces. We also define a covering from a graph of objects X to itself to be an automorph-
ism of X if it induces an automorphism of the underlying graph, and we denote the group
of automorphisms by Aut.X/. If X is a graph of objects and Xe is an edge space, then
we have a homomorphism from the stabiliser Aut.X/e of the edge e to Aut.Xe/, the
automorphism group of Xe with respect to the given category, and we call the image the
isotropy group of e in Aut.X/. Precise definitions for all these notions are given in Sec-
tion 4. Our version of Leighton’s theorem for graphs of objects is then as follows.

Theorem C (Graph of objects Leighton’s theorem). Let X1 and X2 be finite graphs of
objects covered by a tree of objects X . If Aut.X/ has finite edge isotropy groups, then X1

and X2 have a common finite cover.

We actually prove a stronger version of this theorem which incorporates a notion of
symmetry-restriction for graphs of objects (Theorem 4.11), and it is this stronger version
that we use to deduce Theorem B.

A key ingredient in the proof of Theorem C is the use of groupoids. In general, group-
oids are very natural objects that arise in a wide range of mathematical contexts, and they
are especially powerful in topology for stitching together local information in a basepoint
free manner into a global structure. Some basic background on groupoids is given in Sec-
tion 2. Our groupoid method also gives a new proof of the original Leighton’s theorem for
graphs, which we explain in Section 3.

The groupoid proof of the original Leighton’s theorem is very instructive for under-
standing the proof of the graph of objects version. A sketch of the proof is as follows.
Let T be a tree that covers our finite graphs G1 and G2 via maps p1 W T ! G1 and
p2 W T ! G2. One idea is to consider how each star (of a vertex) in T maps down to
G1 and G2, and observe that there are only finitely many stars up to .p1; p2/-invariant
isomorphism. It is then natural to try and piece together these (isomorphism classes of)
stars to build a common finite cover of G1 and G2. But two stars can only be joined along
an edge if they are compatible on this edge, meaning that the maps to G1 and G2 agree
on this edge. Unfortunately this approach does not quite work, even if we take duplicates
of some stars, as there may not be any “symmetry” in the compatibility relations between
stars. The solution is to create symmetry by expanding our collection of stars, with the
aid of a finite groupoid � consisting of maps between stars in G1 and G2. For a vertex
v 2 V.T /, an automorphism g 2 Aut.T / restricts to a map star.v/! star.gv/, and this
induces a map star.pi .v//! star.pj .v// for a choice of i; j 2 ¹1; 2º. Such maps form the
groupoid � . To each s 2 � that maps from a star in G1 to a star in G2, we associate a new
star (that is not yet part of a graph) with maps down to G1 and G2 that commute with s
– these will form our collection of stars that we can piece together to form the common
finite cover of G1 and G2.
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In Section 6 we compute upper bounds for the sizes of the finite covers obtained in
Theorems A and 4.11, and a bound for the index of commensurability in Theorem B.
These bounds come from analysing the constructions used in the proofs of these theorems,
except for Theorem A it turns out we get a better bound if we use Leighton’s original
proof. There is no reason to believe these bounds are best possible. The bounded version
of Theorem A is the following.

Theorem D (Bounded Leighton’s theorem). Let G1 and G2 be finite connected graphs.
Set E WD 1

2
jE.G1/j and V WD jV.G2/j. Then G1 and G2 have a common cover G such

that jV.G/j � 2V exp.2
p
E logE/.

2. Graphs and groupoids

In this section we define graphs, stars and covers, which are used throughout the paper, and
we give some background about groupoids that will be needed in our proofs of Theorems
A and C.

Definition 2.1 (Graphs). A graph G is defined by the following data:

• A vertex set V.G/.

• An edge set E.G/.

• Maps @0; @1 W E.G/! V.G/ to denote the initial and terminal vertex of each edge.

• An involution E.G/! E.G/, e 7! e, which denotes the inversion of an edge, such
that e and e are always distinct, and such that @0e D @1e and @0e D @1e for any
e 2 E.G/.

Note that @1 is redundant if @0 and edge inversion have already been defined. For A �
E.G/ we will use the notation A WD ¹e j e 2 Aº.

A graph morphism ˛ W G1 ! G2 is given by maps ˛ W V.G1/ ! V.G2/ and ˛ W
E.G1/ ! E.G2/ that preserve the graph structure given by @0; @1 and edge inversion.
Note that it is enough to check that @0 and edge inversion are preserved. A graph morph-
ism G ! G that is bijective on edge and vertex sets is called an automorphism, and the
group of automorphisms of a graph G is denoted Aut.G/.

Definition 2.2 (Stars and covers). Let G be a graph. For v 2 V.G/ define the star of v by

star.v/ D
®
e 2 E.G/ j @0e D v

¯
:

A graph morphism ˛ W G1 ! G2 is a covering if it is surjective and the induced maps
star.v/! star.˛.v// are bijections. In this case we say that G1 is a cover of G2.

Definition 2.3 (Groupoid). A groupoid G is a small category in which all morphisms
are invertible. We will use Ob.G / to denote the set of objects, and when referring to a
morphism g we will simply write g 2 G . For g 2 G , we will denote the initial and terminal
objects by i.g/ and t .g/. For x 2 Ob.G / we write 1x for the identity morphism of x.
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For x; y 2 Ob.G / it will helpful to have the following additional notation:

G .x; y/ WD
®
g 2 G j i.g/ D x; t.g/ D y

¯
;

G .x;�/ WD
®
g 2 G j i.g/ D x

¯
;

G .�; y/ WD
®
g 2 G j t .g/ D y

¯
:

A subgroupoid of G is a subcategory in which all morphisms are invertible.

When piecing together the finite cover in our proof of Leighton’s theorem, we will
make use of groupoid actions. These are a direct analogue to group actions, and they also
give rise to notions of orbit and stabiliser. The definition of groupoid action given below
is from [5, III.G .2.8(3)].

Definition 2.4 (Groupoid action). An action of a groupoid G on a set A consists of a map
" W A! Ob.G / and a map®

.g; a/ 2 G � A j i.g/ D ".a/
¯
! A; .g; a/ 7! g � a;

such that

(a) ".g � a/ D t .g/,

(b) .g0g/ � a D g0 � .g � a/,

(c) 1".a/ � a D a,

for any a 2 A and g; g0 2 G satisfying i.g/ D ".a/ and i.g0/ D t .g/.

Definition 2.5 (Orbits and stabilisers of groupoid actions). If a groupoid G acts on a set
A and H � G , define the H -orbit of a 2 A by

H � a WD
®
h � a j h 2 H ; i.h/ D ".a/

¯
:

Similarly, for B � A write H � B WD
S
b2B H � b. Define the stabiliser of a 2 A by

StabG .a/ WD
®
g 2 G j i.g/ D ".a/; g � a D a

¯
:

When building the finite cover in Leighton’s theorem we must find appropriate match-
ings between the pieces we wish to stitch together. The following lemma will help us
achieve this.

Lemma 2.6 (Groupoid orbit-stabiliser theorem). Let G be a groupoid acting on a set A,
and fix a 2 A with ".a/ D x. Then the fibres of the map

�a W G .x;�/! G � a; g 7! g � a

are cosets g StabG .a/ WD ¹gg
0 j g0 2 StabG .a/º for g 2 G .x;�/. If G .x;�/ is finite, we

deduce that
jG .x;�/j D jStabG .a/j jG � aj:

Proof. If g;h 2 G .x;�/ satisfy g � aD h � a, then g�1h 2 StabG .a/, so h 2 gStabG .a/.
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3. Original Leighton’s theorem

We now present our new groupoid proof of Leighton’s theorem.

Theorem 3.1 (Leighton’s theorem). Let G1 and G2 be finite connected graphs with a
common cover. Then they have a common finite cover.

Proof. We will define a finite groupoid � , consisting of maps between stars inG1 andG2,
and we will use this to label the vertices of a finite graph G. We will then consider an
action of � on the edges of G1 and G2, and use this to connect up the vertices of G with
edges in a way that makes it a cover of G1 and G2.

We divide the proof into four steps. We define � in the first step, then set up the action
of � in the second step. In the third step we build the graph G, using the action to connect
up the vertices, and finally we construct the covering maps to G1 and G2 in the fourth
step.

Step 1. We will have Ob.�/ D V.G1/ t V.G2/, and each s 2 � will be a bijection

s W star.i.s//! star.t.s//:

Composition of groupoid elements is just composition of bijections. The set of all such
bijections forms a groupoid. Let p1 W T ! G1 and p2 W T ! G2 be coverings of G1 and
G2 by a tree T . We define � to be the subgroupoid consisting of bijections

s WD pi ı g ı .pj jstar.x//
�1
W star.pj .x//! star.pig.x//; (3.1)

for i; j 2 ¹1; 2º, x 2 V.T / and g 2 Aut.T /. Think of s as a map that lifts a star in G1 to
a star in T , maps it across to another star in T , and then projects it down to a star in G2.
The groupoid � is closed under composition because if x; y 2 V.T / with pj .x/ D pj .y/
then

.pj jstar.x//
�1
ı pj jstar.y/ D gjstar.y/;

for some g 2Aut.T / a deck transformation of pj W T !Gj . Moreover, � contains inverses
because Aut.T / contains inverses.

Step 2. There is a natural action of � onE.G1/tE.G2/ defined by s � eD s.e/ for @0eD
i.s/; the associated map " W E.G1/ tE.G2/! V.G1/ t V.G2/ is given by ".e/ WD @0e.
The following claim will be vital in the next step of the proof.

Claim. � � e D � � e.

Proof. It suffices to show the inclusion � � e� � � e, because replacing e by e gives � � e�

� � e, which implies � � e � � � e. So let s be as in (3.1) and take @0e D i.s/ D pj .x/. We
will show there is s0 2 � with s0 � e D s � e. Let Oe 2 star.x/ with pj . Oe/ D e, and consider
y WD @1 Oe (see Figure 2). Put f WD pig. Oe/ D s � e, and define s0 2 � by

s0 D pi ı g ı .pj jstar.y//�1:

We have i.s0/ D pj .y/ D @1e, so s0 � e is defined; and s0 � e D pig. Oe/ D f D s � e.
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s0

x

s

T

Gj Gi

Oe

e
f

pj pig

Figure 2. Diagram of s and s0.

Step 3. We are now ready to define a finite graph G that covers G1 and G2. Each vertex
of G will be labelled by a morphism in � , and we want vertices that map to a vertex
x 2 V.G1/ to be labelled by a morphism in �.x;�/. If the coveringG!G1 has degreeN ,
then there must be N vertices in G sitting over each vertex of G1. The sets �.x;�/ could
have different sizes for different x, so in general we need each morphism in � to label
multiple vertices in G. This motivates the following definition for the vertex set of G:

V.G/ WD
°
.s; l/ j s 2 �.x; y/; x 2 V.G1/; y 2 V.G2/; 1 � l �

N

j�.x;�/j

±
;

In a similar manner we define the edge set by

E.G/ WD
°
.e;f; k/ j f 2 � � e; e 2 E.G1/; f 2 E.G2/; 1 � k �

N

j� � ej

±
:

In the above two equations we take N to be a fixed positive integer that is a common mul-
tiple of all the integers j�.x;�/j and j� � ej. We define edge inversion in G by .e;f; k/ WD
.e; f ; k/, and this is well-defined by Step 2.

To define G, it remains to define the map @0 W E.G/! V.G/. Fix e 2 E.G1/ and
f 2 E.G2/ such that f 2 � � e, and say @0e D x. For reasons that will become clear in
the next step, each edge .e;f; k/ 2 E.G/ must satisfy

@0.e;f; k/ D .s; l/; for some s 2 �.x;�/ such that s � e D f . (3.2)

We define such a map � by choosing an arbitrary matching between such vertices .s; l/
and integers 1 � k � N=j� � ej; to verify that this is valid, we must check that we have
equal numbers of each. Indeed, Lemma 2.6 tells us thatˇ̌®

s 2 �.x;�/ j � � e D f
¯ˇ̌
D jStab� .e/j;
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and so ˇ̌̌°
.s; l/ j s 2 �.x;�/; s � e D f; 1 � l �

N

j�.x;�/j

±ˇ̌̌
D jStab� .e/j

N

j�.x;�/j
D

N

j� � ej

again by Lemma 2.6.

Step 4. In this last step we define the covering maps from G down to G1 and G2.

G

G1 G2

�1 �2

These are defined on the edge and vertex sets by

�1.s; l/ WD i.s/; �1.e;f; k/ WD e;

�2.s; l/ WD t .s/; �2.e;f; k/ WD f:

These maps clearly preserve edge inversion, and (3.2) ensures that they are well-defined
graph morphisms, because then @0.e;f; k/ D .s; l/ with i.s/ D x implies

@0�1.e;f; k/ D @0e @0�2.e;f; k/ D @0f

D x D @0.s � e/

D i.s/ D t .s/

D �1.s; l/ D �2.s; l/

D �1@0.e;f; k/; D �2@0.e;f; k/:

By construction, the star of a vertex .s; l/ in G, with s 2 �.x; y/, takes the form

star.s; l/ D
®
.e; s � e; ke/ j e 2 star.x/

¯
where each ke is some integer associated to e. Now

�1.e; s � e; ke/ D e; �2.e; s � e; ke/ D s � e;

so �1 and �2 induce bijections from star.s; l/ to star.x/ and star.y/ respectively. We
conclude that �1 and �2 are coverings, which completes the proof of the theorem.

Remark 3.2. The finite cover G constructed in the proof above may not be connected,
but of course we can obtain a connected cover by choosing a component of G.

Remark 3.3. If we work with coloured graphs, meaning that each vertex and edge is
assigned a colour, and we require graph morphisms to preserve colours, then Leighton’s
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theorem still holds with essentially the same proof. This is because we can define colours
on the vertices and edges ofG by pulling back the colours fromG1, specifically .s; l/ will
get the same colour as i.s/, and .e;f; k/ will get the same colour as e. We now consider
Aut.T / to be the group of colour preserving automorphisms and so each s 2 � will pre-
serve colours. This implies that i.s/ has the same colour as t .s/, and each .e;f;k/ 2E.G/
will have the same colour as f , therefore the coveringG!G2 will also preserve colours.

Remark 3.4. If there are coverings �1 W yG ! G1 and �2 W yG ! G2 such that yG is con-
nected and has a finite core C (the core of yG is a subgraph C , minimal with respect
to inclusion, such that the induced inclusion of topological realisations jC j ,�! j yGj is a
homotopy equivalence; C is unique if yG is not a tree), then we can arrange for there to be
a covering � W yG ! G of the finite graph G that covers G1 and G2. Moreover, we can do
this so that the following diagram commutes:

C

G

G1 G2

�1 �2
�

�1 �2

(3.3)

In general one cannot replace C with yG in this diagram. The way to construct such a G
is to let q W T ! yG be a universal cover and define covering maps p1 WD �1q W T ! G1
and p2 WD �2q W T ! G2. For each v 2 V.C / let z.v/ be a lift to T , and let sz.v/ 2 � be
defined by

sz.v/ WD p2jstar.z.v//.p1jstar.z.v///
�1:

Then run the proof of the theorem as normal, but when it comes to piecing together G
with the edge map @0 W E.G/! V.G/, do it so that we have an embedding C ,�! G given
by v 2 V.C / 7! .sz.v/; lv/ and d 2 E.C/ 7! .�1.d/; �2.d/; kd / for d 2 E.C/ and some
choices of lv and kd (increasing the value of N if needed). Note that this will satisfy (3.2)
because if @0d D v then

@0�1.d/ D �1.v/ D p1.z.v//

and

sz.v/�1.d/ D p2jstar.z.v//.p1jstar.z.v///
�1.�1.d//

D �2q.�1qjstar.z.v///
�1.�1.d//

D �2.d/:

By construction, the embedding C ,�! G will make (3.3) commute. The rest of yG com-
prises subtrees Y , each with one vertex v in C , so we can extend C ,�! G to a covering
� W yG ! G by lifting each map �1 W Y ! G1 up to G, with v going to .sz.v/; lv/.
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4. Graph of objects version

In this section we generalise Leighton’s theorem to graphs of objects, which concerns
certain “rigid” types of coverings of graphs of spaces.

One limitation to generalising Leighton’s theorem to graphs of spaces is illustrated by
the following example.

Example 4.1. The Baumslag–Solitar groups BS.1; 3/ and BS.2; 2/ both arise as funda-
mental groups of graphs of spaces with a single circular vertex space and a single circular
edge space. For BS.1; 3/ the maps from edge space to vertex space will be coverings of
degree 1 and 3, whereas for BS.2; 2/ they will both be coverings of degree 2. In both
cases the sum of these degrees equals 4, and so both graphs of spaces are covered by a
4-regular tree of spaces in which all edge and vertex spaces are copies of the real line
and all edge maps are homeomorphisms. However, there is no common finite cover for
these graphs of spaces because BS.1; 3/ and BS.2; 2/ are not commensurable (BS.1; 3/ is
solvable whereas BS.2; 2/ contains a non-abelian free subgroup).

This example would no longer work if we endowed the vertex and edge spaces with
metrics and required the edge maps and coverings to respect these metrics, as then the tree
of spaces would have two very different metrics induced by BS.1; 3/ and BS.2; 2/. This
shows that the category of spaces we use to define our graphs of spaces matters. However,
there are other more restrictive categories of spaces where Leighton’s theorem still fails.
For example, in the category of graphs, Wise constructs a finite graph of spaces with non-
residually finite fundamental group that is covered by a 4-regular tree of spaces in which
all edge and vertex spaces are 6-regular trees and edge maps are isomorphisms [14]. Such
a tree of spaces also covers a finite graph of spaces whose fundamental group is a product
of free groups, hence not commensurable to the group that Wise constructed.

It is clear then that one must impose some strong conditions in order to get a version
of Leighton’s theorem for graphs of spaces. We do this by working with graphs of spaces
with respect to a given category of spaces, and by restricting to coverings between graphs
of spaces that induce isomorphisms between vertex spaces rather than just coverings. To
emphasise that this is not the general setting we call them graphs of objects instead of
graphs of spaces. The full definitions of graphs of objects and their coverings are given
below. Note that these definitions actually work with any category, not just categories of
spaces; see Example 4.5 for some suggestions of categories that could be used.

Definition 4.2 (Graph of objects). Let C be a category and let M1 �M2 � hom.C/ be
such that .Ob.C/;M1/ and .Ob.C/;M2/ are subcategories. Suppose that .Ob.C/;M1/ is
a groupoid.

A graph of objects X with respect to .C ;M1;M2/ consists of

• a graph G D GX ,

• objects Xv 2 Ob.C/ for v 2 V.G/, called vertex objects,

• objects Xe 2 Ob.C/ for e 2 E.G/, called edge objects, with Xe D Xe ,



S. Shepherd 754

• and morphisms in M2

�e0 W Xe ! X@0e; �e1 W Xe ! X@1e;

for e 2 E.G/, called edge morphisms, such that �e0 D �
e
1 and �e1 D �

e
0 .

We say that a graph of objects X is finite if GX is finite.

Definition 4.3 (Morphisms between graphs of objects). Let .C ;M1;M2/ be as above. A
morphism f W X ! Y between graphs of objects with respect to .C ;M1;M2/ consists of

• a graph morphism Of W GX ! GY ,

• morphisms fv W Xv ! X Of .v/ in M1 for v 2 V.GX /,

• and morphisms fe W Xe ! X Of .e/ in M1 for e 2 E.GX /,

such that fe D fe and

Xe Y Of .e/

Xu Y Of .u/

�e0

fe

�
Of .e/
0

fu

and

Xe Y Of .e/

Xv Y Of .v/

�e1

fe

�
Of .e/
1

fv

(4.1)

commute whenever e 2 E.GX / is an edge from u to v. Note that if the first square
commutes for all edges e, then the second square will also commute for all edges as a
consequence of the relations between the morphisms �e0 ; �

e
1 given in Definition 4.2.

Definition 4.4 (Coverings of graphs of objects). We say that a morphism f W X ! Y

between graphs of objects is a covering if Of is a covering of graphs. We say that X is
a cover of Y . Similarly, we say that f W X ! X is an automorphism if Of is a graph
automorphism. Let Aut.X/ denote the group of automorphisms of X .

Example 4.5. In Table 1 we give some examples of triples .C ;M1;M2/ that can be used
to define graphs of objects.

Observe that the M1 morphisms are all isomorphisms in the appropriate categories,
as was required in Definition 4.2. Comparing with Definition 4.2, we see that graphs of
objects corresponding to the first four rows are just examples of graphs of spaces with
respect to different categories. As discussed earlier, the difference in definitions comes
when we consider morphisms and coverings. A morphism of graphs of spaces is usually
defined in a similar way to Definition 4.3, except that the morphisms fv and fe between
vertex and edge spaces are not required to lie in M1. Similarly, a covering of graphs of
spaces usually requires that the maps fv and fe are coverings of vertex and edge spaces,
but this is still weaker than having them in M1, and the map Of of underlying graphs is
not required to be a covering of graphs. We can think of coverings of graphs of objects as
“rigid” examples of coverings of graphs of spaces. Note in particular that the coverings of
graphs of spaces described in Example 4.1 and the subsequent paragraph are not coverings
of graphs of objects.
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Name C M1 M2

Graph of topological
spaces

topological spaces homeomorphisms continuous maps

Graph of finite
simplicial complexes

finite simplicial
complexes

simplicial
isomorphisms

simplicial maps

Graph of finite cube
complexes

finite non-positively
curved cube
complexes

cubical
isomorphisms

locally isometric
cubical immersions

Surface amalgams compact surfaces
with boundary

homeomorphisms up
to isotopy

immersions up to
isotopy

Graph of groups groups group isomorphisms group
monomorphisms

Table 1

The last entry in the table, graphs of groups, is not an example of a graph of spaces, but
it still gives a valid example of a graph of objects. However the usual notions of morphism
and covering between graphs of groups are again weaker than those for graphs of objects,
because we require the maps fv and fe to be group isomorphisms for graphs of objects.

To prove Leighton’s theorem for graphs of objects it turns out that we need a certain
finiteness condition on the edge spaces, and so we will need the following definition.

Definition 4.6 (Isotropy groups). Let X be a graph of objects andH 6 Aut.X/. For each
e 2 E.GX / and v 2 V.GX / define the isotropy groups of e and v in H as

H.e/ WD ¹he j h 2 H; Oh.e/ D eº 6 AutM1
.Xe/;

H.v/ WD ¹hv j h 2 H; Oh.v/ D vº 6 AutM1
.Xv/:

These are different from the stabilisersHe andHv; there are homomorphismsHe!H.e/

andHv!H.v/ sending h to he or hv respectively, these are surjective but not necessarily
injective.

We can now state our version of Leighton’s theorem for graphs of objects. See Ex-
ample 4.14 for why the assumption of finite edge isotropy groups is necessary.

Theorem 4.7 (Graph of objects Leighton’s theorem). Let X1 and X2 be finite graphs of
objects covered by a tree of objects X . If Aut.X/ has finite edge isotropy groups, then X1

and X2 have a common finite cover.

Remark 4.8. The assumption that Aut.X/ has finite edge isotropy groups will be auto-
matically satisfied if the edge objects have finite M1-automorphism groups. This is the
case for graphs of finite simplicial or cube complexes from Example 4.5, and also for
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surface amalgams if we assume that the edge objects are annuli. For the latter example
the vertex objects might have infinite M1-automorphism groups (in this case each vertex
object is a surface and the M1-automorphism group is the mapping class group), but this is
not a problem because Theorem 4.7 does not require Aut.X/ to have finite vertex isotropy
groups.

We will actually prove a stronger version of Theorem 4.7 which incorporates a notion
of symmetry-restricted closure analogous to that of Theorem B. For this we need two more
definitions.

Definition 4.9 (Symmetry-restricted closure). Let X be a graph of objects and H 6
Aut.X/. Define the symmetry-restricted closure ofH to be the subgroup S .H/6 Aut.X/
consisting of automorphisms g such that:

(1) For all e 2 E.GX / there exists h 2 H with Og.e/ D Oh.e/ and ge D he .

(2) For all v 2 V.GX / there exists h 2 H with Og.v/ D Oh.v/ and gv D hv .

Definition 4.10 (Deck transformations). If f W zX ! X is a covering of graphs of objects
such that T WD G zX is a tree, then �1GX acts on T as the group of deck transformations of
the cover Of WT !GX . We also get an action of �1GX on zX defined by the homomorphism
� W �1GX ! Aut. zX/, where b�.g/ is given by the aforementioned action of �1GX on T ,
and the morphisms �.g/v; �.g/e 2M1 are uniquely determined by the equations

fv D fg.v/�.g/v and fe D fg.e/�.g/e

(remember M1 forms a groupoid). It is easy to check that �.g/ satisfies the commuting
squares (4.1) and that � is a homomorphism. Clearly f D f�.g/ for all g 2 �1GX , and
so we call the image of � the group of deck transformations of the cover f W zX ! X .

Our symmetry-restricted version of Leighton’s theorem for graphs of objects is the
following.

Theorem 4.11. Let
f 1 W zX ! X1; f 2 W zX ! X2

be coverings of graphs of objects, with G1 WD GX1 and G2 WD GX2 both finite, and T WD
G zX a tree. Let �1 and �2 be the groups of deck transformations for f 1 and f 2, and
suppose that �1; �2 6H 6 Aut. zX/. Suppose also thatH has finite edge isotropy groups.
Then X1 and X2 have a common finite cover X , and there exists g 2 S .H/ that fits into
the following commutative diagram of coverings:

zX zX

X

X1 X2

f 1

g

f 2

�1 �2

(4.2)
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This theorem can be stated more concisely by working entirely in the tree of objects
zX as follows.

Theorem 4.12. Let X be a tree of objects with GX D T , and let H 6 Aut.X/ be a
subgroup with finite edge isotropy groups. Suppose that �1;�2 6H act freely cocompactly
on T . Then there exists g 2 S .H/ such that �g1 is commensurable with �2 in Aut.X/.

The equivalence of Theorems 4.11 and 4.12 follows from the Galois correspondence
for coverings of graphs of objects, which we describe in the following remark.

Remark 4.13. Let zX be a tree of objects with underlying tree T , and let f W zX ! X be a
covering of a finite graph of objects with deck transformation group � . The usual covering
theory of graphs gives us a correspondence between subgroups of � and intermediate
covers of T ! GX ; and given an intermediate cover of T ! GX there is a unique way
of assigning edge and vertex objects (up to M1-isomorphism) and morphisms that make
diagrams (4.1) commute, as we explain below. Thus we have a correspondence between
subgroups of � and intermediate covers of f W zX ! X (up to isomorphism).

An intermediate cover of graphs

T
Og
�! GY

Oh
�! GX

induces an intermediate cover of graphs of objects zX
g
�! Y

h
�! X as follows (with hgDf ).

Define vertex and edge objects for Y by Yu WD X Oh.u/ and Ye WD X Oh.e/, define the morph-
isms hu and he by the identity, and define the edge morphisms in Y so that diagram (4.1)
commutes for the map h W Y ! X . For u 2 V T and e 2 ET we define

gu WD h
�1
Og.u/fu W

zXu ! Y Og.u/ and ge WD h
�1
Og.e/fe W

zXe ! Y Og.e/;

the map g W zX! Y satisfies (4.1) because h and f do. The uniqueness of this construction
up to M1-isomorphism essentially follows because each stage of the construction was
forced by diagram (4.1).

Before proving Theorem 4.11, we give an example to show that the assumption of
finite edge isotropy groups is necessary.

Example 4.14. We work with graphs of topological spaces as in Example 4.5. We can
exploit the infinite symmetry of the circle S1 �C to build finite graphs of objectsX1;X2,
with a common cover zX , but no common finite cover.

• Let X1 have a single vertex object X1v and a single edge object X1e , both equal to S1,
and let the edge maps �e0 ; �

e
1 both be the identity.

• Let X2 also have a single vertex object X2v and a single edge object X2e , both equal to
S1, and let �e0 be the identity, but this time take �e1 to be the rotation r W z 7! eiz. The
important feature of this rotation is that it has infinite order in the homeomorphism
group of S1.
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• Let zX have underlying graph consisting of an infinite chain of edges .ei /i2Z and
vertices .vi /i2Z with @0ei D vi and @1ei D viC1. Let all the edge and vertex objects
of zX equal S1 and let all edge maps be the identity map. There are covers

f 1 W zX ! X1; f 2 W zX ! X2

defined by

(1) Of 1.vi / D v, Of 1.ei / D e, and f 1vi D f
1
ei
D idS1 for all i 2 Z.

(2) Of 2.vi / D v, Of 2.ei / D e, and f 2vi D f
2
ei
D r i for all i 2 Z.

Why doX1 andX2 have no common finite cover? Well, any finite cover g1 WX!X1

must be a circuit of copies of S1, more precisely it must take the following form (up to
isomorphism of X ):

• V.X/ D ¹v1; : : : ; vnº and E.X/ D ¹e1; : : : ; enº for some n 2 N.

• @0ei D vi (1 � i � n), @1ei D viC1 (1 � i � n � 1) and @1en D v1.

• Og1.vi / D v, Og1.ei / D e for all i .

• g1vi D g
1
ei
D idS1 for all i .

If there was a covering g2 WX!X2, there would be two possibilities for Og2 corresponding
to Og2.e1/D e or e. Suppose we are in the first case (the second will lead to a contradiction
similarly), then Og2 D Og1. Put a D g2v1 . The commutative squares (4.1) then force

g2e1 D a; g2v2 D ra; g2e2 D ra; g2v3 D r
2a; g2e3 D r

2a

and so on. But taking this right round the circuit, we deduce that g2v1 D r
na, which is a

contradiction because rn ¤ idS1 .

Proof of Theorem 4.11. As for the original Leighton’s theorem, we will build a common
finite cover by first constructing a finite groupoid � consisting of “maps between stars” in
zX . But now each star is not just a set of edges meeting at a common vertex, as each star

is endowed with the extra data of edge objects and edge morphisms. Thus these “maps
between stars” in � must have the additional data of morphisms between edge objects,
and these morphisms must act naturally with respect to the edge morphisms. Once we
have defined � , the proof will follow that of Theorem 3.1 quite closely – but with an extra
step at the end to verify that we get a commutative diagram as in (4.2).

Step 1. Before constructing � , we will define a general notion of “star map”.
Given graphs of objects X; Y and u 2 V.GX /; v 2 V.GY /, a star map from u to v is

given by the data s D .Os; se W e 2 star.u//, where

(a) Os W star.u/! star.v/ is a bijection;

(b) se W Xe ! YOs.e/ is a morphism in M1. There must also exist a morphism su W

Xu ! Xv in M1 such that

su�
e
0 D �

Os.e/
0 se for all e 2 star.u/I
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but su is not part of the data of s (for a given s there could be many choices of su,
whenever we write su we refer to some arbitrary choice).

If Z is another graph of objects and w 2 V.GZ/ and t is a star map from v to w, then
we can compose s with t to produce a star map ts from u to w with

bts D Ot Os; .ts/e D tOs.e/se; .ts/u D tvsu:

There is a natural notion of identity star map at a vertex u in which the morphisms se
will be identity morphisms, and any star map will have an inverse by replacing Os and the
morphisms se with their inverses. Therefore the class of all star maps forms a category
with inverses, where the objects are vertices in graphs of objects, and a star map s from u

to v has i.s/ D u and t .s/ D v.
If f W X ! Y is a covering of graphs of objects, then for each u 2 V.GX / there is a

star map f u from u to Of .u/ in which Of u is the restriction of Of to star.u/, f ue WD fe and
f uu WD fu. And if g W Y ! Z is another covering, then it is easy to check that

.gf /u D g
Of .u/f u:

Our groupoid � will be the subcategory of star maps, with Ob.�/ D V.G1/ t V.G2/,
and hom.�/ consisting of star maps

s D .f i /
Oh.z/hz..f j /z/�1 (4.3)

for z 2 V.T /, h 2H and i; j 2 ¹1; 2º. This is a star map from u WD Of j .z/ to v WD Of i Oh.z/.
Intuitively, think of s as lifting the star of u up to the star of z, mapping across to the star of
Oh.z/ by h, and then projecting down to the star of v; a cartoon of this is given in Figure 3.

Unlike for the original Leighton’s theorem, it is not obvious that � is finite, so we
prove this now.

zXz

.f j /z .f i /
Oh.z/hz

s
X
j
u X iv

Figure 3. Diagram of the star map s from (4.3).
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Claim. � is finite.

Proof. It is enough to show that each �.u; v/ is finite. But �.u; v/ is a coset of �.u; u/,
so it suffices to show that each �.u; u/ is finite. There is a homomorphism � W �.u; u/!

Aut.star.u// with finite image, so it is enough to show that ker � is finite (Aut.star.u// is
just the permutation group of the set star.u/).

Let s 2 ker � and suppose u 2 V.G1/. Fix z0 2 V.T / with Of 1.z0/ D u. By (4.3) we
can write

s D .f 1/z
0

hz..f 1/z/�1

for some z; z0 2 V.T / and h 2 H with Oh.z/ D z0. But then Of 1.z/ D Of 1.z0/ D u, thus
there exist g1; g2 2 �1 with Og1.z0/ D z and Og2.z0/ D z0, and we get

s D .f 1/z0.g2/z
0

hz.g1/z0..f 1/z0/�1:

Moreover, s 2 ker � so 1g2hg1 must fix star.z0/, hence .g2hg1/e 2 H.e/ for each e 2
star.z0/. By assumption the groups H.e/ are finite, hence there are only finitely many
possibilities for s 2 ker � , as required.

Step 2. As for the original Leighton’s theorem, we now define an action of � on a set
of edge-related things, and show that it respects some notion of edge inversion. Define a
finite set

A WD
®
.e; Oa.e/; ae/ j e 2 E.G1/ tE.G2/; a 2 �.@0e;�/

¯
:

The observant will note that A can also be given the structure of a groupoid, but we won’t
need this here.

We define an action of � onA by s � .e; Oa.e/;ae/ WD .e; bsa.e/; .sa/e/ for s 2 �.t.a/;�/,
with associated map " W A! V.G1/ t V.G2/ given by ".e; Oa.e/; ae/ D @0 Oa.e/ D t .a/.

We want to define an involution A! A given by .e; Oa.e/; ae/ 7! .e; Oa.e/; ae/. This is
well-defined by the following claim.

Claim. For any .e; Oa.e/; ae/ 2 A there exists a0 2 �.@0e;�/ withba0.e/ D Oa.e/ and a0e D ae:

Proof. As in (4.3), write
a D .f i /

Oh.z/hz..f j /z/�1

for z 2 V.T /, h 2H and i; j 2 ¹1; 2º, with Of j .z/D @0e. Let Oe 2 star.z/ with Of j . Oe/D e
and put z0 WD @1 Oe. Then define a0 2 �.@0e;�/ by

a D .f i /
Oh.z0/hz

0

..f j /z
0

/�1:

We have
i.a0/ D Of j .z0/ D Of j .@1 Oe/ D @1e D @0e

as required. We also have Of j . Oe/ D e, soba0.e/ D Of i Oh. Oe/ D Of i Oh. Oe/ D Oa.e/:
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And finally we have

a0e D .f
ih/
Oe
.f

j
e /
�1
D .f ih/ Oe.f

j
e /
�1
D ae:

The set A can be partitioned into sets

A.e/ WD
®
.e; Oa.e/; ae/ j a 2 �.@0e;�/

¯
;

for e 2 E.G1/ tE.G2/. These sets are related to the action of � by the following claim.

Claim. � � .e; Oa.e/; ae/ D A.e/.

Proof. The inclusion� is clear from the definitions. The inclusion� is also easy, because
for .e; Os.e/; se/ 2 A.e/ we have sa�1 � .e; Oa.e/; ae/ D .e; Os.e/; se/.

Step 3. We can now construct our common finite cover X of X1 and X2. The underlying
graph G WD GX will have vertex set given by

V.G/ WD
°
.s; l/ j s 2 �.u1; u2/; u1 2 V.G1/; u2 2 V.G2/; 1 � l �

N

j�.u1;�/j

±
;

and edge set given by

E.G/ WD
°
.e1; e2;m; k/ j e1 2 E.G1/; e2 2 E.G2/; .e1; e2;m/ 2 A; 1 � k �

N

jA.e1/j

±
;

whereN is a fixed positive integer that is a common multiple of all the integers j�.u1;�/j
and jA.e1/j.

A admits an involution .e; Oa.e/; ae/ 7! .e; Oa.e/; ae/, as in Step 2, which induces bijec-
tions A.e/! A.e/. Hence we can define edge inversion in G by

.e1; e2; m; k/ WD .e1; e2; m; k/

(note that ae D ae).
Vertex and edge objects in X will be given by

X.s;l/ WD X
1
i.s/; X.e1;e2;m;k/ WD X

1
e1
:

To complete the construction of G, we must define the map @0 W E.G/! V.G/, and
the edge morphisms in X . Fix e1 2 E.G1/, e2 2 E.G2/ and .e1; e2; m/ 2 A, and say
@0eq D uq (q D 1; 2). We would like each edge .e1; e2; m; k/ 2 E.G/ to satisfy

@0.e1; e2; m; k/ D .s; l/ (4.4)

for some s 2 �.u1; u2/ such that Os.e1/ D e2 and se1 D m. Note that this is equivalent to
s � .e1; e1; 1e1/ D .e1; e2;m/, where 1e1 is the identity morphism X1e1 ! X1e1 . We arrange
this by choosing an arbitrary matching between such vertices .s; l/ and integers 1 � k �
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N=jA.e1/j; to verify that this is valid, we must check that we have equal numbers of each.
Indeed, Lemma 2.6 tells us thatˇ̌®

s 2 �.u1;�/ j s � .e1; e1; 1e1/ D .e1; e2; m/
¯ˇ̌
D jStab� .e1; e1; 1e1/j;

and so ˇ̌̌°
.s; l/ j s 2 �.u1;�/; s � .e1; e1; 1e1/ D .e1; e2; m/; 1 � l �

N

j�.u1;�/j

±ˇ̌̌
D jStab� .e1; e1; 1e1/j

N

j�.u1;�/j
D

N

j� � .e1; e1; 1e1/j
D

N

jA.e1/j
:

The second equality is by Lemma 2.6 while the third equality follows from Step 2.
Finally, we define the edge morphisms in X using the edge morphisms in X1:

�
.e1;e2;m;k/
0 WD �

e1
0 W X

1
e1
! X1u1 :

Step 4. In this step, we define coverings from X down to X1 and X2.

X

X1 X2:

�1 �2

We define the maps O�1 and O�2 by

O�1.s; l/ WD i.s/; O�1.e1; e2; m; k/ WD e1;

O�2.s; l/ WD t .s/; O�2.e1; e2; m; k/ WD e2:

These clearly preserve edge inversion. As in (4.4), @0.e1; e2; m; k/ D .s; l/ implies

@0 O�
1.e1; e2; m; k/ D @0e1 @0 O�

2.e1; e2; m; k/ D @0e2

D u1 D u2

D i.s/ D t .s/

D O�1.s; l/ D O�2.s; l/

D O�1@0.e1; e2; m; k/; D O�2@0.e1; e2; m; k/;

thus O�1 and O�2 are well-defined graph morphisms.
We can then define �1 and �2 by the morphisms

�1.s;l/ WD 1i.s/; �1.e1;e2;m;k/ WD 1e1 ;

�2.s;l/ WD si.s/; �2.e1;e2;m;k/ WD m;

where 1i.s/ is the identity morphism X1
i.s/
! X1

i.s/
, and si.s/ is one of the possible vertex

object morphisms associated to the star map s (see part (b) in the definition of star map at
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the beginning of Step 1). Note that the above morphisms do go between the appropriate
vertex and edge objects as specified by the maps O�1 and O�2.

Again with @0.e1; e2; m; k/ D .s; l/ as in (4.4), we get the following commutative
squares, demonstrating that �1 and �2 are well-defined morphisms of graphs of objects.
The bottom left square commutes precisely because s is a star map.

X1e1 X1e1

X1u1 X1u1

�
e1
0

D

�
e1
0

D

H)

X.e1;e2;m;k/ X1e1

X.s;l/ X1u1

�
.e1;e2;m;k/
0

�1
.e1;e2;m;k/

�
e1
0

�1
.s;l/

X1e1 X2e2

X1u1 X2u2

�
e1
0

mDse1

�
e2
0

su1

H)

X.e1;e2;m;k/ X2e2

X.s;l/ X2u2

�
.e1;e2;m;k/
0

�2
.e1;e2;m;k/

�
e2
0

�2
.s;l/

By construction, the star of a vertex .s; l/ in G, with s 2 �.u1; u2/, takes the form

star.s; l/ D
®
.e; Os.e/; se; ke/ j e 2 star.u1/

¯
where each ke is some integer associated to e. Now

O�1.e; Os.e/; se; ke/ D e and O�2.e; Os.e/; se; ke/ D Os.e/;

so O�1 and O�2 induce bijections from star.s; l/ to star.u1/ and star.u2/ respectively. We
conclude that O�1 and O�2 are graph coverings, which makes �1 and �2 coverings of graphs
of objects.

Step 5. Finally, we must construct diagram (4.2) with g 2S .H/. We can assume that the
graph G is connected, as otherwise we just restrict to a component. The usual covering
space theory of graphs allows us to draw the following commutative diagram of graph
coverings. (More precisely, O�1 is a lift of Of 1 with respect to O�1, O�2 is a lift of Of 2 with
respect to O�2, and Og is a lift of O�1 with respect to O�2.)

T T

G

G1 G2

Of 1

Og

O�1 O�2

Of 2

O�1 O�2
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As in Remark 4.13, there is then a unique way of upgrading O�1, O�2 and Og to coverings
of graphs of objects �1, �2 and g. So we now have the following commutative diagram of
graphs of objects, with g 2 Aut. zX/:

zX zX

X

X1 X2

f 1

g

�1 �2

f 2

�1 �2

It remains to prove that g 2S .H/. Consider a star map s 2 � with i.s/D u1 2 V.G1/
and t .s/ D u2 2 V.G2/. Suppose that s takes the form

s D .f 2/z2hz1..f 1/z1/�1

from (4.3), with z1; z2 2 V.T /, Of i .zi /D ui , h 2H , and Oh.z1/D z2. We can then choose
the morphism su1 to fit into the following commutative diagram:

zXz1
zXz2

X1u1 X2u2

f 1z1

hz1

f 2z2

su1

If X.s;l/ is a vertex object of X , and v1; v2 2 V.T / are such that O�i .vi / D .s; l/ (so
Of i .vi / D ui ) and Og.v1/ D v2, then we get a larger commutative diagram as follows:

zXz1
zXz2

zXv1
zXv2

X.s;l/

X1u1 X2u2

f 1z1

hz1

g1z1

f 2z2

g2z2

f 1v1

gv1

�1v1
f 2v2

�2v2

�1
.s;l/

�2
.s;l/

su1

(4.5)

Here gi 2 �i is the element of the deck transformation group with Ogi .zi / D vi . Since
�1; �2 6 H , the top square of (4.5) implies that gv1 D h

0
v1

for some h0 2 H .
A very similar argument can be run for edge objects, and so we conclude that g 2

S .H/.
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Remark 4.15. Given v 2 V.T /, we can choose the automorphism g 2 Aut. zX/ from The-
orem 4.11 such that Og.v/ D v and gv D 1 zXv (and similarly for e 2 E.T /). This follows
by examining Step 5 of the proof. Indeed, let s 2 � be defined by s D .f 2/v..f 1/v/�1,
and when restricting to a component of G at the beginning of Step 5 make sure that the
vertex .s; 1/ is included. Then choose the coverings O�1, O�2 and Og so that O�i .v/ D .s; 1/
and Og.v/ D v. If Of i .v/ D ui , then we can draw diagram (4.5) with zi D vi D v and
gi D h D 1 2 Aut. zX/. It follows that gv D 1 zXv as required.

5. Symmetry-restricted version

We now show how to deduce the symmetry-restricted Leighton’s theorem from its graph
of objects counterpart, Theorem 4.12.

Theorem 5.1 (Symmetry-restricted Leighton’s theorem). Let T be a tree, H 6 Aut.T /,
and let �1; �2 6 H be free uniform lattices in Aut.T /. Then for all R 2 N there exists
g 2 SR.H/ such that �g1 is commensurable to �2 in Aut.T /.

Proof. We will turn T into a tree of objects X (i.e. GX D T ). This will be with respect to
.C ;M1;M2/, where C is the category of pairs .Y; U / for Y a finite tree and U � V.Y /,
and a morphism in C from .Y; U / to .Y 0; U 0/ is a tree embedding Y ,�! Y 0 such that
U 0 is contained in the image of U . A morphism is in M1 if Y ! Y 0 is an isomorphism
and U 0 equals the image of U , and all morphisms are in M2. We then define the vertex
objects for X as based R-balls Xv WD .BR.v/; ¹vº/ for v 2 V.T /, and the edge objects as
Xe WD .NR�1.e/; ¹@0e;@1eº/ for e 2E.T /, whereNR�1.e/ is the .R� 1/-neighbourhood
of e. The morphisms �e0 W Xe ! X@0e are given by the inclusions NR�1.e/ ,�! BR.@0e/.

For g 2 Aut.T / let gv be the restriction of g to BR.v/ (as in Definition 1.1) and let ge
be the restriction of g toNR�1.e/. We then have a homomorphism  W Aut.T /! Aut.X/
defined by 1 .g/ WD g and

 .g/v WD gv W BR.v/! BR.gv/;

 .g/e WD ge W NR�1.e/! NR�1.ge/:

It is easy to check that  is a well-defined homomorphism. The key point is that  is
actually an isomorphism, as we will now show.

Claim.  is an isomorphism.

Proof. The homomorphism  admits a retraction r W Aut.X/! Aut.T / given by g 7! Og,
so we must show that r has trivial kernel.

Consider g 2 ker.r/ and pick v 2 V.T /. Take a vertex u 2 BR.v/. We will show that
gv.u/ D u by induction on the distance d.u; v/. We know that gv.v/ D v by definition
of morphisms in C , so we may assume that u ¤ v. Suppose that the segment Œv; u� in T
starts with the edge e such that @0e D v and @1e D w. As g is a morphism of graphs of
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objects, we have the following commutative diagram:

BR.v/ NR�1.e/ BR.w/

BR.v/ NR�1.e/ BR.w/

gv ge gw (5.1)

We know that d.u; w/ < d.u; v/, so u 2 BR.w/, and by induction we have gw.u/ D u.
Diagram (5.1) then implies that gv also fixes u. This holds for all u 2 BR.v/, so gv
is the identity map on BR.v/, and diagram (5.1) implies that ge is the identity map on
NR�1.e/. Therefore g is the identity on all edge and vertex objects, so g D 1 2 Aut.X/
as required.

As a consequence of the claim we know that Ogv D gv and Oge D ge for any g 2Aut.X/,
v 2V.T / and e 2E.T /. It follows easily that, forH 6 Aut.T /, theR-symmetry-restricted
closure from Definition 1.1 corresponds to the symmetry-restricted closure from Defini-
tion 4.9:

 .SR.H// D S . .H//

We are then done by Theorem 4.12.

Remark 5.2. It follows from Remark 4.15 that given v 2 V.T / we can choose the con-
jugating automorphism g 2 Aut.T / to restrict to the identity on the ball BR.v/.

Recall from Example 1.2 that a graph of polygons is a space consisting of solid regular
polygons with some edges joining vertices of the polygons. And recall that a covering of
graphs of polygons is a topological covering that restricts to isometries between polygons.
We now give two proofs of why Leighton’s theorem holds for graphs of polygons, the
first proof views graphs of polygons as graphs of objects while the second proof uses the
symmetry-restricted Leighton’s theorem.

Proposition 5.3. Leighton’s theorem holds for graphs of polygons: if two finite graphs
of polygons (i.e. with finite underlying graphs) are covered by the same tree of polygons,
then they have a common finite cover.

Proof 1. Graphs of polygons are graphs of objects with respect to

.C ;M1;M2/ D .metric spaces, isometries, isometric embeddings/:

The vertex objects are polygons and the edge objects are points. The proposition then
follows from Theorem 4.7.

Proof 2. Let X be a graph of polygons. Each polygon contains a polygon star consisting
of the centre of the polygon and edges joining the centre to each vertex. Let X� be the
graph obtained from X by retracting each polygon to its polygon star. This induces an
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X X�

Figure 4. The retraction X ! X�.

Aut.X/-invariant retraction X ! X�, which in turn induces an injective homomorphism
Aut.X/! Aut.X�/. An example is illustrated in Figure 4.

If two finite graphs of polygons X1 and X2 are covered by a tree of polygons T , with
covering maps pi W T !Xi , then standard covering space theory tells us that any common
finite cover yX fits into a commutative diagram of covering maps as follows, where g is an
automorphism of the tree of polygons T :

T T

yX

X1 X2

p1

g

�1 �2

p2

�1 �2

Let the deck transformation group of pi W T ! Xi be denoted �i 6 Aut.T /. As described
for graphs in the introduction, the existence of yX is equivalent to the existence of g 2
Aut.T / such that �g1 is commensurable to �2, so let us now prove the latter.

As explained above, we have a retraction T ! T � that induces an injective homo-
morphism Aut.T /! Aut.T �/. Let H 6 Aut.T �/ be the image. The edges in each poly-
gon star have a cyclic ordering given by the cyclic ordering on the vertices of the polygon,
and an automorphism of T � extends to an automorphism of T if and only if it maps poly-
gon stars to polygon stars in a way that preserves the cyclic orderings. In the notation of
Definition 1.1, this means that H D S1.H/. We may then apply Theorem 5.1 to obtain
g 2 H that conjugates the image of �1 in H onto a subgroup commensurable with the
image of �2. Pulling this back to Aut.T / gives g 2Aut.T / such that �g1 is commensurable
to �2, as required.

To close this section, we give an example showing that one cannot demand that the
conjugating element g lie in the subgroup H in the symmetry-restricted Leighton’s the-
orem (see also Remark A.4).
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e
�

T

Figure 5. Tree T and automorphism �.

Example 5.4. Consider a tree T with directed red and blue edges as shown in Figure 5.
Let G1 be the rose on two petals, let p1 W T ! G1 be the standard covering defined by the
edge colouring of T , and let �1 be the corresponding group of deck transformations. Let
� 2 Aut.T / reflect the right side of T while fixing the left side, as shown above. Suppose
p2 W T ! G2 is the covering with deck transformation group �2 D ��1�1� (so G2 is also
the rose on two petals). Let H be the subgroup generated by �1 and �2. We will see that
no h 2 H makes �h1 and �2 commensurable.

LetHC WD h�1; �i, and note thatH 6HC. Firstly we find some invariant for elements
of HC that differentiates � from H . Note that all automorphisms in HC map blue edges
to blue edges, preserving the orientations given by the arrows, and they also map red
edges to red edges – but in this case they might flip the orientation. We will say that a
blue edge e is twisted by an automorphism h 2 HC if the red edges incident at one end
of e have orientation preserved by h, but the red edges incident at the other end have
orientation flipped by h. The invariant of study will be the set of twisted edges, denoted
�.h/. For instance, �.g/ D ; for g 2 �1, and �.�/ D ¹e; eº where e is as indicated in the
picture. Edges in �.h/ will always come in ¹e; eº pairs, so we will think of �.h/ as a set
of geometric edges.

Twisting twice about an edge results in an untwisted edge, so the set of twisted edges
of a composition can be expressed as the following symmetric difference:

�.h1h2/ D h
�1
2 .�.h1//4�.h2/: (5.2)

It immediately follows that �.h/ is finite for all h 2 HC, and that �.h/ contains an even
number of geometric edges if and only if h contains an even number of �˙ terms when
expressed as a product of �1 terms and �˙ terms. In particular, �.h/ contains an even
number of geometric edges if h 2 H .
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Now suppose for contradiction that h 2 H makes �h1 and �2 commensurable. We
know that �.h/ is finite, so suppose it spans a subtree of T with diameter M . By our
commensurability assumption, there exists g 2 �1 with translation length greater than
2M such that h�1��1g�h 2 �1. By (5.2), �.��1g�/ D ¹e; e; g�1.e/; g�1.e/º contains
precisely two geometric edges, and these are at least 2M apart. Now �.h/ consists of an
even number of geometric edges, pairwise less than M apart, so again using (5.2), we
deduce that �.��1g�h/ contains a pair of geometric edges separated by at leastM (it may
contain other edges). A final application of (5.2) reveals that �.h�1��1g�h/ is non-empty,
contradicting h�1��1g�h 2 �1.

6. Bounds on sizes of covers

Leighton’s theorem assures the existence of a common finite cover but gives no bound
on how large this cover might be. In Leighton’s original paper [7] there is a short remark
at the end saying that, given finite graphs G1 and G2, one can easily calculate an upper
bound for the size of the common finite cover constructed – but this bound is not explicitly
in terms of the number of edges and vertices in G1 and G2. In this section we obtain an
explicit upper bound for the size of the finite cover constructed in Leighton’s proof (one
could alternatively obtain a bound from our new proof of Leighton’s theorem, but such a
bound turns out to be larger); we also find an upper bound for the finite cover in Theorem
4.11 and a bound for the index of commensurability in Theorem B. We make no claim
that these bounds are anywhere close to being sharp.

A key tool in finding bounds will be Landau’s function g.n/, which is the greatest
order of an element of the symmetric group on n elements. Equivalently, this is the greatest
possible value for the lowest common multiple of positive integers n1; : : : ; nk that sum
to n. Massias [10] gave the following explicit bound:

g.n/ � exp.1:05313
p
n logn/: (6.1)

As the other bounds we use will be quite rough, we will use the neater but less accurate
bound exp.2

p
n logn/ in place of (6.1) – the important thing is that it is sub-exponential.

The bounded version of Leighton’s theorem is as follows – note the notation we use here
is consistent with [11, Theorem 1.1] rather than with the rest of our paper.

Theorem 6.1 (Bounded Leighton’s theorem). Let G and G0 be finite connected graphs.
Set E WD 1

2
jE.G/j and V 0 WD jV.G0/j. Then G and G0 have a common cover H with the

following bound on its vertex set:

jV.H/j � 2V 0 exp.2
p
E logE/:

Proof. We use the proof of [11, Theorem 1.1], which is essentially the same as Leighton’s
original proof, just written more concisely. The common coverH constructed in the proof
has vertices indexed by tuples .i; v; v0; ˛/, where v and v0 are vertices of colour i inG and
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G0 respectively, and ˛ 2 Ai . There are ni (resp. n0i ) vertices in G (resp. G0) of colour i ,
and jAi j D s=ni , so jV.H/j D

P
i nin

0
i .s=ni /D V

0s. Now s is a common multiple of the
mk , where mk is the number of edges coloured k in G. Note that®

e 2 E.G/ j e has colour k
¯
D
®
e 2 E.G/ j e has colour k

¯
;

so mk D mk and mk is even if k D k. This implies that

s � 2g.E/ � 2 exp.2
p
E logE/:

Remark 6.2. One can obtain a much stronger bound in the case that G1 and G2 are
both regular, namely jV.G/j � jV.G1/j jV.G2/j if they are regular of even degree, and
jV.G/j � 2jV.G1/j jV.G2/j if they are regular of odd degree.

A classical theorem of Petersen says that any 2d -regular graph has a 2-factor (the
edges of a 2-regular subgraph that contains every vertex of the graph); so by induction
one can partition the edge set into d 2-factors, which gives us the data of a covering of
Rd , the rose on d petals (graph with one vertex and d geometric edges). See [6, Corol-
lary 2.1.5] for a proof of Petersen’s theorem – note that this proof is written for the
setting of simplicial graphs, but the same proof works for our definition of graph (allowing
multi-edges and loops). If G1 and G2 are both 2d -regular, then we have covering maps
G1 ! Rd and G2 ! Rd , corresponding to subgroups �1G1; �1G2 6 �1Rd of index
jV.G1/j and jV.G2/j respectively. The subgroup �1G1 \ �1G2 6 �1Rd then has index
at most jV.G1/j jV.G2/j, so corresponds to a common cover of G1 and G2 with at most
jV.G1/j jV.G2/j vertices.

If G1 and G2 are d -regular with d odd, then instead of the rose we can use the graph
Pd consisting of two vertices and d geometric edges joining them. G1 might not be a
cover of Pd because it might have cycles of odd length, but this turns out to be the only
obstruction. Indeed we can take a double cover yG1 of G1 that only contains even length
cycles, hence is bipartite, and by Hall’s matching theorem (or more specifically [6, Corol-
lary 2.1.3]) there exists a complete matching (or 1-factor) in yG1; then by induction we can
partition the edge set of yG1 into d complete matchings, and this is precisely the data of
a covering of Pd . Similarly G2 has a double cover yG2 that covers Pd . Then we can take
a cover G of Pd corresponding to the subgroup �1 yG1 \ �1 yG2 6 �1Pd of index at most
jV.G1/j jV.G2/j, and this will be a common cover of yG1 and yG2, and hence also of G1
and G2, and jV.G/j � 2jV.G1/j jV.G2/j as desired.

The bounded version of Theorem 4.11 is the following.

Theorem 6.3 (Bounded graph of objects Leighton’s theorem). Let

f 1 W zX ! X1; f 2 W zX ! X2

be coverings of graphs of objects, with G1 WD GX1 and G2 WD GX2 both finite, and T WD
G zX a tree. Let �1 and �2 be the groups of deck transformations for f 1 and f 2, and
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suppose that �1; �2 6H 6 Aut. zX/. Suppose also thatH has finite edge isotropy groups.
Then X1 and X2 have a common finite cover X , and there exists g 2 S .H/ that fits into
the following commutative diagram of coverings:

zX zX

X

X1 X2

f 1

g

f 2

�1 �2

Furthermore, X has underlying graph G with vertex set bounded as follows:

jV.G/j � .d Š/2
�
LCMe2E.T / jH.e/j

�2d
V 2 exp.2

p
V logV /;

where V WD jV.G1/ t V.G2/j, d is the maximum degree of vertices in T , and LCM
denotes the lowest common multiple. (As the isomorphism-type of the group H.e/ only
depends on the H -orbit of e, and there are finitely many of these orbits, the lowest com-
mon multiple of the jH.e/j is guaranteed to be finite.)

Proof. We follow the proof of Theorem 4.11, and recall that the vertex set of G is defined
by

V.G/ WD
°
.s; l/ j s 2 �.u1; u2/; u1 2 V.G1/; u2 2 V.G2/; 1 � l �

N

j�.u;�/j

±
;

where N is a common multiple of all the integers j�.u;�/j and jA.e/j for u 2 V.G1/
and e 2 E.G1/. Observe that by Lemma 2.6, j�.u;�/j D jStab� .e; e; 1e/j j� � .e; e; 1e/j if
@0e D u, and � � .e; e; 1e/D A.e/ by Step 2 of the proof of Theorem 4.11. So it suffices to
make N a common multiple of the integers j�.u;�/j. Also by Lemma 2.6, we have that

j�.u;�/j D j�.u; u/j
ˇ̌®
v j �.u; v/ ¤ ;

¯ˇ̌
:

The sets ¹v j �.u; v/ ¤ ;º are the components of � , so partition V.G1/ t V.G2/, and we
can use (6.1) to bound the lowest common multiple of their orders.

Claim. j�.u; u/j divides dŠ.LCMe2E.T /jH.e/j/
d .

Proof. The claim in Step 1 of the proof of Theorem 4.11 says that there is a homomorph-
ism � W �.u;u/! Aut.star.u//. The image of � will have order dividing dŠ, and the claim
goes on to show that each s 2 ker � can be written as

s D .f 1/z0hz0..f 1/z0/�1

for some z0 a lift of u to T , and h 2H that fixes star.z0/. We have he 2H.e/ for each e 2
star.z0/, so we get an injective homomorphism ker�!

Q
e2star.z0/H.e/, which completes

the proof of the claim.
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Putting this together, we get the following bound on N :

N � dŠ
�
LCMe2E.T /jH.e/j

�d exp.2
p
V logV /: (6.2)

It remains to count s such that s 2 �.u1; u2/ for u1 2 V.G1/ and u2 2 V.G2/. For fixed
u1 and u2, j�.u1; u2/j D j�.u1; u1/j, and so the total count of these s will be at most
dŠ.LCMe2E.T /jH.e/j/

dV 2. Combining this with (6.2) proves the theorem.

Theorem 6.3 can be used to obtain a bounded version of the symmetry-restricted
Leighton’s theorem as follows.

Theorem 6.4 (Bounded symmetry-restricted Leighton’s theorem). Let T be a tree, and
H 6 Aut.T /, and let �1; �2 6 H be free uniform lattices in Aut.T /. Then for all R 2 N
there exists g 2 SR.H/ such that �g1 is commensurable to �2 in Aut.T /. Furthermore,
we have the bound

j�
g
1 W �

g
1 \ �2j � .d Š/

4dR�1V 2 exp.2
p
V logV /;

where V WD jV.T=�1/ t V.T=�2/j and d is the maximum degree of vertices in T .

Proof. In the proof of Theorem 5.1 we converted T into a tree of objects X such that
we have an isomorphism  W Aut.T /! Aut.X/ with  .SR.H// D S . .H//. We can
therefore apply Theorem 6.3 to .�1/; .�2/6 .H/6 Aut.X/ to obtain g 2S . .H//

such that  .�1/g is commensurable to  .�2/, and the bound on jV.G/j from the theorem
also serves as an upper bound on the index j .�1/g W  .�1/g \  .�2/j. We then have
g0 WD  �1.g/ 2SR.H/, an element that conjugates �1 to become commensurable to �2,
and we have the bound

j�
g 0

1 W �
g 0

1 \ �2j � jV.G/j

� .d Š/2
�
LCMe2E.T / j .H/.e/j

�2d
V 2 exp.2

p
V logV /: (6.3)

So it remains to estimate the orders of the isotropy groups .H/.e/. From the proof of
Theorem 5.1 we know that the edge object Xe is the .R � 1/-neighbourhood NR�1.e/ of
the edge e. And  .H/.e/ is a subgroup of Aut.NR�1.e/; e/, the group of automorphisms
of NR�1.e/ that fix e. If we embed NR�1.e/ in a d -regular tree Y , sending e 7! e0, then
we get a (non-unique) injective homomorphism Aut.NR�1.e/; e/ ,�! Aut.NR�1.e0/; e0/.
Specifying an element of Aut.NR�1.e0/; e0/ is equivalent to specifying, for each v 2
NR�2.e

0/, a permutation of the d � 1 edges leaving v that point away from e. There
are

2
�
1C .d � 1/C .d � 1/2 C � � � C .d � 1/R�2

�
D

2
d
..d � 1/R�1 � 1/

such vertices v, so we have

jAut.NR�1.e0/; e0/j D ..d � 1/Š/
2
d
..d�1/R�1�1/

� .d Š/
2
d
.dR�1�1/

:

We know that LCMe2E.T / j .H/.e/j � jAut.NR�1.e0/; e0/j, and so we can plug this
estimate into (6.3), which completes the proof.
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A. Alternative proof of symmetry-restricted version
(by Giles Gardam and Daniel J. Woodhouse)

Let T be a locally finite, simplicial tree with all edges identified with Œ0; 1�. Let G D
Aut.T /, the full simplicial automorphism group of T . We will assume thatG acts without
edge inversions, which is possible by either subdividing T (provided T is not isometric
to R), or passing to an index 2 subgroup. Thus we can make each edge a directed edge
such that these orientations are preserved by theG-action. LetH � G be a subgroup such
that H Õ T cocompactly.

If S � T is a finite subset of the vertices, then the set-wise stabilizer is

HS D
®
h 2 H j h � S D S

¯
;

and the pointwise stabilizer is

H.S/ D
®
h 2 H j h � s D s for all s 2 S

¯
:

Recall the symmetry-restricted Leighton’s theorem:

Theorem A.1. Let �1; �2 6 H be free uniform lattices in G. Then for all R 2 N there
exists g 2 SR.H/ such that �g1 is commensurable to �2 in G.

Before proving the theorem we make some remarks about the R-symmetry-restricted
closure SR.H/.

Remark A.2. It is easy to check that SR.H/ D
T
v2VX HG.BR.v//, hence it is a closed

subgroup of G.

Remark A.3. Theorem A.1 is a strengthening of the Bass–Kulkarni uniform commensur-
ability theorem [3, Corollary 4.8 (c)], since GH , defined to be the largest subgroup of G
preserving all H -orbits, contains S1.H/.

Remark A.4. Although
T
R2N SR.H/ D H , the closure of H , we cannot necessarily

find such a conjugating element g as in Theorem A.1 with g 2 H . An example pointed
out to us by Alexander Lubotzky is H D SL2.Qp/ (or in general a simple rank 1 Lie
group over a local non-archimedean field) acting on its Bruhat–Tits tree, in which case H
is closed and there are uncountably many H -conjugacy classes of uniform lattices in H
[9]. The commensurability class of a uniform tree lattice, however, is countable: in gen-
eral, every subgroup �2 commensurable with a given subgroup �1 � G is contained in
the commensurator subgroup CommG.�1/ (since for every g 2 �2 we have �g1 commen-
surable with �g2 D �2 and thus with �1), and for the case of �1 a uniform tree lattice the
commensurator is countable by [3, Corollary (8.6), p. 885] and thus has only countably
many finitely generated subgroups. Thus, there are uniform lattices not commensurable
up to conjugacy in H . In such examples the finite index in the commensuration achiev-
able by g 2 SR.H/ tends to1 as R!1. This is necessarily the case, since the set of
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g 2 G such that Œ�2 W �
g
1 \ �2� 6 N is the union of finitely many cosets of �1 (since there

are finitely many subgroups of finite index, and only finitely many isomorphisms between
finite quotient graphs). If the index did not tend to infinity, the intersection of the nested
sets of conjugating g 2 SR.H/ would be non-empty, a contradiction.

The following proof is essentially an adaptation of the ideas in [15].

A.1. Proof of Theorem A.1

Let �1; �2 � H � G be free uniform lattices, as above, with Xi D T=�i . Given a tree K
and a simplicial map f WK! Xi we will let Qf WK! T denote some choice of lift of f .

An R-polyhedron in T is the closed R-neighbourhood of a vertex v, written BR.v/.
We say that v is the centre of the polyhedron. A polyhedral pair P D .P; �1; �2/ over X1
and X2 is a graph P with simplicial maps �i W P ! Xi such that the lift Q�i embeds P
in T as an R-polyhedron. The vertex in P that maps to the centre of Q�i .P / is the centre
of P . AnH -admissible polyhedral pair P D .P;�1; �2/ is an R-polyhedral pair such that
there exists h 2 H such that h ı Q�1 D Q�2. Note that this does not depend on the choice of
lifts Q�1; Q�2 since they differ by deck transformations.

An R-face in T is the closed .R � 1/-neighbourhood of an edge e in T . We say that e
is the centre of the face. An R-face pair F D .F; '1; '2/ over X1;X2 is a simplicial graph
F with simplicial maps 'i W F ! Xi such that the lift Q'i embeds F in T as an R-face.
The edge in F that maps to the centre of Q'i .F / is the centre of F . An H -admissible face
pair F D .F; '1; '2/ is an R-face pair such that there exists h 2H such that h ı Q'1 D Q'2.
Note that this does not depend on the choice of lifts Q'1; Q'2 as different lifts only differ by
deck transformation.

The faces of a polyhedral pair P D .P;�1; �2/ are the face pairs you obtain by restrict-
ing to the .R � 1/-neighbourhood of an edge incident to the centre of P . Recall that the
edges of T are directed and these orientations are G-equivariant, and hence the edges of
Xi are also directed. If F is an H -admissible R-face, then the edge e of F has a direc-
tion determined by the map �1 that is consistent with the orientation determined by the
map �2. We say that P is either on the left or on the right of its face F depending on this
orientation.

If P and P 0 D .P 0; �01; �
0
2/ are polyhedral pairs that are respectively on the left and

on the right of the face F , then we may glue them together by identifying P and P 0 along
the subspace F . More precisely, there exist subspaces F � P and F 0 � P 0, that give the
restrictions of P and P 0 to F , and an isomorphism � W F ! F 0 such that �i D �0i ı � .
Define P [P 0 to be the quotient space P tP 0=� where p � p0 if and only if �.p/D p0.
The resulting space P [P 0 has well-defined maps P [P 0!Xi since �i .p/D �0i .�.p//
for all p 2 F . Since P is on the left of F and P 0 is on the right, the maps �1; �01 lift to
embeddings Q�1; Q�01 of P and P 0 as R-polyhedrons in T centered at vertices Qv and Qv0

adjacent along an edge Qe. Thus, the union P [ P 0 immerses in Xi , since it lifts to an
embedding in T as the R-neighbourhood of an edge Qe. We say that we have glued P to P 0

along F .
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Let P denote the set of all H -admissible R-polyhedral pairs over X1 and X2. If F is
an H -admissible R-face pair then let

 �
F denote the set of all P 2 P on the left of F , and

define
�!
F similarly.

Lemma A.5. Let F D .F; '1; '2/ be an H -admissible R-face pair and suppose that
P D .P; �1; �2/ 2

 �
F . Then ˇ̌ �

F
ˇ̌
D ŒH. zF / W H. zP/�;

where zF D Q'1.F / and zP D Q�1.P / are chosen so that zF � zP .

Proof. Let zFi � T be the R-face Q'i .F / and let ei be the centre of zFi and vi be the vertex
on the left of ei . Let zPi � T be the R-polyhedron Q�i .P /, where we have chosen the
lift so that zFi � zPi . Observe that since P is on the left of F , the centre of zPi is vi . By
H -admissibility, there exists h 2 H such that h ı Q�1 D Q�2, so h � zP1 D zP2.

Conversely, any h0 2H such that h0 � zP1 D zP2 defines anH -admissible R-polyhedral
pair P 0 D .P 0; �01; �

0
2/ by giving an identification of zP1 to zP2. Indeed, we can see that any

P 0 2
 �
F can be obtained from some such identification by an element h0 2 H .

Note that P 0 2
 �
F if and only if h�1h0 2 H. zF1/. Moreover, P 0 D P if and only if

h�1h0 2 H. zP1/. Thus we deduce that the elements in
 �
F correspond to the elements in

H. zF /=H. zP/.

We wish to find a non-trivial weight function ! W P ! N such that for all H -admiss-
ible R-faces F , we have X

P2
 �
F

!.P / D
X

P2
�!
F

!.P /

We say that such ! satisfy the basic gluing equations.
If ! satisfies the basic gluing equations, then by taking !.P / copies of each P we can

glue them together to obtain a graph yX that covers both X1 and X2, whose restriction to
R-polyhedrons gives H -admissible R-polyhedral pairs.

Let � be the bi-invariant Haar measure for H . Let !.P / D �.H. zP// where zP D
Q�i .P /, so the stabilizer is well-defined up to conjugation in H , and hence the Haar meas-
ure is well-defined (and does not depend on the choice of lift or i 2 ¹1; 2º). If zP and zP 0

are R-polyhedrons in T , and let K denote their union, then H.K/ is a finite index sub-
group of both H. zP/ and H. zP 0/. Thus the Haar measures of the pointwise stabilizers are
commensurable:

�.H. zP//

�.H. zP 0//
D
ŒH. zP/ W H.K/�

ŒH. zP 0/ W H.K/�
:

Since there are only finitely many orbits of R-polyhedrons in T , it follows that we can
scale ! so that it takes integer values.

Lemma A.6. The weight function ! satisfies the basic gluing equations.
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Proof. We first observe that since all P 2
 �
F can have lifts Q�1 chosen so that they map P

to the same R-polyhedron zP in T , their weights are all equal. This impliesX
 �
F

!.P / D �.H. zP//j
 �
F j D �.H. zP//ŒH. zF / W H. zP/� D �.H. zF //;

where the second equality follows from Lemma A.5. So the left and right side of the
equations are equal.

Proof of Theorem A.1. Let ! be the integer valued weight function satisfying the basic
gluing equations (Lemma A.6). Let P! be the set obtained by taking !.P / copies of each
P 2 P . For eachH -admissible R-face pair F we can choose a one to one correspondence
between the polyhedral pairs in P on the left of F and those on the right of F and glue
them together. Corresponding faces can be glued together. By gluing all corresponding
faces over all face pairs we obtain a common cover yX of X1 and X2.

To check that yX is indeed a covering space of both X1 and X2, observe that if a vertex
v in yX is the centre of some P 2 P! , then yX is locally a common cover at that point.
Moreover, any vertex u that is adjacent to v is also the centre of some other P 0 2 P! since
each R-face of P has an R-polyhedral pair glued to it. Thus we can inductively conclude
that yX is locally a common cover at all vertices in the same connected component as v,
and hence that component is a common cover of X1 and X2. Since every component of yX
is constructed from elements of P! , all components are common covers.

Let f W T ! T be an automorphism (unique up to pre and post composition by deck
transformations) such that the following diagram commutes:

T T

yX

X1 X2

f

Then f 2SR.H/ since yX is constructed fromH -admissible R-polyhedral pairs. Indeed,
each R-polyhedron zP in T determines a polyhedral pair P D .P; �1; �2/ given by its
image in yX . Then �1 and �2 have lifts such that f ı Q�1 D Q�2 and with h 2 H such that
h ı Q�1 D Q�2, so h is equal to f on zP .
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