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Decomposition of a symbolic element over
a countable amenable group into blocks approximating
ergodic measures

Tomasz Downarowicz and Mateusz Wiecek

Abstract. Consider a subshift over a finite alphabet, X C AZ (or X C ANO). With each finite
block B € A¥ appearing in X we associate the empirical measure ascribing to every block C € Al
the frequency of occurrences of C in B. By comparing the values ascribed to blocks C we define
a metric on the combined space of blocks B and probability measures u on X, whose restriction to
the space of measures is compatible with the weak-* topology. Next, in this combined metric space
we fix an open set U containing all ergodic measures, and we say that a block B is “ergodic” if
B € U. In this paper we prove the following main result: Given ¢ > 0, every x € X decomposes as
a concatenation of blocks of bounded lengths in such a way that, after ignoring a set M of coordin-
ates of upper Banach density smaller than &, all blocks in the decomposition are ergodic. We also
prove a finitistic version of this theorem (about decomposition of long blocks), and a version about
decomposition of x € X into finite blocks of unbounded lengths. The second main result concerns
subshifts whose set of ergodic measures is closed. We show that, in this case, no matter how x € X
is partitioned into blocks (as long as their lengths are sufficiently large and bounded), excluding
a set M of upper Banach density smaller than ¢, all blocks in the decomposition are ergodic. The
first half of the paper is concluded by examples showing, among other things, that the small set M,
in both main theorems, cannot be avoided. The second half of the paper is devoted to generalizing
the two main results described above to subshifts X € A€ with the action of a countable amen-
able group G. The role of long blocks is played by blocks whose domains are members of a Fglner
sequence, while the decomposition of x € X into blocks (of which majority are ergodic) is obtained
with the help of a congruent system of tilings.

1. Introduction

In symbolic dynamics, an invariant measure is determined by its values assumed on cylin-
ders pertaining to finite blocks C. Given a long block B, we consider a function assigning
to every block C its frequency of occurrences in B. In this manner, B determines some
kind of substitute of an invariant measure, which we call the empirical measure associated
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to B. Moreover, there is a natural metric measuring the distance between empirical meas-
ures associated to long blocks and invariant measures. Abusing slightly the terminology,
we will say that the metric measures the distance between blocks and invariant measures.
It is not hard to prove that any sufficiently long block B occurring in a symbolic system
(X, o) lies very close to some invariant measure @ € My (X ), where My (X) denotes the
set of all shift-invariant measures supported by X.

On the other hand, it is a well-known fact that any invariant measure yu € My (X)
decomposes as an integral average of ergodic measures supported by X. Henceforth,
a question arises: Supposing that a long block B appearing in X is very close to an
invariant measure y € My (X), how is the ergodic decomposition of u reflected in the
structure of B?

Let us tentatively call a block C ergodic if it lies very close to some ergodic meas-
ure e € Mge(X) (by Mg®(X) we will denote the set of ergodic measures of (X, 0)).
It is easy to see that if B is a concatenation of ergodic blocks (not necessarily of equal
lengths), say B = C,C; ... Cy, then B lies very close to the invariant measure p obtained
as a convex combination (with appropriate coefficients) of the ergodic measures Lc;,
i =1,2,...,n. The question asked in the preceding paragraph takes on the following,
more particular form: Is being a concatenation of ergodic blocks the only possibility for
along block B to lie close to an invariant measure? In this paper (among other things) we
answer the above question positively after admitting a small correction in its formulation:

(%) Every sufficiently long block B appearing in a subshift X decomposes as a con-
catenation of blocks of which the vast majority (in terms of percentage of the total
length) are ergodic.

The above result is obtained as a corollary of a theorem stating that any sequence x € X
can be decomposed into finite blocks such that the fraction of ergodic blocks (with respect
to the upper Banach density) is close to 1. The solution requires invoking subtle interplay
between measures and blocks in symbolic systems and some properties of simplices in
metric vector spaces.

We comment that our result is interesting mainly for proper subshifts. It is known that,
in the set of invariant measures of the full shift, ergodic measures lie densely. So, since any
sufficiently long block B lies very close to an invariant measure, it lies equally close to an
ergodic measure, i.e., B is ergodic itself and needs not be decomposed any further.! The
(topologically) smaller the set of ergodic measures within My (X) is, the less trivial the
problem becomes. We pay special attention to the case when M (X)) is a Bauer simplex,
since then the ergodic measures form a closed, nowhere dense subset of My (X).

While the property () of long blocks may seem predictable for classical subshifts,
an analogous property of “blocks”, appearing in subshifts with an action of a general

"However, even in case of the full shift our theorem does not completely trivialize. Since we can define
“ergodicity” of blocks using an arbitrary open set around Mg (X ), not necessarily a ball with respect to
some distance, even for the full shift many long blocks can be classified as “nonergodic”.
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countable amenable group, is far less obvious. It is a priori not even clear whether blocks
with domains large enough to be close to invariant measures can be concatenated together.
We made a (successful) attempt to overcome this and other difficulties and generalize our
results to subshifts over countable amenable groups.

The paper is divided into five sections. Sections 2 and 5 are of preliminary charac-
ter. The former pertains to classical symbolic systems with the action of Z or Ny (called
also two-sided and one-sided subshifts, respectively), whereas the latter is concerned with
subshifts over a general countable amenable group. Section 5 contains also an exposition
on tilings and systems of dynamical tilings of amenable groups, which play an important
role in Section 6. The first series of theorems concerning the decomposition of a symbolic
element of (as well as a sufficiently long block appearing in) a classical subshift X into
blocks approximating ergodic measures is formulated and proved in Section 3. It is shown
that for any open neighbourhood U of the set of ergodic measures of a symbolic system X
and any positive ¢, for every x € X, there exists a decomposition of x into finite blocks
of bounded lengths, such that the domains of those blocks that do not lie in U cover a set
in Z (or Ny) of upper Banach density smaller than . A small modification of the proof
allows us to deduce that for every x € X, there exists also a decomposition into finite
blocks of unbounded lengths, such that the domains of blocks not lying in U cover a set
of upper Banach density 0. Moreover, it is proved that in a subshift X for which shift-
invariant measures form a Bauer simplex, for any decomposition of an element x € X
into sufficiently long blocks, the fraction (with respect to the upper Banach density) of
those blocks that do not lie in U is smaller than ¢. In Section 4 we provide three examples
showing that the assumptions in theorems from Section 3 cannot be omitted. Section 6 is
dedicated to generalizing the main results of Section 3 to the case of symbolic systems
with an action of a countable amenable group G. In this case, the role of long blocks is
played by “blocks”, whose domains are sets with good Fglner properties. Our methodo-
logy heavily relies on the theory of tilings and congruent systems of dynamical tilings,
explained in Section 4.

2. Classical symbolic systems

All theorems provided in this section are standard and their proofs are omitted.

Let A be a finite, discrete space called an alphabet. By a classical symbolic system
with the action of Z (resp. Ny) we mean a two-sided (resp. one-sided) subshift, i.e., any
nonempty subset X of A% (resp. ANo) that is closed and invariant under the shift trans-
formation o given by

(cx)@)=xG +1), xeAZ ieZ (resp.x € AN, i e Ny).

From now on, to avoid repeating that i ranges over either Z or Ny, depending on the
type of subshift, we will skip indicating the range of that index. By a block of length k we
mean any element B = (B(0), B(1), ..., B(k — 1)) € A¥. The length k of the block B
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is also denoted by |B|. If, for some x € X and i, we have o" (X)|[0,k) = B, we say
that the block B occurs in x at the position 7. Abusing slightly the notation, we write
X|[i,i+k) = B and call the interval [i,i + k) the domain of the occurrence of the block B
in x. A similar convention is applied to “subblocks” of blocks: If B € A¥ and [n,m) C
[0, k), then by B|[,,m) we mean the block C € A™™" defined by C(/) = B(n + [) for
alll =0,...,m —n — 1. The set of all blocks occurring in the elements of X is denoted
by B8*(X).

Definition 2.1. Let B € A¥ and C € A!, where I < k. The frequency of occurrences of
the block C in the block B is defined as
i € [0,k —=1]: Blj,i+1) = C}

Frp(C) = 3

If |C| > |B|, we let Frg (C) = 0.

For a fixed block B € A¥, frequencies of occurrences of blocks C € Al in B, where
[ <k, form a sub-probability vector. Using the notion of frequency of occurrences of one
block in another, we define a distance between two blocks B;, B, € 8*(X) by

+o00
d*(Bi.By) =Y 27" Y |Frp,(C) — Frg, (C)|. 2.1)
=1 CeA!

In what follows, M (X) denotes the set of all Borel probability measures on X, while
My (X) C M(X) denotes the set of all shift-invariant measures (i.e., such that u(A) =
w(o~1(A)) for every Borel set A C X). Further, Mg®(X) C My (X) denotes the set of
all ergodic measures (i.e., such that (4 A o~1(4)) = 0 = u(A) € {0, 1}, for any Borel
set A C X). Note that M, (X) is a closed, convex subset of M(X), which is compact
in weak-* topology. It is well known that the extreme points of M4 (X) are the ergodic
measures.

The formula (2.1) is similar to the one defining the standard metric on M (X):

400
d* (1, p2) = Y270 7 i (C) — p2(CDI, e, 2 € M(X), 2.2)
=1 CeA!

where [C] = {x € X:Xx|[o,;y = C} denotes the cylinder associated with the block C. Note
that the above metric is compatible with the weak-+ topology on M (X ). Henceforth, we
can define the distance between a block and an invariant measure by

+o00
d*(B.p) =) 27 Y [Fip(C) —u((CDI. B e B*(X). peMX). (23)
=1 CeAl

Then, the function d* given by equations (2.1), (2.2) and (2.3) is a metric on the set
B*(X) U M(X). Moreover, it turns out that sufficiently long blocks lie uniformly close
to the set M (X), as stated in the next theorem (see [3, Fact 6.6.1]).
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Theorem 2.2. Fix an ¢ > 0. There exists lp € N such that for all | > ly and every block
B € B8*(X) of length | we have

d*(B, My (X)) < e.

The connection between blocks and measures enables us to give an (alternative to
the general one involving the measures % Z;’;& J4i (x)) definition of a generic point, in a
symbolic system, for a o-invariant measure using the metric d*.

Definition 2.3. An element x € X is called generic for a measure u € My (X) if

li * =0.
Jim d” (xlo,m. 1) =0

A lemma similar to the one below can be found (in a more general version) for example
in [1, Lemma 2].

Lemma 2.4. For every ¢ > 0 and a finite collection of blocks By, ..., By, € 8*(X) such
that for every j = 1,...,m there exists a measure jtj € M(X) satisfying d*(B;, u;) <¢,
the following inequality holds:
d*(B,u) < 2,
|B;]|

where B = B ... By, is the concatenation of the blocks By, ..., By, |t = Z;"zl TBT M-

We finish this section by providing the definitions of upper and lower Banach densities
of subsets of Z or Ny and some of their properties.

Definition 2.5. Fix a set A C Z (resp. A C Ny). The upper Banach density of A is
defined as

_ , AN[i,i + N
dgan(A) = 1\}211; sup %
1

Similarly, we define the lower Banach density as

AN[i,i + N
iBan(A) = sup lnfw
NeN i N

IfEBan (A)=d,
density of A.

san(A4), then we denote the common value by dgan(A) and call it the Banach

Remark 2.6. It follows directly from the definition of upper and lower Banach densities
that for every set A C Z (resp. A C Ny) we have dpan(A4) = 1 — dg,,(4A°).

Theorem 2.7. The upper Banach density is subadditive, that is, for every pair of sets
A, B C Z (resp. A, B C Ny), the following inequality holds:

EBan(A U B) = EBan(A) + EBan (B)
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The next lemma, connecting the notions of the upper Banach density and invariant
measures, is true not only for symbolic systems, but for every topological dynamical sys-
tem with an action of Z or Ny on a compact metric space. Hence we formulate it in this
general setup.

Lemma 2.8. Let (X, T) be a topological dynamical system with an action of Z or Ny con-
sisting of the iterates of a homeomorphism (resp. continuous map) T: X — X, where X
is a compact metric space, and let D C X be a closed set. Then

sup (D) = sup dean({i: T (x) € D}),
HEMT (X) xeX

where M1 (X) denotes the set of all T -invariant, Borel probability measures on X.

3. Decomposition of an element of a classical subshift into ergodic
blocks

We begin with a rigorous definition of the “ergodic blocks” alluded to in the introduction.

Definition 3.1. Let U be an open setin B8*(X) U M (X) such that U D MgE(X). A block
B is called U-ergodic if B € U. All other blocks are shortly called nonergodic.

Lemma 3.2. Let (X, 0) be a classical symbolic system and let U D Mg®(X) be an open
setin B*(X) U M(X). For everym € N, the set

Dyum =1y € X:Vizm ¥lok) &€ U}

is a null-set for every measure i € Mq(X).

Proof. 1f for some measure u € My (X) and some m € N we had p(Dyy,,) > 0, then
by the ergodic decomposition, there would exist an ergodic measure (g € Mge(X) such
that o (Day,m) > 0. Hence, by the Birkhoff ergodic theorem, in Dy, there would exist
an element x, generic for the measure pg. Therefore, for some k > m we would have
X|jo,x) € U. This would contradict the definition of the set Dqj,;. |

Lemma 3.3. Let (X,0) be a classical symbolic system, let U D Mg®(X) be an open set
in B*(X) U M(X) and let m € N. For every n > m we define

Dymn =1y € X:Viemmn Yljo.) € U}
and for all x € X we define
Eummnx = {izo—i (x) € Dum,n}-

Then the convergence lim, _s 4 oo ZBan(Eu,m,,,,x) = 0 holds uniformly on X.
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Proof. The sequence of sets (D/,mn)n>m is obviously nested, hence for every x € X,
the sequence (E,m,n,x)n>m is also nested. Thus, the sequence (gBan(Eu,m,n,x))nzm is
nonincreasing.

The set Dyma = (kemly € X: ¥ljoe) € U} is clopen for every n > m, thence
the function @y ., (1) = w(Dy,m,n) is continuous in the weak-* topology on M(X).
Moreover, the set Dy, is the intersection of the sets Dyj m ., # > m. By Lemma 3.2
and the continuity of measures from above, it follows that ®q ,, , — 0 as n — o0,
pointwise on My (X ). Because the sequence of functions (P4 m,»)n>m i nonincreasing,
by Dini’s theorem it tends to O uniformly on Mg (X). Hence sup,,c ¢, x) (D Um.n)
tends to 0 as n — 400. By Lemma 2.8, sup,.cy dgan(Exmn.x) — O, thus the functions
X > dgan (EU,m.n.x) converge to 0 as n — +-oo uniformly on X, as desired. |

Now we formulate and prove one of the key theorems of this paper, concerning a de-
composition of a symbolic element into U-ergodic blocks in the case of classical symbolic
systems. In Section 6, this theorem will be generalized to the case of a symbolic system
with an action of any countable amenable group.

Theorem 3.4. Let (X, 0) be a classical symbolic system. Let U D Mg¢(X) be an open
set in B*(X) U M(X). For every m € N and every ¢ > O there exists n > m such that,
for any element x € X, there exists a representation of x as an infinite concatenation of
blocks: x = ... B_A_,B_1A_1A1B1A2B; ... (resp. x = A1B1A2B; ..., in the case
of a one-sided subshift), where all blocks B; are U-ergodic and have lengths ranging
between m and n, and the set MN¥(x) of coordinates pertaining to the blocks Aj in this
concatenation has upper Banach density smaller than & (some of the blocks A; may be
empty, i.e., have length zero).

Proof. By Lemma 3.3, there exists n > m such that sup,c y gBan(E‘u,m,n,x) < ¢. Hence,
for every x € X, the set (Eqmn.x) = {i: ol(x) ¢ Dy m n} has positive lower Banach
density (in particular, it is infinite). In the case of the action of Ny, the desired decompos-
ition of an element x € X can be obtained as follows:

We find the smallest i > 0 such that o/ (x) ¢ Doy m.» and denote it by i;. We define
Ay = x|[o.i). There exists n; € [m, n] such that 6™ (x)|j0,n;) € U. We define B; as the
block x|, iy +n,)- Next, we find the smallest i > i; + ny such that o7 (x) ¢ Dy m,» and
denote it by i>. We define A2 = X|[;, +n,,i,). As before, there exists n, € [m, n] satisfying
0%2(x)|[0,ny) € U. We define By = X|[j,.i,+n,)- In the same way, we define the blocks A;
and B; for j > 3.

For every index j we have B; € U and m < n; < n. Furthermore,

M (x) = [0.i1) U Jlij +nj.ij41)
J

is contained in Eq ,, »,x. Henceforth, by the choice of ¢, this set has upper Banach density
smaller than e.
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In the case of the action of Z, the blocks with negative indices j are defined analog-
ously, proceeding to the left from the coordinate 0, using the fact that M,—1(X) = Mq (X).
By the same argument as previously, the corresponding set MNE(x) has upper Banach
density smaller than ¢. |

The above theorem allows one to deduce a finitistic result announced in the intro-
duction.

Theorem 3.5. Let (X, 0) be a classical symbolic system and let U D Mg °(X) be an
open set in B*(X) U M(X). For every ¢ > 0 there exists Ny € N such that every block
B € B*(X) of length at least Ny may be decomposed as a concatenation of blocks:
B = A1B1A;B; ... Ay By A4, such that the blocks By, ..., By are U-ergodic and

Yi—11Bjl = (1—¢)|B|.

Proof. 1t suffices to consider a one-sided subshift X. For a contradiction, suppose there
exist ¢ > 0 and a sequence of blocks (Cs)sen such that the lengths |C| increase to +oo,
and for each s € N the block Cs cannot be decomposed as described in the formulation
of the theorem. Let x be the infinite concatenation x = C;C,C3 ... Although x need
not belong to X, the symbolic system X’ = X U Oy (x), where Oy (x) denotes the orbit-
closure of the element x, has the same collection of invariant measures as X. Fix m € Z.
By Theorem 3.4 (applied to X’), there exists n > m such that x may be decomposed as the
infinite concatenation of blocks x = A1 B1 4, B, ..., where all blocks B; are U-ergodic
and have lengths ranging between m and n, and the set M "E(x) of coordinates pertaining
to the blocks A4; has upper Banach density smaller than £. By the definition of the upper
Banach density, there exists Ny € N such that for every N > Ny and every i we have

IMME(x)N[i,i + N)| ¢
N < >
For s sufficiently large, we have |Cg| > max{ Ny, %”} Let £5 be such that x|, +|c,)) =
Cs. Let [ and r be such that B; and Bj, are the first and the last of the U-ergodic blocks
in the concatenation A1 By A, B . .. representing x, entirely covered by the block Cs. It is
now elementary to see that

Cs = AiBiAi11Bis1 ... Aoy Bigr Aigri, (3.1

where A is a subblock of the block B;_; A4; and /fl+,+1 is a subblock of Aj 41 B14r+1-
Recall that | Bj—1| 4 | Bj+r+1| < 2n.Hence, the U-ergodic subblocks of Cs, thatis By, ...,
B4, satisfy the inequality

I+r
1 |IMNe(x) N [ts.ts + |Cs])| 2m
— |Bi| > 1— - >1—
|cs|jz=; ! Gl C]
Finally, note that the blocks By, ..., B;, appear not only in X” but, as subblocks of Cy,

also in X. Thus, formula (3.1) gives a decomposition of Cs in a way assumed to be
impossible. This contradiction ends the proof. |
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Theorem 3.6. Let (X, 0) be a classical symbolic system. Let U D Mg ¢(X) be an open set
in 8*(X) U M(X). Foreverym € N and x € X there exists a representation of x as an
infinite concatenation of finite blocks: x = ... B_yA_2B_1A_1A1B1A2B; ... (resp. x =
A1B1A2B; ..., in the case of a one-sided subshift), where all blocks Bj are U-ergodic
and have lengths larger than or equal to m (without an upper bound on the lengths)
and the set MN¥(x) of coordinates pertaining to the blocks A; in this concatenation has
Banach density equal to 0.

Proof. We define the set Dy n = {y € X:Yi>m Yljo,x) € U} and, for every point x € X,
we define the set Eqm;,x = {i: ol(x) € Dy m}. Observe that Dy, = ﬂnzm Dy mn.
Hence, for every x € X we have Eq m x = ﬂnzm Evyumnx.-So

EBan(E‘u,m,x) < inf gBan(E‘u,m,n,x) =0.
n>m

The construction of the required decomposition of an element x € X is a straightforward
modification of that in the proof of Theorem 3.4, consisting in replacing the set Eqq ;.5 x
by Evy,m.x- |

In the special case, when M (X) is a Bauer simplex, that is, the set of ergodic meas-
ures Mg °(X) is closed in M(X), we will prove a stronger version of Theorem 3.4.
The strengthening consists in replacing the phrase “there exists a representation of x as
an infinite concatenation of finite blocks” with “for any representation of x as an infinite
concatenation of sufficiently long blocks”. In the proof, we use the following two lemmas
concerning compact, convex sets in locally-convex, metric vector spaces. Rather standard
proofs of these lemmas are omitted.

Lemma 3.7. Let M be a compact, convex subset of a locally-convex, metric vector space
V and let d* denote a convex metric on V. Let 1o be an extreme point of M. For every
& > 0 there exists y > 0 such that for every . = fM v d&(v) for some Borel probability
measure £ on M (that is, | is a so-called barycenter of the measure ), the following
implication holds:

d* (1, jo) <y = E(M \ Ball(io, ) < e.

When the set of extreme points of M is closed, Lemma 3.7 may be strengthened as
follows.

Lemma 3.8. Let M be a compact, convex subset of a locally-convex, metric vector space
V and let d* denote a convex metric on V. Assume that the set ex(M) of extreme points
of M is closed. Then, for every ¢ > 0, there exists y > 0 such that for every pair [, Lo,
where (o € ex(M) and . = [, v dE(v) for some Borel probability measure § on M, the
following implication is true:

d*(p. po) <y = (M \ Ball(no. 8)) <&
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Theorem 3.9. Let (X, o) be a classical symbolic system such that My (X) is a Bauer sim-
plex. Let U D Mg®(X) be an open set in 8*(X) U M(X). Then, for every & > 0, there
exists kg € N such that for every x € X and any decompositionx = ...C_,C_1C1C;...
(resp. x = C1Cy ... in the case of a one-sided subshift) into blocks C; of lengths larger
than or equal to ko and bounded from above by some k > ko, the set of coordinates per-
taining to nonergodic (i.e., which are not U-ergodic) blocks C; in the above concatenation
has upper Banach density smaller than e.

Remark 3.10. It is worth mentioning that Theorem 3.9 applies to any partition of x into
blocks of equal (sufficiently large) lengths.

Proof of Theorem 3.9. Choose an ¢ > 0. By compactness of Mge(X), without loss of
generality, we can assume that U = Ball(Mg®(X), p) for some p > 0. Then we can also
assume that ¢ = p.

Since Mg®¥(X) is closed, Lemma 3.8 implies that there exists 0 < y < ¢ such that, for
each pair of measures jo € Mg *(X) and u = fMa(X) v d€(v), we have

d* (. o) <y = E(Mq(X) \ Ball(io, 5)) < 5.

By Theorem 2.2, there exists k¢ such that every block C € 8*(X) of length at least k¢
satisfies d*(C, My (X)) < %. Choose some k > kg and x € X. Fix some decomposition

of x into blocks x = ... C_,C_;C1C; ... (resp. x = C;C,C3 ..., for a one-sided sub-
shift), of lengths from the interval [k¢, k]. Let mq = [%1
By Theorem 3.4, there exist n¢ and a representation x = ... B_jA_1 A1 By ... (resp.

x = A1B1A3B; ..., in the case of a one-sided subshift), such that the blocks B; have
lengths from the interval [mg, no] and satisfy the condition d*(B;, Mg®(X)) < £, and

EBan (MNE(x)) < fT. Let us denote by /g4, (resp. Ip;, I¢;) the sets of coordinates pertaining
to the block A; (resp. B;, C;). We define the sets

gp, ={j:1c; CIn}, do=|J 95,

Ja =L le, Ny, # @Y. g =\ da.-

Furthermore, for each i we define B; as the concatenation of the blocks C ' with j € gp,.
The construction of the blocks B; is presented in Figure 1.

B B>
T T T T [ T T T 1 [ T T T 1 [ T T T 1 [ T T T 1 [T T 1
Cp € C3 C4 Cs5 Cg C7 Cg Cg Cig Cpy C12 €13 C14 C15 Ci6 C17 C18 Cr9 Cop €21 C22 C23 Co4 Ca5 Ca6 C27 Cog
[ I I I I I
Al B Az B> A3

Figure 1. The construction of the blocks B;.
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Note that, for each i, we have

which implies that lower Banach density of the coordinates pertaining to the blocks B; is

larger than or equal to lower Banach density of the coordinates pertaining to the blocks B;

multiplied by 1 — %. Passing to the complements, we get
daan( U 1¢;) = don(M™ () + 2 (3.2)

JEIA

NI(‘O

For every i we have
d*(B; E-):Z 3" |Frg, (D) — Fry (D)] < 2%k _v
i» Di B; B; =4
IGN DeA!

Additionally, for every i, we have d*(B;, Mg°(X)) < L. Hence, there exists a measure
wi € Mg®(X) satisfying d*(u;, B;) < %. On the other hand, for every j, there exists
a measure v; € My (X) such that d*(Cj, vj) < %. By Lemma 2.4, for every i, it is true

that
Y
s < —.
(’ Zm ) 2

J€E3B

Thus, using the triangle inequality, we obtain

* | | * * > [ D |C|
d (Mi, Z |?’|v] <d*(ui, Bi) +d*(B;, B;) +d™| B, Z ﬁvj <.

Jj€ds; Jj€4B;
Clearly,
C;
Z gvj =/ vdé&;(v)
j€3Bi | l| o (X)
for the measure &§; = ;¢ 5, %SW. Observe that the sum of the coefficients H over

the indices j from the set
. €
{J € gm0 ¢ a5}

is equal to &; (M (X) \ Ball(;, 5)). Therefore, by Lemma 3.8, it is smaller than %.
We define the sets

gy ={j € 98.:C; ¢ U} Uz
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In words, N B, is the set of indices j such that C; is a nonergodic block and I¢; C Ip;.
Fix j € 5. Then C; ¢ U, hence also C; ¢ Ball(u;, €). Since d*(C;,v;) < % < %,
we have,

. e 3¢ ¢
d*(vj, i) = d*(Cj, i) —d*(Cj,v;) > e — 1-17 7
Henceforth, for every i, the following inclusion holds:
. g
{j € dp1v; ¢ Ball(ui, 5)} D) &’gl’:‘
Thus, for every i, it is true that
ICi| ¢
Yo < (3.3)
e |Bil 2

165‘

In words, the fraction of nonergodic blocks C; in each block B; is smaller than 5.

Let r belong to Z (resp. Ny, for a one-sided subshift) and N belong to N. We denote
I ﬁv ={i:I 5 N [r.r + N) # @}. Note that there are at most two blocks B;, for which
Ig & [r.r+N)and Ig N[r,r + N) # @. Thus,

> " 1Bil < N + 2no.
ielN

On account of that and by inequality (3.3), we get

|Cj|
U e nlrem|= 5 & ¥ 1=y T1AIY G
jeght zeINjeg”E zeIN jedy,
1 & g no
< —(N 4+2n9)= = - + —=.
N( + l’lo)2 > + NS
Thus, we have
no
— I 24 9,
sup GLgJNE C; + Ns
which implies that
— e
dBan( U Ic,) > (34)

ngNE
Let $"¢ = {j: Cj ¢ U}. Our goal is to show that EBan(UjegNE Ic;) < &. Obviously,
U ch C U chU U ch.
JEFNE JEIA et

Therefore, by the inequalities (3.2) and (3.4), and subadditivity of the upper Banach dens-
ity, we obtain

EBan(U IC/)SEBan(U ICJ-)"‘EBan(U ]Cj)<§+§:8~ u

JEFNE JEIA jegE
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4. Examples

We begin with two examples showing that sometimes the presence of a small fraction
of nonergodic blocks in a decomposition as in Theorems 3.4, 3.5 and 3.6 is inevitable.
The first (simple) example shows that for some x € {0, 1} infinitely many nonergodic
blocks must occur. Still, their upper Banach density in this example can be reduced to
zero. The example concerns a one-sided symbolic element. A two-sided example can be
easily produced by reflection about the coordinate zero.

Example 4.1. Define By = 01, B; = 0011, B, = 000111, ..., By = OkF11k+1
and put
x = By B1ByB; B,BByB1B, B3B,B1ByB1B>Bs ...

We let X be the shift-orbit closure of x. It is easy to see that X supports only two ergodic
measures, 6y and &1, the Dirac measures supported at elements 0 = 000... and 1 =111...
Let U (restricted to B* (X)) be defined by

1 4
BeU < |B|>1 and Frg(0) ¢ [g’ §]~
It is not hard to see that any block B occurring in x in such a place that it has at least one
coordinate common with an “explicit” occurrence of By (we disregard here the “implicit”
occurrences of By in the centers of the blocks By, k > 0) does not belong to U (see Fig-
ure 2).

Fr(0)=2

——
...]00001111/000111/0011]01]0011[000111/00001111]...
B3 B> B, By B, B> B3

Figure 2. Among all blocks (of lengths larger than 1) having a common coordinate with an expli-
cit By, the largest frequency of zeros is % and is achieved on the block B¢00. The smallest frequency
of zeros is % and is achieved on the block 11By. Extending these blocks further to the right or left
will bring the frequency of zeros closer to %

Thus, in any decomposition of x as an infinite concatenation of finite blocks (of lengths
bounded or not), there will be infinitely many nonergodic components. However, since
these components are adjacent to the “explicit” occurrences of By, their upper Banach
density can be reduced to zero.

In the next (much more complicated) example, upper Banach density of nonergodic
blocks in Theorem 3.4 cannot be reduced to zero. Since M (X)) in this example is a Bauer
simplex, it also shows that assuming (as in Theorem 3.9) that Mg ¢(X) is closed does not
ensure that upper Banach density of nonergodic blocks is 0. The example concerns a two-
sided symbolic element. A one-sided example can be easily produced by restriction to the
nonnegative coordinates.
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Example 4.2. In this example, x is a binary {0, 1}-valued Toeplitz sequence. The standard
construction of such a sequence consists in successively filling in periodic patterns of
increasing periods until the entire sequence is filled. In this particular example, in step 1
we fill periodically two in every six places, as follows:

X=...kkxk k0 1xkkxx0Lxxkxx01xkkkkxO1xxxx01%%%x%x...

(the stars signify the places left to be filled in the following steps, the zero coordinate is
marked by the underlined symbol). Abbreviating 0 1 = By and % * * % = %, the above
structure of x becomes

X=...% By % By % By % By % By % By % By % By % By % By % By %...

In step 2, we fill all four empty spaces in each of the blocks % on either side of every tenth
block By by placing there the block By = 001 1 as follows:

X=...% BB BoB\Bo % By % By % By % By % By * By % By * BoB1BoB By %. ..

Abbreviating BoBlB()BlBO = Bl and * BO * B() * BO * B() * BO * B() * BO * = >T<, the
above structure of x becomes

| % By ¥ By ¥ B, ¥ B,

*
*1
*1
*1
*1
*1

By % By % By x By ¥...

*1
=~

X = Bl Bl

The block % contains 8 blocks %, each having 4 unfilled places. In step 3, on either side
of every 18th block Bj, we fill all the unfilled places in % consecutively by the symbols
00001111 (repeated 4 times). In this manner, two out of 18 blocks ¥ are replaced by

B, =0000Bp1111B¢90000Bp1111B90000Bp1111B8o0000Bp1111.

After step 3, x has the following form:

*1

X=...%x BiByB\ByBy * By * By % ... * By x By * Bi1B,BByB; *....

where, in the central section, ¥ occurs 16 times and Bl occurs 15 times. Abbreviating
BleBleBl = BZ and

>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl>T<Bl*Bl*Bl>T<:i,

the above structure of x becomes

B,

*11
*11
(>3]
N
*111
=
N
*11
=
N
*11
(=)
N
*10
(s3]
N
*111
=
N
*111

B,

*111

B,

*11

B,

*1

B,

*11

X =...

In step number k we will fill two out of 2 + 2¥*1 blocks % (where " stands for the stack
of k — 1 bars), putting alternatively 2¥~! zeros and 2%¥~! ones in the consecutive free
slots (with this pattern repeated 28 ~12%¥=2...22 times). We let By be the maximal entirely
filled continuous block and we let * be the (partly unfilled) block between the occurrences
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of By. The density of unfilled positions after step k equals ]_[f:2 23_’2%, which tends
decreasingly to a positive number d &~ 0.63.

In each step, x is positioned so that the zero coordinate falls near the center of an
occurrence of By. Eventually, the entire sequence x is filled out. Then x is a bi-infinite
Toeplitz sequence whose orbit-closure X has the following properties (we skip the stand-

ard proofs, see [2] for an exposition on Toeplitz subshifts):

(1) Inevery y € X one can distinguish a periodic part Per(y) (the positions filled in the
construction steps) and the complementary aperiodic part Aper(y) (the positions
filled as a result of closing the orbit of x; the aperiodic part may be empty).

(2) For almost every (with respect to any invariant measure on X) element y € X,
we have dens(Aper(y)) = d (here dens denotes the two-sided density of a subset
of 7).

(3) For almost every y € X, Aper(y) is either entirely filled with zeros or entirely
filled with ones.

(4) X carries exactly two ergodic measures: o and p1; (o is supported by such
y € X that Aper(y) is entirely filled with zeros, w, is supported by such y € X
that Aper(y) is entirely filled with ones.

(5) po([0) = 2, puo([1]) = 5% and ., (10]) = 154, 1 ([1]) = 2.

The last technical thing to observe is that for any k > 1, any subblock of By, of length
larger than 1 that covers at least one of the two central positions 0 1 in By has the frequency
of zeros ranging between % and % (see Figure 3).

Fr(0)=2

——
...]0000[01|1111[01]0011[01/0011]01]0000[01[1111]...
By B, Bo By Bo

Figure 3. The figure shows the central part of By, k > 2. Among all subblocks (of lengths larger
than 1) of Bk having a common coordinate with the central By, the largest frequency of zeros is
% and is achieved on the block Bp00. The smallest frequency of zeros is % and is achieved on the
block 11Bg. Extending these blocks further to the right or left will only bring the frequency of zeros
closer to %

Let us define U (restricted to B* (X)) by the properties |B| > 1 and Frp(0) ¢ [%, %]
Because % < é and # > %, U is an open neighbourhood of Mg ®(X). Suppose x is
represented as an infinite concatenation of some blocks C; (j € Z) of lengths bounded by
some n. Let k be such that n < %|Bk |. Then, in every occurrence of By there is a block C i
not disjoint with the central By, and this block is entirely covered by the Bji. As we
have noted above, either |C;| = 1 or Fr¢; (0) € [% %] In either case C; ¢ U, i.e., C; is
a nonergodic block. We have shown that each occurrence of By in x contains a nonergodic

block C;. Since the explicit occurrences of By are periodic, all occurrences of By have
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positive lower Banach density. This implies that nonergodic blocks C; have positive lower
Banach density as well.

Remark 4.3. The block By in the above example shows also that in Theorem 3.5 the
presence of nonergodic subblocks is inevitable in any decomposition of a long block.

We end this section with an example showing that the assumption of compactness of
the set Mge(X) in Theorem 3.9 is essential: there exist a subshift X with My (X) not
being a Bauer simplex and an element x € X such that, for any n > 1, there exists a
representation of x as a concatenation of blocks with lengths bounded by 7, such that
upper Banach density of nonergodic blocks equals 1. The example concerns a one-sided
subshift. A two-sided example can be obtained by reflection about the coordinate zero.

Example 4.4. Let (By)ren be the sequence of blocks defined as follows: B; = 111000,
B, = 111111000000, . .., By = 13%0%¢ .. Let x € {0, 1}No be the following concaten-
ation:

x =By BiB1B;B; BiB1B1B,B;B;B3B3B3...B1...B1B>...By...By ... By ...
~—_———— ———— ———
k times k times k times

Let X be the orbit closure of x. It is easy to check that the only ergodic measures on X
are 69 and 87 and the measures U, k € N supported on the periodic orbits of the points
Xr = By By ... Observe that the sequence (ux)ren converges in the weak-x topology
to the measure 1 (8o + 81) ¢ Mg°(X). Consequently, the set Mq®(X) is not closed in
M(X). Moreover, every measure i € Mq*(X) satisfies 1([0]) € {0, 5. 1}. Hence, the
condition Frz(0) € [0, 1) U (2, 2) U (%, 1] defines an open neighbourhood U of Mg®(X)
(restricted to the set 8*(X)).

For every m € N, each number n > (m — 1)m can be written as a combination n =
am + b(m + 1), where a, b € Ny. For a fixed k € N, let n; > (3k — 1)3k be an initial
coordinate of a series of repetitions of the blocks By in x, and denote by m; the terminal
coordinate of that series. Because ny + k — 1 > (3k — 1)3k, we can decompose x|[o,n, +k)
into blocks C; of lengths 3k or 3k 4 1. Then, we divide X|(;, +-k,m,—2k] into blocks C; of

lengths equal to 3k. Observe that these blocks have the form
C; =11...1000...000 or C; =00...0111...111, 4.1)
—_—— —_—

k 2k k 2k
hence Frc; 0) {% %} Therefore, these blocks C; are nonergodic. Now, let n, > m; +
(3k — 1)3k and m, be the initial and terminal coordinates of another series of repe-
titions of the block By (note that this series is longer than the preceding one). It is
possible to divide X|[m,—2k+1,1,+k) into blocks C; of lengths 3k or 3k + 1. Then we
decompose X|[z,+k,m,—2k] into blocks C; of lengths 3k. These blocks also have the
form (4.1), hence are nonergodic. We continue the construction similarly for s > 3. Since
(ms — 2k) — (ns + k) = 400 as s — +o00, upper Banach density of the nonergodic
blocks C; is equal to 1.
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5. Symbolic systems with an action of a countable amenable group

5.1. Amenable groups

In what follows, G denotes a countable (infinite), discrete group. All theorems provided
in this subsection are standard and their proofs will be omitted.

Definition 5.1. Fix an ¢ > 0 and a finite subset K C G. A finite subset F C G is called

(K, ¢)-invariant if it satisfies
|FAKF|

|F|
If K = {g} for some g € G then we say that F is (g, &)-invariant.
Fact 5.2. Let ¢ be a positive number and let K, F be finite subsets of G.
(a) If, for every g € K, the set F is (g, fﬂ)-invariant, then F is (K, ¢)-invariant.
(b) If F is (K, g)-invariant, then for every g € K, F is (g, 2¢)-invariant.
Definition 5.3. A set A C G is called an e-modification of a finite set B C G if

|AAB|
|B|

<Eé&.

If A is an e-modification of B then B is an (7%;)-modification of A.

Definition 5.4. By a Fglner sequence we mean a sequence (F,),en of finite subsets of G,
such that, for every ¢ > 0 and every finite set K C G, the sets F}, are eventually (i.e., for n
large enough) (K, ¢)-invariant.

Remark 5.5. Since G is infinite, any Fglner sequence (F,),en satisfies limy—, o0 | Fy| =
+00.

Definition 5.6. A countable discrete group G is called amenable if it has a Fglner se-
quence.

For other definitions of amenability and the proofs of their equivalence, see, e.g., [8].
Definition 5.7. Let ¥ (G) denote the collection of all finite subsets of a countable group G
and let A be any subset of G. The upper Banach density of A is defined as

_ ANF
dgan(A) = inf sup Q
FeF (@) geg |F]

Similarly, we define the lower Banach density as

dg,n(A) = sup inf
Ban FeF(G)8sG  |F|

IfEBan (A)=d
density of A.

san(A), then we denote the common value by dgan(A) and call it the Banach
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Remark 5.8. Like in the case of subsets of Z, we have dgan(A) = 1 —d, gan (A©) for any
A C G. The upper Banach density is subadditive, i.e., for every A, B C G we have

EBan(A U B) = EBan(A) + EBan (B)

Using the notion of a Fglner sequence, we can provide equivalent formulas for upper
and lower Banach densities in countable amenable groups. In the case of G = Z and
F, =[0,n), n € N, the formulas below coincide with those in Definition 2.5. The proof
of the following theorem is provided, e.g., in [4, Lemma 2.9].

Theorem 5.9. Let G be a countable amenable group and let (Fy)nen be a Folner se-
quence in G. Then

’

_ ANF,
dgan(A) = lim sup M
n—>+00 gc@ |Fn|

dg.n(A) = lim inf M
n—>+oogeG | Fy|

By a topological dynamical system with an action of a group G we mean a pair (X, 1),
where X is a compact metric space and 7 is a homomorphism from G to the group of
all self-homeomorphisms of X with the operation of composition. For brevity, we will
write g(x) instead of (7(g))(x). As before, we denote by M (X) the set of all Borel prob-
ability measures on X, by M;(X) C M(X) we denote the set of all T-invariant measures
on X (i.e., measures that are g-invariant for every g € G) and by M;°(X) C M. (X)
we denote the set of all ergodic measures (i.e., measures such that p(A4) € {0, 1} for all
T-invariant subsets A C X).

Theorem 5.10. Let G be a countable amenable group and let (Fy)n,en be a Fplner
sequence in G. Fix a topological dynamical system (X, t) with an action t of G. Let
(Vn)neN be a sequence of Borel probability measures on X. We define the sequence of

measures (L, by
> g,
g€k,

1
| Fal

Mn =
where (g(vy))(A) = v, (g~ (A)) for every Borel set A C X. Then (jin)neN has a sub-
sequence converging, in the weak-* topology, to a t-invariant measure |L.

Corollary 5.11. If (X, 1) is a topological dynamical system with an action of a countable
amenable group G, then the set M. (X) is nonempty.

Now we formulate a generalization of Lemma 2.8.

Lemma 5.12. Let (X, 7) be a topological dynamical system with an action of a countable
amenable group G and let D C X be a closed set. The following inequality holds:

sup (D) = sup dpan({g € G: g(x) € D}).
peM(X) xeX
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5.2. G -subshifts

Let G be a countable group and let A be a finite, discrete space (an alphabet). Let us
consider the space AC. For every g € G we define the transformation o'(g): A® — AC
given by

(0(@)@)(h) = x(hg). heG.

Then o is an action of G on AC. As in the previous subsection, we will write g (x) instead
of (0(g))(x). By a symbolic system with the action of G (a G-subshift) we mean any
nonempty set X C A€ that is closed and o-invariant.

Let K C G be a finite set. By a block with domain K we mean an element C € AX . For
two blocks C € AKX and C’ € AK€ for some g € G we write C ~ C' if for every k € K
we have C(k) = C’(kg). If for some x € X and g € G we have x|xz ~ C, then we say
that the block C occurs in x. By 8*(X) we denote the set of all finite blocks occurring
in points x € X. Similarly, if for a finite set F C G and an element B € A, there exists
g € G suchthat Kg C F and B|gg ~ C, then we say that the block C occurs in B.

Definition 5.13. Let K, FF C G be finite sets. The K-core of F is the set
Fxr={geF:Kg CF}.

The following property of a K-core will be useful later in Section 6 (for the proof see,
e.g., [4, Lemma 2.6]).

Lemma 5.14. Let K, F C G be finite sets. If F is (K, €)-invariant, then % > 1—¢|lK]|.

Using the notion of a core, we can define the frequency of occurrences of one block in
another.

Definition 5.15. Let K, F C G be finite sets and let C € AX, and B € AT . The frequency
of occurrences of the block C in the block B is the number

{g € Fk: Blkg ~ C}]

Frp(C) = 7|

Remark 5.16. If for finite sets K, F C G and every g € F we have Kg ¢ F, then
Fx = @, hence forany C € AX and B € AT we have Frz(C) = 0.

At this point we enumerate the collection ¥ (G) of all (countably many) finite sub-
sets of G, getting a sequence (Kj);en. With the help of this sequence, we can define
a pseudometric on the set 8*(X) as follows:

> |Frp,(C) —Frp,(C)|. Bi.B, € B*(X). (5.1)

enki

+o00 2_1
*(Bi.By) =) ———
d*(Bi. By) ;(|K1|+2)C

The denominator (|K;| + 2) has been included for purely technical reasons (it is used
in the proof of Lemma 5.18). Observe that d*(B, B’) = 0 if and only if B ~ B’. For
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every finite set K C G, with each block C € AX we associate the cylinder [C] = {x € X:
x|k = C}. Since characteristic functions of cylinders associated with blocks are linearly
dense in the Banach space of all continuous functions on X, the formula

0 (€D — u2([CD]. 1. pr2 € M(X)  (5.2)

enki

400 2_1
d* (1, h2) = Emc

defines a metric on M (X ), compatible with the weak- topology. We also define a distance
between a block and a measure by

. —+o00 2,] .
d (B’“)Zl;mc% [Frg(C) —u(IC]], B eB*(X), peMX). (53)

Equations (5.1), (5.2) and (5.3) define a pseudometric on the set 8*(X) U M(X), which
is a metric on the set (8*(X)/~) U M(X). The following theorem is a straightforward
generalization of Theorem 2.2.

Theorem 5.17. Let (Fy)nen be a Fglner sequence in a countable amenable group G.
For every & > 0 there exists ng € N such that for every n > ng and every block B € Af»
occurring in some x € X, the following inequality holds:

d*(B, My (X)) < e.

The next lemma will be used in Section 6. Although it is intuitively obvious, its rigor-
ous proof is unexpectedly technical, hence we provide it whole.

Lemma 5.18. If F, H C G are finite and H is an e-modification of F, ¢ > 0, then, for
every x € X, we have
d*(x|F.x|g) <e.

Proof. Let K C G be a finite set. First, we estimate the cardinality of the set Fx A Hg.
Observe that Fx AHg C K~'(FAH). Indeed, if g € Fx \ Hg, then kg € F for all
k € K and either g ¢ H or there exists kg € K satisfying kog ¢ H, which implies g €
(KU {e})"'(F \ H) (by symmetry, g € Hg \ Fk implies g € (K U {e})"'(H \ F)).
Thus, |[Fk AHg| < (|K|+ 1) |FAH].

An occurrence x|gg ~ C of a block C € AX in x is accounted in the computation
of Fry| (C) and not accounted in the computation of Fry|, (C), or vice versa, if and only
if g € Fxg A Hg. Henceforth, the following inequality holds:

Z ||H|Fry|,, (C) — | F|Fry . (C)| < (IK| + D|FAH| < (|K| 4+ D|F|e.
CeAK
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Therefore, we obtain

400 2_1 400 2_1
d*(X|F,X|H)=Zm Z |Frx\H(C)—Frx|F(C)|§Zm
= CeAki I=1
H] L
x 3 ([Fran(©) = [ O] + [ (€ = Fr, 0]

CeAKi

2! |
—_— + (|K;| + D)e
=2 |K1|+2(\ |F|\ (K1 + De).

Since H is an e-modification of F, we have |1 — |F| | < g, implying d*(x|F, x|g) < € as
claimed. |

We finish this subsection with the definition of an (F})-generic element for an invari-
ant measure, which, in the case Z = G and F,, = [0, n), reduces to Definition 2.3.

Definition 5.19. Let (F;),en be a Fglner sequence in a countable amenable group G.
A symbolic element x € X C A is called (F,)-generic ((F,)-quasigeneric) for a mea-
sure i € My(X) if the sequence (some subsequence of the sequence) of the blocks
(x|F,)nen converges to the measure p in the pseudometric d* on B*(X) U M(X).

5.3. Tilings of countable amenable groups

The aim of this subsection is to provide the necessary background concerning the theory
of tilings, playing an instrumental role in generalizations of theorems from Section 3 to
the case of countable amenable groups.

Definition 5.20. Let G be a countable group. A tiling is a partition 7 of G into finite,
pairwise disjoint subsets 7 € T (called the tiles), such that there exists a finite collection §
(called the collection of shapes) of finite sets S (not necessarily all different), each of them
containing the unit e of G, such that every 7 € 7 has a form 7 = Sc for some S € §
andc eT.

Given a tiling 7, for every tile T € 7 we choose one pair (S,c), where S € Sandc e T
such that T = Sc. We call S the shape of the tile T and c the center of the tile T'. Every
tiling 7 can be represented as a symbolic element (also denoted by the same letter 7°)
over the alphabet V = {“S”: S € §} U {07} as follows:

7 () { “S§” if g is a center of a tile with the shape S,
g =

“0”  otherwise.
Definition 5.21. Let § be a collection of shapes and let
V={"8"S5estuUu{07}.

A dynamical tiling is a closed and shift-invariant set T C V¢ consisting of tilings.
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Needless to say, the orbit closure of any tiling 7 is a dynamical tiling.

Definition 5.22. Let (Tx)ren be a sequence of dynamical tilings. A system of dynamical
tilings is a topological joining (T,0) = \/; oy (Tk, 0), i.e., T is a closed, o -invariant sub-
set of the product [ [;<n Tk, Where o is defined by (¢ (g))(71. 72,...) = ((6(g))(T1),
(0(g))(732),...). For brevity, a system of dynamical tilings will be sometimes denoted by
T = ey Tk and instead of (o (g)) () we will write g(77), g € G.

Definition 5.23. Let T = \/; o Tk be a system of dynamical tilings of G and let S denote
the collection of shapes of T. We say that the system of tilings T is:

(1) Fglner, if the collection of shapes | J, <y Sk arranged in a sequence is a Fglner
sequence;

(2) congruent, if forevery T = (T3 )xen € Tand each k € N, every tile T € Ty 41 is
a union of some tiles of J7x;

(3) deterministic, if it is congruent and for every k € N and every shape S’ € Sy 41,
there exist sets Cs(S’) indexed by the shapes S € §, such that

=1 U s

SeSy ceCs(S")

and for each 7 = (7});en € T, if S’¢’ is a tile of T 41, then for every S € S and
c € Cs(S8’), the set Scc’ is a tile of T.

A deterministic system T of dynamical tilings has the property that for every & =
(Tt)ken € Tand k € N, each tiling 7; uniquely determines the tilings 7 for k’ < k.
The following useful theorem can be found in [4, Theorem 5.2].

Theorem 5.24. For every countable amenable group G there exists a Fglner, determin-
istic system of dynamical tilings of G.

We finish this section by providing a simplified version of [4, Lemma 3.4] and [5,
Lemma 4.15], concerning the lower Banach density in the context of a fixed tiling 7.

Lemma 5.25. Let T be a tiling of a countable group G. If a subset A C G satisfies

% > 1—c¢foreverytile T € T and some ¢ > 0, thend, (A) > 1 —«¢.

6. Decomposition of a symbolic element over G into ergodic blocks

This section contains generalizations of theorems from Section 3 to the case of sym-
bolic systems with the action of a countable amenable group. In what follows, G denotes
a countable amenable group, (X, o) denotes a symbolic system with the shift action o
of G and T = \/ ¢ Tk is a Fglner, deterministic system of dynamical tilings of G. We let
Sk denote the collection of shapes of Tx. We define X = X x T. On the space X we will
consider actions of two groups, G x G, given by (g, h)(x, T) = (g(x), h(T)), and G,
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given by g(x, 7) = (g(x), g(7)). By M(Gxg)(X) we will denote the set of (G x G)-
invariant measures, i.e., measures on X that are (g, h)-invariant for every (g,h) € G x G,
whereas M (X) will stand for the set of G-invariant measures, i.e., measures on X that
are (g, g)-invariant for every g € G.

For a fixed & = (Jx)keny € Tand g € G, by T,f () we will denote the unique tile
T € T such that g € T. In particular, by 7} (5") we will denote the central tile T € T
containing the unit e. The simplified notation T,f in place of T]f (7) always refers to the
last sequence of tilings T mentioned in the text prior to the discussed Tkg .

We begin with a series of lemmas. The first lemma treats about disintegrations of
(G x G)-invariant measures. For details of the theory of disintegration of measures, we
refer the reader, e.g., to [6].

Lemma 6.1. If it is a (G x G)-invariant measure on X and {uq: T € T} is a disintegra-
tion of u with respect to the marginal measure jut on T, then for py-almost every T € T,
g is a o-invariant measure on X .

Proof. Let g € G be fixed. By the definition of a disintegration of a measure, for every
measurable function ® on X we have

/ O(x. T) du(x, T) = / / O(x. T) dptgr (x) dur(T).
X XT TJX
Using the (G x G)-invariance of p, we obtain
/ O, T) dp(x. T) = / B(g(x). e(T)) du(x, T)
X XT X XT
- f / O(g(x). T) dug (x) dpn ()
TJX
_ / / O(y. ) dug (g~ () dun(T)
TJX
- / /X O(y. ) d(g () (») dun(T).

We have shown that T +— g(ug) is also a disintegration of p. By uniqueness of the disin-
tegration, the equality ug = g(ug) holds for pr-almost every 7. Since there are count-
ably many elements g € G, for ur-almost every 7 the measure pg- is o-invariant. |

The next two lemmas are analogs of Lemmas 3.2 and 3.3 from Section 3.

Lemma 6.2. Let U D Mg ®(X) be an open setin B*(X) U My (X) and let m € N. The set
Dym={(x.T) ¢ X:Vismx|e ¢ U}

is a null set for every (G x G)-invariant measure on X .
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Proof. Itis not hard to see that Dy, is a Borel (in fact closed) subset of X . Suppose that
for some (G x G)-invariant measure p on X, we have u(Dqm) > 0. Let {ug: T € T}
be the disintegration of the measure u with respect to wy. Then, the following holds:

0 < uDuum) = [ [ 150y (5.5 duz () dun (7).

By Lemma 6.1, pr-almost all measures g are o-invariant. Hence, there exists 7 € T
such that both

[ 150 (5 Tyt () > 0

X

and the measure jtg is o-invariant. We have shown that the set
Dym,g ={x € X:Vizm x|1e ¢ U}

has positive measure for a o-invariant measure. Thus, there also exists an ergodic meas-
ure fto on X such that po(Dy,m,g) > 0. Hence, by the ergodic theorem, there exists an
element x € Dy g that is quasigeneric’ for o, along the Fglner sequence (T ken
consisting of the central tiles of 7. So, there exists k > m such that x|Tke € U, which
stands in contradiction with the definition of Dy, 7. |

Lemma 6.3. Let U D Mg8(X) be an open set in B*(X) U M(X) and let m € N. For
every n > m we define the set

Dympn = {(x,T) € X:Vu<i<n X|1e & U}
Furthermore, for every pair (x,T) € X we define

Evumpnxg = {(g’h) € G xG:(g(x),h(T)) € D‘u,m,n}~

Then the convergence limy,_s 4 EBan(Eu,m,n,x,y) = 0 holds uniformly on X, where the
upper Banach density is calculated in G x G.

Proof. Clearly, the sets Dy, , form a nested sequence with respect to n. Hence, also,
for each (x, 77) € X, the sets Eq 5 x,9 form a nested sequence. Thus, the sequence of
numbers (d gan (EU,m,n,x,97))neN is nonincreasing. Observe that

Duma= () J Jlx e X:x|sy ¢ W x{T e T:T¢ = 557"}

i=m SeS§; seS

2The existence of an (F,)-quasigeneric element for an ergodic measure can be deduced from Linden-
strauss’ ergodic theorem (see [7]). It also follows from the much more elementary mean ergodic theorem
combined with the fact that any sequence of functions convergent in measure has an almost-everywhere
convergent subsequence.
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is a clopen subset of X. Therefore, the characteristic functions 1 Doypmn ar€ continuous
on X and, consequently, for every n > m, the function it > @ 1 n(t) = W(DUmn)
is continuous on Mg xg)(X). Moreover, the descending intersection (),,~,,, Du,mn =
Dy m is, by Lemma 6.2, a null set for every (G x G)-invariant measure. Thereupon,
by the continuity of measures from above, the sequence (® m,n)n>m converges to the
constant function equal to 0, pointwise, on the compact set Mgxg)(X). Since the se-
quence (P m.n)n>m is nonincreasing, by Dini’s theorem, it converges to 0 uniformly on
M(ch) (X) Thus,

lim sup {(Dymn): it € Mox6)(X)} = 0.

n—-+o0o

By Lemma 5.12, this implies that sup(, #yex EBan(E‘u,m,n,x,T) tends to 0 as n — 400,
hence the sequence of functions (x, T) +— dean(E WU, m,n.x,9°) converges to 0 as n — +00
uniformly on X. |

In the proof of the main theorem of this section (i.e., Theorem 6.5) we use also the
following technical lemma.

Lemma 6.4. Let K C G be a finite set and let F C G be (K, §)-invariant. Then the set

L= Jlgef)gek) ©.1)

feF
is an e-modification of the set K x F C G x G.

Proof. Observe (see Figure 4) that

L= |J{g}xgF. (6.2)

geK

Since F is (K, §)-invariant, by Fact 5.2 (b), it is (g, &)-invariant for all g € K. Hence,

LA x Pl = || (dgh x gPaUghx F))| = Y IgFAF| < K| |Fle,
gekK gek

and consequently,
[LA(K x F)|
|K x F|

what was to be shown. |

Now we will formulate and prove the generalization of Theorem 3.4 to the case of
symbolic systems with the action of a countable amenable group G. We continue to work
in the setup introduced at the beginning of this section. Moreover, to abbreviate the nota-
tion, for a fixed x € X and a neighbourhood U of the set Mg °(X), we will say that a tile
O = Sc, where S € 8¢, k e N, and ¢ € G, is U-ergodic if x|g € U. Tiles that are not
U-ergodic will be called shortly nonergodic.
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Theorem 6.5. Let U D Mg ®(X) be an open set in B*(X) U M(X), and let m € N. Then,
for every e > 0, there exists n > m such that, for every x € X, there exists a collection @ of
pairwise disjoint U-ergodic tiles whose shapes belong to \ J;_,, Sk, such that UQea 0
has lower Banach density in G at least 1 — e.

Proof. Lete > 0and m € N be fixed. By Lemma 6.3, there exists n > m such that for all
(x,7) € X we have EBan(E‘u,m,n,x,fl') < %, where the upper Banach density is calculated
in G x G. We denote K = UZ:m USesk S and choose [y such that, for all / > [y, each
shape Se §;is (KK ™!, ﬁ)-invariant. Forevery [ > lpweputS§; = {SxS":S,S" € §;}.
Note that the union | I>1, S1, arranged in a sequence, is a Fglner sequence in G x G.
Thus, enlarging if necessary [y and using Theorem 5.9, we can assume that for all sets
SxS'eSs I,» the following estimation is true:

|Evmon,xa N (SgxS'h)

sup <
(2.h)eGXG IST1S]

(6.3)

| ®

We fix atile T € 77,. Let S € §;, be the shape of T', and let ¢ be its center. By equa-
tion (6.3), for every h € G we have

&
Z|T| |S/| > |E‘u,m,n,x,7 N (SC X S/h)| = |E‘ll,m,n,x,7 N (T S S/h)| (64)

We now choose a shape §(T) € Ujsly+1 S1 that is (T, §)-invariant (we point out
that, unless G is abelian, (S, §)-invariance is insufficient in the forthcoming argument).
Since T is a deterministic system of tilings, S (T) is a union of disjoint shapes belonging
to 8;,: S(T) = U;’zl Sjcj, where S; € §;, and ¢; are some elements of G. Thus, from
equation (6.4) it follows that

|Evtmnzg 0 (T x ST _ i i1 1Ewmnxg 0T X Sic)|

&
Nl =18 |11 4

By (T, g)-invariance of S (T') and by Lemma 6.4, the set

L= |J {(g.ghygeT)
he$(T)
is an £-modification of 7' x S (T) (see Figure 4). Moreover, it has the same cardinality as

T xS (T). Therefore, we obtain that

[Evmaxg VLD _ | Eumnag 0 (T xST)] LD\ < ST _
|LT] B IT x S(T)| IT x S(T)|

| ™

Because L(T') is a disjoint union (over 4 € S'(T)) of the sets {(g, gh): g € T}, each of
cardinality |T'|, there exists at least one element 27 € S(T') such that

|E‘u,m,n,x,7 N {(g,ghT):g € T}| < f
|T| 2
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Figure 4. The scheme of choosing the sets S (T) and construction of the sets L(7") (diagonal hatch-
ing corresponds to equation (6.1), whereas vertical hatching corresponds to equation (6.2)).

Observe that
Eymnx,g N{(g.8hr):g € T} = Evumnxnr) N{(8.8):8 €T}
Denoting the set {g € G:(g,8) € Evwmnx.hr @)} Y EUm,n x,hr (@), We also have
|Extmnxnr@) N{(8.8):8 € TH = [Ewmnxhr@) NTI.
Hence, we have shown the inequality

|E‘u,m,n,x,hT('J") NT| < &
T 2

Because every shape S € §;,, as well as every tile T € 77, is (KK -1 2“aT‘z)-invariant,
by Lemma 5.14, for every T € 7;, we have

T .
T\ Tkgx—1| _ &
T 2

The core Tgg-1 has the property that for every shape S € (J;_,, Sk and ¢ € G, the
following implication holds:

Sc N Tgg-1 7é g = SccCT. (6.5)
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Within 7 we select a family Q(7") of U-ergodic tiles, as follows. By the defini-
tion of the set Eqmnxhy (7). fOr every g & Evmnx.np (). there exists k € [m, n]
for which the tile T]f = T]f (ht(T%)) satisfies xlT/f e U, ie., Tkg is U-ergodic. For
every g8 € Tgxx-1\EUmn.x.hy (7). let k(g) denote the largest such k € [m, n]. Since T
belongs to a deterministic system of tilings, for g # g’ € Tx g1\ EvU,m n,x.hy (7) the tiles

!

T]f(g), T]f(g,) are either disjoint, or one of them is included in the other. However, the way

the tiles T]f(g) and T,f(/g,) were chosen excludes the possibility of strict inclusion. Thence,
every two of the chosen tiles are either disjoint or equal. Note also that, by (6.5), all the
tiles T,f(g), g € Tgx—1\ Exmn x,nr(5), are contained in 7. We denote the collection
of tiles T,f(g), constructed this way, by Q(7). We repeat the above construction for all
T € 7;,. Then we put @ = UTeTzo Q(T). All the tiles Q € @ are U-ergodic. It is worth
to mention that, by equation (6.5), for every T € 7y, the following inclusion holds:

TKK*I\E‘U,m,n,x,hT(!T) C U Q cT.
0eq(T)

On account of that, we have

1T N Ugea 2| _ Ugeam 2| o Tkk—1 \ Exmn iy (@)

IT| 17| - 7|
- |T \ E‘u,m,n,x,hr(fi')| _ |T \ TKK*1|
B T 17|
& I _
>1—§—§—1—8, (6.6)

from which, by Lemma 5.25, it follows that

do(1J 0) 21— n

Qeq

Remark 6.6. In the case U contains a ball Ball(Mg®(X), p), p > 0, it is possible to find
atiling @’ of G consisting exclusively of U-ergodic tiles. The construction of the tiling @’
relies on modifying the collection @ obtained in Theorem 6.5 for £ < g and a neighbour-
hood V = Ball(Mg5(X), 2) (in place of U) by appropriately distributing the elements of
the complement of UQea Q amongst the tiles Q € @. The construction follows the same
path (based on a variant of Hall’s marriage theorem) as the proof of [4, Theorem 4.3].
As aresult, the shapes of the tiles Q' € @" are 5-modifications of the shapes belonging to
UZ:m Sk. However, one has to bear in mind that in the case G = Z, the tiles of Q’ will
typically not be intervals (they will have the form of a union of an interval and a small
amount of isolated points). As our Examples 4.1 and 4.2 show, in some cases, a tiling @’
whose all tiles are U-ergodic intervals does not exist.

We end this section with a formulation and a proof of a generalization of Theorem 3.9
to the case of G-subshifts. In the proof of Theorem 6.8, we use the following straightfor-
ward generalization of Lemma 2.4 to the case of G-subshifts.
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Lemma 6.7. Let G be a countable amenable group and let X be a symbolic system with
the action of G. For every ¢ > 0 and any collection of finite blocks By, ..., By € 8*(X)
with pairwise disjoint domains F, ..., Fy, C G such that for every j = 1,...,m, there
exists a measure (1; € M(X) satisfying d*(B;, ;) < ¢, the following inequality holds:

d*(B,u) < 2,

where B is the concatenation of the blocks By, ..., By, that is, the block with the domain
F =Jj_, Fj, such that B|r; = Bj for j = 1,...,m, and u = ) 7_, |F||/,L]

Theorem 6.8. Let (X, 0) be a symbolic system with the action of a countable amenable
group G, such that My (X) is a Bauer simplex. Let T be a Fglner, deterministic system of
dynamical tilings of G. Let U D Mg®(X) be an open subset of B*(X) U M(X) and fix
an & > 0. Then, there exists jo € N such that for every j > jo and every pair (x,T) €
X = X X T, the union MN(x, 7}) of the nonergodic tiles of T; has upper Banach density
in G smaller than ¢.

Proof. Since Mg ®(X) is a compact set, without loss of generality, we can assume that
U = Ball(Mg®(X), ¢). By Lemma 3.8, there exists 0 < y < % 5 such that for every 1o €
MsE(X) and every p = [ My (x) Y dé(v), the following 1mphcat10n holds:

d* (1, 1to) <y = E(Mo(X) \ Ball(io, §)) < 5

Let jo be such that for all blocks B € 8*(X) with domains being shapes S € | J; s S
we have d*(B, My (X)) < Z. Existence of such jy follows from Theorem 5.17. We ﬁx
apair(x,7) e X, j > joandweletT = T7;. Weput K = USes_,- S.Letm € N be such
that for all k > m, every S € 8 is (KK, a7k )-invariant. We put V = Ball(MgB(X), X).
By Theorem 6.5, there exist n > m and a collection @ of pairwise disjoint, V-ergodic
tiles with shapes belonging to | J_,, Sk. such that the union of tiles UQ cq @ has lower
Banach density at least 1 — 5. In what follows, tiles Q € @ will be called “auxiliary
ergodic”. For every “auxiliary ergodic” tile Q € @, there exists a measure g € Mg°(X)
such that d*(x|g. o) < %

We fix an “auxiliary ergodic” tile Q € @. Since every shape S € | J;_,, Sk is (KK ™1,

AHVle)-invariant, every O € @ is (KK™!, ﬁ)-invariant too. Hence, by Lemma 5.14,
we have
10\ Okl _ v
10| 4

Let 7 (Q) denote the collection of those tiles 7 € T that are not disjoint with the core

Qkk-1,andlet Q' = (Qgg1)” = = Urer(g) T- Observe that Qg g-1 C Q' C Q. Thus,
we obtain the inequality

10\ Q'] _ 10\ Qx|
ol = lo|

Y
<7 (6.7)
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Henceforth Q’ is %—modiﬁcation of Q. So, by Lemma 5.18, it is true that

d* (x|, po) < d*(x|g. x|g) +d*(x]g. o)
Yy v _ 7
“itiT 72
Recall that for every T € T, we have d* (x|, My (X)) < %. So, forevery T € 7(Q),
there exists an invariant measure vy € My (X) such that d*(x|7, vr) < %. From Lem-

ma 6.7 it follows that 7|
* 14
! ("'Q” 2 IQ’IVT) <7

TeT(Q)

Using the triangle inequality we obtain

* T * % |T|
d (H/Q» Z |Q/|VT Ed (I‘LQ’X|Q/)+d X|Q/’ Z |Ql|vT <.

TeT(Q) TeT(Q)

It is clear that

Ty
Z |Q’|VT B /:M(,(X) vas()

TeT(Q)

7]
= _Svr,
= 2 g1

TeT(Q)

for the measure

where §,, is the Dirac measure on the Bauer simplex M (X), supported at vr. By The-

orem 3.8, the sum of coefficients % corresponding to 7" belonging to the set

{T € T(Q):vr € Mo(X) \ Ball(uo, §)}

is smaller than .

We denote by TNE(Q) the set {T € T(Q):d*(x|7, Mae(X)) > &} (i.e., the collection
of nonergodic tiles T included in the “auxiliary ergodic” tile Q). Observe that for T €
TNE(Q), by the triangle inequality, we have

d*(vr. o) = d*(x|r. o) —d*(x|r.vr)
)/ £
>e_ L5 2
4 3

Thence, the following inclusion holds:

TV(Q) € {T € T(Q):vr € Mo(X) \ Ball(pi. 5)}.

Therefore ZTETNE(Q) % < % In other words, the fraction of nonergodic tiles 7 in the

13 1 1A g1 4 €
fixed “auxiliary ergodic” tile O is smaller than 3.
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Let MNE(x, T) denote the union of all nonergodic tiles 7 € 7 and let MNE(Q) =

UTGTNE( 0) T (the union of all nonergodic tiles T included in the fixed “auxiliary ergodic”
tile Q). Then we have

(MM (Q)| _ 9] > 7]

o 0] 0] <3 ©8)

W] ™

TeTNE(Q)

Recall that our goal is to show that dgan(MNE(x, 7)) < ¢. In the construction of the
collection @ (see the proof of Theorem 6.5) we have used the tiling 7;,, from now on
denoted by #, with the property that every tile P € & satisfies

|P n UQea Q| &
—_— > 1= 6.9
P 3 (6.9)
(see equation (6.6) — we remind that the collection of tiles @ occurring in this proof is
constructed using Theorem 6.5 with £ in place of &). On the account of Lemma 5.25 and
Remark 5.8, it suffices to show that for every P € & the following inequality holds:

|P N MNE(x, T)|
1P|

By equations (6.9), (6.7) and (6.8), we obtain

POMYE T 1P \Ugea @1 |~ 10112\ Q'] 5~ 121 1M"(Q)|
R AR AT
B AL
34 3
which completes the proof. |

7. Final remarks

Firstly, we would like to remark that the results presented in the previous section can be
directly transferred to the case of countable amenable cancellative semigroups, since every
such semigroup can be naturally embedded in a countable amenable group in such a way
that a fixed Fglner sequence in the semigroup becomes a Fglner sequence in the group.
Secondly, we point out that the main theorems of this paper are valid (after an appro-
priate reformulation, see below) not only for subshifts but also for all classical topological
dynamical systems (X, T') (with an action of Z or Ny on a compact metric space X) and
for general topological dynamical systems (X, ) (with actions of a countable amenable
group G on a compact metric space X ). Instead of blocks occurring in x € X, say B =
x|[i.i+k)» one has to consider “pieces of orbits” of the form {7/ (x): j € [i,i + k)} (resp.
{g(x): g € K} instead of B = x|g for K C G). Then, instead of the empirical measure
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associated with B, one has to consider simply the probability measure % Z;:(l) Sriti (x)
(resp. ﬁ > gek Og(x))- Most of the proofs actually simplify, for example, it suffices to
consider the metric d* on M (X) without needing to extend it to B*(X), also, Lemma 2.4
(resp. Lemma 6.7), is not needed. However, the simplification causes that there is no direct
way of deducing theorems for symbolic systems from their general analogs; for instance,
there are subtle differences between the metric d* on M (X) and the extended pseudo-
metric on B*(X) U M(X). This is one of the reasons why we have chosen to write all the
proofs for symbolic systems rather than the easier proofs for general topological systems.
For completeness, let us formulate the main theorems in the general setup of countable
amenable group actions:

Theorem 7.1. Let t be an action of a countable amenable group G on a compact metric
space X. Let U be an open set in M(X) containing all ergodic measures of the action t.
Let T = \/ ;e Tk be a Folner, deterministic system of tilings of G and let Sy denote the
collection of shapes of Tg, k € N. Then, for every ¢ > 0 there exists n > m such that for
every x € X there is a collection @ of pairwise disjoint tiles with shapes belonging to
Uk—m Sk, whose union has lower Banach density at least 1 — ¢ and for every Q € @ we

have @ Y ge0Sen) € U

Theorem 7.2. Let t be an action of a countable amenable group G on a compact metric
space X, such that the set of t-invariant measures M.(X) is a Bauer simplex. Let U be
an open set in M(X) containing all t-ergodic measures. Let T = \/; o Tk be a Fplner,
deterministic system of tilings of G. Then, for every ¢ > 0 there exists jo € N such that
forevery j > jo and every pair (x,T), x € X, T = (Tg)ken € T, the union MN¥(x, T})
of tiles T of T; such that ﬁ deT 8¢x) € U has upper Banach density smaller than e.
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