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On dual surjunctivity and applications

Michal Doucha and Jakub Gismatullin

Abstract. We explore the dual version of Gottschalk’s conjecture recently introduced by Capobi-
anco, Kari, and Taati, and the notion of dual surjunctivity in general. We show that dual surjunct-
ive groups satisfy Kaplansky’s direct finiteness conjecture for all fields of positive characteristic.
By quantifying the notions of injectivity and post-surjectivity for cellular automata, we show that the
image of the full topological shift under an injective cellular automaton is a subshift of finite type in
a quantitative way. Moreover, we show that dual surjunctive groups are closed under ultraproducts,
under elementary equivalence, and under certain semidirect products (using the ideas of Arzhant-
seva and Gal for the latter); they form a closed subset in the space of marked groups, fully residually
dual surjunctive groups are dual surjunctive, etc. We also consider dual surjunctive systems for
more general dynamical systems, namely for certain expansive algebraic actions, employing results
of Chung and Li.

Introduction

In the beginning of the 1970s, W. Gottschalk introduced the following notion. Let G be
a group and A a finite set, and let us consider the topological Bernoulli shift G ~, AC.
If any injective, continuous, and G-equivariant map T: A9 — AC is also surjective,
then G is called surjunctive. Gottschalk asked in [19] whether every group is surjunct-
ive. The question reached its prominence after Gromov proved in [20] that groups that
were later going to be called sofic (see [28]) are surjunctive. Sofic groups, originally intro-
duced just because of Gottschalk’s question, now live a life on their own and are one of the
most important classes of groups in geometric group theory, topological and measurable
dynamics, graph theory, and beyond. Peculiarly, as of now, there is still no example of
a non-sofic group, although the existence of such groups is rather generally expected.

A natural idea is to consider the reverse of the Gottschalk question. Perhaps the most
direct attempt, that is, asking whether every surjective, continuous, and G -equivariant map
T:A% — AC is injective, is not the right choice. Indeed, there are counterexamples even
for G = Z (we refer to [7, Example 3.3.8, p. 61] for examples of such kind). It is however
instructive to recall at this point the notion of Garden of Eden. Although surjectivity of
the map T: A® — AC does not necessarily imply injectivity, it does imply, in some cases,
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a weaker notion called pre-injectivity (we refer further to Definition 1.5 of the paper below,
or to the monograph [7, p. 112]). The theorems of Moore and Myhill [25,26] established
the equivalence of surjectivity and pre-injectivity for G = Z¢. Later, the same equivalence
was obtained for all finitely generated groups of subexponential growth in [24], and finally
for all amenable groups in [10]. This line of research culminated rather recently when
Bartholdi in the combination of the two papers [3] and [4] showed that the Garden of
Eden equivalence characterizes the class of amenable groups. We remark that the Garden
of Eden equivalence has been considered and proved for dynamical systems much more
general than topological Bernoulli shifts. We refer to [23] and references therein for more
information.

It was also very recently when Capobianco, Kari, and Taati found a proper reverse, or
dual, of Gottschalk’s question. In [5], they introduce the notion of post-surjectivity, which
is strictly stronger than surjectivity, and ask for which groups, rightfully called dual sur-
Jjunctive, post-surjectivity implies pre-injectivity. As Gromov did for surjunctive groups,
they show that all sofic groups are dual surjunctive. Since, as they show for topological
Bernoulli shifts, post-surjectivity together with pre-injectivity actually implies injectivity,
one is led to a strong version of the Garden of Eden theorem which says that a continuous
G-equivariant map T: A® — A is injective if and only if it is post-surjective. All sofic
groups therefore satisfy this strong version of Garden of Eden.

The aim of this note is to explore the notions of post-surjectivity and dual surjunctiv-
ity further. We simplify some arguments from [5] concerning post-surjectivity and pre-
injectivity, and we investigate these notions in a quantitative way. We also introduce and
investigate a notion of post-surjectivity for more general shifts and even more general
expansive dynamical systems. Below is a selection of some of our results.

Results.

(1) Dual surjunctive groups satisfy Kaplansky’s direct finiteness conjecture for all
fields of positive characteristic (see Theorem 4.1).

(2) If T: A° — AC is an injective cellular automaton, then T[4%] is a subshift of
finite type with memory set of the forbidden patterns precisely depending on the
injectivity of 7' (see Theorem 2.2).

(3) Dual surjunctive groups are closed under taking ultraproducts and under element-
ary equivalence, they form a closed subset in the space of marked groups, fully
residually dual surjunctive groups are dual surjunctive (see Theorems 3.6 and 3.8,
and Corollaries 3.9 and 3.13).

(4) Algebraic expansive actions of any countable polycyclic-by-finite group (and un-
der some additional conditions, of any amenable group) on compact metrizable
abelian groups with completely positive entropy (with respect to the Haar measure
on the compact group) are dual surjunctive (see Theorem 5.9).
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1. Post-surjectivity and pre-injectivity

Throughout the paper, G is a group and A is a finite set having at least two elements.
We topologize AY with the product topology, where A is equipped with the discrete topo-
logy. When G is countably infinite, which will be the most interesting case, A€ is then
obviously homeomorphic to the Cantor space. For this reason, unless explicitly stated oth-
erwise, such as when working with ultraproducts of groups, G is assumed to be countable.
Note that this requirement is only chosen to simplify the notation of the proofs, especially
it allows us to work with sequences instead of more general nets. Most of the proofs have
straightforward generalization to the uncountable case though.
A group G acts (by homeomorphisms) on A® = {f:G — A} by

g-f(x)= f(g7'x), forg.xe G, f e AS.

The corresponding dynamical system is called the topological Bernoulli shift, or just topo-
logical (full)-shift.

We need a few more definitions from the dynamics on topological shifts. We refer the
reader to [7] for a detailed treatment.

Definition 1.1. Let G be a group and A a finite set. Any element x € A% is called a con-
figuration. Any map p: D — A, where D C G is (usually finite, but not always) a subset,
is called a pattern. A pattern is called finite if its domain is finite.

Definition 1.2. Let G be a group and A a finite set. By a subshift, we mean any closed
subset X C AC that is also closed under the shift by the elements of G.

If P C G is a subset, by Xp we denote the set of patterns whose domain is P and
which are restrictions of configurations from X. Thatis, Xp :={x | P:x € X}.

The following two types of subshifts will be the most interesting for us.

Definition 1.3. Let X € A be a subshift. We say that

* X is of finite type if there exists a finite set {py, ..., p,} of finite patterns such that
for x € A% we have x € X if and only if forno g € G and i < n we have g - x |
dom(p;) = p;.

* X is strongly irreducible if there exists a finite set D € G such that for all finite
patterns p: P — A and p’: P’ — A, with p € Xp,resp. p’ € Xprand P-D N P' =0,
there exists x € X suchthatx } P =pandx | P/ = p'.

Let X,Y C AC be subshifts. By 7: X — Y we always mean a continuous G-equiv-
ariant map, that is

T(g-f)=g-T(f).

The map T is called a cellular automaton (further abbreviated CA). It is well known that
every such 7 is induced by a map t: AF — A, where F C G is a finite subset, called the
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memory set for T, such that for all f € X, x € G, the following holds true:

T(Hx)=z(f I x-F),

where f | x - F is the pattern obtained by restricting f to x - F := {xg: g € F}.
Let us define an equivalence relation ~ of almost equality on A® in the following way,
forc,d € AC we write

¢~d ifandonlyif {ge€ G:c(g) # d(g)} is finite.

We record the following fact, which immediately follows from [5, Proposition 1].

Fact 1.4. Let X C A€ be a strongly irreducible subshift. Then for every x € X, the equi-
valence class [x]~ N X is dense in X.

In [5], Capobianco, Kari, and Taati introduced the following stronger version of sur-
jectivity. We also recall below the by-now standard notion of pre-injectivity, a weaker
version of injectivity.

Definition 1.5. (1) A map T is called post-surjective if whenever T'(g) ~ f, for any
g, f € AG then there exists g’ ~ g such that T(g’) = f’ (see [5, Definition 2]).

(2) A map T is called pre-injective if whenever f ~ f’' and T(f) = T(f"'), then
f = f' forall f, f' e A“.

Lemma 1.6. Let X, Y C A% be subshifts and Y be strongly irreducible. Let T: X — Y
be a post-surjective CA. Then T is surjective.

Proof. This is essentially proved in [5, Proposition 2]. Since we work in a slightly more
general context, we re-prove it for the convenience of the reader. Pick some y € Y and let
Xx € X be arbitrary. By strong irreducibility, the equivalence classes in ~ are dense in V',
so we can find a sequence (y,)nen such that y,, — y and y, ~ T(x), for every n € N.
By post-surjectivity, there exists a sequence (x,),eN such that x,, ~ x and T'(x,) = yu,
for every n € N. Let x’ € X be an accumulation point of this sequence. It immediately
follows that T'(x") = y. L]

For f1, f» € A%, we denote

A(f1. ) ={g € G: fi(g) # f2(9)}.

We shall also need a stronger version of post-surjectivity, which is what is actually
useful in applications. It turns out that for full shifts, the two notions of post-surjectivity
are equivalent.

Definition 1.7. Let X, Y C A€ be subshifts. A CA T: X — Y is strongly post-surjective
if there exists a finite set M C G such that for every x € X and T'(x) ~ z € Y there exists
y € X suchthat y ~ x, T(y) = zand A(x, y) € A(T(x),z)- M.

The set M will be called a post-surjectivity set for T .
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Observation 1.8. (1) ACAT:AS — AY is post-surjective if and only if it is strongly
post-surjective.

(2) Let X, Y € AC be subshifts and let T: X — Y be a strongly post-surjective and
pre-injective CA with a finite post-surjectivity set M. Then for every c¢,d € X,
¢ ~ d, the following holds true:

Ale,d) € A(T(c), T(d)) - M.

Proof. The non-trivial direction of (1) is the content of [5, Lemma 1]. For (2), notice that
by strong post-surjectivity there is some d’ ~ ¢ with T(d’) = T(d) such that A(c,d’) C
A(T(c), T(d)) - M. By pre-injectivity, since d’ ~ d and T(d) = T(d’), we get that
d’' = d, and we are done. [

Our aim is now to strengthen the main results from [5], saying that pre-injective and
(strongly) post-surjective CA on full shift is reversible (see [5, Theorem 1]), and also to
provide a simpler proof of it.

First, we need the following lemma. Suppose X € A is a subshift. Let us provi-
sionally call a CA T: X — A% uniformly injective (till we show that it is equivalent to
being injective) if there exists a finite set N € G such that for all x, y € X we have
A(x,y) € A(T(x),T(y))- N~L. Call such a set N an injectivity set for T.

Lemma 1.9. Let X C AC be a subshift and let T: X — AS be a CA. Then T is injective
if and only if it is uniformly injective. Moreover, provided that T is injective, a set N € G
is an injectivity set for T if and only if it is a memory set for T,

Proof. Clearly, if T is uniformly injective, then it is injective, so we prove the converse.
Assume that T is injective and denote by Y the image T'[X]. By compactness and G-
equivariance, Y is a subshift and the inverse T-1:Y — X is also continuous and G-
equivariant, thus a CA. Let N € G be a finite memory set for T-1. By definition, for
every x,y € Y we have A(T71(x), T~(y)) € A(x,y) - N~!, which can be translated
to a statement that N is an injectivity set for 7. It also shows the ‘Moreover’ part of the
statement. |

Theorem 1.10. Let X, Y C AC be subshifts and let T be a strongly post-surjective and
pre-injective CA. If X is strongly irreducible, then T is injective. In particular, if both X
and Y are strongly irreducible, then T is an isomorphism.

Proof. Suppose that X is strongly irreducible. By Lemma 1.9, it suffices to check that
there is a finite injectivity set N € G for T. Let M C G be a post-surjectivity set for 7.
We claim that M - M1 is an injectivity set for T'. If not, then we can find x, y € X such

that x(1g) # y(lg), yet

Tx) )M -M'=T@) M -M~L.
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By strong irreducibility of X, we can assume that x ~ y. Indeed, by Fact 1.4 there is
y’ ~ x which is sufficiently close to y so that y'(1g) = y(lg)and T(y) | M - M~! =
T(G) V' M-M~".

Since A(T(x), T(y)) € G ~M - M~!, by Observation 1.8, we get that A(x, y) C
G ~ M, which contradicts with x(1g) # y(1g). The ‘in particular’ part follows by apply-
ing Lemma 1.6. |

Corollary 1.11. Let T: A — AC be post-surjective and pre-injective. Then it is injective
and also an isomorphism.

Proof. 1t follows immediately from Theorem 1.10 and Observation 1.8. ]

2. More observations on injectivity and post-surjectivity

Let us have a closer look at the tight connection between injectivity and post-surjectivity.

The following lemma establishes the connection between the injectivity and post-
surjectivity sets. Notice that reversible, i.e., bijective, cellular automata are post-surjec-
tive [5, Example 1].

Lemma 2.1. Let T: A — AC be a reversible cellular automaton.
* Let N be a symmetric injectivity set for T. Then it is also a post-surjectivity set for T.

* Let M be a symmetric post-surjectivity set for T. Then it is also an injectivity set for T .

Proof. Let N be a symmetric injectivity set (note that if N is an arbitrary injectivity set,
then N U N~! is symmetric and still an injectivity set). Suppose that it is not a post-
surjectivity set. Then there exist x,z € A% such that A(T(x), z) = {1g}, yet for every
¥y ~ x such that T'(y) = z we have A(x, y) € N. Choose such y ~ x using post-surjec-
tivity of 7. There exists g ¢ N such that x(g) # y(g). However, since N is a symmetric
injectivity set for T, we get that there is & € g - N such that T'(x)(h) # T (y)(h). Since
h # 1¢, this is a contradiction.

Conversely, suppose we are given a symmetric post-surjectivity set M. Suppose that
it is not an injectivity set. Then there are x, y € A% and & € G such that x(h) # y(h),
yet T(x) P hM = T(y) | hM. Without loss of generality, we may assume that x ~ y.
Then D := A(T(x), T(y)) is also finite and D N kM = @. However, by post-surjectivity,
A(x,y) € D-M.Since h ¢ D - M, we reach a contradiction. [

The finer analysis of injectivity and post-surjectivity will now have the following
application. Suppose T: A9 — A is an injective CA and suppose we know some injectiv-
ity sets N and M, for T and T ! respectively. We prove that in order to show that T is
surjective, it suffices to verify that every pattern from AM¥ is in the image of T. Second,
we show that the image of every injective CA is a subshift of finite type, and additionally,
we have some quantitative information about the size of forbidden patterns.
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Let us recall a GOE pattern (Garden of Eden pattern) for T: A° — A% [7, Sec-
tion 5.1]. It is a finite pattern p: D — A such that forno f € T[AC], f } D = p. Itis
a basic application of compactness that if 7 is not surjective, then there is a non-trivial
GOE pattern for T'.

Theorem 2.2. Let T: A° — AC be an injective CA. Let N, M C G be finite injectiv-
ity sets for T and T~': T[AC] — AC respectively, both containing 1G (which exist by
Lemma 1.9).

(1) Then T[AC] C AC is a subshift of finite type, and moreover, the forbidden patterns
are defined on M N.

(2) More generally, denote by X™ the subshift T"[A®] of A®, where n € N. Then X"
is a subshift of finite type whose forbidden patterns are defined on M N™.

() If T is not surjective, then there exists a GOE pattern for T supported on M N.

Proof. Set X" = T"[A%],forn € N (so X! = X and X° = A%). By Lemma 1.9, N is
a memory set for T77': X — A%, thus T7~! on X is defined by some 7: Xy — A, where
Xy = {x ) N:x € X}. By extending 7 to the whole AV, we get a CA S: A% — A4C
whose restriction to X is equal to 77!,

We start with (1). Set D := MN and set F = AP ~ Xp. We claim that F is a finite
set of forbidden patterns defining X . Let us denote by Y the subshift of A% defined by
forbidden patterns from F.

Let x € X. Itis clear that forevery g € G, g ! -x | D¢ F,soX C Y.

Conversely, let y € Y and let us show that y € X. By definition, for every g € G,
g '-y )} DeXp,sothereis x € X suchthaty | gD = x | gD. Since N, resp. M is
a memory set for S, resp. 7', we get

ToS(y)g)=ToSx)(g)=ToT ' (x)(g) =x(g) = y(g).

It follows that 7 o S(y) = y, thus y € X.

We continue with (2). We shall prove the statement by induction. For n = 1 this has
been proved in (1). Suppose that n > 1 and the statement has been proved for n — 1.
Set D, = MN" and F, = AP» < Xgn, and let Y, be the subshift of AC defined by
forbidden patterns from F,, . We claim that X" = Y,. Again, it is clear that X" C Y,,,
so we show the other inclusion. Pick y € Y;,. For every g € G there exists x € X" such
thaty | gD, = x | gDy, so

S() I gDn—1 =S(x) | gDp—1.

and it follows by the induction hypothesis that S(y) € X1, Since the same argument as
in (1) gives that 7 o S(y) = y, we get that y € X".

We finish with (3). Retain the notation from (1). If 7 is not surjective, then Ag # Y
and thus F is non-empty. Any element of F is then a GOE pattern supported on MN. m
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3. Dual surjunctive groups and ultraproducts

Let us recall the following conjecture due to Gottschalk [19].

Conjecture 3.1. Suppose that T: A¢ — AS is a G-equivariant continuous injective map,
i.e., an injective cellular automaton. Then T is surjective and hence an isomorphism.

A group G is called surjunctive if Conjecture 3.1 is true for G and any finite A. The
class of surjunctive groups is closed under subgroups [28, Lemma 1.1] and ultraprod-
ucts [18, Theorem 3]. All sofic groups are surjunctive [20, 28].

A group G is dual surjunctive if every post-surjective cellular automaton 7: A — A¢
is pre-injective and hence is an isomorphism by Theorem 1.10. All sofic groups are dual
surjunctive [5, Theorem 2].

Let us introduce several new classes of groups.

Definition 3.2. We call a group G s-surjunctive if for any finite set A and any strongly
irreducible subshift of finite type X € A9, every injective CA T: X — X is surjective.

Analogously, we call a group G dual s-surjunctive if for any finite set A and any
strongly irreducible subshift of finite type X C AC, every strongly post-surjective CA
T:X — X is pre-injective (and hence an isomorphism by Theorem 1.10).

Moreover, we introduce the notions of ss-surjunctivity and ss-dual surjunctivity, which
are defined as s-surjunctivity, resp. s-dual surjunctivity, in the following way: the subshift
X C AC in the definition is required to be only strongly irreducible, not necessarily of
finite type.

We recall here that the Myhill property of a subshift or of a more general dynam-
ical system is the property that pre-injectivity of a continuous G-equivariant map implies
its surjectivity, and the Moore property is the converse, i.e., surjectivity implies pre-
injectivity.

Examples 3.3. (1) Every amenable group is ss-surjunctive (and therefore also s-sur-
junctive). This follows from [9], where the authors prove the Myhill property for
amenable groups and strongly irreducible subshifts.

(2) Every amenable group is both s-surjunctive and s-dual surjunctive. This follows
from [17], where the author shows the Garden of Eden theorem for amenable
groups and strongly irreducible subshifts of finite type.

On the other hand, the existence of ss-dual surjunctive groups is more delicate. Clearly,
every finite group is ss-dual surjunctive and so also every locally finite group is ss-dual
surjunctive. We conjecture that every G that contains Z as a subgroup is not ss-dual sur-
junctive. Fiorenzi in [16, Section 3] (see also [7, Exercise 5.49]) shows that the Moore
property does not hold for Z and strongly irreducible subshifts. Her example might be
also a counterexample disproving ss-dual surjunctivity for Z and groups containing Z.

Problem 3.4. Are sofic groups s-surjunctive and s-dual surjunctive?
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Now, we prove that the class of dual surjunctive groups is closed under subgroups and
ultraproducts. The techniques used in the proof can be also applied to get a shorter proof
of the result of Glebsky and Gordon from [18] that surjunctive groups are closed under
ultraproducts.

Lemma 3.5. A group is dual surjunctive if and only if all of its finitely generated sub-
groups are dual surjunctive. In particular, every subgroup of a dual surjunctive group is
dual surjunctive.

Proof. Let G be a group. First, suppose that G is dual surjunctive and let H be a (finitely
generated) subgroup. Let 7: A¥ — A be a post-surjective CA. The map on a memory set
for T also defines a CA T’: A® — A9 which is also post-surjective by [5, Proposition 4].
Therefore, since G is dual surjunctive, T’ is pre-injective, and it easily follows that T is
pre-injective as well.

Conversely, suppose that all finitely generated subgroups of G are dual surjunctive.
Let T: A9 — A be a post-surjective CA defined using a map on a finite memory set 7.
This map defined a CA T’: A — AH  where H is a subgroup generated by 7. Again
by [5, Proposition 4], T’ is post-surjective, so it is pre-injective. It is again straightforward
that 7" is then pre-injective as well. ]

Theorem 3.6. Let (Gp),eN be a sequence of dual surjunctive groups and let U be a non-
principal ultrafilter on N. Then the ultraproduct [ |q; Gp is dual surjunctive as well.

Proof. Denote the ultraproduct [ [, G, by §. Let T A% — A% be a post-surjective con-
tinuous §-equivariant map. 7 is given by a map t: A¥ — A, where F C ¢ is, without
loss of generality, a finite symmetric memory set, which is also a post-surjectivity set
for T. For each f e F, choose a sequence (fn)nen € [ [, Gn representing f in §. Then
for each n € N, let F,, € G, consists of the n-th coordinates of those representatives, so
for U-many n we have a canonical bijection between F, and F. For such n we define
t,: Af" — A using this canonical bijection and : A¥ — A. Finally, we can then, for
such n, define a continuous G,-equivariant map T,,: A" — A% using t,. For other
n € N, we may define 7, and T,, arbitrarily.

For a sequence (¢, )neN, Where ¢, € AGn we denote by (cn)u the element ¢ = [ [q; cp.
That is, the element ¢ € A¥ such that for each g € &, represented by a sequence (g, )neN,
where g, € Gy,

c(g)=a ifandonlyif Y%n (cu(gn) = a).

Denote by I the subset of A¥ consisting of elements of the form (¢, )y. It is straightfor-
ward to verify that T C A% is a dense subset which is invariant under the action of € and
under the relation ~.

Claim 3.7. For U-many n, F, is a post-surjectivity set for T,. In particular, for U-
many n, T, is post-surjective.
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Indeed, otherwise, we get for U-many n elements ¢, and e, ~ d, := T,(c,) such
that there is no ¢], ~ ¢, satisfying T, (c,,) = e, and A(cp, ¢;) S A(dp, €n) - Fp. Clearly,
without loss of generality, we can assume that for U-many n we have A(d,, e,) = {1g,}-

Then we have
s T((cn)uw) = dn)us
* Aldn)u, (en)u) = {lg}.

Since T has F as a post-surjectivity set, we can find ¢’ € A¥ such that T'(c’) = (en)u
and A(c¢’, (cn)u) C F. Since the set I is invariant under the relation ~, we have ¢’ € T
and we can find elements ¢, € A% for each n, so that ¢/ = (c},)y. It easily follows that
for U-many n, A(c,,, cy) € F, and Ty (c,) = ey, a contradiction. This finishes the proof
of the claim.

By our assumption that the groups G, are dual surjunctive, it follows that for U-
many n, T,,: A" — A% is pre-injective.

Now, suppose that 7" is not pre-injective. This means that there are elements ¢ ~ d &
A¥ such that ¢ # d and T'(c¢) = T(d). Denote by D the non-empty finite set A(c, d).
As in the beginning of the proof for F, we can find non-empty finite sets D, € G,, with
| D, | = | D], consisting of the n-th coordinates of representatives for elements of D.

Now, since I is dense in A%, we can find nets of sequences {(c%),:a € S} and
{(d¥)n:a € S}, where S is some index set and we have

e (c)u—cand (dX)y — d,
» forevery o € S and for U-many n, A(cy,dy) = Dp.

It follows that for every a € S and U-many n, since T}, is pre-injective with memory
set F},, that we have
9 7’é A(Tn(cg)’ Tn(dr‘zx)) C Dy - Fy.

Consequently, we get that for every @ € S,
0 # A(T((cy)w). T((d)u) S D - F.

By compactness, passing to a subnet if necessary, we can without loss of generality
assume that there exists a non-empty finite set £ € D - F such that for every o € S,

0 # AT ((c)w). T((d;)w) = E.

Since (cy)u — ¢ and (d)y — d, and also T'((cy)y) — T(c) and T((d)u) — T(d),
we obtain that
0 #A(T(c),T(d) =E,

in particular T'(c) # T (d). This contradiction finishes the proof of the theorem. |

The previous result has as a corollary a topological description of the dual surjunctive
groups in the space of marked groups. Let us define the background.
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Let S be a fixed finite set. One can topologize the set of (isomorphism classes of)
groups with S as a generating set as follows. First, we identify each such group G with
Fg/N, where Fg is a free group on generators from S and N < Fy is a normal subgroup.
Then, it suffices to notice that the set of normal subgroups of Fg is a closed subset of 2Fs
therefore, it is a compact metrizable space (homeomorphic to the Cantor space). Let us
denote this space by X5 (see [11, 13] and the references therein).

It is known that for a fixed finite set S, the set of surjunctive groups is closed in Xg
(see [7, Section 3.7], [8, Corollary 1.3] or [18,20]). We prove an analogous result for the
set of dual surjunctive groups.

Theorem 3.8. For a fixed finite set S, the set of dual surjunctive groups is closed in the
space of S-marked groups Xs.

Proof. Let (N;)ien be a sequence of normal subgroups of Fg converging to a normal
subgroup N < Fg such that for eachi € N, Fgs/Nj is dual surjunctive. We prove that G :=
Fg /N is dual surjunctive. Pick a non-principal ultrafilter U and let & be the corresponding
ultraproduct of (Fs/N;)ien. By Theorem 3.6, § is dual surjunctive. The map from G to §
defined on the generating set S by the diagonal map s — (s)q is clearly a monomorphism.
So G embeds as a subgroup of &, and therefore it is dual surjunctive itself. ]

Corollary 3.9. Fully residually dual surjunctive groups are dual surjunctive.

Proof. Let G be fully residually dual surjunctive. We may suppose it is finitely generated
by a finite generating set S. It is then easy to see that G is a limit, in the space of marked
groups X g, of dual surjunctive groups. So it is dual surjunctive itself by Theorem 3.8. m

Using a result of Arzhantseva and Gal [2], we can now obtain the same closure prop-
erty that they have originally obtained for the class of surjunctive groups.

Corollary 3.10. Let G be a semidirect product H x F, where H is dual surjunctive
and F is a finitely generated residually finite group. Then G is dual surjunctive.

Proof. By [2, Theorem 1], it suffices to check that
(1) fully residually dual surjunctive groups are dual surjunctive,

(2) semidirect extensions of dual surjunctive groups by finite groups are dual sur-
junctive.

Item (1) has been proved in Corollary 3.9, and in order to prove (2), it suffices to show
that virtually dual surjunctive groups are dual surjunctive. We proceed as in [2, Lemma 6].
Let H < G be such that |G: H| < oo and H is dual surjunctive. Let T: A9 — A% be
post-surjective. A9 as an H-shift is isomorphic to the shift (A#\G)H  and it is easy to
check that the induced H -equivariant map T”: (A\C)YH s (4H\G)H 5 post-surjective.
Therefore it is injective and so is T'. ]
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Lemma 3.11. Let G be a group and N <1 G be a normal subgroup which is finitely
generated and residually finite. Assume that G/ N is (dual) surjunctive. Then G/ Z(N) is
(dual) surjunctive as well.

Proof. The group G acts by conjugation G > g — ig € Aut(N) on N. Consider
F: G — G/N xAut(N), F(g)=(g/N,ig).

That gives an embedding of G/ Z(N) into G/ N x Aut(N) which is (dual) surjunctive, as
if N is a finitely generated residually finite group, then Aut(/N) is residually finite. ]

Conjecture 3.12. If G is (dual) surjunctive then free product 7 * G is (dual) surjuncive
as well.

One of the basic notions in model theory is that of an elementary equivalence. Two
structures A and B in a language L are elementary equivalent if they satisfy the same first
order L-sentences, that is a theorem expressible in L is true in A if and only if it is true
in B.

Corollary 3.13. Suppose that A and B are elementary equivalent groups in a group the-
ory language {-} and A is dual surjunctive. Then B is also dual surjunctive.

Proof. If A and B have the same universal theory, then B embeds into some ultrapower
of A and the conclusion follows from Theorem 3.6. ]

4. Direct finiteness conjecture

In the late 1960s, 1. Kaplansky proved [21] that if K is a field of characteristic 0 and G is
any group, then the group ring K[G] is directly finite. Let us recall that a ring R with
1 is called directly finite if for any x, y € R, the condition xy = 1 implies yx = 1.
Kaplansky’s direct finiteness conjecture says that K[G] is directly finite for any field K
and any group G.

This conjecture attracted a lot of attention recently in a more general case when K is
a division ring. See [1] for the proof when G is a residually amenable group and also [14]
for the computational approach in characteristic 0. The most general result on Kaplansky
conjecture was established in [15] (see also [6, Corollary 1.4]), when G is a sofic group.
All sofic groups are surjunctive and dual surjunctive. The main idea of the proof in [15] is
to construct an embedding of K[G] into simple continuous von Neumann regular ring.

We give below an elementary proof of this conjecture when G is surjunctive or dual
surjunctive group and K is an arbitrary field of positive characteristic. Our proof covers
the case of sofic groups.

Theorem 4.1. Surjunctive and dual surjunctive groups satisfy Kaplansky’s direct finite-
ness conjecture for fields of positive characteristic.
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Proof. Let us first assume that K is a finite field. In this special case, the argument
below for surjunctive groups was given in [15] (right after the statement of Conjecture 2).
Observe that the group ring K[G] is dense in K¢ . Every element a € K[G] induces a con-
tinuous linear map 7,

T,: K - KC®, T,(f)=f*a, where(f xa)(x)= Z fay—'x),
yeG

which is G-equivariant, that is, T, (g - f)(x) = g - T,(f)(x). Moreover, T o T, = Ty,
fora,b € K[G].

Suppose now ab = 1 for some a,b € K[G]. Then T o T, = T,p = id is the identity
on K[G], which is dense in K G Therefore, it is the identity on K G,

Claim 4.2. The map Tp is post-surjective and T, is injective.

Proof. The injectivity of T, is clear since T o T, = T, = id. We prove that T} is post-
surjective. Suppose ¢ = Tp(e) and ¢ ~ d. Then T,(c) ~ Ty(d), so e ~ e + T,(d) —
T,(c) =: ¢’ and

Ty(e") = Tp o Ta(d) + Th(e — Ta(c)) = Tap(d) + Tp(e) — Tap(c)
= Tap(d) + Tp(e) — Tpap(e) = d + Tp(e) — Tp(e) = d.

Hence T} is post-surjective. ]

Since G is dual surjunctive (surjunctive respectively), T is a bijective (7 is a bijective
respectively) continuous map. Thus 7y is the inverse of Tj, so T, o T, = Tp, is the identity
on K€ as well. Hence ba = 1.

Suppose K is an arbitrary field of positive characteristic and ab = 1 but ba # 1 for
some a,b € K[G]. Let R = (k;,[;:1 <i < n) be a subring of K generated as a subring
by the coefficients of @ and b. Hence, R is a finitely generated domain. Since ba # 1, we
may write

m
ba=> p;g.
=1

where 0 # p; € K and elements g; € G are pairwise distinct. We may assume that either
g1 # lg or ba = p1lg, where p; ¢ {0, 1}. In the former case, there exists a maximal
ideal I < R such that p; ¢ I, while in the latter case there exists a maximal ideal / <1 R
such that p; — 1 &€ I (see, e.g., [27, Lemma 3.2 (iv)]). Then F = R/I is a field, which is
finitely generated as a ring. Therefore F is a finite field (see, e.g., [27, Lemma 3.2 (iii)]).
Let f: R[G] — F[G] be the quotient homomorphism. Then 1 = f(ab) = f(a) f(b), but
f(ba) = f(b)f(a) # 1. Indeed, in the former case, f(p1g1) = f(p1)g1 # 0, while in
the latter case, f(p11g) = f(p1) # 1. This finishes the proof of Theorem 4.1. L]

We prove that the class of groups satisfying Kaplansky conjecture is closed under
taking ultraproducts.
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Proposition 4.3. Suppose R is a ring and (G;)iey is a family of groups such that R[G;]
is directly finite for i € 1. Then R[G] is directly finite, where G = [[;c; Gi/U is an
ultraproduct of (G;)iey. In particular, the class of groups satisfying Kaplansky’s direct
finiteness conjecture is closed under taking ultraproducts.

Proof. Pick some x,y € R[G]. Thatis x =Y ;_, ¢;gj, ¥ = ) =, ¢} &> Where ¢j,c €R,
g = (gi,j)ier/U € G, g, = (8] )ier/U € G for some g; ;. g;, € Gi and g5 # gr,
gy #Fgyforl <s#t<nandl <p#qg=<m.

Consider x; = Z?:l cigijandy; =Y 5, & (xi. yi € R[G;]). In order to finish
the proof, it is enough to prove the following claim.

Claim44. xy = lifandonlyif{i € I:x;y; = 1} € U.

Proof. Let

I = {i c Irvlsj,j’sn Vlsk,k’gm g g;c =gj- g,’c/ < &i,j- gl/',k = gi,j' - gf,k,},
L ={i €:Vicj<n Vi<k=m & & = €G € &i,j  &i = €G-

Clearly I, I; € U. Moreover, fori € I; N I, the canonical form of x; y; in R[G;] has
the same coefficients as the canonical form of xy in R[G] (because x -y = >} cjc; g; -
gx’). Therefore fori € I1 N I, xy = lif and only if x; y; = 1. [

5. Expansive dynamical systems

In the last section, we consider dual surjunctivity for more general dynamical systems
than subshifts. Here we follow and apply mainly the seminal results of Chung and Li [12],
and Li [23] on expansive algebraic actions.

Let X be a compact metrizable space with some compatible metric d which we
may assume, without loss of generality, to be bounded by 1. An action o: G ~, X of
a group G on X by homeomorphisms is called expansive if there exists § such that for
everyx # y € X, thereis g € G such that d(g - x, g - y) > 8. The real § is then called an
expansiveness constant of .

Two elements x, y € X are called homoclinic if limg_, o d(g - x, g - y) — 0. Clearly,
homoclinicity is an equivalence relation which we shall denote by ~. It coincides with the
relation ~ for the Bernoulli topological shifts. Note that since all compatible metrics on X
are uniformly equivalent, being expansive and homoclinic does not depend on the choice
of the metric.

Having the relation ‘~’ at our disposal, we can define the notion of strong post-
surjectivity in the same way as for subshifts.

3

Definition 5.1. Let «: G ~ X have an expansiveness constant § > 0. Let 7: X — X
be a continuous G-equivariant map. We say that T is strongly post-surjective if there is
a finite subset F C G such that for every x, y € X such that T'(x) ~ y, i.e., in particular,
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theset D :={g e G:d(g-T(x),g-y) > &} is finite, there exists z ~ x such that T'(z) = y
and{g € G:d(g-x,g-2) > 68} C FD.
The finite set F is called a post-surjectivity set for T .

Remark 5.2. A good question asked by the referee is whether the strong post-surjectivity
of T depends on the expansiveness constant §, which is not canonical and can be always
replaced by a smaller constant. We claim that by choosing another smaller expansiveness
constant 0 < y < §, we may need to enlarge the post-surjectivity set; nevertheless, a post-
surjectivity set still exists and is finite, answering the question. This follows from the
following observation. There exists a finite set D, € G such that for every x, y € X, if
d(x,y) > y, then there is g € D, such that d(g - x, g - y) > §. Indeed, otherwise, for
every finite set £ C G there are elements xg, yg € X satisfying d(xg, yg) > y and
d(g-xg,g-yg) <4, forall g € E. By passing to a subsequence if necessary, we may
assume that xg — x and yg — y, and we then clearly have d(x, y) > y, so in particular
X # y. By expansiveness, there is g € G such that d(g - x, g - y) > §, but then also
d(g-xg,g-yg) > ¢ for all sufficiently large E, which is a contradiction.

It follows that by changing the expansiveness constant to y, we may replace F by
D;'-F.

Obviously, the previous definition can only be reasonable provided the reversible maps
satisfy it. We show that this is indeed the case.
First, we need an analogue of Lemma 1.9.

Lemma 5.3. Leta: G ~, X have an expansiveness constant § > 0. A continuous G -equiv-
ariant map T is injective if and only if there exists a finite set F C G such that for every
x #yeXwithd(x,y) > 6, thereis f € F suchthatd(f - T(x), f-T(y)) > 6.

Proof. Suppose that a continuous G-equivariant map 7 satisfies such a condition. We
show that it is injective. Choose x # y € X. By expansiveness, there is g € G such that
d(g-x,g-y) > 0,sotheremustbe f € F suchthatd(fg-T(x), fg-T(y)) > §;in par-
ticular, T'(x) # T ().

We now show the converse. Suppose it does not satisfy the condition. Then for every
finite set F' C G there are xf, yr € X such that d(xp, yr) > 8, yet d(f - T(xFp), f -
T(yr)) <6 for all f € F. Since X is compact, we may assume that the nets (xrg)r
and (yF)F converge to elements x and y, respectively. We have d(x, y) > §, so x # y.
If T(x) # T(y), then by expansiveness there exists f € G such that d(f - T'(x), f -
T(y)) > 8. Then however d(f - T(xF), f - T(yFr)) > 6 for all sufficiently large sets F
containing f'. This contradiction shows that T'(x) = T'(y), so T is not injective. L]

Definition 5.4. For an injective continuous G-equivariant map 7, the finite set F' from
Lemma 5.3 is called an injectivity set for T'.

Proposition 5.5. Let an action a: G ~, X be as above. Let T: X — X be a continuous
G -equivariant map which is moreover reversible. Then T is strongly post-surjective.
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Proof. Since T is an injective continuous G-equivariant map, let F be a finite injectivity
set for T provided by Lemma 5.3. We may suppose that it is symmetric. We show it
is a post-surjectivity set for 7. Choose x,z € X such that T(x) ~ z. Set y := T~1(z).
Since T~ is, by assumption, continuous and G-equivariant, we have x ~ y, and obviously
T(y)=z.SetD :={geG:d(g-T(x),g-z) > 8)}, which is finite. Suppose that there
is h € G~ FD such that d(h - x,h - y) > §. Then, since F is an injectivity set for T,
there must be f € F suchthatd(fh-T(x), fh-z) > 6. Therefore fh e D,soh € FD,
a contradiction. ]

Theorem 5.6. Let a: G ~ X be as above. Suppose that there exists a dense class in the
homoclinicity relation ~. Let T: X — X be a pre-injective and strongly post-surjective
continuous G-equivariant map. Then T is injective.

Proof. Let 6 > 0 be an expansiveness constant. Suppose that such T is not injective, so
there are wy # w, € X with T'(w;) = T (w,). By expansiveness, there is g € G such that
d(g- w1, g-wz) > 4§, so, without loss of generality, we can assume that d(w, wz) > 6.
Let F C G be a finite symmetric post-surjectivity set for 7. By the assumption, there
exists v € X whose equivalence class {v' € X: v’ ~ v} is dense in X. Therefore, by the
continuity of 7" and of the group action, we can find v; ~ v and v, ~ v, where d(vy, wy)
and d (v, wy) are small enough so that d(vy, v2) > § and forevery f € F,d(f - T(vy),
f-T(v2)) <§é.Since T is pre-injective, T'(vy) # T (v2). So by expansiveness, there exists
g€ Gsothatd(g-T(v1),g-T(v2)) > 4. By assumption, g ¢ F. Now apply the strong
post-surjectivity to x = vy and z = T'(v2). We have

geD:={heG:dh -T(x),h-2z)>8 NF =0.

By strong post-surjectivity, there exists y ~ x = vy with T(y) = z = T(vz) such that
D' :={heG:d(h-x,h-y)>8} C FD.However, pre-injectivity of T implies that y = v,,
so since d(vy,v3) > 6, lg € D’. Since for every f € F,d(f - T(vy), f - T(v2)) <6,
we have F N D = @. Since F is symmetric, it follows that 1g ¢ FD. This contradiction
finishes the proof. ]

We shall need one more simple lemma, where we require that every class in the homo-
clinicity relation is dense.

Lemma 5.7. Let a: G ~ X be as above, and suppose that every class [x]~ in the homo-
clinicity relation is dense. Then every strongly post-surjective continuous G-equivariant
map T: X — X is surjective.

Proof. Pick an arbitrary x € X and we show that there is y € X such that T(y) = x. Letd
be a compatible metric on X. Since {z € X:z ~ T'(x)} is dense in X, for every n € N,
there is z, ~ T'(x) with d(z,, x) < 1/n. By strong post-surjectivity, there is y, € X for
each n € N such that T'(y,) = z,. Their cluster point y clearly satisfies T (y) = x. |
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We now apply the previous results to expansive algebraic actions of amenable groups,
thoroughly studied in the context of surjunctivity for example in [12] and [23].
The following is the most important definition.

Definition 5.8. Let o: G ~ X be an expansive action of a group G on a compact met-
rizable space X by homeomorphisms. We say that «: G ~ X is dual surjunctive if every
continuous G-equivariant strongly post-surjective map 7: X — X is reversible.

In the sequel, we work with algebraic actions. That is, actions of countable groups
on compact metrizable abelian groups by continuous automorphisms. By the Pontryagin
duality, all such actions of a countable group G are in one-to-one correspondence with
countable modules over the group ring Z[G]. We refer to [22, Chapter 13] for an intro-
duction to expansive algebraic actions and the notions of entropy from the next result.
We recall that a group is polycyclic-by-finite if it is obtained recursively in finitely many
steps by the group extension operation, using at each step a finite or a cyclic group.

Theorem 5.9. Let o: G ~ X be an expansive algebraic action of a countable amenable
group on a compact metrizable abelian group X with completely positive entropy with
respect to the normalized Haar measure on X. Suppose that at least one of the following
conditions is satisfied:

(1) G is polycyclic-by-finite,

(2) the set A(X) of elements of X that are homoclinic to the identity element ex of X
is dense in X.

Then « is dual surjunctive.

Proof. We need (2). If (1) is satisfied, i.e., G is polycyclic-by-finite, then by [12, The-
orem 1.2], the assumption on completely positive entropy implies that the set A(X) is
dense in X; that is, (1) implies (2). Notice also that each equivalence class in ~ is a trans-
late of A(X), so actually each equivalence class is dense. So fix a strongly post-surjective
continuous and G-equivariant map 7: X — X. By Lemma 5.7, T is surjective.

It follows that we can apply [23, Theorem 1.2] to get that 7 is pre-injective. Finally,
we have all the ingredients to apply Theorem 5.6 to obtain that T is reversible. ]
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