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Euclidean Artin–Tits groups are acylindrically hyperbolic

Matthieu Calvez

Abstract. In this paper, we prove that all Euclidean Artin–Tits groups are acylindrically hyperbolic.
To any Garside group of finite type, Wiest and the author associated a hyperbolic graph called the
additional length graph and they used it to show that central quotients of Artin–Tits groups of
spherical type are acylindrically hyperbolic. In general, a Euclidean Artin–Tits group is not a priori a
Garside group but McCammond and Sulway have shown that it embeds into an infinite-type Garside
group which they call a crystallographic Garside group. We associate a hyperbolic additional length
graph to this crystallographic Garside group and we exhibit elements of the Euclidean Artin–Tits
group which act loxodromically and weakly properly discontinuously on this hyperbolic graph.

1. Introduction

An Artin–Tits group is a group defined by a presentation involving a finite set of generators
S (the standard generators) and where all the relations are as follows: every pair .a; b/ of
standard generators satisfies at most one balanced relation of the form

….a; bIma;b/ D ….b; aIma;b/;

with ma;b D mb;a > 2 and where for j > 2,

….a; bI j / D

´
.ab/

j
2 if j is even,

.ab/
j�1
2 a if j is odd.

We also write ma;b D mb;a D 1 when a and b satisfy no relation. This presentation
can be encoded by a Coxeter graph � . The vertices of � are in bijection with the set S .
Two distinct vertices a; b of � are connected by an edge labeled ma;b if and only if either
they satisfy no relation orma;b > 2. The Artin–Tits group defined by the Coxeter graph �
will be denoted by A� . The rank of A� is the cardinality of S . The quotient of A� by the
normal subgroup generated by the squares of the elements in S is a Coxeter group denoted
by W� . The group A� (W� respectively) is said to be irreducible if � is connected.

The geometry of Artin–Tits groups has recently attracted a lot of attention and non-
positive curvature features have been exhibited for many classes of Artin–Tits groups. In
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this paper, we focus on the acylindrical hyperbolicity, which was introduced and extens-
ively discussed in [24]. The class of acylindrically hyperbolic groups is both sufficiently
large to include a significative number of interesting groups and restrictive enough to
deduce many interesting consequences. An isometric action of a group G on a metric
space .X; dX / is acylindrical if for every " > 0, there exist R;N > 0 such that whenever
two points x; y 2 X are at a distance at least R apart, then

#
®
g 2 G; dX .x; g � x/ 6 "; dX .y; g � y/ 6 "

¯
6 N:

A group is acylindrically hyperbolic if it is not virtually cyclic and admits an acylindrical
isometric action on a hyperbolic metric space with unbounded orbits.

It is conjectured that the central quotient of every irreducible Artin–Tits group of rank
at least 2 is acylindrically hyperbolic [14, Conjecture B]. Artin–Tits groups of rank 2 are
called dihedral Artin–Tits groups and (when irreducible) their central quotients are virtu-
ally free hence acylindrically hyperbolic [14]. Here is a brief overview of some classes of
Artin–Tits groups for which the conjecture has been proved.

• Artin’s braid group, seen as the mapping class group of the punctured disk [4].

• Artin–Tits groups of spherical type (the Coxeter group is finite) [7].

• Right-angled Artin–Tits groups (ma;b 2 ¹2;1º for any standard generators a ¤ b)
[17].

• Artin–Tits groups of extra extra large type (ma;b > 5 for any standard generators
a ¤ b) [14].

• 2-dimensional Artin–Tits groups of hyperbolic type (for each triple of distinct standard
generators a; b; c, we have 1

ma;b
C

1
mb;c
C

1
ma;c

6 1, and the associated Coxeter group
is hyperbolic) [18].

• Artin–Tits groups for which there is no partition S D S1 t S2 of the set of standard
generators satisfying ma;b <1 for all a 2 S1; b 2 S2 [9].

• 2-dimensional Artin–Tits groups [28].

In this paper, we focus on the class of Euclidean Artin–Tits groups. The theory of
arbitrary Coxeter groups and Artin–Tits groups stems from the study of discrete groups
generated by reflections which act geometrically on spheres (finite Coxeter groups) and
Euclidean spaces (Euclidean Coxeter groups). Finite and Euclidean Coxeter groups are
central in Lie theory and they were studied much longer before Tits gave the general defin-
ition [27] of arbitrary Coxeter and Artin–Tits groups. An Artin–Tits group has spherical
type, or Euclidean type, respectively, if the associated Coxeter group is finite, or Euclidean,
respectively.

There is a well-known classification of connected Coxeter graphs ((extended) Dynkin
diagrams) defining irreducible finite and Euclidean Coxeter groups. Artin–Tits groups of
spherical type have long been well-understood thanks to their Garside structure [6, 11].
By contrast, Artin–Tits groups of Euclidean type remained mostly mysterious (with some
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exceptions, see [12, 13, 26]) for decades, until their structure was elucidated by McCam-
mond and Sulway [23] around 2015. In this paper we prove the above conjecture for
irreducible Artin–Tits groups of Euclidean type (note that these groups are centerless, by
[23, Proposition 11.9]):

Theorem A. Let A be an irreducible Artin–Tits group of Euclidean type. Then A is acyl-
indrically hyperbolic.

To establish that a given group is acylindrically hyperbolic, it is often simpler to use an
equivalent characterization due to Osin [24, Theorem 1.2]: a non-virtually cyclic group G
is acylindrically hyperbolic if and only if it acts by isometries on a hyperbolic metric space
and some element acts in a loxodromic weakly properly discontinuous (WPD) fashion, see
[2]. An element g 2 G acts loxodromically on the metric space .X; dX / if for some (any)
x 2 X there is some � > 0 so that for all k 2 Z,

dX .x; g
k
� x/ > jkj�;

and it acts weakly properly discontinuously (WPD) if for all x 2 X and for all " > 0, there
exists N > 0 such that the set®

h 2 G; dX .x; h � x/ 6 "; dX .g
N
� x; hgN � x/ 6 "

¯
is finite.

We consider first the case of the affine braid group, or Artin–Tits group A zAn , where
zAn is a graph with two vertices joined by an edge with label1 if nD 1 and a cyclic graph

on nC 1 vertices with all labels equal to 3 if n > 2.

Proposition 1.1. Let n > 1. The affine braid group A zAn is acylindrically hyperbolic.

Proof. For nD 1, A zA1 is a free group of rank 2. Suppose that n > 2. It is known that A zAn
embeds into the central quotient of Artin’s braid group on .nC 2/ strands [16] – note that
the image consists of the projections modulo the center of the so-called 1-pure braids (the
braids whose first strand ends in the first position). The central quotient of the braid group
on .nC 2/ strands in turn embeds in the mapping class group of a sphere with .nC 3/
punctures, so it has an acylindrical action on the curve graph of the punctured disk [4].
This curve graph is hyperbolic and each pseudo-Anosov braid acts on it in a loxodromic
way [19]. Because the action is acylindrical, it follows that each pseudo-Anosov braid acts
on the curve graph in a WPD manner. Up to taking a power, each pseudo-Anosov braid is
1-pure, so it lies in the image of the affine braid group; therefore, as the affine braid group
is not virtually cyclic, the above mentioned result by Osin applies to show that the affine
braid group is acylindrically hyperbolic.

Our proof for a general irreducible Artin–Tits group of Euclidean type closely follows
the construction of Wiest and the author to show that central quotients of Artin–Tits groups
of spherical type are acylindrically hyperbolic [7]. Let us recall the strategy. They first
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constructed from any finite-type Garside group G a hyperbolic graph CAL.G/ called the
additional length graph on which the group G=ZG acts isometrically, see [8]. When G
is an Artin–Tits group of spherical type, they exhibit in [7] some element xG of G=ZG
whose action on this hyperbolic graph is loxodromic and WPD. Acylindrical hyperbolicity
of G=ZG then follows by the above-mentioned theorem of Osin.

On another hand, McCammond and Sulway have established that each irreducible
Artin–Tits group of Euclidean type A embeds in a so-called crystallographic group C

with a Garside structure of infinite type [23]; such a group is sometimes also called a
quasi-Garside group. It turns out that the construction and the proof of the hyperbolicity
of the additional length graph given in [8] adapt immediately in this more general context
and we obtain again a hyperbolic graph CAL.C/ with an isometric action of C. Then, we
construct elements of A < C which act loxodromically and in a WPD fashion on this
additional length graph. We conclude in the same way, using Osin’s characterization of
acylindrically hyperbolic groups.

The paper is organized as follows. In Section 2, we give the suitable definition of a
Garside group, we recall the construction of the additional length graph and its hyperbol-
icity. In Section 3, we recall a number of facts on Euclidean Coxeter groups used in the
sequel. In Section 4, we construct the desired loxodromic elements. In Section 5, we prove
Theorem A.

2. Garside structure and the additional length graph

The reader is referred to [10] for a detailed account on Garside theory; the unpublished
text [20] can also be useful.

Definition 2.1 (Garside monoid). A monoid M is a Garside monoid if it satisfies the
following conditions:

(1) M is left and right cancellative, that is, for all a; b; c 2M , either of the conditions
ab D ac or ba D ca implies b D c.

(2) There exists a map � W M ! N [ ¹0º satisfying �.ab/ > �.a/ C �.b/ for all
a; b 2M and �.a/ D 0 if and only if a D 1.

(3) Both relations 4 and < in M are lattice orders on M :

• a 4 b if and only if there is c 2M so that b D ac (a is a prefix or left divisor
of b or b is a right multiple of a).

• a < b if and only if there is c 2M so that a D cb (b is a suffix or right divisor
of a or a is a left multiple of b).

(4) There is an element � 2 M , called the Garside element, such that the left and
right divisors of� are the same and generateM . These elements are called simple
elements. A simple element is proper if it is distinct from 1 and �.



Euclidean Artin–Tits groups are acylindrically hyperbolic 967

Remark 2.2. (i) In the usual definition of a Garside monoid, the set of simple elements
is assumed to be finite; a Garside monoid with a finite number of simple elements is said
to be of finite type. In absence of this condition, the monoid M is also sometimes called a
quasi-Garside monoid, see [10, Definitions 2.1 and 2.2].

(ii) For some of the Garside monoids considered in this paper, it will be convenient
to modify slightly the condition (2), so that the function � has values in N [ 2

3
N [ ¹0º

instead of N [ ¹0º.
(iii) An element a 2 M is an atom if a is indecomposable, that is, if the condition

a D bc with b; c 2M implies b D 1 or c D 1. The set of atoms generates M .

Definition 2.3 (gcds, lcms, complements and weightedness). The left/right greatest com-
mon divisor of a; b 2M is denoted by a ^ b=a ^� b; the right/left least common multiple
of a; b is denoted by a _ b=a _� b. Let s be a simple element. Owing to condition (1),
there exists a unique @.s/ 2M such that s@.s/ D �. By condition (4), this element is still
a simple element, called the right complement of s. Similarly, we have the left complement
@�1.s/ of s, which is the unique simple element satisfying @�1.s/sD�. Conjugation by�
induces a bijection of the set of simple elements which we denote by � : �.s/D @.@.s// and
s� D ��.s/. This map extends to an automorphism of M ; when M is of finite type, this
automorphism has finite order but this need not be the case in our more general context. An
ordered pair .s; s0/ of simple elements is left-weighted if @s ^ s0 D 1. In other words, this
means that no non-trivial prefix a of s0 satisfies that sa is still a simple element. Similarly,
the ordered pair .s; s0/ of simple elements is called right-weighted if @�1.s0/ ^� s D 1.

Proposition 2.4 (Normal forms). A Garside monoid M embeds in its group of fractions
G and G is called a Garside group; in this context, the elements of M are called positive.
Each element g in G admits a unique decomposition g D a�1b, where a; b 2 M and
a ^ b D 1. This is called the negative-positive normal form of g. Each element g 2 G
also admits a unique decomposition g D �ps1 : : : sq , called its left normal form, where
p 2 Z, q > 0, and the si are proper simple elements such that .si ; siC1/ is left-weighted.
Similarly, each g 2 G admits a unique right normal form g D s0q : : : s

0
1�

p where the s0i
are proper simple elements such that .s0iC1; s

0
i / is right-weighted. The integers p, q and

q C p are respectively called the infimum, the canonical length and the supremum of g
and we denote p D inf.g/, q D `.g/ and p C q D sup.g/.

The following statements can all be found in [8] for finite-type Garside groups. How-
ever, they extend immediately to our more general context.

Definition 2.5 (Absorbable, see [8, Definition 1]). Let G be a Garside group. An element
g of G is said to be absorbable if the two following conditions are satisfied:

• inf.g/ D 0 or sup.g/ D 0,

• there exists some h 2 G such that

inf.hg/ D inf.h/ and sup.hg/ D sup.h/:

The following lemma is a useful technical fact about absorbable elements.
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Lemma 2.6 (Subwords of absorbable elements, see [8, Lemma 2]). Let G be a Garside
group. Suppose that an absorbable element g 2G factors as a product of positive (possibly
trivial) elements: g D g1g2g3. Then g2 is absorbable.

Definition 2.7 (Additional length graph, see [8, Definition 2] and [1, Section 2.1]). Let G
be a Garside group. The additional length graph associated to G is the graph denoted by
CAL.G/ defined in the following way:

• The vertices are in bijection with the left cosets g�Z; g 2 G. Each vertex V has a
unique distinguished representative V of infimum 0. We denote by � the vertex �Z.

• Two vertices V and V 0 are connected by an edge if and only if one of the following
holds:

– There is a proper simple element s such that V s belongs to the coset V 0 (this
is equivalent to saying that there is some proper simple element s0 so that V 0s0

belongs to the coset V ).

– There is an absorbable element g such that V g 2 V 0 (equivalently, there is an
absorbable element g0 so that V 0g0 2 V ).

The graph is endowed with the edge-metric which we denote by dAL. There is an isometric
action of G by left translation on the vertices: for g 2 G and V a vertex of CAL.G/,
g � V D .gV /�Z.

Definition 2.8 (Preferred paths, see [8, Definition 3] and [1, Section 3.1]). Let G be a
Garside group. Consider a vertex V of CAL.G/ and write V D s1 : : : sr for the left normal
form of its distinguished representative. The preferred path A.�; V / is the path

�; s1�
Z; : : : ; .s1 : : : sr /�

Z
D V

from � to V . Given any two vertices V1; V2 of CAL.G/, the preferred path A.V1; V2/ is
the V1 left translate of the path A.�; V1

�1
� V2/.

Here is a summary of the properties enjoyed by the preferred paths.

Proposition 2.9 (Properties of preferred paths). Let G be a Garside group. Let V1; V2; V3
be three vertices of CAL.G/.

(i) ([8, Lemma 4]) The preferred path A.V1; V2/ is the concatenation of the paths
A.V1; .V1 ^ V2/�

Z/ and A..V1 ^ V2/�
Z; V2/.

(ii) ([8, Lemma 5]) The preferred paths are symmetric; that is, A.V2; V1/ is the
reverse of A.V1; V2/.

(iii) ([7, Lemma 2]) Let g 2 G. We have A.g � V1; g � V2/ D g �A.V1; V2/.

(iv) ([8, Lemma 7]) The triangle in CAL.G/ with vertices V1; V2; V3 and with sides
A.V1; V2/, A.V2; V3/ and A.V3; V1/ is 2-thin: each side is at Hausdorff distance
at most 2 from the union of the other two sides.
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Finally, the main result of [8] is the following.

Theorem 2.10 (Hyperbolic, see [8, Theorem 1]). Let G be a Garside group. The graph
CAL.G/ is 60-hyperbolic and the preferred paths form a family of uniformly unparamet-
erized quasi-geodesics: for all vertices V1; V2 of CAL.G/, the Hausdorff distance between
A.V1; V2/ and any geodesic connecting V1 and V2 is bounded above by 39.

3. Euclidean Coxeter groups

In this section we gather a number of useful facts concerning Euclidean Coxeter groups.
We follow McCammond’s approach developed in [5, 21, 23] with Brady and Sulway, see
also [22] and [25]. Other useful references are [3, 15].

3.1. Euclidean isometries

Definition 3.1 (Euclidean space and its isometries). We denote by E D Rn the n-dimen-
sional Euclidean space endowed with the usual scalar product

h�; �0i D h.�i /
n
iD1; .�

0
i /
n
iD1i D

nX
iD1

�i�
0
i :

Two elements �;�0 2E are orthogonal if h�;�0i D 0. Given �;�0 2E, the distance between
� and �0 is the Euclidean norm k�0 � �k D

p
h�0 � �; �0 � �i. We denote by ISOM.E/ the

group of isometries of E, that is, the group of distance-preserving transformations of E.
Throughout, the elements of E will be formally considered as vectors; however, E can
be identified with the affine space which it underlies and sometimes it will be intuitively
clearer to think of elements of E also as points rather than vectors.

Definition 3.2 (Linear subspace). A linear subspace of E is a non-empty subset closed
under linear combination. We denote by DIM.U / the dimension of a linear subspace U
of E. Each linear subspace U of E has an orthogonal complement U?, which is the linear
subspace of E made of those elements in E which are orthogonal to all elements of U .
There is a direct sum decomposition E D U ˚ U?, and DIM.U?/ D n � DIM.U / is
called the codimension of U .

Definition 3.3 (Affine subspace). A subset B of E is an affine subspace if there are a
linear subspace U of E and an element � of E such that B D U C � . Note that U D
¹�0 � �; �; �0 2 Bº. The linear subspace U is called the direction of the affine subspace B
and we denote it by DIR.B/. The dimension of B is DIM.DIR.B//. An affine subspace is
a linear subspace if and only if it contains 0E (equivalently if it is equal to its direction).
Given an affine subspace B , there is a unique �0 2 B such that k�0k is minimal; then
B D DIR.B/C �0 and this is called the standard form of B – note that �0 2 DIR.B/?.
Two affine subspaces B1; B2 of E are parallel if B1 \ B2 D ; and DIR.B1/ � DIR.B2/

(or vice-versa).
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Definition 3.4 (Hyperplane and reflection). A hyperplane of E is an affine subspace of
dimension n � 1. Given a hyperplane H in E, there is a unique non-trivial isometry rH
of E which fixes H pointwise; rH is called the reflection through H . The orthogonal
complement of DIR.H/ is a line in E; a non-trivial vector in this line is called a root of
the reflection rH . Given a hyperplane H � E and a root ˛ of rH , there is a unique c 2 R
such thatH D ¹� 2 E; h�;˛i D cº. With the same notation, we also write r˛;c D rH . This
isometry can be described explicitly by

r˛;c.�/ D � � 2
h˛; �i � c

h˛; ˛i
˛; 8� 2 E:

Definition 3.5 (Translation). Given � 2E, the map t� W � 7! �C � is called the translation
of vector �; this transformation belongs to ISOM.E/. The subset of all translations in
ISOM.E/ is an abelian subgroup isomorphic to the additive group of E.

Definition 3.6 (Basic invariants). Associated to any isometry u 2 ISOM.E/ are two basic
invariants, called the move-set and the min-set of u, see [5, Definition 3.1]. Given � 2 E,
its displacement under u is DISu.�/ D u.�/ � � and the move-set of u is the set of dis-
placements: MOV.u/ D ¹DISu.�/; � 2 Eº. For every u 2 ISOM.E/, MOV.u/ is an affine
subspace of E; the min-set of u is the set MIN.u/ D ¹� 2 E; kDISu.�/k minimalº and
this is also an affine subspace of E, see [5, Proposition 3.2]. Note that MOV.u/ is a linear
subspace if and only if u has some fixed point, in which case u is called elliptic. Other-
wise, u is called hyperbolic. For each isometry u, the respective directions of the move-set
and the min-set of u are mutually orthogonal complementary linear subspaces of E, see
[5, Lemma 3.6]. Intuitively, the move-set of u is the set of vectors which are motions of
points under the isometry u while the min-set of u is the set of points with the minimal
possible motion.

Example 3.7. (i) Let H be a hyperplane in E. The reflection rH is an elliptic isometry,
with MIN.rH / D H and MOV.rH / D .DIR.H//?.

(ii) If � 2 E is non-zero, the translation of vector � is a hyperbolic isometry with
MIN.t�/ D E and MOV.t�/ D ¹�º.

(iii) LetH �E be a hyperplane; a glide-reflection throughH is the composition of the
reflection rH and a translation t� by a non-zero vector � 2 DIR.H/; this is a hyperbolic
isometry whose min-set is H and whose move-set is the affine line .DIR.H//? C �.

Definition 3.8 (Reflection length and order). By the Cartan–Dieudonné theorem, the
reflections generate ISOM.E/. Given u 2 ISOM.E/, its reflection length jujISOM is the min-
imal number of reflections needed to write u. Note that conjugates of reflections are again
reflections, so that the reflection length is invariant under conjugacy. We have a partial
order on ISOM.E/ given by u 4 u0 if and only if jujISOM C ju

�1u0jISOM D ju
0jISOM. Note

that this is equivalent to the condition ju0jISOM D jujISOM C ju
0u�1jISOM that u right divides

u0. Given v 2 ISOM.E/, we denote by Œ1; v� D Œ1; v�ISOM.E/ the interval formed by those
isometries u satisfying u 4 v.
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The main result in [5] gives a close relation between this partial order and the basic
invariants. Here, we record only what will be used in the sequel:

Proposition 3.9. (i) A hyperbolic isometry can never be smaller than an elliptic one.

(ii) ([5, Theorem 8.7]) Let v 2 ISOM.E/. If u1; u2 2 Œ1; v� are elliptic isometries, then
u1 4 u2 if and only if MIN.u2/ � MIN.u1/.

3.2. Euclidean Coxeter groups

Definition 3.10 (Euclidean Coxeter groups). Irreducible Euclidean Coxeter groups (hence
also irreducible Artin–Tits groups of Euclidean type) are classified into four infinite famil-
ies and five exceptional groups. The corresponding Coxeter graphs zAn (n> 1), zBn (n> 2),
zCn (n > 2), zDn (n > 4), zE6, zE7, zE8, zF4 and zG2 are displayed in Figure 1.

ForZ 2 ¹A;B;C;D;E;F;Gº and n 2N, letZn be the full subgraph of zZn consisting
of the black vertices, see Figure 1. Then the Coxeter group WZn is finite. The graphs Zn
and zZn are known as Dynkin diagrams and extended Dynkin diagrams respectively (up to
replacing the edges labeled 4 by a double edge and the edge labeled 6 by a triple edge).
The meaning of the inequality signs will be explained later. From now on, we choose an
arbitrary fixed extended Dynkin diagram zZn and we denote W D W zZn and W0 D WZn .

Definition 3.11 (Root system). The root system of type Zn is described in [3, Planches I
to IX]: this is a finite subset of EDRn and its elements are called roots. Let us denote by„
this root system; it contains a simple system „0 (a linear basis of E such that each ˛ 2 „
is a linear combination of „0 with coefficients all of the same sign). The set of (linear)
reflections r˛;0, ˛ 2 „0 is the set of standard generators of the finite Coxeter group W0.

Figure 1. Coxeter graphs for irreducible Euclidean Coxeter groups. For Z 2 ¹A;B;C;D;E;F;Gº
and n 2 N, the graph named zZn has nC 1 vertices. As usual, edge labels 3 are dropped.
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Definition 3.12 (Highest root). Given ˛ 2„, the sum of the coefficients in the – unique –
expression of ˛ as a linear combination of „0 is called the height of ˛. There is a unique
highest root; let us denote it by �. We have a unique linear combination

� D
X
˛2„0

m˛˛; (1)

where the m˛ are positive integers.

Definition 3.13 (Standard generators). Let r�;1 be the reflection in E through the hyper-
plane ¹� 2 E; h�; �i D 1º, let

S D ¹r˛;0; ˛ 2 „
0
º [ ¹r�;1ºI

then S is the set of standard generators for the Euclidean Coxeter groupW and the reflec-
tion r�;1 corresponds to the white vertex in the extended Dynkin diagram of Figure 1.

Definition 3.14 (Length of roots). If zZn has no label on its edges, all roots in „ have
the same length while in the other cases, the roots have two different lengths and they are
called long or short, accordingly. In presence of a label 4 (6, respectively), the ratio of the
two different root lengths is

p
2 (
p
3, respectively). In the extended Dynkin diagram, the

inequality sign(s) indicate(s) which roots are longer.

Definition 3.15 (Elements of W , coroots and the Coxeter complex). Every reflection in
W has the form r˛;c for ˛ 2 „ and c 2 Z; the corresponding hyperplanes H˛;c provide
a simplicial tiling of E called the Coxeter complex. The spacing between two consecutive
parallel hyperplanes H˛;i and H˛;iC1 is given by the vector ˛

h˛;˛i
, so that hyperplanes

corresponding to long roots are more closely spaced. The set of translations in W is gen-
erated by the translations of the form t˛_ D r˛;iC1r˛;i where ˛_ D 2˛

h˛;˛i
for ˛ 2 „. The

vector ˛_ is called the coroot associated to ˛.

3.3. Coxeter elements

Definition 3.16 (Coxeter element). A Coxeter element forW is a product of the elements
in S in any order. Every Coxeter element is a hyperbolic isometry whose move-set is a
non-linear affine hyperplane of E (see [21, Proposition 7.2]).

From this point on, we make the additional assumption thatW is notW zAn – the case of
zAn (n> 1) is somewhat different, as the extended Dynkin diagram is not a tree (except for
W zA1 which is dihedral). The proof of the acylindrical hyperbolicity of the corresponding
Artin–Tits group is given in the introduction, see Proposition 1.1.

Definition 3.17 (Bipartite Coxeter element). As the extended Dynkin diagram zZn is a
tree, there is a unique way of 2-coloring its vertices (say blue and green) in such a way
that no two adjacent vertices have the same color. This yields a partition S D Sb t Sg of
S in which the reflections in each part commute pairwise. Without loss, we may assume
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that r�;1 2 Sb . Let us denote ˆ D „0 t ¹�º; this set of roots is partitioned accord-
ingly: ˆ D .¹�º t „0

b
/ t „0g , where the vectors in each part are pairwise orthogonal.

The two elements �b D
Q
r2Sb

r and �g D
Q
r2Sg

r are involutions and we obtain two
special Coxeter elements, inverses of each other (namely, �b�g and �g �b) called the bipart-
ite Coxeter elements. From now on, we fix w D �b�g ; this element will be referred to
as the Coxeter element. Also, we denote by w0 the Coxeter element of W0 defined by
w0 D r�;1w.

Definition 3.18 (Coxeter axis). The min-set of the Coxeter element w is a line called the
Coxeter axis; let us denote it by L. According to [21, Remark 8.4], the direction of the
Coxeter axis is given by


 D � �
X
˛2„0

b

m˛˛ D
X
˛2„0g

m˛˛; (2)

where them˛ with ˛ 2 „0 are the positive integers involved in formula (1). For all � 2 L,
the displacement DISw.�/ under w is the same and we denote it by 
0, see [5, Proposi-
tion 3.7]; the standard form of MOV.w/ is MOV.w/ D DIR.L/? C 
0.

Definition 3.19 (Horizontal and vertical). A vector which is orthogonal to the direction
of the Coxeter axis is called horizontal; a vector which is not horizontal is called vertical.
Similarly, a reflection is called horizontal (or vertical, respectively) if its root is horizontal
(vertical, respectively).

Lemma 3.20. The standard generators of W are vertical reflections.

Proof. Let ˛ 2ˆ be the root of an element in S . We need to check that ˛ is not orthogonal
to the direction of the Coxeter axis. As in Definition 3.17, write the bipartite decomposi-
tion of ˆ as ˆ D .¹�º t„0

b
/ t„0g . According to formula (2), we see that

h˛; 
i D

8̂̂<̂
:̂
h�;�i if ˛ D �,

�m˛h˛; ˛i if ˛ 2 „0
b
,

m˛h˛; ˛i if ˛ 2 „0g ,

because vectors in ¹�º t „0
b

(in „0g , respectively) are pairwise orthogonal. The coeffi-
cientsm˛ in formula (1) cannot be zero. It follows that ˛ is not orthogonal to the direction
of the Coxeter axis.

Definition 3.21 (Horizontal root system and horizontal factorizations, see [23, Definition
6.1]). Let „h be the intersection of „ with the orthogonal complement of DIR.L/. It
turns out that „h is a root system in DIR.L/?, called the horizontal root system. The
corresponding Coxeter groupWh is a subgroup ofW0 called the horizontal Coxeter group.

The Coxeter element w factorizes as

w D r�;1r�;0wh D t�_wh;

wherewh is a Coxeter element ofWh. Any factorization ofw of the formwD t�r1 : : : rn�1
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where t� is a translation and the ri are horizontal reflections is called a horizontal factor-
ization. In any horizontal factorization, the move-set of the horizontal part is precisely the
horizontal hyperplane DIR.L/? and we have MOV.w/ D DIR.L/? C �. It follows that
if t� is the translation in a horizontal factorization, the projection of � on the vertical axis
DIR.L/ is 
0 (defined in Definition 3.18), independently of �.

Definition 3.22 (Translation in the direction of the Coxeter axis). The element wh has
finite order (denoted by e0) and we0 acts as a translation on E in the vertical direction (of
vector e0
0). For u 2 W , we write Tw.u/ D we0uw�e0 . If r is a vertical reflection, then
Tw.r/ is a vertical reflection through a distinct parallel hyperplane. If r is a horizontal
reflection, then Tw.r/ D r .

Proposition 3.23 (Translation part of w, see [23, Proposition 6.3]). For every i 2 Z, we
have Tw.r�;i / D r�;iC1.

3.4. Reflection length and Garside structure

Definition 3.24 (Reflection length in W ). The reflection length jujW of u 2 W is the
minimal number of reflections in W needed to express u. For u; v 2 W , the relation
u 4W v if and only if jujW C ju�1vjW D jvjW defines a partial order onW . The interval
Œ1; v�W is the set ¹u 2 W; u 4W vº. For any Coxeter element w, it turns out that jwjW D
jwjISOM and jujW D jujISOM for every u 2 Œ1; w�W .

Proposition 3.25 (Some elements in Œ1; w�W ). (i) ([21, Theorem 9.6] and [23, Defi-
nition 5.5]) All vertical reflections lie in Œ1; w�W , and Œ1; w�W contains exactly
two horizontal reflections for each antipodal pair of horizontal roots in the root
system „h.

(ii) ([23, Proposition 6.3]) The translations in Œ1;w�W are exactly those which appear
in a horizontal factorization of w.

Definition 3.26 (Dual monoid and group). The monoid associated to Œ1;w�W is the mon-
oidMW

w generated by Œ1;w�W subject to the relations uu0D v whenever u;u0; v 2 Œ1;w�W

satisfy jujW C ju0jW D jvjW and uu0 D v in W . The dual Artin–Tits group is the group
with the same presentation; it is isomorphic to the Artin–Tits group A associated to W
(see [23, Theorem C]).

Theorem 3.27 (Lattice). (i) ([23, Proposition 2.11]) If the interval Œ1;w�W equipped
with the restriction of the partial order 4W is a lattice, then MW

w is a Garside
monoid and the Artin–Tits group A associated to W is a Garside group. There is
a monoid homomorphism (or a weight function) � W MW

w ! N [ ¹0º assigning
1 to each reflection; w is the Garside element whose set of left and right divisors
(the set of simple elements) is the interval Œ1; w�W .

(ii) ([21, Theorem 10.3]) The interval Œ1;w�W is a lattice if and only if the horizontal
root system „h is irreducible.
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(iii) ([21, Section 11]) When „h is not irreducible, it has k0 irreducible components,
with k0 D 2 or k0 D 3. The system„h is irreducible if and only if zZn 2 ¹ zCn; zG2º.

In order to deal with the cases where Œ1;w�W is not a lattice, McCammond and Sulway
define a supergroup C of W . They need first to introduce new isometries:

Definition 3.28 (Factored translation, see [23, Definition 6.7]). Suppose that the hori-
zontal root system „h is reducible; let DIR.L/? D U1 ˚ � � � ˚ Uk0 be the corresponding
direct sum decomposition of the horizontal hyperplane – recall that k0 2 ¹2; 3º by The-
orem 3.27 (iii). Let t� be a translation in Œ1; w�W . The projection of � onto the vertical
line DIR.L/ is 
0 (see Definition 3.21); for i D 1; : : : ; k0, let �i be the projection of �
onto the subspace Ui . The factored translations corresponding to � are the k0 translations
t�iC 1

k0

0

.

Definition 3.29 (Other groups). The crystallographic groupC is the subgroup of ISOM.E/
generated by W together with the factored translations. The diagonal group D is the
subgroup of ISOM.E/ generated by the translations in Œ1; w�W together with horizontal
reflections in Œ1; w�W and the factored group F is the subgroup of ISOM.E/ generated
by factored translations and horizontal reflections in Œ1; w�W . A length is given so that a
reflection has length 1, a factored translation has length 2

k0
and a translation has length 2.

As for W , this yields a length and a partial order on the respective groups. The respective
intervals Œ1; w�D , Œ1; w�F and Œ1; w�C are naturally defined in the same way as Œ1; w�W

(see for instance [22, Section 4]) and one can also associate corresponding monoids and
groups as in Definition 3.26.

Theorem 3.30 (Garside, see [23, Proposition 7.4] and [23, Theorems A and B]). The
interval Œ1; w�C is a balanced lattice (which contains Œ1; w�W ). The monoid MC

w and the
group C associated to Œ1;w�C are Garside and the Artin–Tits group A associated to W is
a subgroup of C. The group C is called the crystallographic Garside group.

Remark 3.31. MC
w is equipped with a monoid homomorphism � extending the lengths

given in Definition 3.29; if k0 D 3, then � takes values in N [ 2
3
N [ ¹0º: it sends each

reflection to 1, and each factored translation to 2
3

, see Remark 2.2 (ii). In any case, reflec-
tions and factored translations are the atoms and w is the Garside element.

4. The loxodromic elements

In this section, an irreducible Euclidean Coxeter group W distinct of W zAn is fixed; we
keep all notations from the previous section.

The set � of simple elements of the crystallographic Garside group C is in bijection
with Œ1;w�C (and contains a copy of Œ1;w�W ). We shall use the same notation for a simple
element in � and for the corresponding isometry of E. For any simple element s 2 � , we
denote by A.s/ (and A0.s/, respectively) the set of atoms which left divide s (right divide
s, respectively).
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When dealing with elliptic isometries, the factored translations do not play an import-
ant role:

Lemma 4.1. Let u 2 Œ1; w�W be an elliptic isometry. Then

A.u/ D A0.u/ D
®
r; r is a reflection in W whose fixed hyperplane contains MIN.u/

¯
:

Proof. First, we shall see that A.u/ and A0.u/ do not contain any factored translation.
Suppose on the contrary that A.u/ or A0.u/ contains some factored translation tF . By the
proof of [23, Lemma 7.2], we know that there does not exist a minimal length factorization
of w in C which includes both a factored translation and a vertical reflection. It follows
that u 2 Œ1; w�D . Because all the factored translations have vectors with the same vertical
projection 
0

k0
, there is some � 2 E such that the displacement DISu.�/ has a vertical

component, so u cannot be a product of only horizontal reflections. Therefore, there is a
translation t 2 Œ1; w�W so that u D tu0 (or u D u0t ), with ju0jW D jujW � 2, which is
impossible as u was supposed to be elliptic, see Proposition 3.9 (i). Now, the first equality
follows from the fact that conjugates of reflections are again reflections. The fact that
MIN.u/ is contained in the fixed hyperplane of every reflection in A.u/ D A0.u/ follows
from Proposition 3.9 (ii). Conversely, if MIN.r/ � MIN.u/, we obtain r 4W u by [25,
Lemma 2.16].

In the sequel, we shall consider the set A.u/ for different elliptic elements u 2 Œ1;w�W

and we will use Lemma 4.1 without explicit reference. Also, according to our convention
using the same symbol for an isometry in Œ1; w�C and the corresponding simple element
in � , we shall write, for u 2 Œ1;w�C , @.u/D u�1w and @�1.u/Dwu�1. This is consistent
with the notation in Definition 2.3. In this context, the left-weightedness of a pair of simple
elements .s; s0/ is equivalent to A.@.s// \ A.s0/ D ;. Similarly, .s; s0/ is right-weighted
if and only if A0.@�1.s0// \A0.s/ D ;.

Recall the “translation” Tw defined by Tw.u/ D we0uw�e0 for all u 2 W (Definition
3.22). Note that for u 2 Œ1;w�W , A.Tw.u//D Tw.A.u//. Recall also the elliptic elements
�b and �g – blue and green – from Definition 3.17, which satisfy �b�g D w (that is, @.�b/D
�g and @�1.�g/D �b). In what follows we will denote �0

b
D Tw.�b/ and �0g D Tw.�g/, so that

wD �0
b
�0g . Observe also that A.�b/D ¹r�;1º t ¹r˛;0; ˛ 2„0bº and A.�g/D ¹r˛;0; ˛ 2„

0
gº.

Finally, recall that the elliptic element w0 is defined by w0 D r�;1w.

Lemma 4.2. The pair .�0
b
; w0/ is left- and right-weighted.

Proof. As A.�b/ D ¹r�;1º t ¹r˛;0; ˛ 2 „0bº, we have

A.�0b/ D ¹Tw.r�;1/º t
yA D ¹r�;2º t yA;

(the equality Tw.r�;1/D r�;2 comes from Proposition 3.23), where yA is a set of reflections
through hyperplanes orthogonal to roots which are distinct from �. Recall that @�1.w0/D
r�;1; the previous discussion shows that r�;1 … A.�0

b
/, whence A.�0

b
/ \A.@�1.w0// D ;

and the right-weightedness follows. Also, @.�0
b
/ D �0g . Fixed hyperplanes of reflections
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in A.�0g/ do not contain 0 while fixed hyperplanes of reflections in A.w0/ do contain 0.
Therefore A.�0g/ \A.w0/ D ;, whence left-weightedness.

Lemma 4.3. The pair .w0; �0g/ is left- and right-weighted.

Proof. Let us describe @.w0/. We have w D r�;1w0 D w0.w�10 r�;1w0/, whence @.w0/D
w�10 r�;1w0. But recall that

w0 D
Y
˛2„0

b

r˛;0
Y
˛2„0g

r˛;0:

In the first product, all reflections commute with r�;1 and in the second (which is a product
in which all reflections commute pairwise), all reflections commute with r�;1, except one
(as r�;1 corresponds to a leaf in the extended Dynkin diagram). Therefore, for some ˛0 2
„0g , we have w�10 r�;1w0 D r˛0;0r�;1r˛0;0. The root of this reflection is

r˛0;0.�/ D
X
˛2„0

m˛r˛0;0.˛/ D �m˛0˛0 C
X

˛2„0gn¹˛0º

m˛˛ C
X
˛2„0

b

m˛r˛0;0.˛/;

which has a positive component along each root in „0
b
. As all reflections in A.�0g/ have

their roots in „0g , we obtain A.@.w0// \A.�0g/ D ;, which shows left-weightedness.
For right-weightedness, note that @�1.�0g/ D �0

b
. On the one hand, A.w0/ consists

of reflections whose fixed hyperplane contains 0, on the other hand, A.�0
b
/ contains no

reflection whose fixed hyperplane contains 0. Therefore A.�0
b
/ \ A.w0/ D ; and we are

done.

Lemma 4.4. Let rv be a vertical reflection and let ˛ 2 „ be a vertical root. Then there is
at most one k 2 Z such that r˛;krv is a simple element. Also, there is at most one l 2 Z
such that rvr˛;l is a simple element.

Proof. First, observe that for a pair of atoms r; r 0, rr 0 is a simple element if and only
if r 2 A0.@�1.r 0// if and only if r 0 2 A.@.r//. By [21, Lemma 9.3], @�1.rv/ D wr�1v is
an elliptic isometry whose min-set is just a point. There is at most one k 2 Z such that
H˛;k contains this point, that is, there is at most one k 2 Z such that r˛;k 2 A.@�1.rv//.
Similarly, @.rv/ is an elliptic isometry whose min-set is just a point. There is at most one
l 2 Z such that H˛;l contains this point, that is, there is at most one l 2 Z such that
r˛;l 2 A.@.rv//.

Lemma 4.5. There is a vertical reflection r0 such that both .r0; �0b/ and .�0g ; r0/ are left-
and right-weighted.

Proof. Fix a vertical root ˛. Let r1; : : : ; rp be an enumeration of A.�0
b
/ and let s1; : : : ; sq

be an enumeration of A.�0g/. By Lemma 3.20 (and Definition 3.22), all these reflections
are vertical. By Lemma 4.4, for each i D 1; : : : ; p and each j D 1; : : : ; q, there is at most
one ki such that r˛;ki ri is simple and at most one lj such that sj r˛;lj is a simple element.
If we choose m0 … ¹k1; : : : ; kp; l1; : : : ; lqº, and r0 D r˛;m0 , then both .r0; �0b/ and .�0g ; r0/
are left- and right-weighted.
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5. Proof of Theorem A

In this section, an Artin–Tits group A of Euclidean type distinct from the affine braid
group is fixed (except in the proof of Theorem A). We keep notations from the previous
sections with the following exception. As it is a standard notation for the Garside element
in Garside groups, we will use the letter � for the Garside element of C – this is the same
that was denoted above by w.

Definition 5.1. For the remainder of the paper, we define the following element of C,
which is also an element of A. Let r0 be as in Lemma 4.5. Define

x D r0 � �
0
b � w0 � �

0
g � r0:

First, we gather some facts about the element x. For any g 2 C with inf.g/ D 0, we
denote @.g/D g�1�sup.g/ – this matches the notation for the right complement of a simple
element s (in which case sup.s/ D 1).

Proposition 5.2. (i) The left and right normal form of x are the same and we just
call it the “normal form”; this normal form is given by the formula in Definition
5.1.

(ii) The first and last factor of the normal form of x coincide; thus x is rigid: for
every m 2 N, the left – and right – normal form of xm is the concatenation of m
copies of the normal form of x.

(iii) Both normal forms of x and @.x/ contain a factor which is the right complement
of a reflection; the elements x and @.x/ are not absorbable.

(iv) For each m > 0, @.xm/ D
Qm�1
iD0 �

5i .@.x// and this is in left and right normal
form as written.

(v) No non-trivial power of � commutes with x.

Proof. (i) follows from Lemmas 4.2, 4.3 and 4.5.
(ii) is immediate.
(iii) To see that x is not absorbable, it suffices to notice that w0 is not absorbable

and to use Lemma 2.6. Recall that � is the weight function of the monoid MC
w (Remark

3.31). If w0 was absorbable, we would have some s 2 � such that w0s is a proper simple
element. We then would have �.w0s/D �.w0/C �.s/D nC �.s/ < nC 1. Then �.s/ < 1
and the only possibility is that k0 D 3 and �.s/ D 2

3
. But then �.@.w0s// D 1

3
, which is

impossible since there is no simple element with weight 1
3

. For the same reason, @.r0/ is
not absorbable and @.x/ is not absorbable.

(iv) In any Garside group, if .x1; x2/ is both a right- and left-weighted pair of simple
elements, then .@.x2/; �.@.x1/// is right- and left-weighted as well. To see this, it is
enough to compute @.@.x2//^ �.@.x1//D �.x2/^ �.@.x1//D �.x2^ @.x1//D 1, whence
left-weightedness; right-weightedness is obtained analogously. The claim then follows
from (i).
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(v) Otherwise, there would be some power l ¤ 0 of � commuting with r0 (see [23,
Proposition 2.14]) and hence r0 would also commute with �le0 (e0 is given in Definition
3.22), which is impossible as r0 is vertical and all isometries T kw .r0/; k 2 Z are distinct
(Definition 3.22).

5.1. Loxodromic

Theorem 5.3. The element x acts in a loxodromic way on the additional length graph
CAL.C/. More precisely, dAL.�; X

k/ > jkj
2

for all k in Z. As a consequence, CAL.C/ has
infinite diameter.

Here, Xk , k 2 Z stands for the vertex xk�Z D xk � � of CAL.C/. Throughout, we
shall use the symbol 4 for the order on C which extends the order on Œ1; w�C to MC

w and
then to C as follows: for g; h 2 C, g 4 h if and only if g�1h 2MC

w . The main tool for the
proof is a projection map from CAL.C/ to ¹Xk ; k 2 Zº:

Lemma 5.4 ([7, Definition 3]). There is a well-defined map ƒ from the set of vertices of
CAL.C/ to Z given by the formula

ƒ.V / D �max
®
k 2 Z; x 64 xk � V

¯
:

This yields a projection from the set of vertices of CAL.C/ onto the set of vertices
¹Xk ; k 2 Zº, given by V 7! Xƒ.V /.

This projection has the following key-property:

Proposition 5.5 ([7, Proposition 4]). Let V1; V2 be two vertices of CAL.C/; let ƒ1 D
ƒ.V1/ and ƒ2 D ƒ.V2/. Suppose that ƒ2 �ƒ1 > 3. Then the preferred path A.V1; V2/

contains the subpath A.Xƒ1C1; Xƒ2�1/.

The technical ground for proving Proposition 5.5 is achieved in [7, Lemmas 5, 6, 7].
The proof of these lemmas is unchanged in our context, with the exception that �sup.x/ is
not central, so @.xk/ ¤ @.x/k for k 2 N. As a consequence, the expression “k copies of
the normal form of @x” in [7] must be replaced by “the normal form of @.xk/”.

Proof of Theorem 5.3. See the proof of [7, Proposition 5].

5.2. WPD

Theorem 5.6. The action of x 2 A < C on CAL.C/ is WPD, that is, for each vertex V of
CAL.C/ and for each � > 0, there exists an integer N such that the set®

g 2 C; dAL.V; g � V / 6 �; dAL.x
N
� V; gxN � V / 6 �

¯
is finite. Equivalently, for each � > 0, there exists an integer N such that the set®

g 2 C; dAL.�; g � �/ 6 �; dAL.X
N ; g �XN / 6 �

¯
is finite.
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The proof follows very closely the proof of [7, Proposition 6]. The first step is to see
that the projection ƒ defined in Lemma 5.4 is coarsely Lipschitz. In what follows, K is
the maximal Hausdorff distance between a geodesic and a preferred path between a pair
of vertices of CAL.C/; one can take K D 39, see Theorem 2.10.

Lemma 5.7 ([7, Proposition 7]). Suppose that V1; V2 are vertices of CAL.C/. Then

jƒ.V2/ �ƒ.V1/j 6 2.dAL.V1; V2/C 2K C 1/:

Proof of Theorem 5.6. Fix any � > 0; let � D � C 2K C 1 and fix N > 4� C 3. Suppose
that g 2 C satisfies

dAL.�; g � �/ 6 � and dAL.X
N ; g �XN / 6 �: (3)

Claim 5.8. We have

ƒ.g �XN / �ƒ.g � �/ > N � 4� > 3:

The preferred path between g � � and g �XN contains the subpath

A.Xƒ.g ��/C1; Xƒ.g �X
N /�1/:

Proof. Under our hypothesis, we have according to Lemma 5.7 (observe thatƒ.XN /DN
and ƒ.�/ D 0),

jN �ƒ.g �XN /j 6 2.� C 2K C 1/ D 2�;

jƒ.g � �/j 6 2.� C 2K C 1/ D 2�I

the first part of the claim follows. Due to our choice of N , the second part of the claim
follows immediately from Proposition 5.5.

Write for short ƒ1 D ƒ.g � �/ and ƒ2 D ƒ.g � XN /. By Proposition 2.9 (iii), the
preferred path A.g � �; g � XN / is the g left translate of the preferred path A.�; XN /, so
by Claim 5.8, there are vertices P and Q along A.�; XN / so that g � P D Xƒ1C1 and
g �Q D Xƒ2�1.

Claim 5.9. P is represented by some power of x, say P D Xa, thus Q D XaCƒ2�ƒ1�2.

Proof. Write x D x1 : : : x5 for the normal form of x (see Definition 5.1) and recall that x
is rigid (Proposition 5.2 (ii)). Notice that the distinguished representatives of the .5N C 1/
vertices along the path A.�; XN / are

�; x1; x1x2; x1x2x3; x1x2x3x4; x; xx1; : : : ; x
2; : : : ; XN :

We know that the path A.P;Q/ has the same length as the path A.Xƒ1C1; Xƒ2�1/, that
is 5.ƒ2 �ƒ1 � 2/, so if P D Xa, then Q D XaCƒ2�ƒ1�2.
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Suppose, in contradiction with the claim, that P D .xax1 : : : xj /�Z for some a and
1 6 j 6 4. Then as the length of A.P;Q/ is 5.ƒ2 �ƒ1 � 2/,

Q D .xaCƒ2�ƒ1�2x1 : : : xj /�
Z:

Therefore we have (notice that P is a prefix of Q)

P�1Q D xjC1 : : : x5x
ƒ2�ƒ1�3x1 : : : xj ; (4)

and this is the left normal form, by construction of x.
On the other hand,

xƒ1C1 D g � P D gP�� inf.gP /

and
xƒ2�1 D g �Q D gQ�� inf.gQ/;

from which we deduce (recall that � is the conjugation by �)

xƒ2�ƒ1�2 D �inf.gP /P�1g�1gQ�� inf.gQ/
D �� inf.gP /.P�1Q/�inf.gP /�inf.gQ/:

Considerations on the infimum show that inf.gP /D inf.gQ/. We see also that xƒ2�ƒ1�2

and P�1Q are conjugate by �� inf.gP /. By [23, Proposition 2.14] (conjugation of normal
forms by �), we see in particular that the first factor (last factor, respectively) of the
normal form of xƒ2�ƒ1�2 and the first factor (last factor, respectively) of the normal form
of P�1Q are conjugate by �� inf.gP /.

By construction of x, the first and last factor of the normal form of xƒ2�ƒ1�2 are x1
and x5 respectively. In view of equation (4) the first and last factor of the normal form of
P�1Q are xjC1 and xj respectively. As � commutes with the weight function �, we obtain
�.xjC1/D �.x1/D 1 and �.xj /D �.x5/D 1, by construction of x, which contradicts the
choice of j .

Claim 5.10. Any element g 2 C which satisfies the conditions (3) is a power of x.

Proof. As ƒ2 � ƒ1 > 3, we have along the path A.P; Q/ D A.Xa; XaCƒ2�ƒ1�2/ at
least two consecutive vertices Xa and XaC1 such that

g �Xa D Xb and g �XaC1 D XbC1

(with b D ƒ1 C 1). By the first equality, we obtain gxa D xb�l for some l 2 Z. By the
second equality, we obtain gxaC1 D xbC1�l

0

for some l 0 2Z. Combining both assertions
yields xb�lx D xbC1�l

0

, which is equivalent to �lx D x�l
0

. This forces l D l 0 (by
considering the infimum) and also l D 0 since no non-trivial power of� commutes with x
(Proposition 5.2 (v)). We deduce that g D xb�a is a power of x as desired.

By Lemma 5.7, if dAL.�;x
l � �/6 �, we have jl j6 2�; hence Claim 5.10 shows that the

elements of C which satisfy the conditions (3) are contained in the finite set ¹xl ; jl j6 2�º.
This achieves the proof of Theorem 5.6.
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Proof of Theorem A. This follows from Proposition 1.1, Theorem 5.6 and a result by Osin
[24, Theorem 1.2].

With the same line of arguments, we have also shown:

Corollary B. The crystallographic Garside group C is acylindrically hyperbolic.
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