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Strongly scale-invariant virtually polycyclic groups
Jonas Deré

Abstract. A finitely generated group I is called strongly scale-invariant if there exists an injective
endomorphism ¢ : I' — T with the image ¢(I") of finite index in I" and the subgroup (),,~¢ ¢" ()
finite. The only known examples of such groups are virtually nilpotent, or equivalently, all examples
have polynomial growth. A question by Nekrashevych and Pete asks whether these groups are the
only possibilities for such endomorphisms, motivated by the positive answer due to Gromov in the
special case of expanding group morphisms.

In this paper, we study this question for the class of virtually polycyclic groups, i.e. the virtually
solvable groups for which every subgroup is finitely generated. Using the Q-algebraic hull, which
allows us to extend the injective endomorphisms of certain virtually polycyclic groups to a linear
algebraic group, we show that the existence of such an endomorphism implies that the group is vir-
tually nilpotent. Moreover, we fully characterize which virtually nilpotent groups have a morphism
satisfying the condition above, related to the existence of a positive grading on the corresponding
radicable nilpotent group. As another application of the methods, we generalize a result of Fel’shtyn
and Lee about which maps on infra-solvmanifolds can have finite Reidemeister number for all
iterates.

1. Introduction

Expanding maps were introduced by M. Shub in [20] as one of the first examples in
dynamical systems combining structural stability with chaos. The natural question of
which closed manifolds admit an expanding map was only answered after more than
ten years by M. Gromov in [15], by showing that such a manifold must be an infra-
nilmanifold, i.e. a compact quotient of a simply connected nilpotent Lie group by a dis-
crete group of isometries. Although many infra-nilmanifolds admit expanding maps, for
example all infra-nilmanifolds modeled on a nilpotent Lie group of nilpotency class < 2,
there are some examples which do not have expanding maps, for instance the ones mod-
eled on a characteristically nilpotent Lie algebra as in [10]. Only much later, a full char-
acterization of the infra-nilmanifolds admitting an expanding map was given in [7], by
showing that the existence of an expanding map depends only on the covering nilpotent
Lie group and is equivalent to the existence of a positive grading on the corresponding Lie
algebra.
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On the level of the fundamental group, every expanding map induces an injective
endomorphism ¢ : I' — I" with image ¢(I") of finite index in I" and such that the subgroup
(Np=o ©" () is finite. In short, we will call an endomorphism ¢ : I' — T satisfying the
latter conditions strongly scale-invariant. Motivated by the result in [15], it is conjectured
that the only finitely generated groups admitting a strongly scale-invariant endomorphism
are the virtually nilpotent groups, see [17]. This conjecture is hence the equivalent of the
theorem by M. Gromov for morphisms of finitely generated groups.

Conjecture 1. Every finitely generated strongly scale-invariant group is virtually nil-
potent.

In [17], Nekrashevych and Pete first disprove a weaker conjecture by 1. Benjamini,
where one only assumes a nested sequence of finite index subgroups I', < T with (1),- s
finite and the groups I, isomorphic to the original group I'. The counterexamples, con-
structed via a semi-direct product of groups with certain properties, do not have a single
endomorphism ¢ : I' — T realizing the nested sequence as ¢ (I') = I', and hence Con-
jecture 1 remains open.

So far, Conjecture | has only be studied for some special cases. Firstly, if the images
¢"(T") are normal subgroups of I', then [21, Theorem 1.1] shows that T" is virtually
abelian. On the other hand, with additional assumptions on a profinite group associated
to @, [16, Corollary 1.5] implies that I' must be virtually nilpotent. In this paper, we prove
Conjecture 1 in the special case of virtually polycyclic groups. Note that, as a consequence
of the existence of the Hirsch length on these groups, every injective group morphism
automatically has an image of finite index.

Theorem 3.10. Let I' be a virtually polycyclic group which is strongly scale-invariant.
Then T is virtually nilpotent.

For the proof, we first show how to extend an injective endomorphism ¢ to the Q-
algebraic hull of an injectively characteristic finite index subgroup. By using the structure
of solvable linear algebraic groups, we deduce that if the group I" is not virtually nilpotent,
then it must contain an infinite subgroup invariant under some iterate of ¢.

To every endomorphism ¢ : I' — I' of any group I', we can associate an invariant
R(¢) € N U {00}, called the Reidemeister number. The exact definition will be given in
Section 3.3. By considering the iterates ¢” : I' — I', we can make a zeta function from the
Reidemeister numbers R(¢™), as long as they are all different from co. As a consequence
of the proof, we show that the only virtually polycyclic groups which have an injective
endomorphism ¢ with a well-defined Reidemeister zeta function are the virtually nilpotent
ones.

Theorem 3.12. Let ¢ : I' — T' be a monomorphism of a virtually polycyclic group. If
R(¢™) < oo for all integers n > 0, then the group I must be virtually nilpotent. In partic-
ular, the Reidemeister zeta function Ry(z) of ¢ is rational if the group T is additionally
torsion-free.
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This generalizes the result in [12] which only deals with automorphisms on a restric-
tive class of virtually polycyclic groups, namely lattices in a Lie group of type (R). It is
also related to the conjecture in [1 1] that every finitely generated group admitting an injec-
tive endomorphism with finite Reidemeister number must have subexponential growth.

Conjecture 1 and Theorem 3.10 raise the problem of characterizing the virtually nilpo-
tent groups which are strongly scale-invariant. To every finitely generated virtually nilpo-
tent group I, we can associate a unique radicable group N@. By generalizing the methods
of [7], which only deal with fundamental groups of infra-nilmanifolds and thus only
torsion-free groups, we give the following theorem, showing that it suffices to know N @
to decide whether or not the group I' is strongly scale-invariant.

Theorem 4.1. Let I' be a finitely generated virtually nilpotent group with associated rad-
icable nilpotent group NQ. The group T is strongly scale-invariant if and only if the Lie
algebra corresponding to NQ has a positive grading. Moreover, if T' is strongly scale-
invariant, then there exists a monomorphism ¢ : T' — T such that (,., ¢"(I') is the
maximal finite normal subgroup of T'.

For torsion-free nilpotent groups, this was studied in [5], whereas the more general
case of torsion-free virtually nilpotent groups was given in [7]. Theorem 4.1 in particular
shows that being strongly scale-invariant for virtually nilpotent groups is preserved under
taking finite index subgroups. It is conjectured that two finitely generated torsion-free
nilpotent groups N; and N, are quasi-isometric if and only if the associated real Lie
groups N {R and N%R, which contain N7 and N, as cocompact lattices, are isomorphic.
Hence this result motivates the conjecture that being strongly scale-invariant is a quasi-
isometric invariant for virtually nilpotent groups, or even for general finitely generated
groups if Conjecture 1 is true.

We start by giving some preliminaries about virtually polycyclic group, their Q-alge-
braic hulls and the Mal’cev completion of nilpotent groups in Section 2. Afterwards,
Section 3.1 states general properties of strongly scale-invariant endomorphisms, allowing
us to simply the situation for virtually polycyclic groups. Next, we prove Theorem 3.10
in Section 3.2 and conclude in Section 3.3 with the discussion of finite Reidemeister
numbers. Finally, we characterize the virtually nilpotent groups which are strongly scale-
invariant in Section 4.

2. Preliminaries

In this section we introduce terminology for the rest of the paper and recall some properties
for both nilpotent and virtually polycyclic groups. For more background and further details
we refer to [19]. All groups we consider are assumed to be finitely generated.

Notation. The following definition allows us to simplify some statements in the paper.



J. Deré 988

Definition 2.1. Let I" be any group with endomorphism ¢ : I' — T.

(2) A monomorphism ¢ : I' — T is called strongly scale-invariant if ¢(I") has finite
index in I" and (),,..o " (T") is finite.

(3) The group I' is called strongly scale-invariant if it admits a monomorphism ¢ :
I' — I' which is strongly scale-invariant.

Let I" be a group with a monomorphism ¢ : I' — I, then we say that a subgroup I’ < T’
is g-invariant if o(I'") < TV. If T is g-invariant for all monomorphisms ¢ : I' — T, then we
call T an injectively characteristic subgroup of T'. Note that most injectively characteristic
subgroups we consider will in fact be fully characteristic, meaning they are invariant under
all endomorphisms of the group I'. Every injectively characteristic subgroup is a normal
subgroup, since it is invariant under all conjugation maps.

Example 2.2. For any group I and every integer k > 0, we denote by I'* the subgroup
generated by all the k-th powers y* of elements y € I'. The subgroups I'¥ < T are injec-
tively characteristic, and for every subgroup I'’ of finite index in T, there exists an integer
k > 0 such that T¥ < T,

Rational Mal’cev completion. For every group N, we can define the lower central series
yi (N) inductively via y; (N) = N and y; +1(N) = [N, y; (N)]. A group N is called c-step
nilpotent if y.+1(N) = {e} and y.(N) # {e}. The isolator of a subgroup H < N in N is
defined as

VH={xeN|3m>0:x"ecH).

The isolators 3/y;(N) of the lower central series of a finitely generated torsion-free
nilpotent group N are injectively characteristic subgroups. Moreover, the quotients
Nyi(N)/ ’V yi+1(N) are torsion-free and hence isomorphic to Z™ for some m; > 0.

Let N be a finitely generated torsion-free nilpotent group, then N embeds as a sub-
group of a radicable torsion-free nilpotent group N @ such that every element in NQ has
a power which lies in N, and we call NQ the rational Mal’cev completion of N. Every
monomorphism ¢ : N — N uniquely extends to an automorphism of N 2. For every inte-
ger m > 0, every element x € NQ has a unique m-th root, i.e. a unique element y € N@
such that y” = x and we denote this unique element y by y = x!/™. Any other finitely
generated subgroup M C N@ such that for every x € NQ, there exists m > 0 such that
x™ € M, is called a full subgroup of N?. In this case, NQ is also the rational Mal’cev
completion of M. For every k > 0, the group N is a full subgroup of NQ. If M < N@
is a full subgroup, then M N N has finite index in both N and M. As a consequence, it is
well-known which groups have an isomorphic rational Mal’cev completion.

Proposition 2.3. Let Ny and N, be two torsion-free nilpotent groups. Then N {@ ~ N2Q if
and only if the groups are abstractly commensurable.
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Here, abstractly commensurable means that there exist subgroups M; < Nj and M, <
N, of finite index such that M; ~ M.

The rational Mal’cev completion N @ uniquely corresponds to a rational Lie algebra
1@ under the exponential map, which forms a bijection between N @ and n@ in this case.
Under this correspondence, every automorphism ¢ of the group NQ corresponds to an
automorphism ¥ of n2. We define the eigenvalues of ¢ : NQ — N @ as the eigenvalues
of this Lie algebra automorphism . A positive grading on n@ is a decomposition of

k
T[Q = @l’li

into a direct sum of rational subspaces 1; such that for every i, j > 0 it holds that [n;, 11;] C

1; 1 ;. In this case we call it a positive grading on the nilpotent group N Q as well. We say

that an automorphism ¥ € Aut(u@) preserves the positive grading if v (1;) = n; forall i.
If o : N — N is a monomorphism, then it also induces monomorphisms

V() ~ zmi _ V7i(N)
vi: V) ¥ L 7Ny (N)

on the quotients of the isolators of the lower central series. We define the eigenvalues of
¢ as the collection of all eigenvalues of these maps ¢;. On the other hand, by extending
@ : N — N, we also get an automorphism ¢ : N® — N @, and the eigenvalues of ¢ are
equal to the eigenvalues of ¢. The following lemma will be useful further in the paper.

~ 7™

Lemma 2.4. Let ¢ : NQ — N be an automorphism for which the induced map

- NQ NQ
¢ /[NQ,NQ] - /[NQ, NQ]

is the identity map. Then, the automorphism ¢ is unipotent. In particular, if ¢ has finite
order as well, then it must be the trivial automorphism.

Proof. From the assumption on ¢, one can show by induction that the induced maps by ¢
on ¥;(N?)/y;i+1(N?) are trivial. This immediately implies that ¢ is unipotent, because
the group NQ is nilpotent. Since automorphisms of finite order are semisimple, the last
part follows as well. ]

Virtually polycyclic groups. We call a group I' polycyclic if it has a subnormal series
{e}=Tpg<aT;<---a} =T

with I'; normal in T';1; and the quotient ;4 /T cyclic. A group T is called virtually
polycyclic if it has a subgroup of finite index which is polycyclic. Note that for virtually
polycyclic groups the subgroups I'* < T are always of finite index in I' by [18, Lemma
4.4]. Every finitely generated nilpotent group is automatically polycyclic.
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Since cyclic groups are abelian, every (virtually) polycyclic group is (virtually) solv-
able. In fact, virtually polycyclic groups are exactly the finitely generated virtually solvable
groups which satisfy the maximality condition, i.e. every subgroup is finitely generated.
The number of infinite cyclic groups I'; 1/ I'; of a polycyclic group I" does not depend on
the choice of subnormal series. It forms hence an invariant of the group I which is called
the Hirsch length h(I"). The Hirsch length of a virtually polycyclic group is defined as the
Hirsch length of a polycyclic subgroup of finite index. Note that if I'" < T" is a subgroup
and 2(I'") = h(T), then I' is a finite index subgroup of I'. In particular, the image ¢(I")
of a monomorphism ¢ : I' — I has the same Hirsch length as I" and thus has finite index
in I". This shows that the first condition to be a strongly scale-invariant monomorphism in
Definition 2.1 is automatic for virtually polycyclic groups.

A crucial tool for this paper will be extending monomorphisms to automorphisms
of a linear algebraic group. Recall that a (real) linear algebraic group defined over a
subfield K C R is a subgroup G C GL(n, R) given by the zeros of a finite number of
polynomials over K, equipped with the Zariski-topology. An algebraic morphism G — G
defined over K is a group morphism of which the coordinate functions can be written
as polynomials over K. The unipotent radical is the set of unipotent elements in the rad-
ical of G, where the radical of G is the maximal connected normal solvable subgroup.
Every linear algebraic group can also be considered as a Lie group with a finite number of
connected components. The group of K-rational points of G is given by the intersection
G(K) = G N GL(n, K). For more details about linear algebraic groups we refer to [3].

Definition 2.5. Let I be a virtually polycyclic group. A Q-algebraic hull ' is a linear
algebraic group defined over Q with an injective morphism i : I' — I'Q satisfying the
following conditions:

(1) The image i (T") < I'Q is a Zariski-dense subgroup of the Q-rational points of I'C.

(2) If U(T'Q) is the unipotent radical of I'?, then dim(U(I'?)) = h(I).

(3) The centralizer of the unipotent radical in T'Q is contained in U(I'Q), or in sym-

bols
Cro(U(I?) = Z(U(?)),

where Z(U(I'Q)) is the center of U(I'Q).
Usually we identify I with its image under the map i. Although the definition is rather

technical, the following theorem shows the importance for studying monomorphisms on
virtually polycyclic groups, see [9, Corollary 4.7].

Theorem 2.6. Let ¢ : T’ — T be a monomorphism and T'? a Q-algebraic hull of T.
There exists a unique algebraic automorphism ® : TQ — TI'? defined over Q such that

D(y) = @(y) forally €T.

In particular, if a Q-algebraic hull exists, then it is unique up to Q-isomorphism of
linear algebraic groups, so we will call it the Q-algebraic hull of T".
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Example 2.7. If N is a torsion-free nilpotent group, then it embeds as a lattice in a simply
connected and connected nilpotent Lie group N®. The group N'® has a unique structure as
a unipotent linear algebraic group defined over Q. A direct check shows that N® forms the
Q-algebraic hull of N, with the rational Mal’cev completion N@ equal to the subgroup
of rational points N®(Q) of the algebraic group NX.

Every virtually polycyclic group I' has a unique maximal normal nilpotent subgroup,
called the Fitting subgroup. If I" has a Q-algebraic hull I'?, then its Fitting subgroup N
is equal to N = I' N (U(I'Q)) by [1, Proposition 4.4]. On the other hand, every virtually
polycyclic group also has a maximal finite normal subgroup H < T". By [9, Corollary 5.10]
we know that H = 1 is equivalent to the existence of a (Q-algebraic hull.

Theorem 2.8. A virtually polycyclic group has a Q-algebraic hull if and only if every
finite normal subgroup is trivial.

Almost-crystallographic groups are exactly the finitely generated virtually nilpotent
groups with only the trivial group as a finite normal subgroup and thus always have a
Q-algebraic hull.

3. Monomorphisms of virtually polycyclic groups

First we give some general properties of strongly scale-invariant morphisms, then we study
the specific situation of virtually polycyclic groups using the (Q-algebraic hull and finally
we apply the methods in the context of the Reidemeister number.

3.1. Properties of strongly scale-invariant groups

In this first part we give some general lemmas, which will allow us to simplify the study
of strongly scale-invariant monomorphisms of virtually polycyclic groups. The main goal
is to investigate how being strongly scale-invariant behaves under considering iterates of
morphisms and under taking finite index subgroups of a group.

The first lemma gives a different characterization of strongly scale-invariant monomor-
phisms in terms of subgroups which are mapped onto themselves.

Lemma 3.1. Let ¢ : I' — T" be a monomorphism with ¢(I") of finite index in T". Then ¢
is strongly scale-invariant if and only if every subgroup H < T with o(H) = H is finite.

In other words, a monomorphism with image of finite index is strongly scale-invariant
if and only if it can only induce an automorphism on finite subgroups.

Proof. First assume that ¢ is strongly scale-invariant. Let H < I" be any subgroup satis-
fying ¢(H) = H, then for every n > 0 we have ¢ (H) = H as well. In particular,

H={)¢"(H)<[)¢"T)

n>0 n>0

and thus the subgroup H must be finite.
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For the other implication we assume that every subgroup H < I' with ¢(H) = H is
finite. Note that Hy = (1),,».o ¢” (') is a subgroup of I" as the intersection of subgroups,
hence in order to show that ¢ is strongly scale-invariant, it suffices to prove that ¢(Hy) =
Hy. From its definition, it is clear that ¢(Hy) < Hy. For the other inclusion, assume that
x € Hy, then we will show that x € p(Hy). Since x € ¢(I') and ¢ is injective, there exists
aunique y € I with x = ¢(y). We have to prove that y € Hy, or thus that y € ¢"(T") for
every n > 0. Take n > 0 arbitrary, then from x € ¢" (') we know that x = ¢"*1(z)
with z € T'. By the uniqueness of y, we know that y = ¢"(z) and therefore y € ¢"(I').
We conclude that Hy = ¢(Hj), showing that H is finite. |

As an application of the previous lemma, we show that being strongly scale-invariant
behaves well under taking iterates of monomorphisms.

Lemma 3.2. Let ¢ : I' — I be a monomorphism and k > 0 a natural number. Then ¢ is
strongly scale-invariant if and only if (pk is strongly scale-invariant.

Proof. Note that [I" : k()] = ]_[{-Czl[(pi_l(l") s ()] = ([T : (I)]* and thus the
condition of having an image of finite index is immediate for both implications.

First consider the reverse implication, namely that ¢* strongly scale-invariant implies
¢ strongly scale-invariant. If H is any subgroup with ¢(H) = H, then ¢*(H) = H as
well. So, under the assumption that ¥ is strongly scale-invariant, it follows that H is
finite and thus the lemma follows from Lemma 3.1.

For the other 1mphcat10n assume that ¢ is strongly scale-invariant and that H is a
subgroup such that ¢*(H) = H. Consider the subgroup H generated by the subgroups
H,o(H),...,¢¥ 1(H).Itis clear that every aforementioned generator of H is the i image
of another generator under ¢ and thus (p(H )= H . We conclude that H is finite, hence H
as well as a subgroup of H. ]

From Definition 2.1, the next observation is obvious.

Lemma 3.3. If ¢ : I' — T is a strongly scale-invariant monomorphism of a virtually
polycyclic group and T is a g-invariant subgroup, then the restriction ¢|r is strongly
scale-invariant.

In particular, every injectively characteristic subgroup of a strongly scale-invariant
virtually polycyclic group is itself strongly scale-invariant. In the special case of a finite
index subgroup in a virtually polycyclic group, the converse of this lemma is true as well.
In order to give a proof, we first recall the following fact about finitely generated groups,
for which we present the argument for completeness.

Lemma 3.4. Let I be a finitely generated group and ¢ : I' — I' an automorphism. For
every finite index subgroup T < T, there exists a k such that ¥ (I'') = T"".

Proof. Since I is finitely generated, it only has a finite number of subgroups of index
[T : T]. For every subgroup H < T" of index [I" : I'’], the image ¢(H ) is again a subgroup
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of the same index. Therefore ¢ permutes the finite set of subgroups of given index [I" : '],
showing that some power ¢* maps I' onto itself. ]

We are now ready to prove the converse of Lemma 3.3 for subgroups of finite index in
virtually polycyclic groups. The assumption on the group I' is used in order to have that
every subgroup is finitely generated.

Lemma 3.5. Let T be a virtually polycyclic group, ¢ : I' — I' a monomorphism and
I'" < T a finite index subgroup which is g-invariant. The monomorphism ¢ is strongly
scale-invariant if and only if |1 is strongly scale-invariant.

Proof. Since we are working in virtually polycyclic groups, the condition that the image
has finite index is always satisfied. As mentioned before, one implication holds in general
and is given by Lemma 3.3. For the other implication, assume that ¢|r is strongly scale-
invariant and assume that H < I is a subgroup for which ¢(H) = H. Since I' is virtually
polycyclic, the subgroup H is finitely generated. The intersection H N I is a finite index
subgroup of H, and hence some iterate ¢¥ of ¢ satisfies ¥ (H N T’) = H N T". In par-
ticular, H N T is finite because ¢* | is strongly scale-invariant and thus H is finite as
well. ]

This lemma seems to imply that if [" contains a strongly scale-invariant subgroup of
finite index, then the group itself is strongly scale-invariant. This is true by the main result
in this paper, but it does not follow immediately from Lemma 3.5, since not every group
morphism of a finite index subgroup can be extended to the entire group.

3.2. Strongly scale-invariant virtually polycyclic groups

In this second part, we study strongly scale-invariant monomorphisms of virtually poly-
cyclic groups via their extensions to the QQ-algebraic hull. We first shift our attention to
nilpotent groups, for which we have that the rational points of the QQ-algebraic hull are
equal to the rational Mal’cev completion. In this part, N will always be a torsion-free
nilpotent group.

As explained before, every monomorphism ¢ : N — N of a torsion-free nilpotent
group N uniquely extends to an automorphism ¢ : NQ — N @ on the rational Mal’cev
completion N @, where the eigenvalues of ¢ and ¢ are identical, and checking whether ¢
is strongly scale-invariant depends on its eigenvalues.

Proposition 3.6. Ler NQ be a radicable torsion-free nilpotent group and ¢ : NQ — N @

an automorphism.

o If1is an eigenvalue of ¢, then there exists x € NQ such that ¢(x) = x.

* If1is not an eigenvalue of ¢, then for every x € NQ, there exists a unique y in NQ
with x = y¢(y)~ L.

Proof. Write y for the Lie algebra automorphism corresponding to ¢. For the first state-
ment, if 0 # X € nQ is an eigenvector for eigenvalue 1, then x = exp(X) € N2 will
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satisfy the condition, because

¢ (x) = ¢(exp(X)) = exp(¥ (X)) = exp(X) = x.

We prove the second statement by induction on the nilpotency class of N@. If N@
is abelian, then it is isomorphic to Q™ for some m > 0 and ¢ = ¢. Hence this follows
directly from the fact that 1 is not an eigenvalue of ¢ if and only if the map (I — ¢) is
invertible. This implies as well that the element y is unique.

Now assume that ¢ > 1 and take any x € N @. By taking the quotientin NQ/[N@, N Q],
we know there exists a unique y; with y¢(y1) ' [NQ, NQ] = x[N?, NQ] from the
abelian case. This means that y; 'x¢(y1) € [N Q. NQ]. Applying the induction hypothesis
on this element, we get that there exists y, € [NQ, NQ] with yilxp () = y2(32)7L
The element y;y, satisfies the conditions of the proposition. For uniqueness, we trace
back the argument in reverse order. ]

Corollary 3.7. Let N be a torsion-free nilpotent group. If ¢ : N — N is a strongly scale-
invariant monomorphism, then 1 is not an eigenvalue of ¢.

Proof. To obtain a contradiction, assume that ¢ has eigenvalue 1. Consider the extension
¢ : N2 — NQ to the rational Mal’cev closure of N, which is an automorphism of N .
Take x € N with ¢(x) = x as in Proposition 3.6. There exists an integer 7 > 0 such that
x™ € N since N is a full subgroup of NQ. The subgroup H generated by x™ is infinite
and satisfies ¢(H) = H, which is a contradiction. |

The converse is not true, for example by considering the automorphism (% 1 ) on Z2.

This map does not have 1 as eigenvalue, but it is not strongly scale-invariant either as it
is an automorphism. The monomorphisms of nilpotent groups which are strongly scale-
invariant can be characterized depending only on the eigenvalues, but this is not necessary
for our purposes. We only need in the next section that if all eigenvalues of ¢ are bigger
than 1 in absolute value, in which case we call ¢ expanding, then the map ¢ is strongly
scale-invariant.

Lemma 3.8. If N is a finitely generated torsion-free nilpotent group and ¢ : N — N is
expanding, then (o ©" (N) is trivial. In particular, the monomorphism ¢ is strongly
scale-invariant.

Proof. We prove this via induction, where the abelian case is immediate by definition. For
general nilpotent groups N, the quotient N/ /[N, N] is abelian and the induced map ¢
is again expanding. Hence

DO@"(N/W) = VIN.N]

or equivalently

() ¢"(N) C VIN,N].

n>0
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Since %/[N, N] is of nilpotency class strictly smaller than N and the restriction of ¢
to \/[N, N] is still expanding, the induction hypothesis yields (),., ¢"(N) = {e} via
Lemma 3.1 and the fact that N is torsion-free. |

For the proof, it will be crucial to consider the (Q-algebraic hull of a finite index sub-
group.

Lemma 3.9. Let "' < T be a finite index subgroup of the virtually polycyclic group T" with
Q-algebraic hull T?. The Q-algebraic hull of T is equal to the Zariski-closure of T in
I'Q. In particular, if T'Q is connected, then the Q-algebraic hull of T and T coincide.

Proof. Write G for the Zariski-closure of I', then we check the three conditions of Def-
inition 2.5. The first condition is immediate by definition of G. The group G is a finite
index subgroup of I'?, implying that the unipotent radical of this group is equal to U(I'Q),
yielding the second condition. Also the third condition follows since G is a subgroup of
I'?and U(I'Q) = U(G).

For the last statement, note that G is a closed subgroup of finite index in '@ and hence
also open, showing that G = I'Q. ]

We are now ready for the main result of this section.

Theorem 3.10. Let I' be a virtually polycyclic group which is strongly scale-invariant.
Then T is virtually nilpotent.

Proof. First we look for suitable finite index subgroups of I" that are injectively charac-
teristic and thus strongly scale-invariant by Lemma 3.5. It suffices to show that these finite
index subgroups are virtually nilpotent, so each time we will replace I by the finite index
subgroup to achieve stronger assumptions. Note that every virtually polycyclic group has
a subgroup of finite index which is torsion-free and polycyclic, see [18, Lemma 4.6].
By replacing ' by I'F for some k > 0, we can thus assume that " is polycyclic and
torsion-free. In particular, I" has no finite normal subgroup and by Theorem 2.8, I" has
a Q-algebraic hull I'?, with connected component (I'?)? of the identity element. The
subgroup I' N (I'®)0 has finite index in ', with Q-algebraic hull (I'®)° by Lemma 3.9.
By again replacing I' by I'* for some k > 0, we can hence assume that I'? is connected.
Finally, a similar argument shows that we can assume that '/ N is torsion-free, with N
the Fitting subgroup of T".

Let ¢ : I' — I' be a strongly scale-invariant monomorphism, with & the algebraic
extension of ¢ to I'Q. The group I'®/U(I'?) is a torus and hence by the rigidity of
tori (see [3, 8.10]), some power of ® induces the identity map on I'Q/U(I'?). So by
taking some iterate of ¢, which is strongly scale-invariant by Lemma 3.2, we can assume
that ® is the identity on TQ/U(I'@). We know that N = I' N U(I'?) is the Fitting sub-
group of I, hence the quotient I'/ N can be considered as a subgroup of '/ U(I'Q). The
induced map by ¢ on I'/ N is then the restriction of the map induced by ® on I'Q/U(I'?).
We conclude that ¢ induces the trivial map on '/ N.
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We will show that in fact I' = N and thus that IT" is nilpotent. Note that the rational
Mal’cev completion of N can be considered as a subgroup of U(I'?), and thus the exten-
sion of ¢ to N is given by the restriction of ® to NQ. Assume that x € I' \ N, then we
know that ¢(x) = xy for some y € N. Since ¢|y is strongly scale-invariant by Lemma
3.3, we know by Proposition 3.6 that there exists z € NQ ¢ U(I'Q) with y = z®(z).
Hence the element xz € T'Q satisfies

P(xz) = O(x)P(z) = xyP(z) = xz.

Consider the group I'” generated by I" and z, which contains " as a subgroup of finite
index. The map ® induces a monomorphism on I, which is strongly scale-invariant by
Lemma 3.5. Since the element xz has infinite order and ®(xz) = xz, we get a contradic-
tion, showing that such an x € I' \ N does not exist. This implies ' = N and thus the
group I' is nilpotent. ]

3.3. Finite Reidemeister number

As an application of the methods, we study the Reidemeister number for iterates of mono-
morphisms on virtually polycyclic groups. Let G be a group and ¢ : G — G an endo-
morphism. We say that x, y € G are p-conjugate if there exists z € G with x = zyp(z) L.
This is an equivalence relation on the elements of the group and we denote by [x], the
equivalence class of x € G. The Reidemeister number R(¢) € N U {oo} is defined as the
number of equivalence classes, so

R(p) = #{[X]rp | x € G}.

The Reidemeister number is an important invariant of endomorphisms, related to the study
of fixed points as described in [11]. For an endomorphism ¢ : Z" — Z™ the Reidemeister
number is finite if and only if ¢ does not have eigenvalue 1. Starting from an endomor-
phism ¢ : G — G with R(¢™) < oo for all iterates ¢”, one can construct the Reidemeister

Ry(z) = exp (Z @Z").

n=1

zeta function as

An active research line is to investigate when the Reidemeister zeta function is rational,
see [11].

Recall the following lemma about the Reidemeister number, see [14, Lemma 1.1],
where we only use the second part of the original statement for the special case of a finite
group G.

Lemma 3.11. Let ¢ : I' — T be an endomorphism of a group T with ¢-invariant normal
subgroup N and quotient group G = I'/ N. Consider the commutative diagram

1 N r G 1
"
N r

G 1,
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where ¢ and g are the induced and restricted endomorphism, respectively. The following
statements about the Reidemeister number hold.

(1) If R(¢) < oo, then R(p) < oo as well.
(2) If G is a finite group, then R(¢) < oo implies R(pn) < oo.

As another application of our methods, we now show that a finite Reidemeister number
for all iterates ¢" implies that the group I is virtually nilpotent.

Theorem 3.12. Let ¢ : I' — T' be a monomorphism of a virtually polycyclic group. If
R(¢™) < oo for all integers n > 0, then the group T" must be virtually nilpotent. In partic-
ular, the Reidemeister zeta function Ry(z) of ¢ is rational if the group T is additionally
torsion-free.

Proof. Let N be the Fitting subgroup of I" and write G = '/ N for the quotient. By
replacing T by I'* for some k > 0, as in the proof of Theorem 3.10, we can assume that
both I' and G are torsion-free, that G is abelian and that the (Q-algebraic hull of I" exists
and is connected. Note that the restriction of ¢ to this finite index normal subgroup still
satisfies the conditions of the theorem by Lemma 3.11.

Note that N is injectively characteristic, since it is equal to U(I'®) N T'. So for every
n > 0 we can consider the commuting diagram

1 N I G 1
w}'vL w”l w”l
1 N I G 1,

where ¢y is the restriction of ¢ to N and ¢ is the induced map on the quotient G. Using
Lemma 3.11, we know that R(¢") < oo for all n > 0. Exactly as in the proof of The-
orem 3.10, we have that some iterate of ¢ induces the identity map on G. Hence the
group G is trivial, because otherwise some iterate ¢”* would have eigenvalue 1, leading to
R(g") = oo.

The last statement follows from [12, Theorem 7.8], which shows that the Reidemeister
zeta function is rational for monomorphisms on torsion-free virtually nilpotent groups. =

4. Strongly scale-invariant virtually nilpotent groups

Although in the class of virtually polycyclic groups only the virtually nilpotent ones can be
strongly scale-invariant, not every virtually nilpotent group does in fact have this property.
Groups for which every monomorphism is automatically an automorphism are called co-
Hopfian, and the first examples of co-Hopfian torsion-free nilpotent groups are constructed
in [2]. Note that an infinite co-Hopfian group can never be strongly scale-invariant. A full
characterization of the co-Hopfian torsion-free nilpotent groups was independently given
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in [5,7]. In this section, we characterize the strongly scale-invariant virtually nilpotent
groups by adapting the methods of [7].

Let I" be a finitely generated virtually nilpotent group and N < I a normal subgroup
of finite index which is both torsion-free and nilpotent. Such a subgroup N always exists
and, although it is not unique, the rational Mal’cev completion N@ of N does not depend
on the choice of N. Indeed, if Ny and N, are two different normal subgroups of finite
index, then their intersection Ny N N, has finite index in both N; and N,, which by
Proposition 2.3 shows that the rational Mal’cev completions are isomorphic. We call the
group N @ the radicable nilpotent group associated to the virtually nilpotent group T.
Note that two virtually nilpotent groups I'y and I', are abstractly commensurable if and
only if the radicable nilpotent groups associated to I'; and I'; are isomorphic.

The main result of this section shows that being strongly scale-invariant only depends
on the radicable nilpotent group NQ associated to T".

Theorem 4.1. Let I' be a finitely generated virtually nilpotent group with associated rad-
icable nilpotent group NQ. The group T is strongly scale-invariant if and only if the Lie
algebra corresponding to NQ has a positive grading. Moreover, if T is strongly scale-
invariant, then there exists a monomorphism ¢ : I' — T such that (),., ¢"(I') is the
maximal finite normal subgroup of T'.

The maximal finite normal subgroup H of a virtually polycyclic group I is preserved
by every monomorphism ¢ : I' — T" by [4, Proposition 2.7], meaning that ¢(H) = H.
Hence the last part of the theorem shows that there exists a monomorphism realizing the
smallest possible finite subgroup as the intersection of the images.

One part of this theorem, namely that I being strongly scale-invariant implies that the
Lie algebra corresponding to NQ has a positive grading, will follow directly from [5].
The proof of the other implication consists of three different steps. In the first step, we
show that the group I' can be embedded in a semi-direct product N x o F with F finite
and p : F — Aut(N©) a morphism which is not necessarily injective. The second step
constructs automorphisms of the semi-direct product N x o F which induce strongly
scale-invariant monomorphisms on I, similarly to [7]. In the final step, we show that
taking a certain conjugate subgroup of " in N x o F yields the stronger last property of
the theorem.

4.1. Semi-direct product

First we show how to embed I in a semi-direct product following the methods of [6]. In
the semi-direct N2 x o I we denote by N Q and F the natural subgroups corresponding
to the first and second component.

Proposition 4.2. Let " be a finitely generated virtually nilpotent group with associated
radicable group NQ. There exists an injective morphism i : T — NQ Xp I such that
i(T) N NQ is a full subgroup of NQ. Moreover, the maximal finite normal subgroup of
i(") is equal to i (I') N ker(p).
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The condition that i(I') N NQ is a full subgroup ensures that N9 is the radicable
nilpotent group associated to I'. In order to prove the last part of the proposition, we will
need the centralizer of a full subgroup of N in the group N@ x o F, which is given by
this lemma.

Lemma 4.3. Consider the semi-direct product G = N x o I’ for some morphism p :
F — Aut(NQ) with F a finite group. The centralizer of a full subgroup N of NQ in G is
equal to

Co(N) = {(x. /) | x € ZINO). f € ker(p)}.

Proof. Ttis clear that elements (x, ) with x € Z(N?) and f € ker(p) centralize N, so it
suffices to show the reverse inclusion. For this, note that (x, ) € G centralizes N if and
only if

y = Ny )7 =xp(fH)H(n)x! M

for all y € N. Since every element in N is of the form y'/” for some y € N and an
integer m > 0, we conclude that (x, f) centralizes NQ as well. By considering equation
(1) in the quotient group N /[N Q, N ?] with induced automorphism p( f), we find that

p(FHINC N = y[N? NV

for all y € N@. By Lemma 2.4, we conclude that p(f) = 1y or thus f € ker(p). In
particular, equation (1) implies that x € Z(N @), giving the second inclusion. |

Proof of Proposition 4.2. Let N be a torsion-free nilpotent normal subgroup of I'. Con-
sider the short exact sequence

1> N—->T—=F—>1,

where F' = I'/N is a finite group. Every automorphism of N uniquely extends to an auto-
morphism of NQ, hence exactly as in [6, p. 35], there exist a group I'? and an injective
morphism j : ' — I'? which fit in the following commuting diagram:

1 N r F 1
|l
1 NQ re F 1.

By the same argument as [6, Lemma 3.1.2], the bottom short exact sequence splits because
the group N is radicable, leading to an isomorphism I'® ~ NQ x o . Hence we find
an embedding i : T' — N@ x, F satisfying i (') N N@ = i (N) which is a full subgroup.

For the last part of the proposition, note that i (I") N ker(p) is a finite normal subgroup
of i(I"). It suffices to show that every finite normal subgroup H of i(I") lies in ker(p).
Since H is finite, there exists some integer kK > 0 such that for every element y which
normalizes H, the element yk centralizes H. In particular, for every element y € N,
we have that i (y)¥ centralizes H . Because the elements i (y)* generate a full subgroup of
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N @, Lemma 4.3 implies that every element of H is of the form (x, f) with f € ker(p) and
x € Z(NQ). Since H is finite and Z(N Q) is torsion-free, this yields that every element
of H lies in ker(p), as we needed to show. ]

Although the group N @ is uniquely determined by the group T, both the group F and
the morphism p : F — Aut(N?) depend on the choice of the subgroup N. We give a
concrete example illustrating this fact.

Example 4.4. Consider the group I' = Z x Z,, where Z, = {£1} acts on Z by multi-
plication. We consider two different abelian normal subgroups, namely Ny = Z < I" and
N, =27 = T'? «T. In the first case, we have F; = I'/N1 & Z, and the map

i1: T = Qxp, Zs
(z,t) > (z,1)
with p; : Z, — GL(Q) the natural inclusion. In the second case, we have the finite group

F> =T /Ny ~ Z, & Z, with representation p, : Z, & Z, — GL(Q) given by p2(t1,12) =
t1. In this case the map i : I' = Q x,, F> is given by

2(2.1) (z,t,1) ifz € 27,
ir(z,1) =
g (z,t,—1) ifz ¢2Z.

Since i>(I") N ker(p2) = {e}, also the embedding i, shows that I" has no finite normal
subgroup.

4.2. Constructing the monomorphism

The next proposition generalizes [7, Theorem 4.2] which only considered torsion-free
groups. The construction is almost identical, but it leads to monomorphisms preserving
the maximal finite normal subgroup, which is a subgroup of F.

Proposition 4.5. Let " be a finitely generated virtually nilpotent group realized as a
subgroup of NQ X, F with N NT afull subgroup of NQ. If N? has a positive grading,
there exists an automorphism ® : NQ x F — NQ x F leaving T invariant and such that
(") =TNF.
n>0
Proof. Since p(F) is a finite subgroup of Aut(N @), there exists a positive grading which
is preserved by p(F), see [8, Theorem 2.2]. In [7, Corollary 3.3] it is shown that for every
prime p > 0, there exist expanding automorphisms ¢, € Aut(N Q) with determinant p™
for some fixed m > 0, which leave a full subgroup Ny of NQ invariant and commute

with every element of p(F). Note that each of these automorphisms also induces auto-
morphisms ®, : NQ x, F — N@ x, F by

CDp(x, f) = (¢p(x)» f)

We claim that ® = CD]; for some p and k satisfies the conditions of the proposition.
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Consider the full subgroup N = I' N NQ. Let N; be the full subgroup generated by
all x € NQ for which there exists f € F with (x, f) € T'. Note that N < N, is a subgroup
of finite index. Take any normal subgroup N, < N such that N, < N. Exactly as in the
proof of [7, Theorem 4.2] there exist some prime p and k > 0 such that qb;f (Ny) < Ny,
¢§ (N3) < N3, ¢§ (N) < N and such that qb;f induces the identity map on the finite group
N1/N,. We claim that the corresponding map ® = <I>]1§ satisfies the conditions of the
proposition.

First we show that I is ®-invariant. Take any (x, f) € [ with x € Ny and f € F.
Then

PE(x, ) = @), f) = (x2x, f) = (x2.€)(x, f)

where x, € N, < N and hence @’;(x, f)eT forall y = (x, f) € I'. Moreover, if we
look at ®*(I") C ®"(Ny) x ®"(F) = ®"(N;1) x F, then

() o" () <F

n>0

by Lemma 3.8. Since I' N F' is automatically contained in ®"(T") for all n > 0, this shows
that also the second condition is satisfied. ]

Note that the monomorphism constructed in Proposition 4.5 is always strongly scale-
invariant, but the intersection of the images can be bigger than the maximal finite normal
subgroup.

Example 4.6. Let ' = Z x Z, be as in Example 4.4. The monomorphisms constructed
in Proposition 4.5 are of the form

om: I =T
(x,t) > (mx,t)

with m € Ny. Note that ¢,,(Z,) = Z, although it is not a finite normal subgroup of T".

4.3. Conjugate subgroup

In order to get a group morphism such that (),. o ¢”(T') is the maximal finite normal
subgroup, we have to alter the embedding I' < NQ x o . The following lemma shows
that an embedding exists such that the finite normal subgroup is equal to the intersection
with F.

Lemmad.7. Let I" be a finitely generated virtually nilpotent group realized as a subgroup
of NQ X, F with NN T afull subgroup. There exists x € NQ such that xTx~' N F <
ker p.

In particular, the finite normal subgroup of the group x'x ™! is exactly its intersection
with F.
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Proof. Every y € I' can be written uniquely as (x,, f,) with x, € N Q and fy € F.
Take N the full subgroup of N generated by the elements xy for all y € T". For every
Jy & ker(p), we have that also the induced map by p( f;,) on N Q/[NQ, N?] s non-trivial
by Lemma 2.4. This means that the eigenspace for eigenvalue 1 has dimension strictly
smaller than the dimension of NQ/[NQ, N@Q]. Since we only have a finite number of
such elements f,,, each having an eigenspace for eigenvalue 1 with dimension strictly
smaller than the rational vector space N@Q/[NQ, NQ], there exists y € N? such that y is
not an eigenvector for eigenvalue 1 for f, ¢ ker(p), so y~'p(f,)(y) ¢ [NQ, NQ]. The
subgroup N/[N@, N Q] is finitely generated, hence by taking x = y!/™ for some integer
m > 0, we can assume that x satisfies

-1
- y_ (U)K
(I N = IR ING KO g N o v
We claim that x satisfies the condition of the lemma.
Indeed, take any element y = (x,, f;,) € I' with f, ¢ ker(p). Then after conjugating,
we get
xyx~h = (xxyp(f) (7, fy)-

Since
xxyp(f)(xHING N = xp(f,)(x Dxy [NC N # [NC, N O]
by the last condition on x, the result follows. [
Combining all the previous steps, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. First assume that I" is strongly scale-invariant and take any injec-
tively characteristic subgroup N of finite index which is nilpotent and torsion-free. Since
N is injectively characteristic, it is also strongly scale-invariant by Lemma 3.3. In [5, The-
orem 1.11] it was shown that the corresponding rational Mal’cev completion has a positive
grading.

For the other implication, consider ' as a subgroup of N@ X, F as in Proposi-
tion 4.2. By conjugating I" as in Lemma 4.7, we can assume that ' N F = " N ker(p),
which is moreover the maximal finite normal subgroup by Proposition 4.2. The auto-
morphism constructed in Proposition 4.5 induces a monomorphism ¢ on I' which is
strongly scale-invariant since F is finite. Moreover, because of our assumption we have
that (), " (') = N F =T Nker(p) is the maximal finite normal subgroup of I'. =

We illustrate the construction in Theorem 4.1 via Example 4.6.

Example 4.8. Consider again the group I' = Z % Z,, as a subgroup of Q x Z, as given
by i1 in Example 4.4. Taking x = %, we get

I'=xIx'={G. D) [z eZ,r e {£1})
:{(z+%,—1)|zeZ}U{(z,1)|ZEZ}

and thus IV N Z, is trivial.
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For m = 3 in Example 4.6 we get the automorphism @ : Q x Z, — Q x Z; defined
as ®(t, z) = (3t, z) which induces a strongly scale-invariant monomorphism on I'. On
the group I' = Z % Z, with generators a and b for Z and Z, respectively, this induced
map ¢ : I' — I is given by ¢(a) = a> and ¢(b) = ab.

The virtually nilpotent groups I" for which every finite normal subgroup is trivial are
called almost-crystallographic, see [6]. They can be represented as isometries of a simply
connected nilpotent Lie group N®, and we say that the group is modeled on the Lie
group NR. Note that N® is exactly the Q-algebraic hull of any torsion-free nilpotent
subgroup of T', and hence the radicable group N associated to T is equal to rational
points of NR. The existence of a positive grading on N Q is equivalent to the existence of
a positive grading on the real Lie algebra corresponding to N®, see [5, Theorem 1.4] or
[8, Theorem 1.2]. As an immediate consequence of Theorem 4.1, we have the following
result.

Corollary 4.9. Let T be a finitely generated virtually nilpotent group. There exists a
monomorphism ¢ : T' — T with (-, ¢"(I') trivial if and only if T is almost crystal-
lographic and modeled on a Lie group N® with a positive grading.

Note that the monomorphisms constructed in Corollary 4.9 following the proof of
Theorem 4.1 satisfy the stronger property that they are expanding. This means that, after
choosing a finite generating set S for the group I with corresponding word metric || - || s,
it holds that [|@*(y)|ls = cA¥|y|s for some ¢ > 0, A > 1. These expanding monomor-
phisms for which the image has finite index in the group exist only on virtually nilpotent
groups by the work of J. Franks and M. Gromov, see [13, 15]. Since every expanding map
is automatically strongly scale-invariant, Theorem 4.1 can also be considered as a charac-
terization of the groups admitting an expanding monomorphism with finite index image.
More details can be found in [7].

Funding. The author was supported by a postdoctoral fellowship of the Research Foun-
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