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Topological dynamics of groupoid actions

Felipe Flores and Marius Măntoiu

Abstract. Some basic notions and results in topological dynamics are extended to continuous
groupoid actions in topological spaces. We focus mainly on recurrence properties. Besides results
that are analogous to the classical case of group actions, but which have to be put in the right set-
ting, there are also new phenomena. Mostly for groupoids whose source map is not open (and there
are many), some properties which were equivalent for group actions become distinct in this general
framework; we illustrate this with various counterexamples.

1. Introduction

Classically, topological dynamics is understood as the study of group and semigroup
actions on topological spaces. It is an important chapter of modern mathematics originat-
ing from physics and the theory of differential equations, and its theoretical and practical
outreach need not be outlined here. The point of view we adopt is that of the abstract
theory, as exposed in references such as [2, 6, 9, 13].

Basic to topological dynamics in the classical sense is the idea of global symmetry.
However, many interesting systems only present local (or partial) forms of symmetry.
Such systems have acquired an increasing role in modern mathematics, and their impact
in applications is already largely acknowledged.

Partial symmetry is treated using concepts such as groupoids, partial group actions or
inverse semigroup actions. Several aspects are already very well developed. In fact, our
interest was raised by the applications to C �-algebras, as in [10, 11, 16, 18, 19]. However,
up to our knowledge, the basic theory in the spirit of classical topological dynamics has not
yet been developed systematically. In the literature, when notions and results are needed,
they are briefly introduced and used in an ad hoc way. In addition, certain basic concepts
barely appear in the partial symmetry setting.

The present article is dedicated to a systematic study of the most elementary dynam-
ical notions in the framework of continuous groupoid actions on topological spaces. We
emphasize recurrence phenomena. Some connections with partial group actions are also
made, but the interaction with inverse semigroup dynamical systems, as well as a deeper
study of more advanced dynamical notions, are deferred to a subsequent article.
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As a general convention, all the topological spaces (including the groupoids) are Haus-
dorff. Local compactness is required only when needed. In certain cases we ask all the
fibers of the groupoid to be non-compact, in order to avoid triviality.

In most cases (but not always), guessing the analog of the standard notions in the
groupoid case is quite straightforward. Both in the statements and the proofs, one has to
take into account the fibered nature of a groupoid action. When a groupoid „ with unit
space X acts on a topological space †, the action � is only defined on a subset of the
product „ �†. The element ��.�/ is defined only if the domain d.�/ of � 2 „ coincides
with the image �.�/ of � 2† by the anchor map � W†!X , which is part of the definition
of the action. There are also some technical difficulties that we discuss briefly:

(a) When dealing with ��.�/, sometimes one needs to approximate � by a net ¹�i j i 2
I º. Usually ��i .�/ makes no sense, and this requires more involved arguments.

(b) When a group G acts over a topological space†, if A�G andU �† are open, then
AU �† is also open. Rather often, this plays an important role in the proofs. For groupoid
actions, this is true only in the special case when the domain (source) map d W „! „ is
open; we say that the groupoid is open if this holds. This may fail even in simple examples.
In such cases some expected properties do not hold, as counterexamples will show.

(c) Even if the map d is open, in most cases the translation ��.U / of an open set is no
longer open. For group actions this phenomenon is absent, since the action is composed
of (global) homeomorphisms. Therefore, extra care will be needed in some proofs.

Let us describe the content of the article.
Section 2 introduces the basic definitions. To read the article, the reader only needs to

know what a (topological) groupoid is, and to be familiar with the elementary properties a
classical dynamical system might have. The notations involving groupoids and continuous
groupoid actions are introduced in Section 2.1. The canonical action on the unit space will
be very important; it is a terminal action, by Lemma 7.2. Notions such as orbit, orbit
closure, invariant set and saturation are obvious extensions of the standard ones. However,
if the groupoid „ is not open, the interior, the closure or the boundary of an invariant
subset of † might not be invariant. This will have far-reaching negative consequences.
The central notion of recurrence set z„NM appears in Section 2.2. For M; N � †, this
consists in the elements � 2 „ under which some point ofM is sent inside N (taking into
account domain issues).

Section 3. In certain situations, a groupoid (or a groupoid action) is canonically con-
structed from other related mathematical objects. We present here a couple of such situa-
tions, stressing the way recurrence sets are determined by these objects. Our selection is
probably inspired by our interest in groupoid C �-algebras; geometrically oriented readers
could prefer others. Equivalence relations are important in groupoid theory; for us, they
will often serve as counterexamples. In fact, the most general of our counterexamples are
subgroupoids of direct products between equivalence relations and groups. In Section 3.2,
the usual group actions are encoded in two different ways to fit our setting. It is shown
that the second way yields a better grasp at the level of recurrence. The Deaconu–Renault
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groupoid of a local homeomorphism appears in Section 3.3. In Sections 3.4 and 3.5,
we arrive at groupoid actions making non-invariant restrictions in larger, maybe global,
dynamical systems; this includes partial group actions. In Section 3.6, to a groupoid action
.„;�;†/we associate a larger transformation (crossed product) groupoid„Ë� †. It only
has a partial relevance for recurrence issues. But it will also be used later, in connection
with factors and extensions. A pullback construction appears in Section 3.7.

Section 4 mainly treats various types of topological transitivity. Consider the follow-
ing properties of a continuous action � of the groupoid „ in the topological space †:

(i) † is not the union of two proper invariant closed subsets,

(ii) non-empty open invariant subsets of † are dense,

(iii) for any U; V � † open and non-void, ��.U / \ V ¤ ; for some � 2 „,

(iv) invariant subsets of † are either dense, or nowhere dense.

For group actions, these properties (suitably reformulated) are equivalent and go under the
common name of “topological transitivity”. This also happens for groupoid actions, if„ is
open (i.e. the domain map is open). But if it is not, then one only has (iv)) (iii)) (ii))
(i). After proving this and some connected results in Theorem 4.1, we indicate a couple of
counterexamples showing that in general none of the implications can be reverted. It is also
shown that pointwise transitivity (existence of a dense orbit) implies (iii) but not (iv). The
failure of some implications can be tracked back to the fact that the closure of an invariant
set could not be invariant if the groupoid is not open. We decided to call (iii) recurrent tran-
sitivity and (iv) (the strongest notion) topological transitivity; it is debatable whether the
terminology is the best one. Properties (i) and (ii) did not receive a name. Proposition 4.5
makes the necessary specifications for the case of a Baire second-countable space†. Then
we particularize to some of the examples from Section 3. In Section 4.2, we introduce and
study a final transitivity notion, the weakly pointwise transitivity. It is similar to pointwise
transitivity, but the orbit closure of a point (that might not be invariant if „ is not open) is
replaced by the smallest closed invariant set containing the point.

Section 5 is concerned with limit points, recurrent points and wandering and non-
wandering properties. Limit sets are mostly studied for actions of one of the groups Z or R
on topological spaces, where one distinguishes between positive and negative limit points.
A good reference is [6, Chapter II.2]. We are going to adapt the basic part of the theory
to groupoids. But besides being groups, Z and R have two extra features: (1) they have
‘two ends’ and (2) they are not compact. The first feature leads to various ramifications,
such as distinguishing between positive and negative limit sets. Trying to imitate this for
groupoid actions is possible, but would require a specialized and rather intricate setting.
On the other hand, too much compactness in a groupoid would make some constructions
and results trivial or non-interesting. So in Section 5.1, we will restrict our attention to
strongly non-compact groupoids, those for which all the fibers „x are non-compact. The
limit points of a given point � are defined by their asymptotic behavior under the action,
where “asymptotic” is encoded, equivalently, by complements of compact sets, diverging
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nets (both in„) or suitable recurrence sets. They are contained in the orbit closure of � and
form a closed subset having an attractor behavior. This subset is invariant if the groupoid
is open, but a counterexample shows that in general this can fail. In Section 5.2, a point
is called recurrent if it is a limit point of itself. In Proposition 5.8, this is related to other
types of descriptions, as in classical dynamical systems, but once again full equivalences
hold under the openness assumption (a counterexample is presented). This assumption
is also needed to insure invariance of the family of all recurrent points. Wandering and
non-wandering are similar to the group case notions, but defined in terms of groupoid
recurrence sets z„WW and compactness, where W is a neighborhood of the point we study.
The family of non-wandering points is closed; to be invariant one also requires „ to be
open and locally compact. If † is compact, it is non-void and attracts the points of † in a
suitable sense. We indicate examples involving pullbacks and action groupoids.

Section 6. We start in Section 6.1 with the set †fix � † of fixed points of a groupoid
action. It is invariant; it is also closed if „ happens to be open, but not in general, as
counterexamples show. We inspect the origin of the fixed points for global and partial
group actions, for non-invariant restrictions, for the Deaconu–Renault groupoid and for
pullbacks. In Section 6.2, we show the inclusion

†fix � †per � †wper \†alper � †wper [†alper � †rec � †nw: (1.1)

Besides fixed, recurrent and non-wandering points, already defined, we introduce three
other types of points: periodic, weakly periodic and (most important) almost periodic. For
the first two, terminology could be debated even in the group case. The precise meaning
can be found in Definition 6.8, where an adaptation to groupoids of the standard notion
of syndeticity is also included. We discuss issues such as invariance and closure for the
new sets. In [3], Beckus, Bellissard and De Nittis work with locally compact, second
countable, open groupoids with compact unit space. A unit x is called a periodicoid if its
orbit is closed (i.e. compact). Among others they show that if, in addition, the groupoid
is étale, the orbit of a periodicoid point is actually finite. Obviously, the notion makes
sense and is relevant also for general groupoid actions. In Section 6.3, we connect it with
our periodicity. Proposition 6.16 proves that a periodic point � has a compact orbit, and
in Proposition 6.18, we prove the converse implication, adding some extra conditions.
Minimality is explored in Section 6.4. After stating the definition and providing the most
elementary properties, we exhibit in Theorem 6.23 the connection between minimality
and almost periodicity. For group actions, this is the standard result that can be found
in every textbook [2, 6, 9, 13]. The proof is similar, but slightly more involved, because
of the groupoid setting. Corollary 6.28 deals with semisimplicity and point almost peri-
odicity. In Proposition 6.30, we provide conditions under which minimality implies the
non-wandering property.

Section 7. Homomorphisms (equivariant maps) are an important topic in topologi-
cal dynamics. In Section 7.1, we study surjective homomorphisms (epimorphisms) in the
framework of groupoid actions (equivariance now also requires a compatibility of the two
anchor maps). They lead to the usual concepts of extension and factor. The canonical
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action of a groupoid „ on the unit space is terminal, being a factor of any other „-action.
We study the fate under epimorphisms of most of the dynamical properties already intro-
duced. Two main results are Theorem 7.6 (referring to the sets (1.1)) and Proposition 7.7
(treating various types of transitivity, including recurrent transitivity). Note that, by Exam-
ple 7.9, topological transitivity does not always transfer to factors when the groupoid is
not open. Proposition 7.10 refers to the behavior of minimality under epimorphisms. It
also contains conditions under which a minimal subsystem of the factor admits a min-
imal pre-image and an almost periodic point of the factor is reached from an almost
periodic element of the extension. Section 7.2 connects extensions of groupoid actions
as in Section 7.1 with action (crossed product) groupoids as in Section 3.6. In [8], Edeko
and Kreidler use transformation groupoids to study group action extensions. They develop
a very interesting theory, that however has little in common with the content of the present
article. By a straightforward generalization of a construction from [8], given a groupoid
action ‚0 D .„; � 0; †0/, we show that there is a one-to-one correspondence between
extensions of ‚0 and actions of the crossed product groupoid „.‚0/ WD „ Ë� 0 †0. We
also exhibit an isomorphism between two different crossed products. In Propositions 7.13
and 7.14, we prove that the dynamical properties are the same under the mentioned bijec-
tive correspondence. Various other types of morphisms are studied in [12].

Section 8. We dedicate this short final section to convince the reader that mixing, as
presented in Definition 8.1, is not an interesting concept outside the classical group case,
if the anchor map � W †! X is surjective and the unit space X is Hausdorff (standing
assumptions in the present paper).

2. Groupoids and groupoid actions

2.1. The framework

We deal with groupoids „ over a unit space „.0/ � X , seen as small categories in which
all the morphisms (arrows) are invertible. The source and range maps are denoted by
d; r W „! „.0/ and the family of composable pairs by „.2/ � „ �„. For M;N � X
one uses the standard notations

„M WD d�1.M/; „N WD r�1.N /; „NM WD „M \„
N :

Particular cases are the d-fiber „x � „¹xº, the r-fiber „x � „¹xº and the isotropy group
„xx � „

¹xº

¹xº
of a unit x 2 X . Clearly „xx„

x � „x and „x„xx � „x . The disjoint union

Iso.„/ WD
G
x2X

„xx D
®
� 2 „ j d.�/ D r.�/

¯
is called the isotropy bundle of the groupoid.

The subset� of the topological groupoid„ is called a subgroupoid if for every .�;�/2
.� ��/ \„.2/ one has �� 2 � and ��1 2 �. This subgroupoid is wide if �.0/ D „.0/.
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A topological groupoid is a groupoid „ with a topology such that the inversion � 7!
��1 and multiplication .�; �/ 7! �� are continuous. The topology in „.2/ is the topology
induced by the product topology. Whenever the map d W „ ! X is open, we say that
the groupoid „ is open. Equivalent conditions are: (i) r W „ ! X is open and (ii) the
multiplication is an open map. It is known that a locally compact groupoid possessing a
Haar system is open. In particular, étale groupoids and Lie groupoids are open. For this
reason, many texts in groupoid theory only deal with open groupoids.

An equivalence relation on X is defined by x � y if x D r.�/ and y D d.�/ for some
� 2 „. This leads to the usual notions of orbit, invariant (saturated) set, saturation, tran-
sitivity, etc. The orbit of a point x will be denoted by Ox D r.„x/. Its closure Ox is called
an orbit closure.

Definition 2.1. A groupoid action is a 4-tuple .„; �; �; †/ consisting of a groupoid „, a
set †, a surjective map � W †! X (the anchor) and the action map

� W „‰ † WD
®
.�; �/ j d.�/ D �.�/

¯
3 .�; �/ 7! ��.�/ � � �� � 2 † (2.1)

satisfying the axioms:

(1) �.�/ �� � D � for all � 2 †,

(2) if .�; �/ 2 „.2/ and .�; �/ 2 „‰ †, then

.�; � �� �/ 2 „‰ † and .��/ �� � D � �� .� �� �/:

An action of a topological groupoid in a topological space is just an action .„; �; �; †/
where „ is a topological groupoid, † is a Hausdorff topological space and the maps �; �
are continuous.

If the action � is understood, we will write � � � instead of � �� � . If � is not supposed
surjective, then �.†/ is an invariant subset of the unit space and only the reduction „�.†/

�.†/

really acts on †, so asking � to be onto seems convenient.

Example 2.2. Each topological groupoid acts continuously in a canonical way on its unit
space. In this case, we have † D X and � D idX , and then (note the special notation)
� ı x WD �x��1 as soon as d.�/ D x. Putting this differently, � sends d.�/ into r.�/. One
could also name this the terminal action; see Lemma 7.2.

Example 2.3. Let .„;�;�;†/ be a continuous groupoid action and� a wide subgroupoid
of„. The restricted action is defined by keeping the same anchor � and just restricting the
map � to

�‰ † D
®
.�; �/ 2 � �† j d.�/ D �.�/

¯
D
®
.�; �/ 2 „‰ † j � 2 �

¯
:

Example 2.4. The topological groupoid „ also acts on itself, with † WD „, � WD r and
� � � WD ��.



Topological dynamics of groupoid actions 1011

For � 2 „, A; B � „, M � † we use the notations

AB WD
®
�� j � 2 A; � 2 B; d.�/ D r.�/

¯
;

� �M WD
®
� � � j � 2M \ ��1Œd.�/�

¯
;

A �M WD
®
� � � j � 2 A; � 2M; d.�/ D �.�/

¯
D

[
�2A

� �M:

These sets could be void in non-trivial situations.

Remark 2.5. In [19], it is shown that if the groupoid „ is open, then A �M � † is open
whenever the sets A � „ and M � † are open. For topological group actions the product
AM is open provided that only the subset M is open. In addition, if A;B are subsets of the
group, then AB is open whenever at least one of the subsets is. Examples below will show
that for groupoids this is not true, and this will require some special care in some of our
proofs. Note that, even for open groupoids, the translation � �M of an open subset M of
† could not be open.

Definition 2.6. We are going to use orbits O� WD „�.�/ � � and orbit closures xO� . The
orbit equivalence relation will be denoted by �. A subset M � † is called invariant if
� �M �M , for every � 2 „. If N � †, its saturation

Sat.N / D „ �N D
\
N�M

M invariant

M

is the smallest invariant subset of † containing N .

Proposition 2.7. Assume that „ is an open groupoid. The saturation of an open set is
also open. The interior M ı, the closure xM and the boundary @M of an invariant subset
M of † are also invariant.

Proof. IfN is an open set, Sat.N /D„ �N is open, as d is an open map; see Remark 2.5.
One has .M ı/c DM c and @M D xM nM ı. Since the difference of two invariant sets

is clearly invariant, it is enough to show thatM ı is invariant. If � 2M is an interior point,
there exists some open set U �M containing � , so we have

� � � 2 „ � U � „ �M DM;

implying that � � � is also an interior point of M , since „ � U is open.

Remark 3.1 and Example 4.2 will show that the openness assumption cannot be
removed.

Lemma 2.8. For every � 2 † one has �.O� / D O�.�/. The map � sends �-invariant
subsets of † into ı-invariant subsets of the unit space X (see Example 2.2).
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Proof. If y 2 �.O� /, then for some � 2 „�.�/ one has

y D �.� � �/ D r.�/ 2 O�.�/:

On the other hand, if y 2 O�.�/, there exists � 2„�.�/ with y D r.�/D �.� � �/ 2 �.O� /

and the equality is proven. From this, the last part is trivial.

2.2. Recurrence sets

Definition 2.9. For any M;N � † one defines the recurrence set as

z„NM D
®
� 2 „ j .� �M/ \N ¤ ;

¯
:

The set z„NM is increasing inM andN . In the group case, one also uses the term “dwelling
set”.

The recurrence set can be also described in terms of the function

„‰ † 3 .�; �/
#
�! .� � �; �/ 2 † �†:

If we denote by q the projection on the first variable „ �†! „ and by q its restriction
to „‰ †, then

z„NM WD q
�
#�1.N �M/

�
:

Remark 2.10. Note that z„NM D
S
�2M

z„N� , where

z„N� �
z„N
¹�º D

®
� 2 „�.�/ j � � � 2 N

¯
� „

�.N/

�.�/
� „�.�/:

It follows immediately that z„NM � „
�.N/

�.M/
. Actually, when � is also injective, one has

z„NM D „
�.N/

�.M/
. This applies, in particular, to Example 2.2. The stabilizer

z„�� D
®
� 2 „ j � � � D �

¯
is a closed subgroup of the isotropy group „�.�/

�.�/
. They coincide whenever � is injective.

Example 2.11. In the setting of Example 2.4 one has

z„NM D
®
� 2 „ j „d.�/

\M \ ��1N ¤ ;
¯
:

Example 2.12. Given a topological space †, the fundamental groupoid „, typically de-
noted by …1.†/, is just the set of homotopy classes of paths between pairs of points. The
space of all paths is given the compact-open topology and this induces in „ the quotient
topology. We observe thatX is basically† and the action � ı � moves the starting point �
through the path �. The recurrence sets are expressed in terms of the path-connectedness
of †:

z„NM D „
N
M

D
®
 W Œ0; 1�! † j  continuous; .0/ 2M; .1/ 2 N

¯
modulo homotopy.

The stabilizer of � 2 X is the fundamental group „�� D �.†; �/ of † rooted at � .
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The next straightforward results will be useful in the next sections.

Lemma 2.13. If M;N � † and �1; �2 2 „, then

z„
�2�N
�1�M

D �2 z„
N
M�
�1
1 and . z„NM /

�1
D z„MN :

Proof. We only show the first equality:

� 2 z„
�2�N
�1�M

, 9 � 2M; � 2 N such that � � .�1 � �/ D �2 � �

, 9 � 2M; � 2 N such that .��12 ��1/ � � D �

, ��12 ��1 2
z„NM

, � 2 �2 z„
N
M�
�1
1 :

Lemma 2.14. Let M;N � †. Then

Sat.M/ \N ¤ ; , Sat.M/ \ Sat.N / ¤ ; , z„NM ¤ ;:

Proof. One has Sat.M/ \ Sat.N / ¤ ; if and only if there exist �1; �2 2 „, � 2 M and
� 2 N such that �1 � � D �2 � � , which is equivalent to .��12 �1/ � � D � 2 N , so we have
��12 �1 2 z„

N
M and .��12 �1/ � � 2 Sat.M/. We used the fact that

d.��12 / D r.�2/ D �.�2 � �/ D �.�1 � �/ D r.�1/:

For the converse: If z„NM ¤ ;, there exists � 2 „ such that � � � D � , with � 2M and
� 2 N . Then Sat.M/ \N ¤ ;, from which Sat.M/ \ Sat.N / ¤ ; follows.

Remark 2.15. Let .„;�;�;†/ be a continuous groupoid action and� a wide subgroupoid
of „. In terms of the restricted action from Example 2.3, if M;N � †, the contention
z�NM �

z„NM between the corresponding recurrence sets is obvious. It is also clear that the
�-orbit of any point of † is contained in the „-orbit of this point and that the invariant
sets under „ are also invariant under �. From this one deduces many simple connections
between dynamical properties of the two actions, that we will not write down.

3. Some examples

3.1. Equivalence relations

If … � X � X is an equivalence relation on the Hausdorff topological space X , one can
make … into a topological groupoid by using the product topology in X � X and the
operations

d.x; y/ D .y; y/; r.x; y/ D .x; x/; .x; y/.y; z/ D .x; z/; .x; y/�1 D .y; x/:

The unit space is Diag.X/ and we identify it withX , via the homeomorphism .x; x/ 7! x.
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As a particular case of Example 2.2, the groupoid „ WD … acts in a canonical way on X
by

.x; y/ ı y D x for all x; y 2 X:

For any M;N � X we get

z„NM D „
N
M D … \ .N �M/: (3.1)

There are two extreme particular cases: (i)…D Diag.X/ (the trivial groupoid), for which
„NM may be identified with N \M , and (ii) … D X � X (the pair groupoid), when
„NM D N �M . Actually, an equivalence relation on X is a wide subgroupoid of the pair
groupoid.

Remark 3.1. We keep the same notations. The first projection X � X ! X is always
open. The restriction to a subset (… in our case) may not be an open function in general.
(However, when … is an open subset in X � X , it is also an open groupoid.) One special
example [19, Ex. 6.2] consists of setting X D R, the relation being

x … y , x; y 2 Œ�1; 1� or x D y:

This groupoid is Hausdorff and locally compact, but it is not open: observe that „ ı
.�1

2
; 1
2
/ D Œ�1; 1�. This is relevant for Remark 2.5, Proposition 2.7 and their subsequent

consequences.

Even if the equivalence relation is open, very often “translations” of open sets are not
open. For the pair groupoid, if .x; y/ 2 X �X and y 2 U � X is open, then .x; y/ ıU D
¹xº.

Non-open equivalence relations will be used repeatedly as counterexamples. It is true,
however, that in some situations one considers on equivalence relations topologies which
are different from the one induced from the Cartesian product.

3.2. Group actions

We indicate two ways to encode group actions by groupoids. The second one will be
convenient for our purposes. We thought it would be interesting to also mention the first
one, since it seems natural.

Example 3.2. As a particular case of Example 2.2, the transformation groupoid „ �
G Ë X associated to the continuous action  of the topological group G on the topological
space X naturally acts on X by .a; x/ ı x WD a.x/. We recall that, as a topological
space, it is just G �X . The composition is .b; a.x//.a; x/ WD .ba; x/ and inversion reads
.a; x/�1 WD .a�1; a.x//. If M;N � † � X , then

z„NM D „
N
M D

®
.a; x/ 2 G �M j a.x/ 2 N

¯
� G �X:

The first projection p W G �X ! G restricts to a surjection

p W z„NM ! Rec .M;N / WD
®
a 2 G j a.M/ \N ¤ ;

¯
� G ; (3.2)



Topological dynamics of groupoid actions 1015

where Rec .M; N / is the usual recurrence set for dynamical systems [2, 6, 9]. Injectiv-
ity fails in general: for instance, z„XX D G � X while Rec .X; X/ D G . On the other
hand, if M or N are singletons, injectivity holds. Using slightly simplified notations, one
has z„Nx0 Š Rec .x0; N / and z„x0M Š Rec .M; x0/. Although the relation (3.2) is quite
concrete, it will not be precise enough to make suitable connections between dynamical
properties in the group and in the groupoid framework.

Example 3.3. So we implement differently the classical dynamical system .G ; ; †/ (for
a better correspondence of notations, we set † for the space of the group action). The
group is an open groupoid in the obvious way; so we have „ WD G and the unit space
X D ¹eº is only composed of the unit of the group. The source and the domain maps are
constant, the same being true for � W †! ¹eº; it follows that G ‰ † D G �†. One sets
a � � WD a.�/ for every a 2 G , � 2 † (thus � D  ). Note that this is not covered by
Examples 2.2 or 2.4. A simple inspection of the definitions shows that

z„TS �
zGNM D Rec .M;N /; (3.3)

and this will be very convenient below.

3.3. The Deaconu–Renault groupoid

Let � WX!X be a local homeomorphism of the Hausdorff topological spaceX . To unify
many constructions in groupoid C �-algebras, one defines the Deaconu–Renault groupoid
[7, 18]

„.�/ WD
®
.x; k � l; y/ j x; y 2 X; k; l 2 N; �k.x/ D �l .y/

¯
;

with structure maps

.x; n; y/.y;m; z/ WD .x; nCm; z/; .x; n; y/�1 WD .y;�n; x/;

d.x; n; y/ WD y; r.x; n; y/ WD x:

With a suitable topology (not needed here), it turns into a Hausdorff étale groupoid overX .
If � is a (global) homeomorphism, this results in the transformation groupoid of Example
3.2 for the group G D Z.

An important tool is the canonical cocycle (a groupoid morphism)

c W „.�/! Z; c.x; n; y/ WD n;

which is, of course, the restriction to „.�/ of the middle projection. For any M;N � X
set

Z�.N;M/ WD
®
k � l j �k.N / \ �l .M/ ¤ ;

¯
� Z:

The orbit of y is Oy D ¹x 2 X j Z�.x; y/¤ ;º, where notationally we identify singletons
to points. The canonical cocycle restricts to a surjection

c WA„.�/NM � „.�/NM ! Z�.N;M/: (3.4)
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In contrast with the global case, if M D ¹yº, then (3.4) could still fail to be injective. But
clearly c restricts to a one-to-one map allowing to identify „.�/xy with Z�.x; y/ for any
x; y 2 X .

3.4. Non-invariant restrictions

Let .„; �; �;†/ be a continuous groupoid action. Let† be an open subset of†; we do not
suppose it to be invariant. One defines X WD �.†/, so � WD �j† W †! X is a continuous
surjection. We also have the (maybe non-invariant) groupoid restriction

„ WD „
X

X D
®
� 2 „ j d.�/; r.�/ 2 X

¯
;

which acts naturally by the restriction of � on †. Obviously

„‰ † D .„‰ †/ \ .„ �†/:

If M � † is �-invariant, M \ † is clearly �-invariant. If M;N � †, one easily checks
that

z„
N\†

M\† � „ \
z„NM D

z„
N\��1Œ�.†/�

M\��1Œ�.†/�: (3.5)

One gets equality whenever † is �-saturated, i.e. when ��1Œ�.†/� D †, in particular,
when � is a bijection. On the other hand, if M;N � †, one always gets equality in (3.5),
and in this case

z„
N

M D „ \
z„NM D

z„NM : (3.6)

To get the last term, one notices that z„NM � „
�.N/

�.M/
� „, since �.M/; �.N / � X , or

proceeds directly.

3.5. Partial group actions

Let G be a group assumed, for simplicity, to be discrete. The unit is denoted by e.

Definition 3.4. A partial action [11] of G on the topological space Y is a family of home-
omorphisms

ˇ WD
®
Ya�1

ˇa
�! Ya j a 2 G

¯
between open subsets of Y satisfying

(i) Ye D Y and ˇe D idY ,

(ii) ˇa ı ˇb is a restriction of ˇab for any a; b 2 G .

The domain of the composition above is

dom.ˇa ı ˇb/ WD
®
y 2 Yb�1 j ˇb.y/ 2 Ya�1

¯
D ˇ�1b .Ya�1/:

It is easily shown that ˇ�1a D ˇa�1 for any element a. To such a partial action, one asso-
ciates [1] an étale groupoid „Œˇ� � G ËŒˇ� Y over Y . As a set it is

G ËŒˇ� Y WD
®
.a; y/ j a 2 G ; y 2 Ya�1

¯
;
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on which one considers the induced product topology. The structure maps are

d.a; y/ WD y; r.a; y/ WD ˇa.y/;

.a; ˇb.y//.b; y/ WD .ab; y/; .a; y/�1 WD .a�1; ˇa.y//:

If the action is global, meaning that Ya D Y for every a, then we recover the situation of
Example 3.2.

The subset T � Y is said to be ˇ-invariant if ˇa.y/ 2 T whenever a 2 G and y 2
T \ Ya�1 . Of course, this happens exactly when T is invariant, seen as a set of units of
„Œˇ�.

For S; T � Y it seems natural to define the recurrence set

RecŒˇ�.S; T / WD
®
a 2 G j 9y 2 Ya�1 \ S such that ˇa.y/ 2 T

¯
: (3.7)

Very much as in Example 3.2, one gets

e„Œˇ�TS D „Œˇ�TS D
®
.a; y/ 2 G � S j y 2 Ya�1 ; ˇa.y/ 2 T

¯
� G ËŒˇ� Y:

The first projection .a; y/! p.a; y/ WD a restricts to a surjection

p W e„Œˇ�TS ! RecŒˇ�.S; T /: (3.8)

If S D ¹y0º is a singleton, injectivity holds and one has e„Œˇ�Ty0 Š RecŒˇ�.y0; T /.
A very direct way to get a partial group action is to make a non-invariant restriction

in a group (global) action. In a certain sense this is the most general situation, since any
partial action can be extended to a global one [10].

So let .G ; ; X/ be a continuous group action and Y an open, maybe non-invariant,
subset of X . For every a 2 G , set Ya WD Y \ a.Y / � Y . It is straightforward to check
that

ˇ WD
®
ˇa WD ajYa�1 W Ya�1 ! Ya j a 2 G

¯
becomes a partial action. The groupoid„Œˇ�� G ËŒˇ� Y may be seen as the non-invariant
restriction to Y of the transformation groupoid G Ë X from Example 3.2, as described in
Section 3.4. For this notice that, if .a;x/2 G �X , the conditions d.a;x/; r.a;x/2 Y mean
exactly that x 2 Ya�1 . The relationship between the two types of groupoid recurrence sets
may be read off from (3.5), or from (3.6) in the most interesting case, when the two sets
are already contained in Y . In this last case, one gets

.G ËŒˇ� X/TS D .G Ë X/TS ; (3.9)

which can also be checked directly. In terms of the actions themselves, using a notation
from (3.2), the relation (3.7) converts into

RecŒˇ�.S;T /D
®
a 2 G j 9y 2 a�1.Y /\ S such that a.y/ 2 T

¯
D Rec .S;T /; (3.10)

since a.y/ 2 T � Y already implies that y 2 a�1.Y /. It is also easy to verify that (3.10)
follows from (3.8), (3.9) and (3.2).
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3.6. The action groupoid of a groupoid action

A continuous groupoid action .„;�; �;†/ being given, one constructs the action (or trans-
formation, or crossed product) groupoid which, as a set, is the closed subspace„‰ † of
„ �† introduced in (2.1) and the structure maps are

.�; � � �/.�; �/ WD .��; �/; .�; �/�1 WD .��1; � � �/;

d.�; �/ WD .�.�/; �/ � �; r.�; �/ WD .r.�/; � � �/ � � � �:
(3.11)

To stress the origin of the construction, we are going to denote by„Ë� † this groupoid, in
analogy with the group case which is a particular example. The space of units .„Ë� †/.0/
identifies with †. The canonical action of „ Ë� † on † (see Example 2.2)

.�; �/ ı .�.�/; �/ D .�; �/.�.�/; �/.�; �/�1 D .r.�/; � � �/ D .�.� � �/; � � �/

may also be written .�; �/ ı � D � � � , and thus reproduces in some way the initial action.
The invariant subsets, in particular the orbits, are the same. This has a series of obvi-
ous consequences on the way dynamical properties are preserved when passing from
.„; �; �; †/ to „ Ë� †.

The connection between the relevant recurrent sets is similar with (and in fact gener-
alizes) that of Example 3.2: if M;N � †, we get

.„ Ë� †/NM D
®
.�; �/ 2 „ Ë� † j � 2M; � � � 2 N

¯
:

Consequently,
z„NM D p

�
.„ Ë� †/NM

�
; (3.12)

where p is the restriction of the first projection of the product „ � †. This restriction is
not always injective, being constant on any set of the type ¹�º � ��1Œd.�/�. It follows that
for recurrence phenomena it is not always a good idea to replace the initial action by the
action groupoid.

3.7. Groupoid pullbacks

There is a powerful method to construct new more sophisticated groupoids from simpler
ones, which, however, does not loose control over the orbit structure or the recurrence
sets. Let d; r W „! X be the domain and the range maps of a topological groupoid, � a
topological space and h W �! X an open continuous surjection. Let

h##.„/ WD
®
.!; �; !0/ 2 � �„ �� j r.�/ D h.!/; d.�/ D h.!0/

¯
be the associated pullback groupoid [5, 14]. We recall its structural maps:

.!1; �; !2/.!2; �; !3/ WD .!1; ��; !3/; .!; �; !0/�1 WD .!0; ��1; !/;

d.!; �; !0/ WD !0; r.!; �; !0/ WD !:
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Note the relations between orbits and orbit closures in the two groupoids (closures com-
mute with open continuous surjections):

O##! D h
�1.Oh.!//; O

##
! D h

�1.Oh.!//:

For M;N � �, by inspection one gets

h##.„/NM D N �„
h.N/

h.M/
�M: (3.13)

4. Topological transitivity

4.1. The standard notions

Let us fix a continuous groupoid action .„; �; �; †/. We start with the simplest notions.
If there is just one orbit, the action is transitive. This happens for the pair groupoid, for
instance. (In [8, Prop. 3.18], it is shown that a compact transitive groupoid is open.) A
point having a dense orbit is called a transitive point. If there is a dense orbit, i.e. if a
transitive point does exist, one says that the action is pointwise transitive. For the more
refined notions, one needs first to prove the next result.

Theorem 4.1. Let us consider the following conditions:

(i) † is not the union of two proper invariant closed subsets.

(i0) Any two open non-void invariant subsets of † have non-trivial intersection.

(ii) Each non-empty open invariant subset of † is dense.

(iii) For any U; V � † open and non-void, z„VU ¤ ; holds (recurrent transitivity).

(iv) Each invariant subset of † is either dense, or nowhere dense (topological tran-
sitivity).

Then the following implications hold:

(1) Transitivity) pointwise transitivity) recurrent transitivity (iii).

(2) (iv)) (iii)) (ii)) (i0), (i). None of the other implications holds in general.
Pointwise transitivity does not imply topological transitivity.

(3) If the groupoid „ is open, the conditions (i) to (iv) are all equivalent.

Proof. (1) The first implication is trivial (and obviously it is not an equivalence). We verify
now the second one. Assume that† has a dense orbit O� and let ; ¤ V1; V2 be open sets.
One has

�1 � � 2 O� \ V1 ¤ ; and �2 � � 2 O� \ V2 ¤ ;

for elements �1; �2 2 „ with r.��11 / D d.�1/ D �.�/ D d.�2/. Since .�2��11 /.�1 � �/ D

�2 � � , we infer that �2��11 2 z„
V2
V1
¤ ;.

(2) (i) , (i0). If (i) fails, i.e. † D C [ D with C and D proper closed invariant
subsets, then C c \Dc D ;. This contradicts (i0), since C c and Dc are open, non-void
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and invariant. On the other hand, if A; B are open non-empty invariant sets such that
A\B D ;, then Ac [Bc D † with Ac ; Bc proper closed invariant subsets, finishing the
proof of the equivalence.

(ii)) (i0). If a non-void open invariant subset is dense, it meets every other (invariant)
non-void open set.

(iii)) (ii). Let ; ¤ U � † be open and invariant. By assumption, for every non-void
open set V � † there exists some � 2 „ making .� � U/ \ V non-void. But � � U � U ,
implying U \ V ¤ ;. Thus, U meets every other non-void open set and must be dense.

(iv)) (iii). Suppose (iv) holds. Let ; ¤ U;V �† be open sets. Sat.U / is an invariant
set containing U , so it cannot be nowhere dense, meaning that it is dense. Hence Sat.U /\
V ¤ ; and we conclude by Lemma 2.14.

The fact that all the other implications fail without extra assumptions will be shown in
a series of counterexamples below.

(3) Provided that d is open, it is enough to prove that (i0) implies (iv). So let us assume
(i0), but let A�† be invariant, neither dense, nor nowhere dense. Then .A/ı and .Ac/ı D
. xA/c are both non-void open sets, which are invariant by Proposition 2.7. They should
meet, by (i0), but this is obviously false.

Let us indicate now the necessary counterexamples for groupoids that are not open.

Example 4.2. This example shows that (ii) 6) (iii), (iv) (redundantly but explicitly). Let

† D X � Rx
WD .�1; 0/ [ .0;1/:

Define the sets

X1 D ¹�1º [
�
.0;1/ n ¹1º

�
and X2 D

�
.�1; 0/ n ¹�1º

�
[ ¹1º:

Forming a partition of Rx, they induce an equivalence relation …, viewed as a topological
groupoid acting on Rx as in Section 3.1. It is easy to check that … is not open. The orbits
are precisely X1 and X2 (neither open nor closed), with closures

xX1 D ¹�1º [ .0;1/ and xX2 D .�1; 0/ [ ¹1º:

These orbit closures are not invariant, showing already that for non-open groupoids the
conclusion of Proposition 2.7 does not necessarily hold. (And we see that … is not an
open groupoid in an indirect way.)

It is easy to see that X D X1 [ X2 is the single (non-void) open invariant set, since
any invariant set is a union of orbits, and X1; X2 are not open. Thus condition (ii) from
Theorem 4.1 holds. On the other hand condition (iv) definitely fails, since the invariant
sets X1; X2 are neither dense, nor nowhere dense. Of course recurrent transitivity also
fails. To see this directly, take for instance U D .2;1/ and V D .�1;�2/, for which

z„VU D
®
.x; y/ 2 … j y 2 U; x 2 V

¯
D ;;

by (3.1) or by a simple computation.
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Example 4.3. The previous example can be easily modified to show that (i0) 6) (ii). In
Rx, define the equivalence relation ‡ associated to the partition

Y1 D ¹�1º [ .0; 1/ [ .1; 2/ [ .3;1/; X2 D
�
.�1; 0/ n ¹�1º

�
[ ¹1º; Y3 D Œ2; 3�

and consider the canonical action of „ D ‡ on Rx. As invariant sets are union of orbits,
the only non-void invariant open sets are Rx and

Y1 [X2 D .�1; 0/ [ .0; 2/ [ .3;1/;

which have non-empty intersection, so (i0) holds. But the set Y1 [X2 is not dense, hence
(ii) fails.

Example 4.4. Define on † D X D R the equivalence relation

x … y , x; y 2 Q or x D y:

This provides a non-open groupoid acting on R, and this action is pointwise transitive
(Q is a dense orbit), hence recurrently transitive. The invariant set .0; 1/ nQ is neither
nowhere dense nor dense, so this action is not topologically transitive. This example shows
that pointwise transitivity 6) (iv) and (consequently) (iii) 6) (iv).

Proposition 4.5. If „ is open and † is a Baire second-countable space, then topologi-
cal transitivity, recurrent transitivity and pointwise transitivity are equivalent (and also
equivalent to the properties (i) and (ii)).

Proof. Having in view Theorem 4.1, what remains is to show that (ii) implies pointwise
transitivity. Since† is second-countable, its topology has a countable basis ¹Vn ¤ ;ºn2N .
By defining Un D „ � Vn we get countably many dense open subsets of a Baire space,
so U D

T
n Un is also a dense (invariant) set. Let W ¤ ; be an open subset of †. By

the definition of a basis, there exists some Vn � W . Hence we have U � Un D „ � Vn �
„ �W . Therefore, if � 2 U , then ��1 � � 2W for some � 2„. Hence � has a dense orbit
and the action is pointwise transitive.

We recall that Hausdorff locally compact spaces and complete metric spaces are Baire.

Remark 4.6. What we used in the proof of Proposition 4.5 is the fact that the intersection
U is non-void. Actually, one could improve: under the given requirements, the set of points
with dense orbit is a dense Gı -set.

Example 4.7. In the classical dynamical system case of Example 3.3 we recover known
results [2, 6, 13]. Since the source map G ! ¹eº is clearly open, Theorem 4.1 simplifies
a lot. Even in this particular case, without second countability the full equivalence from
Proposition 4.5 fails.

Example 4.8. The Deaconu–Renault groupoid is recurrently transitive if and only if for
any open sets ; ¤ U;V �X , there exist x 2 V , y 2 U , k; l 2N such that �k.x/D �l .y/.
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Example 4.9. We say that the partial group action .G ; ˇ; Y / from Section 3.5 is recur-
rently transitive if RecŒˇ�.U;V /¤ ; for any U;V � Y non-void and open. From (3.8) one
deduces that this happens precisely when the groupoid G ËŒˇ� Y is recurrently transitive.

Example 4.10. As in Section 3.4, let .„;�; �;†/ be a groupoid action and let .„;�; �;†/
be the action obtained by restriction to the open, maybe non-invariant subset † � †. If �
is recurrently transitive, then � is also recurrently transitive. This follows from formula
(3.6) and from the fact that open subsets of † are open in †. It is clear that in general
there is no converse to the statement. In particular, † might happen to be invariant and
recurrently transitive, while the restriction to † n † is not constrained in any way. The
next proposition outlines a favorable situation.

Proposition 4.11. Suppose that„ is open and Sat.†/ is dense in†. Then � is recurrently
transitive if and only if � is recurrently transitive.

Proof. Suppose that � is recurrently transitive and let U; V be two open non-void subsets
of†. By density, U and V both intersect the saturation„ �†. So Lemma 2.14 tells us that
the open set † intersects the open sets „ � U and „ � V . Use the fact that � is recurrently
transitive and Lemma 2.14 (again) to conclude that z„VU ¤ ;.

Corollary 4.12. Let .G ; ; X/ be a global group action and .G ; ˇ; Y / the partial action
obtained as in Section 3.5 by restricting to the open subset Y . We assume that X is the
smallest invariant set containing Y . Then one of the actions is recurrently transitive if and
only if the other is so.

In [11, Prop. 5.5], it is shown that any partial action .G ; ˇ; Y / may be obtained from a
global one, with the extra condition that the total spaceX is the saturation of the initial one,
in an essentially unique way. In general, X could fail to be Hausdorff, cf. [11, Prop. 5.6].
The results are attributed to F. Abadie [1].

Example 4.13. In the setting of Section 3.6, the groupoid action .„;�; �;†/ is recurrently
transitive if and only if the action groupoid „ Ë� † is so (p is surjective, hence p.B/ is
void if and only if B is void).

Example 4.14. Although the pullback groupoid of Section 3.7 might be much more com-
plicated than the initial one, h##.„/ and„ are simultaneously recurrently transitive. This
follows from (3.13).

4.2. Weakly pointwise transitivity

Definition 4.15. Define the invariant closure of A � † by

C.A/ WD
\
A�M

M closed, invariant

M:

This is the smallest closed and invariant set including A. One very special case (deserving
its own notation) is C� D C.¹�º/, the invariant orbit closure of � .
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Proposition 4.16. The invariant closure verifies

C.A/ D C.Sat.A// D C.Sat.A//:

In particular,
C� D C.O� / D C.xO� / � xO� :

If „ is open, then C.A/ D Sat.A/ and C� D xO� .

Proof. Since A � Sat.A/ � Sat.A/, one readily gets

C.A/ � C.Sat.A// � C.Sat.A//:

The set C.A/ is closed and invariant, so it contains Sat.A/, implying that C.Sat.A// �
C.A/.

If„ is open, then by Proposition 2.7 Sat.A/ is a closed and invariant set containing A,
so C.A/ D Sat.A/. Then use the fact that O� D Sat.¹�º/.

It is not difficult to see that C.A/ contains the sets

Sat.A/; Sat.Sat.A//; Sat.Sat.Sat.A///; : : :

Whenever the groupoid is open, this ascending chain of sets collapses in the first step. The
relevance of the set C.A/ in groupoids that are not open is a new phenomenon.

Definition 4.17. An action .„; �; �; †/ is called weakly pointwise transitive (wpt) if a
point � 2 † exists such that C� D †. In this case, we say that � is a weakly transitive
point.

Remark 4.18. Since xO� � C� , it is clear that pointwise transitive) weakly pointwise
transitive. When „ is an open groupoid, weakly pointwise transitive, pointwise transi-
tive.

Example 4.19. We compute the invariant closures in the previous examples.

• In Example 4.2, one has C� D Rx for all � 2†D Rx. So every point is weakly transi-
tive. We recall that this example is not topologically transitive or recurrently transitive.

• In Example 4.3,

C� D

´
Œ2; 3� if � 2 Œ2; 3�;

Rx if � 2 Rx n Œ2; 3�:

• In Example 4.4,

C� D

´
R if � 2 Q;

¹�º if � 62 Q:

All of these are weakly pointwise transitive systems. The examples also show that
the sets ¹C� j � 2 †º do not need to be disjoint: some could intersect or even (strictly)
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contain others. Of course, this often happens for orbit closures, but for invariant closures
the overlaps tend to be larger.

Proposition 4.20. Weakly pointwise transitivity implies condition (i) of Theorem 4.1.

Proof. Suppose that†D N1 [N2, where N1 and N2 are closed and invariant sets. With-
out loss of generality, there exists � 2 N1 such that C� D †. As N1 is closed, invariant
and contains � , the relation † D C� � N1 follows. We conclude that (i) holds.

Remark 4.21. Example 4.3 shows that weakly pointwise transitivity does not imply con-
dition (ii) of Theorem 4.1, in general. We recall that pointwise transitivity does imply (iii),
which is stronger than (ii), so none of these properties is implied by weakly topological
transitivity. We summarize most of the implications in the following diagram:

(iv) +3 (iii) +3 (ii) +3 (i) ks +3 (i0)

(t) +3

KS

(pt)

KS

+3 (wpt)

KS

5. Recurrence of points

5.1. Limit sets

A continuous action .„; �; �; †/ will be fixed, with „ strongly non-compact. We recall
from the introduction that this means that none of the d-fibers of the groupoid is compact.
Of course, the topological spaces † and X D „.0/ are allowed (but not required) to be
compact. Note that closed equivalence relations on compact spaces X , with the induced
topology, are excluded. Let K.T / denote the family of compact subsets of the topological
space T .

Definition 5.1. The limit set of the point � 2 † is the closed subset of †

L�� � L� WD
\

K2K.„/

.„ n K/ � �:

Note that

.„ n K/ � � D Œ.„ n K/ \„�.�/� � � D Œ„�.�/ n K�.�/� � �;

where K�.�/ WD K \„�.�/ is compact in „�.�/. It follows that one can also write

L� D
\

k2K.„�.�//

.„�.�/ n k/ � �:

The limit set would be void if „�.�/ was allowed to be compact (which is not), but it can
also be void in other situations.
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For any unit x we say that the net .�i /i2I � „x diverges if for every compact k � „x
there exists ik 2 I such that �i … k if i � ik. The existence of divergent nets relies on our
strongly non-compact assumption.

Lemma 5.2. The following statements for �; � 2 † are equivalent:

(i) � belongs to the limit set L� .

(ii) For every neighborhood V of � there exists a divergent net .�i /i2I in„�.�/ such
that �i � � 2 V for any i 2 I .

(ii0) For every neighborhood V of � , the recurrence set z„V� is not relatively compact.

(iii) There is a divergent net .�i /i2I in „�.�/ such that �i � � ! � .

Proof. (i) ) (ii). Let V be a neighborhood of � . If � belongs to the limit set L� , then
� 2 .„�.�/ n k/ � � for every k 2K.„�.�//. Hence we can choose elements �k 2„�.�/ n k
such that �k � � 2 V . The net .�k/k2K.„�.�// is obviously divergent.

(ii)) (iii). Consider the set N� of neighborhoods of � , and order it by reversing the
inclusions. For each neighborhood V of � , select some divergent net .�i;V /i2I such that
�i;V � � 2 V (it can be built over the same labels). Observe that, for each k 2 K.„�.�//,
there exists iVk such that �i;V 62 k for every i � iVk . Define �k;V D �iVk ;V , which forms a
net when N� �K.„�.�// is given the product order. By construction, we get a divergent
net and � D limk;V �k;V � � .

(iii) ) (i). Let k 2 K.„�.�//. Since �i is divergent, there exists ik 2 I such that
�i 2 „�.�/ n k for all i � ik. So we have that

� D lim
i2I

�i � � D lim
i�ik

�i � � 2 .„�.�/ n k/ � �:

It follows that � 2 L� .
(ii), (ii0) follows from the definitions.

The next easy lemma is sometimes useful to compute limit sets.

Lemma 5.3. Suppose that there exists a family of compact sets ¹k�º�2ƒ that exhausts
„�.�/. That is, ƒ is a directed set, „�.�/ D

S
�2ƒ k� and k�1 � kı

�2
whenever �1 � �2.

Then the limit set L� can be computed as

L� D
\
�2ƒ

.„�.�/ n k�/ � �:

Proof. Obviously, L� �
T
�2ƒ .„�.�/ n k�/ � � . For the opposite inclusion, it is enough

to find for every compact subset k of „� an index � 2 ƒ such that k � k�. Indeed, k is
covered by the family of interiors of the sets k�, so, by compactness, it is also covered by a
finite subfamily ¹kı

�1
; : : : ; kı

�m
º. Since ƒ is directed, that index exists. So we have k � k�

implying that
.„�.�/ n k�/ � � � .„�.�/ n k/ � �:

The conclusion follows.
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Example 5.4. Consider the pair groupoid „ D Z2 over Z. In this case, „n D Z � ¹nº
can be exhausted by the family ¹¹��; : : : ; �º � ¹nºº�2N , so, by Lemma 5.3,

Ln D
\
�2N

®
k 2 Z j jkj > �

¯
D ;:

Proposition 5.5. (i) All the points in the orbit of � have the same limit set L� . One
has

xO� D O� [ L� : (5.1)

(ii) If „ is open and locally compact, the closed set L� is invariant.

(iii) If the orbit of � is relatively compact, L� is non-empty and it attracts the points
of the orbit O� : for every neighborhood W of L� , there is a compact subset k
of „�.�/ such that

.„�.�/ n k/ � � � W: (5.2)

Proof. (i) We observe that, for k � „�.���/, with rigorous computations based on the
definitions

.„�.���/ n k/ � .� � �/ D Œ.„�.���/ n k/�� � �

D .„�.���/� n k�/ � � D .„�.�/ n k�/ � �;

implying that L��� � L� (because k� is compact), from which the first statement follows.
The � inclusion in (5.1) is obvious. For each K 2K.„/ one can write

xO� D „ � � D .K [ Kc/ � � D .K � �/ [ Kc � � � O� [ Kc � �;

from which � follows.
(ii) Let .�; �/ 2 „ ‰ † with � 2 L� . Using the convergence criterion (iii) of Lem-

ma 5.2, we see that there exists some divergent net .�i /i2I in „�.�/ such that �i � � ! � .
A priori, there is no reason to think that .�; �i / 2 „.2/. But because of the openness of „
and Fell’s criterion [19, Prop. 1.1] applied to the source map, there exist a net .�j /j2J and
a subnet .�ij /j2J such that d.�j / D r.�ij / and �j ! �, so one may write

� � � D lim
j
�j � .�ij � �/ D lim

j
.�j�ij / � �:

Since „ is locally compact, .�j�ij /j2J is also divergent.
(iii) It is enough to show that, for a fixed open neighborhood W of L� , there is a

compact subset k of „�.�/ such that (5.2) holds: if L� were void, the empty set would
be a neighborhood, which contradicts the inclusion („ is strongly non-compact). For any
k 2K.„�.�//, we set

†� .k/ WD .„�.�/ n k/ � � I

complements will refer to xO� . Since L� �W \ xO� , the family ¹†� .k/c j k 2K.„�.�//º

is an open cover of the complement of W \ xO� in the compact space xO� . We extract a
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finite subcover ¹†� .ki /c j i D 1; : : : ; nº. Then�
„�.�/ n

n[
iD1

ki
�
� � �

n\
iD1

.„�.�/ n ki / � � � W \ xO� � W

and the proof is finished, since a finite union of compact sets is compact.

Example 5.6. We indicate now an example that is relevant for the problem of invariance
of the limit sets. Let X be a topological space, G a non-compact group and … � X2 an
equivalence relation. The obvious product groupoid „ D … � G has unit space

† � „.0/ D Diag.X/ � ¹eº Š X:

The d-fiber of x is „x D ¹.y; x/ 2 …º � G .
We prove now that Lx D xOx . Let y 2 xOx and let .xi /i2I � Ox be a net converging

to y. As G is not compact, for every k 2 K.G / there exists some gk 2 G n k. The net
.xi ; x; gk/.i;k/2I�K.G / belongs to „x , is divergent and fulfills

lim
i;k
.xi ; x; gk/ ı x D lim

i
xi D y:

Therefore Lx D xOx , because of Lemma 5.2 and equation (5.1).
In particular, one can choose X D R and G D Z. If … is given by

x … y , x; y � 0 or x; y > 0;

one has L1 D xO1 D Œ0;1/, which is not invariant! Note that the equivalence relation is
not open.

5.2. Recurrent points and wandering

We keep the framework of the preceding subsection.

Definition 5.7. When � 2 L� holds, we say that � is a recurrent point. We denote by
†�rec � †rec the family of all recurrent points of the groupoid action.

In (5.1) the union could be disjoint or not.

Proposition 5.8. For a point � 2 †, consider the following five conditions:

(a) O� \ L� ¤ ;,

(b) L� D xO� ,

(c) � 2 L� ,

(d) there is a divergent net .�i /i2I � „�.�/ such that �i � � ! � ,

(e) z„U� is not relatively compact for any open neighborhood U of � .

Then (b)) (c), (d), (e)) (a). If „ is open and locally compact, the five conditions
are equivalent.
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Proof. The equivalence (c), (d), (e) is the content of Lemma 5.2 for � D � .
(b)) (c) and (c)) (a) are obvious.
Assume now that „ is open and locally compact. We will show that (a)) (b). We

know from Proposition 5.5 (ii) that L� is (closed and) invariant, so if (a) holds, it contains
the closure of the orbit O� . But it cannot be strictly bigger, by (5.1).

Corollary 5.9. If „ is open and locally compact, †rec is invariant.

Proof. Since „ is open and locally compact, we can describe its fellowship to L� by
condition (b). Using Proposition 5.5 (ii) for a recurrent point � and for � 2 „�.�/, we can
write

L��� D L� D xO� D
xO��� ;

so � � � is also recurrent.

Definition 5.10. The point � 2† is wandering with respect to the action .„;�;�;†/with
strongly non-compact groupoid if � has a neighborhood W such that z„WW is relatively
compact. In the opposite case, we say that � is non-wandering. We denote the family of
all non-wandering points by †�nw � †nw. If †�nw D †, one says that the action is non-
wandering.

Example 5.11. If .G ; ; †/ is a topological group dynamical system, one says that � 2
† is wandering if Rec .W; W / is relatively compact for some neighborhood W of �
(actually, this is mainly used for G D Z;R). The discussion in Example 3.3 shows that by
Definition 5.10 one gets the same concept.

Remark 5.12. Suppose that both „ and † are (Hausdorff and) locally compact. In this
case, wandering points are involved, with a different language, in [19, Sect. 2.1], extending
the group case of [15]. One says that the action is proper if the map

„‰ † 3 .�; �/
#
�! .� � �; �/ 2 † �†

is proper, i.e. that inverse images of compact sets are compact. A strictly weaker concept is
that of a Cartan action, for which each point � 2 † has a compact neighborhood W such
that #�1.W �W / is compact. In [19, Lem. 2.23], it is shown that this happens precisely
when all the points of † are wandering (without mentioning the term). Consequently, in
the locally compact case, for a Cartan action one has†nwD;. In addition, [19, Ex. 2.1.19]
states that for a Cartan action all orbits are closed.

Proposition 5.13. The set †nw is closed. If the groupoid „ is open and locally compact,
†nw is also invariant.

Proof. Let � 2 †nw. By definition of the closure, every open neighborhood U of � inter-
sects †nw, so let � 2 †nw \ U . As U is a neighborhood of � 2 †nw, the set z„UU is not
relatively compact. Thus � 2 †nw.
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Suppose that „ is open and locally compact and let � … †nw; we are going to show
that � � � … †nw, for all � 2 „�.�/. Let N� be a relatively compact open neighborhood of
� and let W be an open neighborhood of � such that z„WW is relatively compact. Since „
is open, N� �W is an open neighborhood of � � � . A plain application of the definitions
leads to

z„
N��W
N��W

� N� z„WW N
�1
� ;

which is relatively compact.

Example 5.14. The invariance may fail without openness. Let „ be the groupoid con-
structed in the final part of Example 5.6, the one associated to the partition RD .�1; 0�[
.0;1/ and to the group G D Z. Then consider the wide (locally compact) subgroupoid

� WD
®
.x; y; n/ 2 „ j x; y > 0 or n D 0

¯
:

If we denote by �1 and �2 the canonical actions of „ and � in † D R, respectively, we
have

†�1nw D R and †�2nw D Œ0;1/: (5.3)

To check the second equality, note that

z�WW D

´
W �W � ¹0º if W � .�1; 0/;

W �W � Z if W � .0;1/:

The second set in (5.3) is not invariant, since 0 is orbit-equivalent with any negative num-
ber. In addition, it follows easily that

L�2x D

´
Œ0;1/ if x > 0;

; if x � 0:

So †�2rec D .0;1/, which is not closed.

Proposition 5.15. One has
†rec �

[
�2†

L� � †nw: (5.4)

Proof. The first inclusion follows from the definition of recurrent points. So we only need
to prove that L� � †nw. Pick � 2 L� and let U be a neighborhood of � . By Lemma 5.2,
we already know that z„U� is not relatively compact. If � 2 z„U� , then � � � 2 U ; using
Lemma 2.13, we get

z„U� �
�1
D z„U��� �

z„UU ;

showing that the latter set is not relatively compact. (Notice that d. z„U� /D ¹r.�
�1/º, hence

z„U� �
�1 is relatively compact if and only if z„U� is relatively compact.)

Corollary 5.16. If at least one of the orbits is relatively compact (in particular, if † is
compact), †nw is non-void.

Proof. This follows from (5.4) and Proposition 5.5 (iii).
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Proposition 5.17. If † is compact, †nw attracts the points of †: for every � 2 † and
for every neighborhood V of †nw, one has � � � 2 V for every � 2 „�.�/ outside some
compact set.

Proof. One has to show that for every neighborhood V of †nw, the complement in „�.�/
of the set z„V� is relatively compact. If V is a neighborhood of †nw, by (5.4), it is also a
neighborhood of the limit set L� . One applies Proposition 5.5 (iii) to infer that there exists
a compact subset k of„�.�/ such that .„�.�/ n k/ � � � V , i. e.„�.�/ n k � z„V� . Then the
complement of z„V� in „�.�/ is contained in k and the proof is finished.

Example 5.18. If „ Ë� † is the action groupoid of the groupoid action .„; �; �; †/, for
every � 2† the two limit sets that make sense are equal. The recurrent sets are also equal.
These are easy consequences of the definitions. Formula (3.12) shows that if � is non-
wandering for the action � , then it is also non-wandering for the action groupoid „ Ë� †.
If † is compact, the non-wandering sets coincide.

Example 5.19. We refer now to the pullback construction of Section 3.7, assuming that
� is locally compact. We leave it to the reader to check the formula

L##! D h
�1.Lh.!// for all ! 2 �;

where the limit set in the left-hand side is computed in h##.„/, being a subset of �. It
follows easily that ! 2 � is h##.„/-recurrent if and only if h.!/ 2 X is „-recurrent.
Using (3.13), one checks easily that ! is h##.„/-wandering if and only if h.!/ is „-
wandering.

6. Minimality and almost periodicity

6.1. Fixed points

Let .„; �; �;†/ be a continuous groupoid action.

Definition 6.1. A fixed point is a point � 2 † such that � � � D � for every � 2 „�.�/.
This is equivalent to z„�� D „�.�/. We write � 2 †�fix � †fix.

Example 6.2. For group actions, converted into groupoid actions as in Example 3.3, the
notion of fixed point boils down to the usual one. The same can be said if the model is that
of Example 3.2.

Example 6.3. If † � † is an open set, then †�fix � † \ †
�
fix. We used the restriction

notions from Section 3.4.

Example 6.4. The point y 2 Y is said to be a fixed point of the partial group action of
Definition 3.4 if ˇa.y/ D y for a 2 G and y 2 Ya�1 . This happens if and only if y is a
fixed point with respect to the canonical action of the groupoid G ËŒˇ� Y .
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Example 6.5. Let „.�/ be the Deaconu–Renault groupoid attached to the local homeo-
morphism � W X ! X . The unit y is a fixed point if and only if for every x ¤ y there are
no positive integers k; l with �k.x/ D �l .y/.

Example 6.6. An element ! 2 � is a fixed point of the pullback groupoid h##.„/ intro-
duced in Section 3.7 if and only if h.!/ is a fixed point of the canonical action of„ on its
unit space.

Proposition 6.7. The set †fix is invariant. If „ is open, †fix is also closed.

Proof. If � 2 †fix, then O� D ¹�º, which makes †fix trivially invariant.
If „ is open and � 2 †fix, then there exists a net .�i /i2I of fixed points converging

to � . Let � 2 „�.�/. By Fell’s criterion [19, Prop. 1.1], applied to the open map d and the
net �.�i / 2X , there exist a net .�j / and a subnet .�ij / such that �j ! � and �.�ij /D d.�j /.
By continuity, we have

� � � D .lim
j
�j / � .lim

j
�ij / D lim

j
.�j � �ij / D lim

j
�ij D �:

So � is a fixed point for the action.

Examples 6.9 and 7.9 will illustrate that openness of „ is important.

6.2. Periodic and almost periodic points

Although it is not always necessary, in this subsection we prefer to assume that in the
continuous action .„; �; �; †/ the groupoid „ is strongly non-compact (all the d-fibers
are non-compact).

Definition 6.8. (a) Let x 2 X . The subset A of „x is called syndetic if KA D „x for
a compact subset K of „.

(b) We say that � 2 † is periodic (we write � 2 †per), if z„�� is syndetic in „�.�/.

(c) The point � is called weakly periodic (we write � 2 †wper), if the subgroup z„��
is not compact.

(d) The point � 2 † is said to be almost periodic (we write � 2 †alper), if z„U� is
syndetic in „�.�/ for every neighborhood U of � in †. If †alper D †, the action
is pointwise almost periodic.

Example 6.9. Consider the equivalence relation … introduced in Remark 3.1, and form
the groupoid product „ D … � Z. By considering the action of „ in † D R, we see that

†fix D .�1;�1/ [ .1;1/; †per D †wper D †alper D R;

which also illustrates that, in general, the set †fix is not closed.

Example 6.10. We fix a unit y 2 X of the Deaconu–Renault groupoid of the local home-
omorphism � W X ! X . We remarked that (3.4) becomes a bijection for singletons. Then
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y is periodic if and only if it is weakly periodic, and this happens exactly when Z�.x; x/
(a subgroup of Z) does not coincide with ¹0º (then it will be both infinite and syndetic).
This means that for some positive integers k ¤ l one has �k.x/ D �l .x/.

Example 6.11. Let „Œˇ� be the groupoid associated to the partial action ˇ of the discrete
group G on the topological space Y . After (3.8), we established an identification between
„Œˇ�Ny and RecŒˇ�.y;N / for every point y 2 Y and subsetN � Y . This allows rephrasing
the periodicity properties in this case. For example, y is periodic in the groupoid „Œˇ� if
and only if the subgroup of G composed of all the elements “defined at y and leaving it
invariant” is syndetic (which is equivalent to having finite index in G ).

Proposition 6.12. Let „ be a strongly non-compact groupoid. Then one has

†fix
.1/
� †per

.2/
� †wper \†alper

.3/
� †wper [†alper

.4/
� †rec

.5/
�

[
�2†

L�
.6/
� †nw: (6.1)

Proof. The inclusions (1) and (3) are obvious. We proved (5) and (6) previously, in Propo-
sition 5.15.

To deduce (2) from the definitions, note that z„�� � z„
U
� if � � U and that a syndetic

set is not compact (since the d-fibers are not compact).
The inclusion (4) also follows easily from the definitions, by the same type of argu-

ments: use Proposition 5.8 (e) to describe recurrent points.

Example 6.13. The situation is particularly simple for equivalence relations, outlined in
Section 3.1, especially because of equation (3.1). In particular, for y 2 X � † one gets

z„y Š
®
x 2 X j x … y

¯
and z„yy D ¹.y; y/º Š ¹yº:

To insure that the associated groupoid is strongly non-compact, we require that for every
y 2X the set ¹x 2X j x…yº is non-compact. Then†wperD; (so there are no fixed points
or periodic points). With some abuse of notation and interpretation, y will be almost peri-
odic if and only if ¹x 2 U j x … yº is syndetic in ¹x 2 X j x … yº for every neighborhood
U of y. IfX is locally compact, one could choose a relatively compact neighborhood, and
syndeticity contradicts the fact that the fiber in y is non-compact. Therefore, in the locally
compact strongly non-compact case, equivalence relations do not exhibit almost periodic
points.

If the equivalence relation is not forced to lead to a strongly non-compact groupoid, the
situation might be very different. In particular, some of the inclusions in (6.1) no longer
hold. We leave this to the reader.

Example 6.14. Denoting by ˇ any of the properties “periodic”, “weakly periodic” and
“almost periodic”, it is easy to check that ! 2 � has ˇ in the pullback h##.„/ if and only
if h.!/ 2 X has ˇ in „. This happens mostly because of equality (3.13).

Proposition 6.15. The sets †per and †wper are invariant.
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Proof. By Lemma 2.13, one has

z„
���

���
D � z„���

�1;

so†wper is invariant. We focus now on†per; let � 2†per and � 2„�.�/. For some compact
set K, we have

K��1 z„���
���
� D K z„�� D „�.�/ D „�.���/�:

Hence
.K��1/ z„���

���
D „�.���/;

meaning that z„���
���

is syndetic in „�.���/, and thus � � � 2 †per holds.

The sets of periodic, weakly periodic or almost periodic points might fail to be closed,
even for group actions.

6.3. Compact orbits

We connect now periodicity with the notion of a periodicoid point, introduced in [3, Defi-
nition 12] in a more restricted context.

Proposition 6.16. Every periodic point � has a compact orbit.

First proof. If � 2 †per, then K z„�� D „�.�/ for some compact set K � „. Any net .�i / �
O� can be written as �i D .� 0i�i / � � for some nets .� 0i / � K, .�i / � z„�� . By compactness,
extract a subnet .� 0j / � .�

0
i / such that � 0j ! � 0 2 K and get

�j WD .�
0
j �j / � � D �

0
j
� .�j � �/ D �

0
j
� � ! � � � 2 O� :

We conclude that O� is compact.

Second proof. Let us give a second proof, using a construction that will also be useful for
Proposition 6.18. For � 2 †, let us define the continuous surjective function

˛� W „�.�/ ! O� � †; ˛� .�/ WD ��.�/ � � � �:

If � 2 †per, then K z„�� D „�.�/ for some compact set K � „. By using the definition of
z„�� , one gets

O� D ˛
� .„�.�// D ˛

� .K/;

which is compact, as a direct continuous image of a compact set.

To derive a converse proposition, we will use a well-known lemma (with proof, for the
convenience of the reader):

Lemma 6.17. Let „ D G be a locally compact, second countable group acting on a
topological space†. If � 2† has a compact orbit, then zG �� � Rec.�; �/ (see Section 3.2)
is syndetic in G .
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Proof. Let Ng � G be a relatively compact, open neighborhood of g, for every g 2 G .
Observe that

G D G zG �� D
� [
g2G

Ng
�
zG �� :

So
O� D G � � D

� [
g2G

Ng
�
zG �� � � D

[
g2G

Ng � �:

Let us, for the sake of the argument, use (and prove it later) that the set Ng � � is a neigh-
borhood of � . By compactness we can extract a finite index set F D ¹g1; : : : ; gnº such
that

O� D

n[
iD1

Ngi � � �
� n[
iD1

Ngi
�
� �:

Define K D
Sn
iD1 Ngi and notice that for every g � � 2 O� , there exists h 2 K such that

g � � D h � � ) .h�1g/ � � D �;

meaning that h�1g 2 zG �� and g 2 KzG �� . As K is compact, we conclude that zG �� is syndetic
in G .

Now, we fill the remaining gap: PickW � G , another relatively compact, open neigh-
borhood of g but satisfying xW � Ng . As G is second countable, it has the Lindelöf
property, so there exists a countable subset C � G making G D CW true. If Ng � � had
void interior, so would c � ŒW � �� D ŒcW � � � . But then we could decompose O� as a
countable union of closed nowhere dense sets:

O� D G � � D CW � � D
[
c2C

Œc xW � � �;

contradicting Baire’s category theorem.

Proposition 6.18. Assume that„ is locally compact, second countable and open. If � 2†
has a compact orbit, then it is a periodic point.

Proof. Let us first treat the case of the canonical action of„ in its unit spaceX (and notice
that X , being closed in „, is a locally compact, second countable space by its own). We
will use a small amount of information from [19, Sect. 22], treating the Mackey–Glimm–
Ramsay dichotomy for groupoids; see also [17]. For x 2 X , let us define the continuous
surjective function

˛x W „x ! Ox � X; ˛x.�/ WD � ı x:

One has ˛x.�/ D ˛x.�/ if and only if ��1� 2 „xx . This leads to a continuous bijection

Q̨
x
W „x=„

x
x ! Ox : (6.2)

The quotient map p W „x ! „x=„
x
x is (surjective, continuous and) open, cf. [19, Ex.

2.2.1]. Then Q̨x is a homeomorphism if and only if ˛x is an open function. By [19] (see



Topological dynamics of groupoid actions 1035

the non-trivial implication .2/) .e/ on pages 41–42), this happens if the orbit Ox is
Baire. In our case this is insured, since it is (Hausdorff and) compact. So we conclude that
(6.2) is a homeomorphism and thus „x= z„xx is compact.

To finish this part of the proof, we show now that the compactness of the quotient
implies that „xx is syndetic in „x . Let ¹Vi j i 2 I º be a covering of the locally com-
pact space „x by open subsets with compact closures. Since p is open and surjective,
¹Wi WD p.Vi/ j i 2 I º will be an open covering of the compact space„x=„xx , from which
we extract a finite subcovering ¹Wi WD p.Vi/ j i 2 I0º. Then V WD

S
i2I0

Vi has a com-
pact closure K such that p.K/ D „x=„xx . To check that K„xx D „x , pick � 2 „x . Then
p.�/D p.�/ for some � 2 K. By the definition of p, this means � 2 �„xx and we are done.

Now, we will derive the full result: Suppose that„ acts on a very general space† and
that O� � † is compact, for some � 2 †. As the anchor map is continuous, �.O� / D

O�.�/ � X (Lemma 2.8) is compact and by the previous discussion, the decomposition
„�.�/ D K1„

�.�/

�.�/
holds for some compact set K1 �„. Remark that G D„

�.�/

�.�/
is a (locally

compact) group acting continuously on the compact space

O� \
®
� 2 † j �.�/ D �.�/

¯
:

By applying Lemma 6.17 (with a change of notations), we obtain another compact set
K2 � „ such that

„�.�/ D K1„
�.�/

�.�/
D K1.K2 z„�� / D .K1K2/ z„

�
� ;

finishing the proof.

There is a shorter proof, in only one step and avoiding the use of Lemma 6.16, but it
requires † to be locally compact and second countable, which we succeeded to avoid.

6.4. Minimal sets

Minimality is a very important property in classical topological dynamics; it extends
straightforwardly to groupoid actions, denoted below by .„; �; �; †/. Throughout this
subsection, both „ and † are assumed to be locally compact.

Definition 6.19. A closed invariant subset M � † is called minimal if it does not con-
tain proper non-void closed invariant subsets. Equivalently, M is minimal if all orbits
contained in M are dense in M . The action is minimal if † itself is minimal.

The minimal sets are the closed invariant non-empty subsets of † which are minimal
under such requirements. Two minimal sets either coincide or are disjoint. Clearly,

transitivity ) minimality ) pointwise transitivity;

and the implications are strict in general (even for group actions).
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Remark 6.20. For open groupoids, minimal sets are either clopen or nowhere dense. This
follows from Proposition 2.7: the boundary of an invariant set is invariant. So if„ is open
and M is minimal, the boundary @M � M is closed and invariant, therefore it should
be void (i.e. M is open) or coincide with M (meaning that M is nowhere dense). But in
general this is not the case: in Remark 3.1, Œ�1; 1� � R is a minimal set.

Remark 6.21. A function ' W † ! R is called invariant with respect to the groupoid
action if '.�/ D '.�/ whenever � �

� � . By an obvious proof, one shows that if the action
is minimal and ' is continuous at least at one point, then it has to be constant.

We proceed now to characterize minimality.

Proposition 6.22. Let ; ¤ M � † be closed and invariant. Then M is minimal if and
only if for every U � † open, with U \M ¤ ;, one has M D Sat.U \M/.

Proof. If: Assume that ; ¤ N � M is closed and invariant; then U D N c D † n N is
open. If we show that N c \M D ;, one gets M D N , i.e. the minimality of M . But
N c \M D ; follows if we check that M 6� Sat.N c \M/, by assumption. This would
follow from N \ Sat.N c \M/ D ;. But � 2 N \ Sat.N c \M/ means that � 2 N and
it is in the orbit of some element of N c . This is impossible since N is invariant and N c is
its complement.

Only if: Assuming now thatM is minimal, for every � 2M one hasM DQ� D
xO� .

If U \M ¤ ;, U being open, then U \O� ¤ ;. But this means that � is in the orbit of
some point that belongs to U \O� � U \M , so x 2 Sat.U \M/.

The following theorem is the main result of this section.

Theorem 6.23. If the point � 2 † is almost periodic, its orbit closure xO� is minimal and
compact. If, in addition, the groupoid „ is open, then � is almost periodic if and only if
xO� is minimal and compact.

Proof. Suppose that � is almost periodic; we show first that its orbit closure xO� is com-
pact. Let U0 be a compact neighborhood of � . Using the assumptions, for some compact
set K one has

O� D „�.�/ � � D .K z„U0� / � � D K � . z„U0� � �/ � K � U0 D compact;

so xO� is compact.
If xO� is not minimal, then it strictly contains a minimal (and compact) set M . The

point � does not belong to M , so there are disjoint open sets U; V � † such that � 2 U
and M � V . For an arbitrary compact set K � „ we will now show that K z„U� ¤ „�.�/,
implying that in fact � is not almost periodic.

The setM being invariant, K�1 �M �M holds. LetW be a neighborhood ofM with
K�1 �W � V . Since M � xO� D „�.�/ � � , there exists � 2 „�.�/ such that � � � 2 W .
Then

.K�1�/ � � D K�1 � .� � �/ � K�1 �W � V;
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and thus .K�1�/ � � is disjoint fromU , meaning that K�1� is disjoint from z„U� . This shows
that

„�.�/ 3 � … K z„U� ¤ „�.�/;

finishing the proof.
For the converse, suppose now that d is open and xO� D „�.�/ � � is minimal and

compact. Let U be an open neighborhood of � . For each � 2 „, choose an open neigh-
borhood N� of � with compact closure. The sets „ � U and N� � U are open in †, cf.
[19, Ex. 2.1.11]. By minimality one has

xO� � „ � U D
[
�2„

� � U �
[
�2„

N� � U:

By compactness of xO� applied to the open cover above, for a finite set FD ¹�1; : : : ; �kº �
„ we get

xO� �

k[
iD1

N�i � U:

If � 2 „�.�/, then � � � 2 N�j � U for some j , and then one has � � � 2 �j � U for some
�j 2 N�j . It follows immediately that r.�/ D r.�j / D d.��1j / and

��1j � .� � �/ D .��1j �/ � � 2 U:

This means that ��1j � 2 z„U� or, equivalently, that

� 2 �j z„
U
� � N�j z„

U
� �

k[
iD1

.N�i z„
U
� / D

� k[
iD1

N�i
�
z„U� :

Since � is arbitrary, one gets„�.�/ � K z„U� , where K WD
Sk
iD1 N�i is compact. We checked

that z„U� is syndetic in „�.�/, so � is almost periodic.

Example 6.24. In the case of the transformation groupoid associated to a topological
dynamical system .G ; ;X/, one recovers the classical result ([2, p. 11] and [9, pp. 28, 38,
39]). For this, we use Example 3.3. First of all, it is clear that minimality of the group
action coincides with minimality in the sense of groupoids, since the orbits are the same.
The relevant recurrence sets also coincide: set S D ¹�º and T D U in (3.3). Finally,
syndeticity has the same meaning in the two cases.

Example 6.25. Consider the case of the pair groupoid „ WD X � X acting on its unit
space X , taken to be compact. The action is transitive (only one orbit), so every x 2 X
should be almost periodic. And it is, since „x D X � ¹xº and z„Ux D U � ¹xº. The set
K WD X � ¹xº itself is compact, and

K z„Ux D .X � ¹xº/.U � ¹xº/ D .X � ¹xº/¹.x; x/º D X � ¹xº D „x :
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This example also shows another difference between the group and the groupoid case. For
groups, the compact set K in the definition of syndeticity can always be taken finite (see for
example [6, p. 271], where this property is called ‘discrete syndeticity’). In this groupoid,
no finite set K � X � ¹xº makes the equality K z„Ux D „x true if X itself is infinite.

If † is a compact space, Zorn’s lemma implies that it has a minimal subset M � †.
If in addition „ is open, every x 2 M is almost periodic, by Theorem 6.23. Thus, in this
setting, almost periodic points always exist.

Corollary 6.26. If „ is open (and locally compact), the set †alper is invariant.

Proof. By the second part of Theorem 6.23, if � 2 †alper, then O� � †alper.

Corollary 6.27. Suppose that † is compact, „ is open and the action is minimal. Then
z„V� is syndetic for every � 2 † and every open non-void subset V of † (and not just for
neighborhoods of � ).

Proof. By minimality, there exists � 2„�.�/ such that V is an open neighborhood of � � � .
Hence z„V

���
is syndetic by Theorem 6.23; it can be written as K z„V

���
D „�.���/ for some

compact subset K of „. Then

„�.�/ D „d.�/ D „r.�/� D „�.���/� D K z„V���� D K z„V� ;

meaning that z„V� is also syndetic.

We say that the action is semisimple if all orbit closures are minimal (equivalently: the
orbit closures form a partition of †).

Corollary 6.28. If all orbits are closed, the action is semisimple. A pointwise almost peri-
odic action is semisimple. If „ is open and all orbits are compact, the action is pointwise
almost periodic.

Proof. The statements are obvious or they follow easily from Theorem 6.23.

Remark 6.29. In Example 2.4 the orbits are precisely the d-fibers, automatically closed:
O� D

xO� D„d.�/. In particular, this action of„ on itself to the left is semisimple. Point-
wise almost periodicity depends on compactness of the fibers.

Proposition 6.30. If† is compact and minimal and„ is open and strongly non-compact,
the action is non-wandering.

Proof. We know from Proposition 5.13 and Corollary 5.16 that †nw is a non-void closed
invariant set. By minimality, it coincides with †.
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7. Factors

7.1. Epimorphisms of groupoid actions

In this subsection, we indicate the fate of some of the above properties under epimor-
phisms. Some of the results do not use surjectivity; we leave this to the reader.

Definition 7.1. A homomorphism of the groupoid actions .„; �; �;†/, .„; �0; � 0;†0/ is a
continuous function f W †! †0 such that for all � 2 †, � 2 „�.�/ one has

�0.f .�// D �.�/ and f .�.�; �// D � 0.�; f .�//: (7.1)

An epimorphism is a surjective homomorphism; in such a case we say that .„; �0; � 0; †0/
is a factor of .„; �; �;†/ and that .„; �; �;†/ is an extension of .„; �0; � 0; †0/.

Writing � instead of � and �0 instead of � 0, the second requirement in (7.1) is

f .� � �/ D � �0 f .�/ for all .�; �/ 2 „‰ †: (7.2)

Lemma 7.2. The canonical action .„; idX ; ı; X/ from Example 2.2 is a factor of any
other continuous action .„; �; �; †/.

Proof. The continuous surjection f WD � W †! X is an epimorphism, since it satisfies

�.� � �/ D r.�/ D � ı d.�/ D � ı �.�/ for all .�; �/ 2 „‰ †:

Lemma 7.3. If f is an epimorphism between the groupoid dynamical systems .„;�;�;†/
and .„; �0; � 0; †0/ and � 2 †, then f .O� / D O0

f .�/
and f .xO� / � xO

0
f .�/

. Direct images
of invariant sets are also invariant.

Proof. The elementary proof relies on (7.2) and on the properties of continuous functions.
We recall that for continuous surjections the direct image may not commute with the
closure.

Proposition 7.4. For every homomorphism f between actions .„; �; �;†/, .„; �0; �0;†0/
and every point � 2 †, we have f .L�� / D L�

0

f .�/
. In consequence, f .�/ is � 0-recurrent if

� is � -recurrent.

Proof. By Proposition 5.2, � 0 2 f .L�� / if and only if there exists a divergent net .�i /i2I
in „�.�/ D „�0Œf .�/� such that

� 0 D f .lim
i
�i � �/ D lim

i
f .�i � �/ D lim

i
�i �
0 f .�/;

which is equivalent to � 0 2 L�
0

f .�/
. Then the statement about recurrence follows from the

definitions.

Let us see what happens with recurrence sets under epimorphisms.
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Lemma 7.5. If M; N � † then z„NM � z„
0f .N/

f .M/
, where the latter set is computed with

respect to the factor .„; �0; � 0; †0/ of the groupoid dynamical system .„; �; �;†/.

Proof. One verifies easily that the next sequence of equivalences and implications is rig-
orous:

� 2 z„NM , .� �M/ \N ¤ ;

, f Œ.� �M/ \N� ¤ ;

) f .� �M/ \ f .N / ¤ ;

, .� �0 f .M// \ f .N / ¤ ;

, � 2 z„
0f .N/

f .M/
:

The second equivalence is true because f is onto. In general, one has f .A\B/� f .A/\
f .B/ and the inclusion could be strict; this shows why (and when) there is no equality in
the statement.

To see the usefulness of this lemma, we hurry to apply it. On many occasions we are
going to use the equality f Œf �1.B 0/� D B 0 for B 0 � †0, valid by surjectivity.

Theorem 7.6. Let f be an epimorphism between the groupoid actions .„; �; �; †/ and
.„; �0; �0; †0/. For every index ˛ 2 ¹fix; per;wper; alper; rec; nwº one has f .†˛/ � †0˛ .
In particular, �.†˛/ � X˛ , where X˛ indicates the set of units of X having the property
˛ with respect to the canonical action.

Proof. Using Lemma 7.2, the last statement follows from the first, which we now prove.
For ˛ D rec this is already known from Proposition 7.4. The statement for ˛ D fix

follows immediately from (7.1).
We prove now the case ˛ D nw. Assume that � 2 † is non-wandering, but f .�/ 2 †0

is wandering. Then there is an open neighborhoodW 0 of f .�/ such that z„0W
0

W 0 is relatively
compact. The set f �1.W 0/ is a neighborhood of � , so z„f

�1.W 0/

f �1.W 0/
is not relatively compact.

By Lemma 7.5, this set is contained in z„0W
0

W 0 , and this is a contradiction.
The other proofs are similar. For instance, the statement about almost periodicity fol-

lows easily from the definitions and from Lemma 7.5; a set containing a syndetic subset
is obviously syndetic.

Proposition 7.7. Let f be an epimorphism between the groupoid actions .„; �; �;†/ and
.„; �0; �0; †0/. Suppose that the action .„; �; �; †/ has one of the transitivity properties

P 2 ¹transitivity; pointwise transitivity;weakly pointwise transitivity; (i); (ii); (iii)º

(see Theorem 4.1). Then the action .„; �0; �0; †0/ also has P .

Proof. P D transitivity. By Lemma 7.3, the epimorphism f transforms the single orbit
O� D † into an orbit O0

f .�/
D f .O� / D †

0.
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P D pointwise transitivity. This also follows immediately from Lemma 7.3, the part
referring to orbit closures.

P D weakly pointwise transitivity. If C 0 � „0 is a closed and invariant set containing
f .�/, then f �1.C 0/ � „ is a closed and invariant set containing � , hence

† D C� � f
�1.C 0/ and †0 D C 0:

P D (i), (i0). Let ; ¤ U 0; V 0 �†0 be invariant open sets and let f �1.U 0/; f �1.V 0/
be their open non-void invariant inverse images. Since .„; �; �; †/ satisfies (i0), one has

f �1.U 0/ \ f �1.V 0/ ¤ ;:

Consequently,

U 0 \ V 0 D f Œf �1.U 0/� \ f Œf �1.V 0/� � f Œf �1.U 0/ \ f �1.V 0/� ¤ ;

and .„; �0; �0; †0/ also satisfies (i0), which is equivalent to (i).
P D (ii). LetU 0 �†0 be open and invariant. Then f �1.U 0/�† is open and invariant,

so it is dense. Since f is surjective, it follows thatU 0D f .f �1.U 0//, and this one is dense
in †0.

P D (iii). Let ; ¤ U 0; V 0 � †0 be open subsets. By recurrent transitivity of the initial
action, one has

z„
f �1.V 0/

f �1.U 0/
¤ ;:

Then, by Lemma 7.5, we get

; ¤ z„
f �1.V 0/

f �1.U 0/
� z„

0f Œf �1.V 0/�

f Œf �1.U 0/�
D z„0V

0

U 0 ;

and the proof is finished.

Corollary 7.8. We say that the groupoid „ has the property P if its canonical action
on its unit space has this property. Suppose that the topological groupoid „ admits a
continuous action .�; �;†/ having one of the properties P mentioned in Proposition 7.7.
Then „ itself has this property.

Proof. This follows from Proposition 7.7 and Lemma 7.2.

If we require „ to be open, there is a direct proof that property (iv) of Theorem 4.1
(called topological transitivity) also transfer to factors; it uses Lemma 2.7. This also
follows joining Theorem 4.1 and Proposition 7.7. But see the next example for a non-topo-
logically transitive groupoid, which however possesses a topologically transitive action. It
follows that topological transitivity is not preserved by factors (which is rather surprising).

Example 7.9. Form the product groupoid „ D … �R, with the relation

x … y , x; y 2 Q or x D y
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over X D R, and consider the wide subgroupoid

� D
®
.x; y; g/ 2 „ j x; y 62 Q) g D 0

¯
D .Q �Q �R/ [

�
Diag.R �R/ � ¹0º

�
:

By analogy with Example 4.4, it is easy to see that the canonical action of � on X D R
is not topologically transitive. Actually, the orbits of rational points all coincide with Q,
but each irrational point is a fixed point, so .s; t/ nQ is invariant for every s < t , without
being dense or nowhere dense. Now we will exhibit a topologically transitive action of„:
Let

† D
®
.y; h/ 2 R2 j h D 0 or y 2 Q

¯
D .R � ¹0º/ [ .Q �R/

with the topology inherited from R2 and define the continuous action

�.y; h/ D y and .x; y; g/ � .y; h/ D .x; g C h/:

Notice that the orbits of � are Q �R and (the fixed points) ¹.y; 0/ j y 2 R nQº, implying
that all of the invariant sets are either dense or nowhere dense, since † n .Q � R/ D
.R nQ/ � ¹0º is already nowhere dense.

We finish this subsection with a result on the behavior of minimality under epimor-
phisms, in both directions.

Proposition 7.10. Let f W †! †0 be an epimorphism between the actions .„; �; �; †/
and .„; �0; � 0; †0/.

(i) If M � † is minimal and f .M/ is closed in †0, then f .M/ is minimal.

(ii) Suppose that † is compact (hence †0 is also compact). If M 0 � †0 is minimal,
there exists M � † minimal such that f .M/ D M 0. If „ is open and locally
compact and � 0 2†0 is almost periodic, then � 0 D f .�/ for some almost periodic
point � of †.

Proof. (i) This is dealt with easily by Lemma 7.3: if � 2M , then

f .M/ D f .xO� / � xO
0
f .�/ � f .M/ D f .M/;

so the orbit of f .�/ is dense in the closed set f .M/.
(ii) The inverse image f �1.M 0/ is non-void closed and �-invariant. By Zorn’s lemma,

it contains a minimal (and compact) subsystemM . The direct image f .M/ �M 0 is non-
void closed and �0-invariant, so it must coincide with M 0. For the second part: As � 0 is
almost periodic, M 0 WD xO0� 0 is minimal, so we can find some (compact) minimal subset
M � †, such that f .M/ DM 0 and � 0 D f .�/ for some � 2M . By Theorem 6.23, any
� 2M is almost periodic.

7.2. The action associated to an extension

The next result is a straightforward generalization of a recent construction from [8], in
which Edeko and Kreidler showed how to encode extensions of classical group actions
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by groupoids. Then we are going to study the resulting correspondence with respect to
recurrence and other dynamical properties.

Proposition 7.11. Let .„; �0; � 0; †0/ be a groupoid action. There is a one-to-one corre-
spondence between extensions f W †! †0 and actions of the groupoid „ Ë� 0 †0.

Proof. Let

.„; �; �;†/
f
�! .„; �0; � 0; †0/

be an epimorphism. We denote by „.� 0/ D „ Ë� 0 †0 the action groupoid of the second
groupoid action, described in Section 3.6. Its unit space is †0. This gives raise to a new
groupoid action .„.� 0/; f;‚;†/, where (see the notation (2.1) and use �0 ı f D �)

„.� 0/‰ † WD
®
..�; � 0/; �/ j d.�/ D �0.� 0/; f .�/ D � 0

¯
D
®
.�; f .�/; �/ j d.�/ D �0Œf .�/� D �.�/

¯
� „ �†0 �†

and
‚.�;f .�//.�/ WD ��.�/; if d.�/ D �.�/: (7.3)

It is straightforward to check that everything is well-defined and that one obtains a
groupoid action.

Reciprocally, suppose that .„; �0; � 0; †0/ is a groupoid action and .„.� 0/; f; ‚; †/
is an action of the transformation groupoid „.� 0/ D „ Ë� 0 †0 on another topological
space†. In particular, f W †! †0 D„.� 0/.0/ is a continuous surjection. The new action
.„; �; �;†/ is constructed in the following way: The anchor is

� WD �0 ı f W †! X WD „.0/

and the action is given by (7.3), with a modified interpretation: the right-hand side is now
defined by the left-hand side. Then f W †! †0 is the epimorphism. The details are easy.
To show that f ı �� D � 0� ı f , for instance, pick � 2 † with d.�/ D �.�/ D �0Œf .�/�.
Then

f Œ��.�/�
(7.3)
D f Œ‚.�;f .�//.�/� D r.�; f .�//

(3.11)
D � 0� Œf .�/�:

Here r is the range map of „ Ë� 0 †0. The two procedures are inverse to each other.

Remark 7.12. It is easy to see that the projection

„ �†0 �† 3 .�; � 0; �/! .�; �/ 2 „ �†

restricts to a groupoid isomorphism .„ Ë� 0 †0/ Ë‚ † Š „ Ë� †. The basic remark is
that the elements of .„ Ë� 0 †0/ Ë‚ † have the form ..�; f .�//; �/ � .�; f .�/; �/, with
d.�/ D �.�/. The algebraic verifications are left to the reader.

Proposition 7.13. The two actions .„;�;�;†/ and .„.� 0/;f;‚;†/ have the same invari-
ant sets. Consequently, they have in the same time the following properties: transitivity,
point transitivity, topological transitivity, the properties (i) and (ii) of Theorem 4.1 and
minimality. The fixed points are the same.
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Proof. Let us explore the orbit structure; for �; � 2 † one has

�
‚
� � , 9 .�; � 0/ 2 „.� 0/ such that � 0 D f .�/; ‚.�;� 0/.�/ D �

, 9 � 2 „ such that d.�/ D �.�/; ��.�/ D �

, �
�
� �:

All the statements of the proposition follow from this.

Now, we discuss recurrence for the connected actions .„.� 0/;f;‚;†/ and .„;�;�;†/.
For M;N � † we have two recurrent sets:

A„.� 0/NM with respect to the action ‚,

z„NM with respect to the action � .

Using the definitions, one gets

.�; � 0/ 2 A„.� 0/NM , d.�/ D �0.� 0/ and 9 � 2M such that f .�/ D � 0; ‚.�;� 0/.�/ 2 N

, 9 � 2M such that f .�/ D � 0; d.�/ D �.�/; ��.�/ 2 N;

while
� 2 z„NM , 9 � 2M such that d.�/ D �.�/; ��.�/ 2 N:

Then it is clear that

� 2 z„NM , 9 � 0 2 †0 such that .�; � 0/ 2 A„.� 0/NM ;
which can be written in terms of the first projection p W „ �†0 ! „ as

p
�A„.� 0/NM � D z„NM : (7.4)

Setting M D ¹�º, we get the more precise version

A„.� 0/N� D z„N� � ¹f .�/º: (7.5)

Two particular cases are
„.� 0/�.�/ D „�.�/ � ¹f .�/º (7.6)

and
A„.� 0/�� D z„�� � ¹f .�/º; (7.7)

obtained by setting in (7.5) N D † or N D ¹�º. With this, we can state the following
proposition.

Proposition 7.14. Consider the actions .„.� 0/; f; ‚; †/ and .„; �; �; †/. The action
.„.� 0/;f;‚;†/ is recurrently transitive if and only if .„;�;�;†/ is recurrently transitive.
One has the equalities

†‚per D †
�
per; †‚wper D †

�
wper; †‚alper D †

�
alper; †‚rec D †

�
rec: (7.8)
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Proof. The statement about recurrent transitivity follows from (7.4), taking non-void open
sets M D U , N D V , since p.R/ ¤ ; if and only if R ¤ ;.

The equality †‚wper D †
�
wper follows from (7.7): A„.� 0/�� is compact if and only if z„��

is compact.
To prove †‚per D †�per, let K � „ be a compact set with K z„�� D „�.�/. Then K0 D

K � ¹f .�/º � „.� 0/ is compact and

K0A„.� 0/�� (7.7)
D K0. z„�� � ¹f .�/º/

D .K z„�� / � ¹f .�/º

D „�.�/ � ¹f .�/º

(7.6)
D „.� 0/�.�/:

The second equality is a consequence of a computation of the form

.�; f .�//.�; f .�// D .��; f .�//; for � 2 z„�� ;

implying
� �0 f .�/ D f .�/:

So syndeticity of z„�� implies the syndeticity of A„.� 0/�� . On the other hand, if A„.� 0/�� is
syndetic with compact set K0, to obtain K one takes the projection onto the first coordinate:
K D p.K0/. The same type of argument works to show that †‚alper D †

�
alper.

The relation †‚rec D †
�
rec holds because of (7.5), by using Proposition 5.8.

Remark 7.15. Proving (7.8), we took advantage of the fact that†per;†wper;†alper;†rec are
defined by recurrent sets involving a couple of subsets of†, one of them being a singleton;
this allowed the application of (7.5). One also gets†‚nw D †

�
nw if†0 is supposed compact,

using (7.4). Without compactness, only one obvious inclusion is true.

8. A disappointing notion: mixing

The next definition seems a legitimate generalization of the classical one:

Definition 8.1. The action .„; �; �; †/ is called weakly mixing whenever for any non-
empty open sets U;U 0; V; V 0 � †, one has z„VU \ z„

V 0

U 0 ¤ ;. It is called strongly mixing if
the complement of z„VU is relatively compact for any open sets U; V ¤ ;.

If „ itself is not compact, strongly mixing implies weakly mixing. This follows from
the equality

. z„VU \
z„V

0

U 0/
c
D . z„VU /

c
[ . z„V

0

U 0/
c

and the fact that the union of two relatively compact sets is relatively compact. On the
other hand, weakly mixing always implies recurrent transitivity: just take U D U 0 and
V D V 0.
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Example 8.2. For classical group actions one recovers the usual concepts; see Exam-
ple 3.3.

The next result shows that there is no point in exploring the notion of mixing besides
the group case, which is already extensively treated in all standard textbooks in topological
dynamics; see also [4]. Recall that we assumed � surjective and X Hausdorff.

Proposition 8.3. Suppose that .„; �; �;†/ is weakly mixing. Then �.†/ D X consists of
a single point, so the groupoid is a group.

Proof. Suppose there exist two distinct points x;y 2 �.†/, and let U0; V0 �X be disjoint
open sets separating them. Form the non-void open sets U D ��1.U0/ and V D ��1.V0/.
By weakly mixing, there exists some � 2 z„UU \ z„

V
U . Thus, there are points �1; �2; �3 2 U ,

� 2 V such that
� � �1 D �2 and � � �3 D �;

implying that
�.�2/ D �.� � �1/ D r.�/ D �.� � �3/ D �.�/:

But �.�2/ 2 U0 and �.�/ 2 V0. This contradiction shows that �.†/ consist of a single
point.
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