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Curvature criterion for vanishing of group cohomology

Zohar Grinbaum-Reizis and Izhar Oppenheim

Abstract. We introduce a new geometric criterion for vanishing of cohomology for BN-pair groups.
In particular, this new criterion yields a sharp vanishing of cohomology result for all BN-pair groups
acting on non-thin affine buildings.

1. Introduction

In his seminal paper, Garland [13] developed a machinery to prove vanishing of cohomo-
logy with real coefficients for groups acting on Bruhat–Tits buildings. This machinery,
known today as “Garland’s method”, was generalized by Ballmann and Świa̧tkowski [3]
to yield vanishing of cohomology with coefficients in unitary representations for groups
acting properly and cocompactly on a simplicial complexes. These vanishing results had
several applications (see [4], [20] and more recently [6]) and Garland’s method also had
several applications in combinatorics (see [14, Section 22.2] and references therein).

The main idea behind Garland’s method is that vanishing of cohomology can be
deduced for a group acting on a simplicial complex, given that the spectral gaps of the
links of the simplicial complex are large enough. Consequently, it implies vanishing of
cohomology up to rank for a group acting on a Bruhat–Tits building if the thickness of
the building is large enough. However, it was already noted in Garland’s original paper
[13] that his method does not yield a sharp result in the case of affine buildings. Namely,
it was known before Garland (by the work of Kazhdan [17]) that a group with a proper,
cocompact action on a non-thin affine building has property (T) (i.e., its first cohomology
vanishes), but the thickness condition given in Garland’s work did not hold for every non-
thin affine building. In other words, there are cases of non-thin affine buildings that are
not covered by Garland’s criterion for vanishing of cohomology. Later, Casselman [4] was
able to remove this restriction and prove vanishing of cohomology for every group acting
on a non-thin affine building, but his proof used entirely different methods.

In [9], Dymara and Januszkiewicz offered a different point of view on Garland’s
method: By assuming that the fundamental domain is a single simplex, they showed that
the spectral gap can be replaced with the notion of the angle between subspaces. This
change of perspective was very fruitful: Dymara and Januszkiewicz [9] used it to show
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vanishing of cohomology even when the stabilizers of vertices are not compact subgroups;
Ershov, Jaikin and Kassabov pushed the idea of the angle between subgroups to prove sev-
eral results regarding property (T) (see [10, 11, 15]); and the second-named author used
these ideas to prove Banach versions of property (T) and vanishing of cohomology (see
[18, 19]).

In this paper, we use the approach of Dymara and Januszkiewicz [9] and the ideas
of Kassabov regarding the angle between subspaces [15] and get the following result for
vanishing of cohomology for BN-pair groups:

Theorem 1.1. Let G be a BN-pair group acting on a building X such that X is n-
dimensional with n � 2 and all the 1-dimensional links of X are finite. Denote by C the
cosine matrix of the Coxeter system associated with the Coxeter group that arises from the
BN-pair of G, and by z� the smallest eigenvalue of C . If X has thickness � q C 1, where
q � 2 and z� > 1 � qC1

2
p
q

, then:

(1) For every continuous unitary representation � of G, it holds that H k.X; �/ D 0

for every 1 � k � n � 1.

(2) If 1 � k � n� 1 is a constant such that all the k-dimensional links ofX are finite,
then H i .G; �/ D 0 for every 1 � i � k and every continuous unitary represent-
ation � of G.

As a corollary, we get another proof of the sharp vanishing result for groups acting on
affine buildings of Casselman:

Corollary 1.2. Let G be a BN-pair group such that the building X coming from the BN-
pair ofG is an n-dimensional, non-thin affine building, with n � 2. Then for every unitary
continuous representation � of G, it holds that H k.G; �/ D 0 for every 1 � k � n � 1.

Theorem 1.1 is a special case of a more general theorem that we will explain below
after introducing the needed framework.

We start by introducing some terminology regarding simplicial complexes. Through-
out, X will denote a simplicial complex and X.i/ will denote the set of the i -dimensional
simplices of X (and we will use the convention that X.�1/ D ¹;º). Below, we will use
the following definitions:

• The simplicial complex X is called pure n-dimensional if the top-dimensional sim-
plices in X are of dimension n and every simplex in X is contained in an n-dimen-
sional simplex.

• A pure n-dimensional simplicial complex X is called gallery connected if for every
�; � 0 2 X.n/, there is a sequence of n-dimensional simplices � D �1; : : : ; �k D � 0

such that for every i , �i \ �iC1 is a simplex of dimension n � 1.

• A pure n-dimensional simplicial complex X is called .nC 1/-partite (or colorable) if
there are disjoint sets of vertices S0; : : : ; Sn of X called the sides of X such that every
� 2 X.n/ has exactly one vertex in each side.
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• For a .nC 1/-partite simplicial complex X with sides S0; : : : ; Sn, we define a type
function, denoted type W X ! 2¹0;:::;nº, by type.�/ D ¹i W � \ Si ¤ ;º.

• For a simplex � 2 X , the link of � , denoted X� , is the simplicial complex defined
by X� D ¹� 2 X W � \ � D ;; � [ � 2 Xº (by this definition, X; D X ). Note that
if X is pure n-dimensional and .nC 1/-partite, then for every � 2 X.i/, X� is pure
.n � i � 1/-dimensional and .n � i/-partite.

Following Dymara and Januszkiewicz [9], we work in the following setup: let n � 2
and X be a pure n-dimensional, .nC 1/-partite simplicial complex with sides S0; : : : ; Sn
and let G be a closed subgroup of Aut.X/ with respect to the compact-open topology. We
consider the following properties for the couple .X;G/:

(B1) All the 1-dimensional links are finite.

(B2) All the links of dimension � 1 are gallery connected.

(B3) All the links are either finite or contractible (including X itself).

(B4) The group G acts simplicially on X , such that the action is transitive on X.n/
and type preserving, i.e., for every � 2X and every g 2G, type.�/D type.g:�/.

Next, we define the cosine matrix of X that will play a central role in our criterion
for vanishing of cohomology. In order to do so, we first recall some basic facts regarding
simple random walks on graphs. For a finite graph .V; E/, the simple random walk on
.V;E/ is an operator M W `2.V /! `2.V / defined by

M�.v/ D
1

d.v/

X
u;¹u;vº2E

�.u/;

where d.v/ is the valency of v, i.e., the number of neighbors of v. We further recall
that M is (similar to) a self-adjoint operator and as such has a spectral decomposition.
Furthermore, all the eigenvalues ofM are in the interval Œ�1;1� and if .V;E/ is connected,
then 1 is an eigenvalue of M with multiplicity 1 and all the other eigenvalues of M are
strictly smaller than 1. Finally, we recall that if .V;E/ is a connected bipartite graph, then
the second largest eigenvalue of M is in the interval Œ0; 1/.

Definition 1.3 (The cosine matrix of X ). Let n � 2 and X be a pure n-dimensional,
.nC 1/-partite simplicial complex with sides S0; : : : ; Sn and let G be a closed subgroup
of Aut.X/ with respect to the compact-open topology. Assume that .X; G/ fulfill (B1)–
(B4) and define the cosine matrix of X , denoted A D A.X/, as follows: Let �i;j be
the second largest eigenvalue of the random walk of X� for � 2 X.n � 2/; type.�/ D
¹0; : : : ; nº n ¹i; j º. Define A to be the .nC 1/ � .nC 1/ matrix indexed by ¹0; : : : ; nº as

Ai;j D

´
1 if i D j;

��i;j if i ¤ j:

Remark 1.4. We note that if .X;G/ fulfill (B1)–(B4), then for every two simplices �; � 0,
if type.�/ D type.� 0/, then there is g 2 G such that g:� D � 0 and, in particular, the links
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X� and X� 0 are isomorphic as simplicial complexes, and thus the matrix A defined above
is well-defined.

Remark 1.5. The reason we called A the “cosine matrix of X” will be further explained
below. For now we just note that the definition above coincides with the definition of
the cosine matrix of a Coxeter group G acting on a complex X defined in [5, Definition
6.8.11] (see Definition 4.3 below).

Using the definition of the cosine matrix of X , we can state our main vanishing result:

Theorem 1.6. Let n � 2, let X be a pure n-dimensional, .nC 1/-partite simplicial com-
plex with sides S0; : : : ; Sn, and let G be a closed subgroup of Aut.X/ with respect to the
compact-open topology. If .X;G/ fulfill (B1)–(B4) and the cosine matrix of X is positive
definite, then:

(1) For every continuous unitary representation � of G, it holds that H k.X; �/ D 0

for every 1 � k � n � 1.

(2) If 1 � k � n� 1 is a constant such that all the k-dimensional links ofX are finite,
then H i .G; �/ D 0 for every 1 � i � k and every continuous unitary represent-
ation � of G.

In case X is a building, we will show in Section 4 that the smallest eigenvalue of the
cosine matrix of X can be bounded from below by a function of the smallest eigenvalue
of the Coxeter system and the thickness of the building. Using this fact, we will show that
Theorem 1.6 implies Theorem 1.1.

Remark 1.7. The machinery developed in [9] allows also to compute the cohomology and
not just prove vanishing. However, the statement of the computation includes introducing
additional terminology and notation and therefore it is omitted from the introduction. More
general statements of Theorems 1.1 and 1.6 that include computation of cohomology (even
when it does not vanish) appear in the body of this paper; see Theorems 4.6 and 3.9.

While the theorems stated above concern vanishing of group cohomology, the ideas of
Dymara and Januszkiewicz [9] reduce this problem to showing a decomposition theorem
in Hilbert spaces. The main tool that they used to prove such a decomposition was the
idea of the angle between subspaces. In the technical heart of this paper we use the results
of Kassabov [15] regarding angles between subspaces to prove a general decomposition
theorem in Hilbert spaces that is interesting by its own right. After doing this, we show
how this decomposition can be applied to deducing vanishing of cohomology in the gen-
eral framework of Dymara and Januszkiewicz and how to apply this result for BN-pair
buildings.

Geometric interpretation of Theorem 1.6. Garland in his original paper used the term
“p-adic curvature” for the eigenvalues of the random walks on the links. This term was
used since the results were analogous to those of Matsushima who proved similar results
for locally symmetric spaces. The condition for cohomology vanishing can be seen as a
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positive curvature condition as we will now explain. We start by recalling the following
basic facts (see [2, Chapters 6, 7]): let v0; : : : ; vn be points in general position in the
positive quadrant of the unit sphere of RnC1. These points can be thought as the vertices
of a spherical simplex that is bounded by the subspaces Vi D span¹v0; : : : ; Ovi ; : : : ; vnº.
The cosine matrix of these subspaces is defined by

A.V0; : : : ; Vn/ D

´
1 if i D j;

� cos.†.Vi ; Vj // if i ¤ j:

In particular, the volume of the spherical simplex can be bounded from below by a function
on the smallest eigenvalue of A.V0; : : : ; Vn/ (see [2, Chapter 7, proof of Theorem 2.1]).
Using the facts above as our geometric motivation, we note the following: the cosine
matrix A.X/ of X being positive definite implies that there is a constant ˛ > 0 such
that for every unitary representation .�;H / and every equivariant “embedding” of our
simplicial complexX in the unit sphere of H , the spherical simplex spanned by the image
of an n-simplex in X has a spherical volume of at least ˛. This statement is not precise,
since our definition of an equivariant embedding is non-standard. A precise definition and
an exact statement are given in Appendix A.

Structure of this paper. In Section 2, we prove a general decomposition theorem in Hil-
bert spaces. In Section 3, we show how this decomposition theorem implies vanishing of
cohomology. In Section 4, we deduce a criterion for vanishing of cohomology for BN-pair
groups and show that in the case of affine buildings this criterion gives a sharp vanishing
result. In Appendix A, we give a further geometric interpretation for the vanishing cri-
terion of Theorem 1.6.

2. Decomposition theorem in Hilbert spaces

Let H be a Hilbert space and let V0; : : : ; Vn � H be closed subspaces.

Definition 2.1. For a set � � ¹0; : : : ; nº define the subspace H� by

H� D

´T
i2¹0;:::;nºn� Vi if � ¤ ¹0; : : : ; nº;

H if � D ¹0; : : : ; nº;

e.g., H¹0;:::;n�1º D Vn and H¹0;:::;n�2º D Vn�1 \ Vn.

Note that for two sets �; � � ¹0; : : : ; nº, H�\� D H� \H� and in particular if � � � ,
then H� � H� . Also note that H; D

Tn
iD0 Vi .

Definition 2.2. For a set � � ¹0; : : : ; nº define the subspace H � by

H �
D

´
H� \

�T
�¦� H?�

�
if � ¤ ;;

H; if � D ;;
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and note that \
�¦�

H?� D

�X
�¦�

H�

�?
:

Definition 2.3 (Angle between subspaces; [15, Definition 3.2, Remark 3.19]). Let V1 and
V2 be two closed subspaces in a Hilbert space. The cosine of †.V1; V2/ is defined by

cos†.V1; V2/ D

´
0 if V1 � V2 or V2 � V1;

sup
®
jhv1; v2ij W kvik D 1; vi 2 Vi ; vi ? .V1 \ V2/

¯
otherwise:

Remark 2.4. There is an alternative definition of cos†.V1; V2/ in the language of pro-
jections: denote by PV1 ; PV2 ; PV1\V2 the orthogonal projections on V1; V2; V1 \ V2. Then

cos†.V1; V2/ D kPV1PV2 � PV1\V2k:

The proof of the equivalence between this definition and the one given above is straight-
forward and can be found in [7, Lemma 9.5].

Definition 2.5. Let V0; : : : ; Vn be closed subspaces in a Hilbert space. The cosine matrix
A D A.V0; : : : ; Vn/ of V0; : : : ; Vn is defined as follows: A is the .nC 1/ � .nC 1/ matrix
with

Ai;j D

´
1 if i D j;

� cos†.Vi ; Vj / if i ¤ j:

Theorem 2.6 (Decomposition theorem). Let H be a Hilbert space, let V0; : : : ; Vn � H

be closed subspaces, and let A be the cosine matrix of V0; : : : ; Vn. If A is positive definite,
then for every � � ¹0; 1; : : : ; nº, it holds that H� D

L
��� H� .

The proof of this theorem will require some setup. We will start with defining an order
relation between matrices that will be useful later on:

Definition 2.7. Let A;B be two square matrices of the same dimension. Write A � B if
for every i; j , Ai;j � Bi;j .

The reason to define this order relation is the following:

Proposition 2.8. Let A1;A2 be two square matrices of the same dimension such that they
both have 1’s along the main diagonal and all their other entries are non-positive. Let �i
be the smallest eigenvalue of Ai for i D 1; 2. If A1 � A2, then �1 � �2.

Proof. Note that I � A1 and I � A2 are both non-negative matrices and as such, by the
Perron–Frobenius theorem, their largest eigenvalues are achieved by a vector with non-
negative entries. Thus, for i D 1; 2,

�i D max
®
vtAiv W kvk D 1; v has non-negative entries

¯
:

The assumption A1 � A2 implies that for every vector v with non-negative entries one has
vtA1v � v

tA2v and therefore �1 � �2.
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The following result is proved in [15]:

Lemma 2.9 ([15, Lemma 4.2]). The angles †.V1 \ V3; V2 \ V3/ satisfy the inequality

cos†.V1 \ V3; V2 \ V3/ �
�12 C �13�23q
1 � �213

q
1 � �223

;

where �ij D cos†.Vi ; Vj /.

This lemma motivates the following definition:

Definition 2.10. Let V0; : : : ; Vn be closed subspaces in a Hilbert space. Denote by A0 the
n � n matrix defined as follows:

A0i;j D

´
1 if i D j;

�ıij if i ¤ j;

where

ıij D
�ij C �in�jnq
1 � �2in

q
1 � �2jn

and �ij D cos†.Vi ; Vj /:

Additionally, we will need the following lemma:

Lemma 2.11. For V0; : : : ; Vn; A; A0 as above, let � be the smallest eigenvalue of A and
�0 the smallest eigenvalue of A0. If A is positive definite, then � � �0. In particular, if A
is positive definite, then A0 is also positive definite.

Proof. Let A00 be the n � n matrix defined by

A00i;j D

´
1 � �2in if i D j;

��ij � �in�jn if i ¤ j;

where �ij D cos†.Vi ;Vj /. As observed in the proof of [15, Theorem 5.1 (a)], the matrices
A0 and A00 have the relation A0 D DA00D, where D is a diagonal matrix with entries

Di;i D
1q

1 � �2in

:

Thus, it is enough to prove that if ˛ is the smallest positive eigenvalue of A00 then � � ˛.
Let u D .u0 u1 : : : un�1/t , kuk D 1, be an eigenvector with the eigenvalue ˛. Let

B D

�
Id 0

��tn 1

�
; �n D .�0n : : : �n�1n/

t ; and v D B�1
�
u

0

�
:

By the definition of v, we have

v D B�1
�
u

0

�
D

�
u

�0nu0 C � � � C �n�1nun�1

�
:
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Thus,
kvk2 D kuk2 C j�0nu0 C � � � C �n�1nun�1j

2
� kuk2 D 1: (2.1)

As observed in the proof of [15, Theorem 5.1], A can be written as the product

A D

�
Idn�n ��n
0 1

��
A00 0

0 1

��
Idn�n 0

��tn 1

�
:

Hence,

�kvk2 � hAv; vi D

�
B t
�
A00 0

0 1

�
Bv; v

�
D

��
A00 0

0 1

�
Bv;Bv

�
D

��
A00 0

0 1

��
u

0

�
;

�
u

0

��
D ˛kuk2 D ˛:

Together with (2.1), it follows that � � 1
kvk2

˛ � ˛ as needed.

Corollary 2.12. Let V0; : : : ; Vn and H be as above. If A.V0; : : : ; Vn/ is positive def-
inite and the smallest eigenvalue of A.V0; : : : ; Vn/ is greater than or equal to �, then
A.V0 \ Vn; : : : ; Vn�1 \ Vn/ is positive definite and the smallest eigenvalue of A.V0 \ Vn;
: : : ; Vn�1 \ Vn/ is greater than or equal to �.

Proof. By Lemma 2.9, A0 � A.V0 \ Vn; : : : ; Vn�1 \ Vn/ and the corollary follows from
Lemma 2.11 and Proposition 2.8.

Using this corollary, we can prove the decomposition theorem:

Proof of Theorem 2.6. Let H� ;H
� , and � � ¹0; : : : ; nº be as above.

It follows from the definition that H� D
P
��� H� for every � � ¹0; 1; : : : ; nº. Thus,

we are left to prove that this is a direct sum. Also, without loss of generality, it is enough
to prove that H D

L
��¹0;1;:::;nºH

� . We will prove this decomposition by induction on n.
For n D 0, the condition on A holds vacuously. By definition, H; D H; D V0 and

H¹0º D H . Thus, H ¹0º D H \ V ?0 D V
?
0 and obviously H D V0 ˚ V

?
0 D H ¹0º ˚H;

as needed.
Assume that n > 0 and that the decomposition holds for n � 1. Let V0; : : : ; Vn be

spaces of a Hilbert space H such that A.V0; : : : ; Vn/ is positive definite and denote its
smallest eigenvalue by �.

We will first show that it follows from the induction assumption that

Vi D
M

��¹0;:::;Oi ;:::;nº

H� (2.2)

for every 0 � i � n.
Without loss of generality, it is enough to show this for i D n. Denote H 0 D Vn and

V 00 D V0 \ Vn; : : : ; V
0
n�1 D Vn�1 \ Vn. By Corollary 2.12, A.V 00; : : : ; V

0
n�1/ is positive
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definite. Note that, by definition, H 0
¹0;:::;n�1º

D Vn DH¹0;:::;n�1º. Also note that for every
� ¨ ¹0; : : : ; n � 1º,

H 0� D
\

i2¹0;:::;n�1ºn�

V 0i D
\

i2¹0;:::;n�1ºn�

Vi \ Vn D
\

i2¹0;:::;nºn�

Vi D H�:

Thus .H 0/� D H� for every � � ¹0; : : : ; n � 1º. By the induction assumption,

Vn D H 0 D
M

��¹0;:::;n�1º

.H 0/� D
M

��¹0;:::;n�1º

H�;

as needed.
Next, we will prove that given ¹v� 2 H�º��¹0;:::;nº, ifX

��¹0;:::;nº

v� D 0;

then v� D 0 for every �.
Fix ¹v� 2 H�º��¹0;:::;nº as above such thatX

��¹0;:::;nº

v� D 0:

By definition v¹0;1;:::;nº ? v� for every �� ¹0;1; : : : ;nº and therefore v¹0;1;:::;nºD 0. Thus,X
�¨¹0;1;:::;nº

v� D 0:

We rewrite this sum as X
�¨¹0;1;:::;nº

v� D

nX
iD0

ui ;

where

un D
X

;¤��¹0;1;:::;n�1º

v�;

ui D
X

��¹0;1;:::;i�1º

v�[¹iC1;:::;nº for 0 < i < n;

u0 D v¹1;:::;nº:

We observe that for every i , ui 2 Vi and by (2.2) it follows that if ui D 0 then all the
summands in the sum that define ui are 0. Therefore it is enough to prove that for every i ,
ui D 0.

Notice that un 2 Vn and for every 0 � i < n,

ui 2 Vi \

n\
j>i

.Vi \ Vj /
?:
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As a consequence, for every 0 � i ¤ j � n we have jhui ; uj ij � cos†.Vi ; Vj /kuikkuj k.
Thus, if we denote �i;j D cos†.Vi ; Vj /, it follows that

0 D

 nX
iD0

ui

2 � nX
iD0

kuik
2
� 2

X
0�i<j�n

jhui ; uj ij

�

nX
iD0

kuik
2
�

X
0�i<j�n

2�ij kuik kuj k

D
�
ku0k ku1k : : : kunk

�
A
�
ku0k ku1k : : : kunk

�t
� �

� nX
iD0

kuik
2

�
:

Therefore ui D 0 for every 0 � i � n as needed.

3. Vanishing of cohomology for groups acting on simplicial complexes

The aim of this section is to prove Theorem 1.6 that gives a criterion for cohomology
vanishing for groups acting on simplicial complexes (under the assumptions (B1)–(B4)).

Let n� 2, letX be a pure n-dimensional, .nC 1/-partite simplicial complex with sides
S0; : : : ; Sn, and let G be a closed subgroup of Aut.X/ with respect to the compact-open
topology. Assume that .X;G/ fulfill (B1)–(B4) and fix4 2 X.n/. For a simplex � � 4,
we denote by G� the subgroup of G stabilizing � (and use the convention G; D G).
For 0 � i � n, let �i � 4 be the .n � 1/-dimensional face of 4 such that type.�i / D
¹0; : : : ; Oi ; : : : ; nº.

Given a continuous unitary representation � of G on a Hilbert space H , define Vi D
Vi .�/ by

Vi D H�.G�i / D
®
v 2 H W 8g 2 G�i ; �.g/:v D v

¯
:

Also for every � � 4 define

H� D Htype.�/; H �
D H type.�/;

where Htype.�/ and H type.�/ are defined as in Definitions 2.1 and 2.2.
The following definitions of the core complex and the Davis chamber appear in the

paper of Dymara and Januszkiewicz [9]. The inspiration to it is attributed in [9] to a similar
construction of M. W. Davis in the setting of Coxeter complexes.

Definition 3.1 ([9, Definition 1.3]). Let X be a simplicial complex. Take the first bary-
centric subdivision X 0 of X . The core XD of X is the subcomplex of X 0, consisting of the
simplices, spanned by barycenters of simplices of X with compact links.

Definition 3.2 ([9, Definition 1.5]). Assume that .X; G/ fulfill (B1)–(B4). Let 4 be a
chamber ofX and let40 be the first barycentric subdivision of4. The Davis chamberD is
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the subcomplex of40 consisting of simplices whose vertices are barycenters of simplices
of4 with finite links in X .

For any � � �, denote by �� the union of faces of � not containing � , and put
D� D D \�� .

Dymara and Januszkiewicz proved the following condition for vanishing ofH�.G;�/:

Theorem 3.3 ([9, Theorems 5.1, 5.2]). Assume that .X; G/ fulfill (B1)–(B4) and let 4
be a chamber in X . Given a continuous unitary representation � of G on a Hilbert space
H , if for every � ¨ 4, it holds that H� D

L
��� H� , then:

(1) H i .X; �/ D 0 for every 1 � i � n � 1.

(2) If 1 � k � n� 1 is a constant such that all the k-dimensional links ofX are finite,
then H i .G; �/ D 0 for every 1 � i � k.

Moreover, Dymara and Januszkiewicz also generalized their result and gave a formula
for computation of the group cohomology:

Theorem 3.4 ([9, Theorem 7.1]). Assume that .X; G/ fulfill (B1)–(B4) and let 4 be a
chamber in X . Given a continuous unitary representation � of G on a Hilbert space H ,
if for every � ¨ 4, it holds that H� D

L
��� H� , then

H�.G; �/ D
M
���

zH��1.D� IH
� /;

where D� are the subcomplexes of the Davis chamber defined above. Moreover, these
cohomology spaces are Hausdorff.

Remark 3.5. The theorems stated above are not exactly formulated as it appears in [9].
First, in [9], the subspaces H� are defined a little differently, namely, for � � 4, H� D

H�.G� /. The discrepancy between the definitions is resolved by [9, Proposition 4.1] that
states that for every � ¨4, G� is generated by ¹G� W � � 4; � 2 X.n� 1/; � � �º, and
thus for every � ¨ 4,

H� D

\
��4;�2X.n�1/;

���

H� :

Thus,
Htype.�/ D

\
��4;�2X.n�1/;

type.�/�type.�/

H� D

\
i2¹0;:::;nºn�

Vi ;

as needed. Second, in [9], the condition for Theorem 3.3 is given as a bound on the eigen-
values of the Laplacian on the 1-dimensional links, but this bound is only used to prove
the existence of the decomposition H� D

L
��� H� and the vanishing of cohomology

results [9, Theorems 5.1, 5.2, 7.1] follow from that decomposition.

Combining Theorems 3.3 and 3.4 with Theorem 2.6 leads to the following:
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Theorem 3.6. Let X;G;4 be as above. Given a continuous unitary representation � of
G on a Hilbert space H , if A.V0.�/; : : : ; Vn.�// is positive definite, then:

(1) H i .X; �/ D 0 for every 1 � i � n � 1.

(2) If 1 � k � n� 1 is a constant such that all the k-dimensional links ofX are finite,
then H i .G; �/ D 0 for every 1 � i � k.

(3) H�.G; �/ D
L
���

zH��1.D� IH
� / and these cohomology spaces are Haus-

dorff.

Proof. By Theorem 2.6, ifA.V0.�/; : : : ;Vn.�// is positive definite, then for every � ¨4,
it holds that H� D

L
��� H� and the assertions regarding vanishing of cohomology fol-

low from Theorem 3.3.

Thus, in order to prove vanishing of cohomology, it is enough to prove that for every
unitary representation � , the matrix A.V0.�/; : : : ; Vn.�// is positive definite. It was
already observed in [9] that the angles between Vi .�/’s can be bounded by the second
largest eigenvalues of the simple random walk on the 1-dimensional links of X :

Lemma 3.7 ([9, Lemma 4.6, step 1]; see also [16, Theorem 1.7] and [18, Corollary 4.20]).
Let X; G;4 be as above. For 0 � i; j � n, where i ¤ j , denote by �i;j the second
largest eigenvalue on the simple random walk on X� , where � 2 X.n� 2/ with type.�/D
¹0; : : : ; nº n ¹i; j º. Then for every unitary representation � on a Hilbert space H , if
Vi D Vi .�/ and Vj D Vj .�/ are defined as above, then cos†.Vi ; Vj / � �i;j .

Corollary 3.8. If A.X/ is the cosine matrix of X defined in Definition 1.3, then for every
unitary representation � , A.V0.�/; : : : ; Vn.�// � A.X/. In particular, if A.X/ is positive
definite, then by Proposition 2.8, for every unitary representation � ,A.V0.�/; : : : ; Vn.�//
is positive definite.

Using Corollary 3.8 and Theorems 2.6, 3.3, 3.4, we can prove the following more
general form of Theorem 1.6:

Theorem 3.9. Let n � 2, let X be a pure n-dimensional, .nC 1/-partite simplicial com-
plex with sides S0; : : : ; Sn, and let G be a closed subgroup of Aut.X/ with respect to the
compact-open topology. If .X;G/ fulfill (B1)–(B4) and the cosine matrix of X is positive
definite, then:

(1) For every continuous unitary representation � of G, it holds that H k.X; �/ D 0

for every 1 � k � n � 1.

(2) If 1 � k � n� 1 is a constant such that all the k-dimensional links ofX are finite,
then H i .G; �/ D 0 for every 1 � i � k and every continuous unitary represent-
ation � of G.

(3) H�.G; �/ D
L
���

zH��1.D� IH
� / and these cohomology spaces are Haus-

dorff.
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Proof. LetX;G;4 be as above and let � be some unitary representation ofG on a Hilbert
space H . Assume that the cosine matrix ofX defined in Definition 1.3 is positive definite.
Thus, by Corollary 3.8, the matrix A.V0.�/; : : : ; Vn.�// is also positive definite and by
Theorem 2.6, for every � ¨ 4, H� D

L
��� H� . Thus the three assertions stated above

follow directly by Theorem 3.3.

4. Vanishing of cohomology for groups acting on buildings

The aim of this section is to prove Theorem 1.1 and to show that it can be used to prove
Theorem 1.2 regarding vanishing of cohomologies for groups acting on affine buildings.
We start by recalling some definitions regarding Coxeter systems:

Definition 4.1 (Coxeter matrix, Coxeter system). A Coxeter matrixM D .ms;t / on a finite
set S is an S � S symmetric matrix with entries in N [ ¹1º such that ms;s D 1 for all
s 2 S , and ms;t � 2 for all s; t 2 S , s 6D t .

A Coxeter matrix M defines a Coxeter system .W; S/, where W D hS jRi is a group
generated by S with relations R D ¹.st/mst W s; t 2 Sº (mst D 1 means that no relation
of the form .st/m is imposed).

Remark 4.2. A standard fact regarding Coxeter systems is that every Coxeter system
acts by type preserving automorphisms on a partite, pure .jS j � 1/-dimensional simplicial
complex†.W;S/ called the Coxeter complex (see [1, Chapter 3]), such that .†.W;S/;W /
fulfill (B2)–(B4) and ifms;t <1 for every s; t 2 S , then .†.W;S/;W / also fulfill (B1).

Definition 4.3 ([5, Definition 6.8.11]). The cosine matrix associated to a Coxeter matrix
M is the S � S matrix C D .cij / defined by

ci;j D � cos
� �

msi ;sj

�
:

When mi;j D1 we define ci;j D �1.

Observation 4.4. Assume that .W; S/ is a Coxeter system such that ms;t <1 for every
s; t 2 S . Denote S D ¹s0; : : : ; snº and abbreviate msi ;sj D mi;j . Then C defined above
is exactly the cosine matrix of †.W; S/ defined in Definition 1.3. Indeed, by [1, Corol-
lary 3.20], for every 0 � i; j � n, i ¤ j , the link of type ¹i; j º is a 2mi;j -gon and it is
easy to verify that the second largest eigenvalue of the simple random walk on a 2mi;j -gon
is cos. �

mi;j
/ and thus for every i; j ,

ci;j D � cos
� �

mi;j

�
(for i D j , mi;i D 1 and therefore ci;i D 1).
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Lemma 4.5. Let X be a building of dimension � 2 and thickness � q C 1 where q � 2
such that all the 1-dimensional links of X are compact (i.e., finite) and let C be the cosine
matrix of the Coxeter complex (i.e., the apartment) of the building X . Then for AD A.X/
being the cosine matrix of X it holds that

A � 2

p
q

q C 1
C C

�
1 � 2

p
q

q C 1

�
I: (4.1)

In particular, if z� denotes the smallest eigenvalue of C , then z� > 1 � qC1
2
p
q

implies that A
is positive definite.

Proof. Let X be as above. As a simplicial complex, X is a partite and we fix a type
function on the vertices. For every 0 � i; j � n, i ¤ j , let Xi;j denote the 1-dimensional
link X� , where � 2 X.n� 2/ and type.�/ D ¹0; : : : ; nº n ¹i; j º. Moreover, let �i;j denote
the second largest eigenvalue of the simple random walk on Xi;j . By our assumption Xi;j
is a finite graph and since X is a building of thickness � q C 1, Xi;j is a 1-dimensional
spherical building of minimal degree� qC 1. LetM be the Coxeter matrix of the Coxeter
system associated with X such that M is indexed according to our type function, i.e., the
entries of M are indexed by ¹0; : : : ; nº and for every i; j , i ¤ j , mi;j is the diameter
of Xi;j .

We recall that by a classical result of Feit and Higman [12], for every i ¤ j , if Xi;j
has a minimal degree > 2, then mi;j 2 ¹2; 3; 4; 6; 8º and in [13, Theorem 7.10], �i;j was
computed for every such choice of mi;j . The computations of [13, Theorem 7.10] allow
Xi;j to be a bi-regular graph and �i;j is computed according to the degrees of Xi;j , but
here we will only state the results assuming that the degrees are greater than or equal to
q C 1: Let i; j , i ¤ j .

• If mi;j D 2, then �i;j D 0.

• If mi;j D 3, then �i;j �
p
q

qC1
.

• If mi;j D 4, then �i;j �
p
2
p
q

qC1
.

• If mi;j D 6, then �i;j �
p
3
p
q

qC1
.

• If mi;j D 8, then �i;j �
p
2C
p
2
p
q

qC1
.

We observe that in all the inequalities above,

�i;j � cos
� �

mi;j

� 2pq
q C 1

:

Thus, we conclude (4.1).

This lemma readily applies the following more general form of Theorem 1.1 that
appeared in the introduction.
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Theorem 4.6. Let G be a BN-pair group acting on a building X such that X is n-dimen-
sional with n � 2 and all the 1-dimensional links of X are finite. Denote by C the cosine
matrix of the Coxeter system associated with the Coxeter group that arises from the BN-
pair of G and by z� the smallest eigenvalue of C . If X has thickness � q C 1, where q � 2
and z� > 1 � qC1

2
p
q

, then:

(1) For every continuous unitary representation � of G, it holds that H k.X; �/ D 0

for every 1 � k � n � 1.

(2) If 1 � k � n� 1 is a constant such that all the k-dimensional links ofX are finite,
then H i .G; �/ D 0 for every 1 � i � k and every continuous unitary represent-
ation � of G.

(3) H�.G; �/ D
L
���

zH��1.D� IH
� / and these cohomology spaces are Haus-

dorff.

Proof of Theorem 1.1. Let X;G be as in Theorem 1.1 and let C be the cosine matrix of
the Coxeter complex (i.e., the apartment) of X . Denote by � the smallest eigenvalue of
A.X/ and by z� the smallest eigenvalue of C . By our assumption,X has thickness� qC 1
and thus by Lemma 4.5 and Proposition 2.8,

� � 2

p
q

q C 1
z�C 1 � 2

p
q

q C 1
:

It follows that if z�> 1� qC1
2
p
q

, then �> 0, i.e.,A.X/ is positive definite and the assertions
above follow from Theorem 3.9.

The sharp vanishing result for affine buildings stated in Theorem 1.2 is a consequence
of Theorem 1.1 and of a well-establish fact regarding the cosine matrix of affine Coxeter
complexes:

Proof of Theorem 1.2. Let G be a BN-pair group such that the building X coming from
the BN-pair of G is an n-dimensional, non-thin affine building, with n � 2 and let C be
the cosine matrix of the Coxeter complex (i.e., the apartment) ofX . SinceX is non-thin, it
has thickness � 3 and therefore by Theorem 1.1, it is enough to prove that z� > 1 � 3

2
p
2

,
where z� is the smallest eigenvalue of C . By [5, Theorem 6.8.12], the cosine matrix of an
affine Coxeter complex is positive semidefinite (with co-rank 1), thus z� D 0 > 1 � 3

2
p
2

as needed.
Note that all the links of X that are not X itself are compact and therefore by The-

orem 1.6, H i .G; �/ D 0 for every 1 � i � n� 1 and every continuous unitary represent-
ation � .

Another consequence of Theorem 1.1 is vanishing of cohomology for Kac–Moody
groups acting on Kac–Moody buildings given that the thickness is large enough and all
the 1-dimensional links are finite. This was already proved by Dymara and Januszkiewicz
in [9] where the condition on the thickness was that it should be greater than or equal to
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1
25
.1764/n, where n is the dimension of the building. Theorem 1.1 shows that the same

vanishing result holds under a much weaker condition on the thickness. In order to illus-
trate this point, we perform an exact calculation of a specific example of a (hyperbolic)
Kac–Moody group (this example was chosen rather arbitrarily and one can perform sim-
ilar computations for any specific example of a BN-pair group):

Example 4.7. Consider the Coxeter group whose Coxeter diagram is a square such that
one of the edges is labelled 4 and the remaining ones are labelled 3. By the work of
Tits [21], for every finite field Fq , there is a BN-pair group G.q/ acting on a building X
with thickness q C 1 and the Coxeter group as above. Note that according to the Coxeter
diagram the links of the vertices are spherical building (see [8, Section 4]) and in particular
the links of all the vertices are finite and we can apply Theorem 1.1. The cosine matrix of
this Coxeter group is 0BBB@

1 �
1p
2
�
1
2

0

�
1p
2

1 �
1
2

0

�
1
2

�
1
2

1 �
1
2

0 0 �
1
2

1

1CCCA
and its smallest eigenvalue is �

p
2C1
2

. Note that for every q � 4, it holds that

�
p
2C 1

2
> 1 �

q C 1

2
p
q
;

and the conditions of Theorem 1.1 are satisfied. Thus, in this example, for every q � 4 and
every unitary representation of G.q/, it holds that H 1.G.q/; �/ D H 2.G.q/; �/ D 0.

A. Equivariant embedding interpretation of our criterion

The aim of this appendix is to give a geometric interpretation to our vanishing criterion,
i.e., to give a geometric meaning to the condition that the cosine matrix of a complex X
is positive definite. Let X be an n-dimensional simplicial complex and G a group acting
simplicially on X such that .X;G/ fulfill (B1)–(B4).

Let .�;H / be a unitary representation of G. Below, we fix4 D ¹x0; : : : ; xnº 2 X.n/
and use the notations of Section 3, i.e.:

(1) For � � 4, G� is the stabilizer subgroup of � in G.

(2) For i 2 ¹0; : : : ; nº, Vi .�/ D H�.G¹xk Wk2¹0;:::;nºn¹iºº
/.

(3) For � � 4, H� D
T
i…� Vi .�/ D H�.G� /.

Lemma A.1. Let .X;G/,4D ¹x0; : : : ; xnº 2 X.n/ and ¹G�º��4 be as above. For every
�; � 0 � 4, hG� ; G� 0i D G�\� 0 .

Proof. If � � � 0 or � 0 � � , there is nothing to prove, thus we will assume that this is not
the case and, in particular, that j� \ � 0j � n � 1.
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Observe that for every j� \ � 0j � n � 1, the couple .X¹xj Wj2�\� 0º; G�\� 0/ also fulfills
(B1)–(B4), and if we fix ¹xj W j 2 ¹0; : : : ; nº n � \ � 0º to be a fundamental domain of
X¹xj Wj2�\� 0º, we will get exactly the subgroups ¹G�\� 0[�º��4n�\� 0 . Thus, it is enough to
prove that if � \ � 0 D ;, it follows that hG� ; G� 0i D G.

By definition, G� ; G� 0 � G, thus hG� ; G� 0i � G. Next, we will show that for every
g 2 G, g can be written as a product of elements in G� [G� 0 .

Fix some g 2 G. By (B2), 4 and g:4 are connected by a gallery, i.e., there are
n-dimensional simplices �1; : : : ; �k such that �j \ �jC1 2 X.n � 1/ and 4 D �1; : : : ;

�k D g:4. By induction on k we will prove that if k is the length of the connecting
gallery, then g 2 .G� [G� 0/kC1.

If k D 0, then g:4 D 4 and thus g 2 G4 � G� .
Assume that our claim is true for k � 1 and let4D �1; : : : ; �k D g:4. Note that since

�1 \ �2 2 X.n� 1/, there is some i0 such that �1 \ �2 D ¹xi W i 2 4 n ¹i0ºº. By (B4), it
follows that there is some g0 2G4n¹i0º such that �1D g0:�2. Note thatG4n¹i0º �G� [G� 0
and thus g0 2 G� [G� 0 . Thus, �2 D g0:�1; : : : ; �k D g:4 is a gallery of length k � 1 and
also �1; .g0/�1:�3; : : : ; .g0/�1:�k D .g0/�1g:4 is a gallery of length k � 1. It follows that
.g0/�1g 2 .G� [G� 0/

k and therefore g 2 g0.G� [G� 0/k � .G� [G� 0/kC1 as needed.

Let � W X.0/! H . We recall that the map � is called equivariant (with respect to �)
if for every g 2 G and every vertex x of X it holds that �.g:x/ D �.g/�.x/.

Observation A.2. Fix 4 D ¹x0; : : : ; xnº 2 X.n/ and let .�;H / be a unitary represent-
ation of G. We observe that by (B4), an equivariant map � W X.0/ ! H is uniquely
determined by the choices of �.xi /, i D 0; : : : ; n, and that �.xi / 2 H�.G¹xi º/ for every
i D 0; : : : ; n. Vice-versa, every choice vi 2H�.G¹xi º/, i D 0; : : : ; n, defines an equivariant
map � via �.g:xi /D �.g/vi (note that this indeed defines a well-defined equivariant map
� W X.0/! H ).

Proposition A.3. Let .�;H / be a unitary representation of G without any non-trivial
invariant vectors and let � W X.0/! H be an equivariant map such that �.x/ ¤ 0 for
every x 2 X.0/. Then for every � ¨ 4 and every xi … � , PH�

�.xi / ¤ �.xi /.

Proof. Assume toward contradiction that PH�
�.xi / D �.xi /. Then by Observation A.2,

�.xi / 2 H� \H¹xi º and thus it is stabilized by both G� and G¹xi º. By our assumption
xi … � and thus �.xi / is stabilized by hG� ; G¹xi ºi D G; D G (here we use Lemma A.1).
Therefore �.xi / is a non-trivial invariant vector and this contradicts our assumption.

We define � W X.0/! H to be an equivariant embedding of X into the unit sphere of
H if the following holds:

(1) For every x 2 X.0/, k�.x/k D 1.

(2) The map � is equivariant.

(3) For every i ¤ j , PH4i;j
�.xi / 2 span¹�.x/ W x 2 4i;j º, where4i;j D ¹xk W k 2

¹0; : : : ; nº n ¹i; j ºº.
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The last condition may be thought of being in general position with respect to the sub-
spaces Vi .�/.

The following theorem gives a geometric interpretation of our criterion that the cosine
matrix AD A.X/ is positive definite. Basically it states that for any representation .�;H /

with no non-trivial invariant vectors, an n-simplex of X is mapped to a spherical simplex
that cannot be “too small” (there is a lower bound on the spherical n-volume of the image).

Theorem A.4. Assume that the cosine matrix A D A.X/ of X is positive definite. Then
there is a constant ˛ > 0 that depends on the smallest positive eigenvalue of A such
that for every unitary representation .�;H / without non-trivial invariant vectors and any
� WX.0/!H equivariant embedding ofX into the unit sphere of H , ¹�.x0/; : : : ; �.xn/º
are vertices of an n-dimensional spherical simplex with a spherical n-volume of at least ˛.

Proof. Let .�;H / be some unitary representation and � W X.0/ ! H an equivariant
embedding of X into the unit sphere of H .

By Proposition A.3, �.x0/; : : : ; �.xn/ are in general position in H and thus span an
n-dimensional spherical simplex in the .nC 1/-dimensional subspace V 0 D span¹�.xk/ W
k 2 ¹0; : : : ; nºº. Restricting our attention to V 0, the spherical simplex at hand is bounded
by the subspaces V 0i D span¹�.xk/ W k 2 ¹0; : : : ; nº n ¹iºº. The cosine matrix of these
subspaces is defined as above:

A.V 00; : : : ; V
0
n/ D

´
1 if i D j;

� cos.†.V 0i ; V
0
j // if i ¤ j:

In particular, the volume of the spherical simplex can be bounded from below by a pos-
itive increasing function on the smallest eigenvalue of A.V 00; : : : ; V

0
n/ (see [2, Chapter 7,

proof of Theorem 2.1]). Therefore in order to prove Theorem A.4 it is sufficient to show
that the smallest eigenvalue of A.X/ is a lower bound for the smallest eigenvalue of
A.V 00; : : : ; V

0
n/.

We note that for every i; j , V 0i \ V
0
j D span¹�.xk/ W k 2 ¹0; : : : ; nº n ¹i; j ºº and

V 0i \ .V
0
i \ V

0
j /
? is the 1-dimensional space that can be written as

V 0i \ .V
0
i \ V

0
j /
?
D span

®
�.xi / � PV 0i \V

0
j
�.xi /

¯
:

By our definition of an equivariant embedding, PV 0i \V 0j �.xi / D PVi .�/\Vj .�/�.xi / and

thus for every i; j , V 0i \ .V
0
i \ V

0
j /
? � Vi .�/ \ .Vi .�/ \ Vj .�//

?. It follows that

cos.†.V 0i ; V
0
j // � cos.†.Vi .�/; Vj .�///:

By Corollary 3.8, A.V 00; : : : ; V
0
n/ � A.X/ and thus by Proposition 2.8 the smallest eigen-

value of A.V 00; : : : ; V
0
n/ is bounded from below by the smallest eigenvalue of A.X/ as

needed.
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