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Homological filling functions with coefficients

Xingzhe Li and Fedor Manin

Abstract. How hard is it to fill a loop in a Cayley graph with an unoriented surface? Follow-
ing a comment of Gromov in “Asymptotic invariants of infinite groups”, we define homological
filling functions of groups with coefficients in a group R. Our main theorem is that the coeffi-
cients make a difference. That is, for every n � 1 and every pair of coefficient groups A; B 2
¹Z;Qº [ ¹Z=pZWp primeº, there is a group whose filling functions for n-cycles with coefficients
in A and B have different asymptotic behavior.

1. Introduction

Geometric group theorists have studied a wide variety of isoperimetric phenomena. The
best-known of these is the Dehn function, which admits a combinatorial algebraic inter-
pretation: it measures the complexity of the word problem, that is, the number of relators
needed to trivialize a word of a certain length. However, once we move into the realm of
pure geometry, the ordinary Dehn function, which measures the difficulty of filling a loop
in the Cayley complex with a disk, is no more natural than the homological Dehn func-
tion, which measures the difficulty of filling a loop with an oriented surface of any genus.
In fact, in some ways the latter is easier to work with.

Both these ideas admit higher-dimensional generalizations. Given a group G of type
F nC1, let X be a finite n-connected .n C 1/-complex on which G acts geometrically.
Then the difficulty of filling an n-sphere in X with an .n C 1/-disk [3] or an n-cycle
with an .nC 1/-chain [9, Chapter 10] are functions which (up to an asymptotic notion of
equivalence which we denote�) depend only onG. This defines filling functions typically
denoted ınG and FVnC1G , respectively. (We are stuck with the difference in indices for
historical reasons.)

A natural question is whether these homotopical and homological filling functions
are always equivalent to each other. This is known: they are inequivalent for n D 1 [2]
and n D 2 [24] but equivalent for n � 3 (as is shown in [2] by combining results from
[6, 12, 23]).

Oddly, no one seems to have asked about filling loops with unoriented surfaces. But
once one is working with chains, it is natural (as already remarked by Gromov in [13,
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p. 81]) to try to vary the coefficients. In [11], Gersten defined a filling function FVR which
measures the difficulty of filling an integral 1-cycle with a real (or, equivalently, rational)
2-chain, and asked whether this is asymptotically equivalent to the integral version. This
rational filling function was also studied by Martínez-Pedroza [20]; we know of no other
similar work.

In this paper, given an abelian group R, we will denote by FVnC1GIR the difficulty of
filling an n-cycle (with coefficients in Z or R, depending on R) with an .n C 1/-chain
with coefficients in R. Our main result is that, unlike ınG and FVnC1G , these differ in all
dimensions:

Theorem A. Let q be a prime, n � 1, and d 2N [ ¹1º. Then there is a groupH of type
F nC1 (a normal subgroup of an .nC 2/-dimensional CAT(0) group) such that

FVnC1H IR.x/ � x
.nC1/Œln.nC1/C2�; R D Q or Z=pZ; gcd.p; q/ D 1;

FVnC1H IR.x/ � fd;n.x/; R D Z or Z=qZ;

where fd;n.x/ D exp. n
p
x/ if d D1 and xd=n otherwise.

1.1. Why filling functions with coefficients?

Of the filling functions introduced in this paper, the easiest to understand and perhaps the
most useful are FVnGIQ and FVn

GIZ=2Z. A rational filling of a cycle Z is one in which
simplices are allowed to appear with fractional coefficients. One can also think of the
rational filling volume as measuring the difficulty of filling multiples of a cycle:

FVolQ.Z/ D lim inf
r!1

FVol.rZ/
r

:

Rational chains and cycles can be useful mainly because, as elements of a vector space,
they simplify algebraic arguments.

On the other hand, a mod 2 filling of a cycle can be thought of as a filling by an
unoriented hypersurface. In fact, mod 2 homology is easier to define than integral homol-
ogy as one does not have to worry about orientation. As such, and because k-chains
can be thought of as subsets of the set of k-cells, it is widely used in combinatorics
and applied topology. Mod 2 filling functions, specifically, have come up in the study
of high-dimensional expanders. While there are many nonequivalent candidate higher-
dimensional generalizations of the notion of expander graphs [17], several of them, e.g.,
[8, 14, 16], use a coisoperimetric constant that measures the difficulty of filling cocycles.
Given the close relationship between isoperimetry and coisoperimetry induced by linear
programming duality, and the fact that many explicit constructions of expander families,
from [19] and [18] to [10], have used geometric group theory, we are optimistic that the
ideas discussed here are relevant in that domain.

Mod 2 isoperimetry in the Euclidean setting was notably studied by Robert Young [25],
who showed that the mod 2 filling volume of a Lipschitz cycle is bounded by a con-
stant times its integral filling volume. In other words, it is impossible to build a cycle
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in a Euclidean space (even one that is not at all isoperimetric) which is much easier to
fill mod 2 (or, more generally, mod p) than integrally. Among other implications, this
considerably simplifies the geometric measure theory of chains with mod 2 coefficients.

Question. Can an infinitesimal version of our construction yield exotic metric spaces
which are locally highly connected but in which Young’s results do not hold?

1.2. Proof methods

In the case n D 1, the proof closely follows the methods of [2]. Essentially, the group H
is constructed by amalgamating a group with large Dehn function with a Bestvina–Brady
group which has many cycles that can be filled mod p, but not integrally. The resulting
group has many cycles that have a small mod p filling built by taking “shortcuts” through
the Bestvina–Brady group, but only a very large integral filling.

To extend to higher dimensions, we use a “suspension” construction which is some-
what similar to that used in [6] to build groups with prescribed higher-order Dehn func-
tions. In our case, we use the fact that H is the kernel of a homomorphism G ! Z,
where G is a CAT(0) group. Given such a homomorphism, the group G �H G is the ker-
nel of a homomorphism G � F2 ! Z. (For example, if G is a right-angled Artin group
(RAAG) andH is its Bestvina–Brady group, thenG �F2 andG �H G are the RAAG and
Bestvina–Brady group whose associated flag complex is the simplicial suspension of that
of G and H .) To prove Theorem A, we iterate this construction and apply the following
result:

Theorem B. Let n � 2 and let R be a quotient of Z. Then for any group G of type F nC1

satisfying FVnGIR.x/ � exp.x/, and subgroup H of type F n,

FVnH IR
�
FVnGIR

�1
.x/
�
� FVnC1G�HGIR

.x/ � xFVnC1GIR

�
FVnH IR.x/

�
;

where we write f .x/ D max.f .x/; x/ (noting that f � f ).

The rational case is not identical, but substantially similar.

2. Preliminaries
2.1. Definition of homological filling functions with coefficients

Recall that a group G is of type F n if there is a K.G; 1/ with finite n-skeleton, or
equivalently, if it acts freely and geometrically on an .n � 1/-connected cell complex
(for example, the universal cover of the n-skeleton of thisK.G;1/). A group is of type F 1

if and only if it is finitely generated and F 2 if and only if it is finitely presented.
As customary in geometric group theory, we use a relation � defined on functions

R�0! R�0 to capture inequality of growth rates. We write f � g if there exists a C > 0

such that for every x � 0, f .x/� Cg.CxCC/CCxCC . We say that f � g whenever
f � g and g � f .
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Let G be a group of type F nC1, and let X be an n-connected complex on which it
acts freely and geometrically. First, let R D Z or Q. If ˛ is a cellular n-cycle in X , we let

FVolnC1X IR .˛/ D inf
®
MassnC1.ˇ/ j ˇ 2 CnC1.X IR/; @ˇ D ˛

¯
;

where MassnC1.ˇ/ WD kˇk1D
P
jbi j provided that ˇD

P
bi�i is a sum of .nC 1/-cells

of X with bi 2 R. We define the n-dimensional homological filling function of X with
coefficients in R to be

FVnC1X IR .x/ D sup
®
FVolnC1X IR .˛/ j ˛ 2 Zn.X IZ/; Massn.˛/ � x

¯
:

By [24, Lemma 1], the growth rate of this function (up to the relation �) depends only on
the quasi-isometry type of G, so we can write

FVnC1GIR.x/ WD FVnC1X IR .x/:

When n D 1, this is known as the homological Dehn function.
Now suppose that R is a finite abelian group. We define the function FVnC1X IR in almost

the same way, with two differences: (1) the mass of a chain is defined simply to be the
number of cells in its support and (2) we define

FVnC1X IR .x/ D sup
®
FVolnC1X IR .˛/ j ˛ 2 Zn.X IR/; Massn.˛/ � x

¯
:

That is, we maximize the filling volume over cycles with coefficients in R rather than
integral cycles.

It is clear that the rational filling function must use fillings of integral cycles to be
interesting: otherwise one could scale any cycle until its mass is less than some threshold,
and the function would always be either linear or infinite. For Z=pZ, which is our other
major example, we could fill either mod p cycles or reductions of integral cycles; we use
mod p cycles because it works better with some of our proofs, but it is not clear whether
this subtle difference in definitions makes a difference in this case.

It certainly does not make a difference when n D 1, since in that case every mod p
cycle is the image of an integral cycle that is not too much larger:

Proposition 2.1. Suppose that X is a graph and p is any integer. Then every cellular
cycle ˛ 2 Z1.X IZ=pZ/ has a preimage Q̨ 2 Z1.X IZ/ such that Mass. Q̨ / � pMass.˛/.

Proof. We construct Q̨ explicitly as follows. Take a chain � 2 C1.X IZ/ which lifts ˛
and has coefficients between �p=2 and p=2. (This is unique if p is odd, but may involve
choices for even p.) Then @� is a 0-chain with coefficients in pZ. We take Q̨ D � � p� ,
where � is a minimal filling of 1

p
@�. To prove the lemma, it is enough to show that

Mass.�/ � 1
p

Mass.�/.
To see this, notice that � is the most efficient “matching” via geodesics between the

positive and negative points in 1
p
@�, with multiplicity. This kind of minimal matching

problem always has an integer solution that is optimal even among real solutions, see,
e.g., [21, §3.2]. Therefore p� is a minimal filling of @�. Since � is also a filling of @�, we
know that Mass.�/ � Mass.p�/.
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In Section 3, we will use the fact that FV2
GIZ=pZ can be defined equivalently by maxi-

mizing over all mod p cycles or only over images of integral cycles.

2.2. Right-angled Artin groups

The construction of the groupsG andH in Theorem A uses some facts about right-angled
Artin groups. Here we give the definition and some of their properties.

Given a simplicial graph ƒ with vertex set V.ƒ/ and edge set E.ƒ/, the associated
RAAG has the presentation

A WD
˝
V.ƒ/ j Œi.e/; t.e/� D 1;8e 2 E.ƒ/

˛
;

where i.e/ and t .e/ are the endpoints of e. There exists a K.A; 1/, the Salvetti com-
plex XA of A, which is a one-vertex locally CAT.0/ cube complex. Let hAWA! Z be the
group homomorphism sending each generator of A to 1; there is a cube-wise linear map
hXA WXA ! S1 which induces hA on fundamental groups. The lift of hXA to the universal
cover gives us a hA-equivariant Morse function hXA WfXA ! R. With respect to this Morse
function, one defines the ascending and descending links of a vertex v as the subcomplexes
of its link which are, respectively, above and below v. Since XA has only one vertex, we
denote them by Lk".fXA/ and Lk#.fXA/ respectively. The following theorem describes the
topology of the ascending and descending links as well as the level set LA WD h�1XA .0/.

Theorem 2.2 (Bestvina and Brady [5]). If ƒ is the 1-skeleton of the flag simplicial com-
plex Y , then both Lk".fXA/ and Lk#.fXA/ are isomorphic to Y . Moreover, if hA and hXA
are the maps defined above, HA D ker hA acts on the complex LA D h�1XA .0/, which is
homotopy equivalent to a wedge product of infinitely many copies of Y , indexed by the
vertices in fXA n LA. In fact, LA is a union of scaled copies of Y .

The proof of this is based on discrete Morse theory, see [5, Theorems 5.12 and 8.6].

2.3. Two general lemmas

We first state a CAT.0/ isoperimetric inequality due to Wenger [22]; cf. [1, Proposi-
tion 2.4].

Proposition 2.3. IfX is a CAT.0/ polyhedral complex and n� 1, then the n-dimensional
homological filling function of X with coefficients in R satisfies

FVnC1X IR .x/ � x
nC1
n ;

where R D Z, Q, or Z=pZ, p � 2. Moreover, there is a constant c such that if ˛ 2
Zn.X IR/ (or ˛ 2 Zn.X IZ/ if R D Q), then there exists a chain ˇ 2 CnC1.X IR/ such
that @ˇ D ˛,

MassnC1.ˇ/ � cŒMassn.˛/�
nC1
n ;

and suppˇ is contained in a cŒMassn.˛/�
1
n -neighborhood of supp˛.
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Proof. For R D Z or Z=pZ, this follows from the proof of [22]. While it is stated only
for Z and Z=2Z, the proof works equally for all Z=pZ once the notion of mass is properly
defined. The result for Z implies that for Q by definition.

Another general lemma equates two ways of constructing groups; see [4] for some
related results.

Proposition 2.4. Suppose that we have a commutative diagram with exact rows,

1 // H //� _

��

G
h //� _

.id;1/
��

Z // 1

1 // H 0 // G � F2.u; v/
h0 // Z // 1;

where h0 sends u and v to 1. Suppose furthermore that G has a generating set such that h
maps every generator to 0 or˙1. Then H 0 Š G �H G.

Proof. Given g 2 G, write g` and gr for the elements of G �H G corresponding to “g on
the left” and “g on the right”. Define a map G �H G ! H 0 which, for any g 2 G, sends

g` 7! gu�h.g/ and gr 7! gv�h.g/:

The reader can confirm that this extends to an isomorphism. In particular, injectivity fol-
lows from [4, Theorem 1].

3. The case n D 1

In this section, we prove Theorem A in the case n D 1. This construction fairly closely
follows that of [2]. In what follows, let q be a prime and d a positive integer or infinity.

3.1. Constructing the groups G and H

We will build G as the fundamental group of a graph of groups whose vertices are labeled
with two CAT(0) groups: a RAAG AY corresponding to a flag simplicial complex Y , and
a group Q which we import from [2] along with its desired properties. Each edge will be
labeled with the group E D F2 � F2.

LetKq be a CW complex consisting of S1 and a single 2-cell glued on via an attaching
map of degree q. Then

H1.KqIR/ Š

´
Z=qZ; R D Z or Z=qZ;

0; R D Q or Z=pZ; gcd.p; q/ D 1:

We equip this complex with a flag triangulation in which the 1-cell is subdivided into four
edges connecting four vertices a, u1, s, v1 in cyclic order. Label the remaining vertices
y1; y2; : : : ; y`. Call the resulting simplicial complex Y .
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By definition, Y is a connected, 2-dimensional finite flag complex withH1.Y IR/D 0
whenever R D Q or Z=pZ and gcd.p; q/ D 1. Moreover:

Proposition 3.1. Any integral 1-cycle in Y has a rational filling with coefficients in
.1=q/ � Z.

Proof. Write pW eY ! Y for the universal covering map. Define a map liftW Cn.Y / !
Cn.eY /which sends a cell to the sum of its preimages in the universal cover. This is a chain
map, so given a cycle 
 2 Z1.Y /, lift.
/ is a cycle in Z1.eY / with an integral filling ˇ.
Then 1

q
p#ˇ is a filling of 
 with coefficients in .1=q/ � Z.

Integrally and mod q, the edges connecting the vertices a, u1, s, v1 form a homolog-
ically non-trivial cycle. Let ƒ be the 1-skeleton of Y , and denote the associated RAAG
by A. Recall that hAWA! Z is a group homomorphism sending each generator of A to
1 2 Z.

We take Q WD B � F2.u1; v1/, where B is a group defined in [2] which satisfies the
following properties:

(i) B has a presentation with generators a1; a2; : : : ; am�1; s, and t such that the
only relation involving s is Œs; t � D 1. Moreover, the corresponding presenta-
tion complex is a 2-dimensional locally CAT(0) cube complex XB , which is
a K.B; 1/.

(ii) The Cayley graph of the (free) subgroup generated by ai and s is convexly
embedded in fXB .

(iii) Let hB WB ! Z be the group homomorphism sending ai , s, t to 1 2 Z, and
hXB W

fXB ! R be the Morse function extended from hB . Then ker hB is a free
group; equivalently, the level set LB WD h�1XB .0/ is a tree.

(iv) B is isomorphic to a free-by-cyclic group Fm Ì� Z, where Fm D ker hB .

(v) The ascending and descending links Lk".XB/ and Lk#.XB/ are trees.

(vi) The distortion of the subgroup Fm D ker hB � B is sufficiently large:

DistFm.x/ WD max
®
jgjFm Wg 2 Fm; jgjB � x

¯
� fd .x/;

where (as in the statement of Theorem A) fd .x/ D ex if d D1 and xd other-
wise. (We use jwj� to represent word length in a group � .)

Note that (i) implies that XQ WD XB � .S
1 _ S1/ is a 3-dimensional CAT.0/ cube

complex, and hence a K.Q; 1/.
Let hQWQ ! Z be the group homomorphism sending generators ai , s, t , u1, v1

to 1. Then by Proposition 2.4, ker.hQ/ � Q is isomorphic to D WD B �Fm B , the Bieri–
Stallings double of B .

For each 1 � i � m � 1, the subgroup of B generated by ai and s is free, so Q
contains subgroups of the formEi D F2.ai ; s/�F2.u1; v1/ for each i . On the other hand,
A contains the subgroup E D F2.a; s/ � F2.u1; v1/. Identifying each Ei � Q with E
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in a copy Ai of A gives a graph of groups with vertices Q; A1; : : : ; Am�1 and edges
E1; : : : ; Em�1. Let G be the fundamental group of this graph of groups. By construction,
we can express G and its subgroups as

G D ha1; : : : ; am�1; s; t; u1; v1; y
i
j i; i D 1; : : : ; m � 1; j D 1; : : : ; `I

Q D B � F2.u1; v1/ D ha1; : : : ; am�1; s; t; u1; v1iI

Ai D hai ; s; u1; v1; y
i
1; : : : ; y

i
`iI

Ei D F2.ai ; s/ � F2.u1; v1/:

We extend the group homomorphisms hAWA ! Z and hQWQ ! Z to hWG ! Z. Let
H D ker h.

3.2. Properties of G and H

Lemma 3.2. G is a CAT.0/ group.

Proof. Let XEi WD .S
1 _ S1/ � .S1 _ S1/, along which XAi and XQ are glued together.

Since XEi is a K.Ei ; 1/ and is convex as a subset of XAi and XQ, attaching m� 1 copies
of XAi to XQ along the XEi gives us a locally CAT.0/ cube complex, called XG . Since G
acts cocompactly on eXG by deck transformations, it is CAT.0/.

Recall that H D ker h. Using the work of Bestvina and Brady [5], h extends to an
h-equivariant Morse function eXG ! R, which we also call h by an abuse of notation.
If we set LG D h�1.0/, then H acts cocompactly on the level set LG . To show that H is
finitely presented, it is enough to show that LG is simply-connected.

Lemma 3.3. H is a finitely presented group.

Proof. By [5, Theorem 4.1], it suffices to prove that the ascending and descending links
of any vertex in eXG are simply-connected. Since XG has only one vertex, all links are
copies of a single complex Lk.XG/.

The vertices of the ascending link Lk".XG/ correspond to generators of G; we denote
the vertex corresponding to a generator x by xC. The complex Lk".XG/ is formed by glu-
ing Lk".XQ/ and Lk".XAi /’s together along the subcomplexes Si spanned by aCi , uC1 , sC,
and vC1 . Consider Lk".XQ/ first. The fact that Lk".XQ/ is the suspension of a tree (with
suspension points uC1 and vC1 ) implies that �1.Lk".XQ//Š 0. By Theorem 2.2, we know
that Lk".XAi / is isomorphic to Y , and in particular �1.Lk".XAi // Š Z=qZ is generated
by a loop that lies in Si . This means that any loop in Lk".XG/ is homotopic to one that
lies in Lk".XQ/. Therefore, Lk".XG/ is simply-connected.

Similarly, Lk#.XG/must be simply-connected. It follows thatLG is simply-connected
and H is finitely presented.
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3.3. Upper bound on homological Dehn functions

Recall that the level setLG WD h�1.0/. Let us defineLQ WDLG \eXQ,LAi WDLG \eXAi ,
and LEi D LG \eXEi . Since the index i represents multiple copies of the same object,
we sometimes drop it from the notation.

Topologically, both LA and LE are non-simply-connected. By Theorem 2.2, LA is
homotopy equivalent to a wedge sum of scaled copies of Y while LE is homotopy equiv-
alent to a wedge sum of scaled copies of the square. Although �1.LA/ is non-trivial, we
have H1.LAIR/ D 0 when R D Q or Z=pZ and gcd.p; q/ D 1, which enables us to fill
any cycle in LA with coefficients in Q or Z=pZ. Using the methods of [1, 2], we can
further show that the growth rate of filling functions with these coefficients is at most x5.
As we shall see, this is significantly different from the growth of FV2H IZ or FV2

H IZ=qZ.

Proposition 3.4. When H is the kernel group defined above, we have FV2H IR.x/ � x
5

wheneverRDQ or Z=pZ, gcd.p;q/D 1. Moreover, every integral 1-cycle has a rational
filling of mass � x5 whose coefficients lie in .1=q/ � Z.

Proof. We closely follow the proof of [2, Proposition 6.1], with some alterations. Thus
we describe the construction in a relatively informal way, relying on [2] for some details.

By Proposition 2.1, it suffices to show that the image of any integral cycle ˛ 2 C1.LG/
of mass at most x can be filled by a chain in C2.LG IR/ of mass � x5. Since x5 is
a superadditive function, it is enough to show this when ˛ is a loop of length x.

By construction, LG consists of copies of LA and LQ glued together along copies
of LE . So, we can first construct a filling when ˛ is supported in one copy of LA or LQ,
and then extend to the case when ˛ travels through multiple copies of LA and LQ.

Consider the filling of a loop ˛ inLA. By Proposition 2.3, we obtain an integral 2-chain
ˇ 2 C2.fXAIZ/ that fills ˛ such that Massˇ � x2 and ˇ is supported in h�1A .Œ�cx; cx�/,
where c is a universal constant. We turn this into a filling in LA of mass � x4, as follows.
Let

Z D fXA n [
v…LA

Bı1=4.v/

be the space formed by deleting open neighborhoods of vertices of fXA outsideLA. Accord-
ing to [1, Theorem 4.2], the resulting Swiss cheese retracts to LA via a map �WZ ! LA.
Moreover, � is .cx/-Lipschitz on h�1A .Œ�cx; cx�/. Therefore, it increases area by a factor
of � x2, meaning that Mass.�.Z \ ˇ// � x4.

Now, the boundaries of the holes inZ \ ˇ form a chain 
 D @.Z \ ˇ/� ˛ whose total
length is � x2. This chain lives in a union of copies of Y , in which it is nullhomologous.
Since Y is a compact space with finite fundamental group, homological fillings of 1-cycles
in Y have area linear in the length of the cycle.

The image under the retraction, �.
/, lives in a union of copies of Y each scaled by
at most cx, and therefore has a filling with coefficients in R of mass � x4; when R D Q,
this has coefficients in .1=q/ � Z by Proposition 3.1. Together with �.Z \ ˇ/, this gives
a filling of ˛ of mass � x4.
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Now we consider ˛ lying in LQ. We use the same groups Q and E as in [2], so their
construction of fillings in LQ carries over in a straightforward way. They show that every
1-cycle inLQ has a filling of mass� x4 if one takes advantage of “shortcuts” throughLA.
More precisely, recall that �1.LEi /, for each i , is infinitely generated by scaled copies of
the square. Any trivial word in D of length x is homologous in LQ, through an integral
chain of area � x4, to a sum of � x2 of these generators, each at scale � x. Each of these
generators has a homological filling in LA of mass � x2 (in our case, with coefficients in
.1=q/ � Z � Q or in Z=pZ).

Now, let ˛ be a loop that travels through multiple copies of LA and LQ; in this case,
we again use the proof from [2] verbatim. To make this situation easier to analyze, we
build a new complex L on which H acts by “stretching” each copy of LE in LG into
a product LE � Œ0; 1�. Since H acts geometrically on LG , it acts geometrically on the
new level set L as well.

The thrust of the argument is to inductively “lop off” subpaths of ˛ living in either LA
or LQ, without increasing the overall length of the path. Based on the normal form the-
orem for graphs of groups, there is a subpath of the form t
 t 0 that enters a copy of LA
or LQ through a copy of LE , then leaves through the same LE . Let 
 0 be a geodesic path
which connects the endpoint of t with the endpoint of t 0. Since LE is undistorted in L,

 0 is contained in LE . Thus � D t
 t 0.
 0/�1 is a loop in the union of a copy of LE � Œ0; 1�
and a copy of LQ or LA. This loop is filled by a 2-chain ˇ with coefficients in R (and, in
the rational case, in .1=q/ � Z) such that

Massˇ � .x C l.
 0//4 C l.
 0/ � x4:

Repeating this process for the loop ˛ � � inductively provides us with a filling of ˛. Since
there are at most x steps, we conclude that the total filling of ˛ has mass at most x5 and
integer multiples of 1=q as the coefficients.

3.4. Lower bound on homological Dehn functions

Now, in contrast to the previous subsection, we let the coefficient group R be Z or Z=qZ,
and prove the following.

Theorem 3.5. FV2H IR � DistFm , where DistFm � fd is the distortion function of the sub-
group Fm D h�1B .0/ in B .

The overall strategy is as follows. We first show that there is a loop 
 of length 2x C 2
whose filling area in the doubleD D B �Fm B is DistFm.x/; this is a homological version
of a theorem of Bridson and Haefliger on Dehn functions [7, Chapter III.� , Theorem 6.20].
Then we show that this loop is no easier to fill in the larger group H .

Lemma 3.6. Let B be any finitely presented group, and F < B a finitely generated sub-
group with distortion function ı. Then for any coefficient group R,

FV2B�FBIR.x/ � ı.x/:
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Proof. We start by building a complex Y whose fundamental group is B �F B . LetXB be
the presentation complex of B , and let XF be a wedge of circles with each circle labeled
by a generator of F . We construct Y by gluing the two ends of XF � Œ0; 1� (given the
product cell structure) to two copies of XB via cellular maps that send each circle to the
corresponding generator.

Now, given x, we build a loop 
 in the universal covereY of length 2xC 2whose filling
area is at least ı.x/. First, choose an element w 2 F such that jwjB � x and jwjF � ı.x/.

Note that eY is glued together from copies of eXF � Œ0; 1� and fXB arranged as the edges
and vertices of a tree. Choose a basepoint p in eXF , and a base copy of eXF � Œ0; 1� which
we call Z0 � Œ0; 1� � eY . Let Z` and Zr be the two copies of fXB on either side of Z0.
Let 
 start at .p; 0/ 2 Z0 � Œ0; 1�, follow the geodesic path in Z` to .w � p; 0/, go across
to .w � p; 1/, follow the geodesic path in Zr to .p; 1/, and finally cross back to .p; 0/.

We claim that, for any cellular filling ˇ 2C2.eY IR/ of 
 , we must have Massˇ � ı.x/.
To see this, notice that ˇ\eXF � ¹1=2º is a 1-chain in eXF whose boundary is Œw �p�� Œp�.
(Here we translate between the orientation of cells in eXF � Œ0; 1� and in eXF � ¹1=2º using
the unit normal pointing towards 1.) Since the geodesic distance in eXF between these two
points is at least ı.x/, ˇ \eXF � ¹1=2º is supported on at least ı.x/ edges. Therefore ˇ is
supported on at least ı.x/ 2-cells. This completes the proof when R D Z or a finite group.

Although we do not need the result for R DQ, we include it for completeness. In that
case, define the cochain c 2 C 0.eXF / by setting c.v/D dfXF .p; v/. Then kıck1 D 1, and

ıc
�
ˇ \eXF � ¹1=2º

�
D c.Œw � p� � Œp�/ � ı.x/;

which means that kˇ \eXF � ¹1=2ºk1 � ı.x/.
Proof of Theorem 3.5. We choose a hard-to-fill 1-cycle 
 inside a copy of LQ � LG by
the same method as in the proof of the lemma. For any x, choose a w 2 F satisfying
jwjB � x and jwjF � ı.x/. Then build a loop 
 by taking the geodesic path in one copy
of fXB from p to w � p, and then the same geodesic path back in the other copy. The
vertex p is contained in two copies of fXB .

We note some facts about 
 . First, applying the proof of Lemma 3.6 toD D B �Fm B ,
we get a space eY which maps quasi-isometrically to LQ by contracting the interval in
each copy of eXF � Œ0; 1�. This map sends the loop constructed in the proof of the lemma
to 
 . The standard argument for the quasi-isometry invariance of filling functions, as in,
e.g., [24, Lemma 1], then implies that 
 is hard to fill.

Each of the geodesics comprising 
 traverses any edge once. Moreover, if the two
geodesics share an edge, then it is an edge of eXF , which they traverse with opposite
orientation. Therefore, viewed as an integral 1-cycle, 
 has coefficient 1 on any edge in
its support, and so it reduces to a mod q cycle with the same mass. Any integral filling
reduces to a mod q filling with smaller or equal mass. Therefore, to prove the theorem, it
suffices to show that 
 is hard to fill mod q: this also gives a lower bound on the size of an
integral filling.
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Now we proceed with the case R D Z=qZ. The level set LG consists of copies of LA
and LQ, joined along copies of LE . Given one copy L of LA or LQ, we denote its (topo-
logical) boundary in LG by @L. Clearly, @L is a union of copies of LE .

Fix a copy L0 of LQ in LG , and embed 
 in L0. Let � be a simplicial chain that fills 

in LG . Given a subcomplex L of LG , we write L \ � to denote the restriction of � to L,
that is, the chain whose coefficients coincide with those of � on L and are zero elsewhere.
Notice that since LE is one-dimensional, � can be written as the sum of its restrictions to
copies of LQ and LA.

Our aim is to show that @.L0 \ �/ D 
 . It follows that

DistFm.x/ � Mass.L0 \ �/ � Mass �

as desired. To achieve this, we need the following assertion.

Lemma 3.7. If ˛ 2 C2.LAIZ=qZ/ has boundary supported in @LA, then @˛ D 0.

Assume the lemma. For any copy L of LA in LG , we apply the lemma to L \ � ; it
follows that

@.� � L \ �/ D @�;

and so we can replace � with � �L\ � . Thus we reduce to the case that � is supported on
copies of LQ. But since these copies are disjoint, it follows that @.L \ �/ D 0 for every
copy L of LQ other than L0. Therefore, we can also subtract off the restrictions to every
other copy of LQ without changing the boundary. Thus @.L0 \ �/ D @� D 
 .

Proof of Lemma 3.7. We know that LA is homotopy equivalent to an infinite wedge sum
of copies of Y ,

Y1 D
_
j2SA

Yj ;

where SA is the set of vertices in fXA n LA. Notice that @LA consists of disjoint copies
of LE , which we denote LE;i . Each of these is homotopy equivalent to a wedge sum of
scaled copies of squares indexed by disjoint subsets SE;i � SA,

Þ1;i D
_

j2SE;i

Þj :

In fact, each Þj is the square that generates the first homology group of the correspond-
ing Yj . This defines an inclusion map

F
i Þ1;i ! Y1, which corresponds, under the

homotopy equivalences mentioned above, to the inclusion map hW@LA D
F
i LE;i ! LA.

Therefore, h induces an injection on the level of homology mod q,

h�W
M
i

H1.LE;i IZ=qZ/! H1.LAIZ=qZ/:

By definition, @˛ is homologically trivial in H1.LAI Z=qZ/. This implies that @˛
restricted to each LE;i is homologically trivial in H1.LE;i IZ=qZ/. Since LE;i is a 1-
complex, each such restriction is actually zero as a chain. Thus @˛ D 0.



Homological filling functions with coefficients 901

4. Higher dimensions

4.1. Construction and properties

As before, we fix a prime q and a d 2N [ ¹1º. In the previous section, we built a CAT.0/
group G (depending on q and d ) as well as a kernel group H � G such that FV2H IR
grow at distinct rates for different R. In higher dimensions, we inductively construct the
groups Gn, Hn starting from G1 D G. Then Theorem B provides us a way of proving
that FVnC1HnIR

grow at distinct rates for different R.
Given n � 2, we define Gn D Gn�1 � F2.un; vn/ and hnWGn ! Z to be the group

homomorphism sending un, vn, and each generator of Gn�1 to 1. If we let Hn D ker hn,
then by Proposition 2.4, Hn Š Gn�1 �Hn�1 Gn�1.

The groups Gn and Hn satisfy a few key properties. In particular, we show that Gn is
a CAT.0/ group and Hn is a group of type F nC1.

Lemma 4.1. The group Gn acts freely and geometrically on an .n C 2/-dimensional
CAT.0/ cube complex eXGn .

Proof. We showed in Lemma 3.2 that G1 acts on a 3-dimensional CAT.0/ cube com-
plex eXG . Since Gn is the direct product of G1 with n � 1 copies of F2, it acts on the
universal cover eXGn , where

XGn D XG � .S
1
_ S1/n�1:

Lemma 4.2. For any group G of type F nC1 and subgroup H of type F n, G �H G is of
type F nC1.

Proof. Say that a CW complex X is n-aspherical if its universal cover is n-connected.
We would like to construct an n-aspherical .nC 1/-complex Z with fundamental group
G �H G.

By assumption, there exists an n-aspherical .n C 1/-complex XG with fundamental
group G, and an .n� 1/-aspherical n-complex XH with fundamental group H . Fix a cel-
lular map �WXH !XG that induces the natural inclusionH ,!G on fundamental groups;
such a map exists because XG is n-aspherical. We build the complex Z by taking a copy
ofXH � Œ0; 1� (with the product cell structure) and gluing it to copies ofXG on either side
via �. This space has the desired fundamental group by the Seifert–van Kampen theorem.

It remains to show that Z is n-aspherical. Observe that QZ consists of copies of eXG
indexed by vertices of the Bass–Serre tree of the amalgamated free product G �H G.
These copies are glued along copies of eXH � Œ0; 1� indexed by edges of the Bass–Serre
tree. In particular, eZ has an exhaustion by unions of pieces indexed by finite subtrees of
the Bass–Serre tree. To show that Z is n-aspherical, it is enough to show that every such
subspace is n-connected.

Let U � eZ be the union of pieces indexed by a finite subtree T of the Bass–Serre tree.
We show that U is n-connected by induction on the size of T . If T has one vertex, then
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U ŠeXG and is n-connected by assumption. Let T 0 be a subtree attained by adding one
vertex to T . The corresponding subspace U 0 � eZ can be decomposed up to homotopy
equivalence as

U 0 ' U [fXH eXG :
Since U and eXG are n-connected and eXH is .n � 1/-connected, the exactness of the
Mayer–Vietoris sequence, together with the Hurewicz theorem, implies that U 0 is n-
connected as well.

Corollary 4.3. Hn is of type F nC1.

Proof. We proceed by induction on n. The case n D 1 was shown in Lemma 3.3.
Given n � 2 and Hn�1 is of type F n, we consider Hn Š Gn�1 �Hn�1 Gn�1. Recall

that Gn�1 is a CAT.0/ group of type F1. Applying Lemma 4.2 completes the induc-
tive step.

4.2. Bounds on homological filling functions

We start by proving Theorem B, which we restate below.

Theorem 4.4. Let n � 2 and let R be a quotient of Z. For any groupG of type F nC1 and
subgroup H of type F n,

FVnC1G�HGIR
.x/ � xFVnC1GIR

�
FVnH IR.x/

�
;

where (as before) we write f .x/ to mean max.f .x/; x/. In addition, if FVnGIR.x/ �
exp.x/, then

FVnH IR
�
FVnGIR

�1
.x/
�
� FVnC1G�HGIR

.x/:

Remarks 4.5. (a) The decoration f specifies that the function must be at least linear.
Since sublinear functions are �-equivalent to linear ones, this simply chooses
a “reasonable” representative of the equivalence class.

(b) An analogous proof shows that

FVnH IQ
�
FVnGIZ

�1
.x/
�
� FVnC1G�HGIQ

.x/:

Proof. Let XG , XH , and Z D XG [� .XH � Œ0; 1�/ [� XG be complexes with funda-
mental groups G, H , and G �H G, as in the proof of Lemma 4.2. We denote the space
XH � ¹1=2º by W � Z. If eW is the preimage of W in eZ, then each component of eW is
homeomorphic to eXH and lies in the middle of a copy of eXH � Œ0; 1�.
Lower bound. To obtain the lower bound, it suffices to construct, for enough values of y,
an n-cycle that has boundary mass � FVnGIR.y/ and filling volume � FVnH IR.y/. Let ˛
be a hard-to-fill .n � 1/-cycle in eXH with boundary mass y. The minimal filling ! of ˛
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in eXH has volume FVnH IR.y/. Since eXH � ¹0º embeds in eXG , the minimal filling ˇ of
Q�#.˛ � ¹0º/ in eXG satisfies

Massn.ˇ/ � FVnGIR.y/:

The same holds for the minimal filling ˇ0 of Q�#.˛ � ¹1º/ in the corresponding other copy
of eXG . The fillings ˇ and ˇ0, together with ˛ � Œ0; 1�, form an n-cycle 
 with

Massn.
/ � FVnGIR.y/C y � FVnGIR.y/:

We argue that any filling �2CnC1.eZIR/ of 
 must have MassnC1.�/� FVnH IR.y/. To
see this, notice that (for any consistent choice of transverse orientation) � \ eW is a cellular
filling of ˛ � ¹1=2º in eXH � ¹1=2º. Therefore

FVnH IR.y/ � Massn.� \ eW / � MassnC1.�/:

This shows that FVnH IR.y/ � FVnC1G�HGIR
.FVnGIR.y//, and thus shows the lower bound on

FVnC1G�HGIR
.x/ for any x in the image of FVnGIR.

To conclude, we use the assumption that FVnGIR.y/� exp.y/. Then there is a constant
C > 1 such that, for any sufficiently large x, there is some y such that x < FVnGIR.y/ <
Cx, so that

FVnH IR
�
FVnGIR

�1
.x/
�
� FVnC1G�HGIR

.Cx/:

In the absence of this assumption, we have proved that one function grows at least as fast
as another when restricted to an infinite, but potentially sparse sequence of points. This
is insufficient to prove faster growth overall, even for functions that occur as asymptotic
invariants in geometric group theory: see for example the groups of oscillating intermedi-
ate growth constructed in [15].

Upper bound. Now let YG D XG [� .XH � Œ0; 1=2�/ (or the other half of Z, which is
isometric, so we do not distinguish them in notation). Observe that eZ is covered by copies
of fYG , and adjacent copies of fYG always meet in a component of eW .

To handle the upper bound, we recall the following key facts:

(i) For any .n� 1/-cycle in one component of eW with boundary mass x, the filling
volume cannot exceed FVnH IR.x/.

(ii) For any n-cycle in fYG with boundary mass x, the filling volume cannot exceed
x C FVnC1GIR.x/.

Now, let 
 be an n-cycle in eZ of mass x. We will construct a filling of 
 of bounded size
by inducting on the number of copies of fYG that it intersects. Suppose first that it lives in
two adjacent copies of fYG connected by a component W0 of eW , which slices 
 into two
pieces 
1 and 
2. These pieces overlap in an .n � 1/-cycle

@
1 D �@
2 D 
 \W0 2 Zn�1.W0IR/:
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�
�
�
�
�
���

one component of eW

@
@

@I

a copy of eXH � Œ0; 1�

�
�

���
a copy of eXG

Figure 1. A schematic illustration of the space eZ and a typical cycle inside it. We illustrate the
process of reflecting a piece of the cycle across a component of eW .

By (i), there is a filling � 2 Cn.W0IR/ of 
 \W0 with volume � FVnH IR.Massn.
//.
Then, 
1 � � and 
2 C � are n-cycles in respective copies of fYG whose sum is 
 . By (ii),

FVolG�HGIR.
/ � 2
�
x C FVnH IR.x/C FVnC1GIR Œx C FVnH IR.x/�

�
� 2FVnC1GIR

�
FVnH IR.x/

�
: (4.1)

Now in the general case, 
 is contained in the union of a finite subtree of copies of fYG
glued along components of eW . We can build an overall filling by inductively clipping
off the pieces living in each copy, as illustrated in Figure 1. At each step, we choose
a copy Y0 of fYG which is a leaf of the finite subtree; it is connected to the rest of the
cycle through a component W0 of eW . We modify 
 by “reflecting” 
 \ Y0 through W0,
that is, by subtracting off 
 \ Y0 and adding the corresponding chain in the neighboring
copy of fYG . The resulting cycle 
 0 is contained in the union of one less copy of fYG , and
Massn.
 0/ � Massn.
/. Moreover, (4.1) gives a bound on the filling volume of 
 � 
 0.

The number of reduction steps is bounded above by x, so

FVol.
/ � xFVnC1GIR

�
FVnH IR.x/

�
:

Theorem 4.6. For H1 D H and Hn D Gn�1 �Hn�1 Gn�1 as given above, we have

FVnC1HnIR
.x/ � x.nC1/Œln.nC1/C2�; R D Q or Z=pZ; gcd.p; q/ D 1;

FVnC1HnIR
.x/ � fd;n.x/; R D Z or Z=qZ;

where fd;n.x/ D exp. n
p
x/ if d D1 and xd=n otherwise.
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Proof. First, we use induction on n to obtain the lower bound for FVnC1HnIR
when R D Z

or Z=qZ. The case n D 1 is given by Theorem 3.5. Moreover, Gn�1 is a CAT(0) group,
and therefore FVnGn�1IR � x

n
n�1 . Now suppose we have the lower bound for n � 1; then

Theorem 4.4 tells us that
fd;n�1.x

n�1
n / � FVnC1HnIR

.x/:

The function on the left is fd;n.x/.
Now we turn to the upper bound whenRDQ or Z=pZ. By Proposition 3.4, we know

that FV2H1IR.x/ � x
5. If R D Z=pZ, then we can inductively apply the right inequality

in Theorem 4.4,

FVnC1
HnIZ=pZ.x/ � xFVnC1

Gn�1IZ=pZ

�
FVn

Hn�1IZ=pZ.x/
�
:

Then the asymptotic upper bounds for FVnC1
HnIZ=pZ form a sequence of functions ¹un.x/º

which satisfies u1.x/ D x5 and the recurrence formula

un.x/ D xŒun�1.x/�
nC1
n :

A computation then yields

FVnC1
HnIZ=pZ � un.x/ � x

.nC1/Œ 52C
PnC1
kD3

1
k
�
� x.nC1/Œln.nC1/C2�:

If R D Q, we are unable to straightforwardly use the result of Theorem 4.4: the proof
does not work since the rational filling of a .n � 1/-cycle in eW will not necessarily give
us an integral n-cycle in AYGn�1 . Fortunately, according to Proposition 3.4, every integral
cycle in LG has a rational filling with mass � x5 and integer multiples of 1=q as the
coefficients. Equivalently, every cycle with coefficients in qZ has an integral filling with
mass � x5. Generalizing this, we obtain:

Lemma 4.7. When n � 2,

FVnC1HnIQ
.x/ �

x

q

�
x C un�1.x/C .x C q � un�1.x//

nC1
n
�
� un.x/;

and moreover, we can always find a filling satisfying this bound whose coefficients are
in .1=q/ � Z.

Proof. We prove this by induction on n. Using the lemma in dimension n� 1, we can find
efficient integral fillings in copies of AXHn�1 for cycles with coefficients in qZ. Given an
integral n-cycle 
 in Hn, we apply the proof of the upper bound in Theorem 4.4 to q � 
 :
iteratively clip off the outermost portions of q � 
 . At each step, we end up with a new
cycle 
 0 with coefficients in Z, such that Massn.
 0/ �Massn.
/, and q.
 � 
 0/ D @� for
some integral chain � which satisfies

MassnC1.�/ � x C un�1.x/C FVnC1Gn�1IQ
.x C q � un�1.x//:

After at most x steps we end up with a cycle contained in two copies of AXGn�1 , which
we can fill in a similar way. The sum of the various � produced at each step is an integral
.nC 1/-chain which fills q � 
 and satisfies the desired bound on mass.
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Applying the recurrence in the lemma, we once again get that

FVnC1HnIQ
.x/ � x.nC1/Œln.nC1/C2�:
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