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Equivariant dimensions of groups with operators

Mark Grant, Ehud Meir, and Irakli Patchkoria

Abstract. Let 7 be a group equipped with an action of a second group G by automorphisms.
We define the equivariant cohomological dimension cdg (), the equivariant geometric dimension
gdg (), and the equivariant Lusternik—Schnirelmann category catg (7r) in terms of the Bredon
dimensions and classifying space of the family of subgroups of the semi-direct product w < G
consisting of sub-conjugates of G. When G is finite, we extend theorems of Eilenberg—Ganea and
Stallings—Swan to the equivariant setting, thereby showing that all three invariants coincide (except
for the possibility of a G-group 7 with catg () = cdg () = 2 and gdg () = 3). A main ingredient
is the purely algebraic result that the cohomological dimension of any finite group with respect to
any family of proper subgroups is greater than one. This implies a Stallings—Swan type result for
families of subgroups which do not contain all finite subgroups.

1. Introduction

The purpose of this article is to show that famous theorems of Eilenberg and Ganea [15]
and Stallings [39] and Swan [40] relating three quantities associated to discrete groups —
the geometric dimension, the cohomological dimension and the Lusternik—Schnirelmann
category of a classifying space — admit equivariant generalisations to the setting of groups
with operators.

Let 7 be a discrete group. A connected CW-complex whose fundamental group is
and whose higher homotopy groups are all trivial is called a K (s, 1)-complex. Such a
space is unique up to homotopy type. The geometric dimension of m, denoted gd(r), is
the minimal dimension of a K (7, 1) complex (alternatively, the minimal dimension of a
contractible complex on which m acts freely). The Lusternik—Schnirelmann (LS) category
of 7 is cat(mw) := cat(K(m, 1)), the LS category of a K(r, 1) complex, which is well-
defined by homotopy invariance. (Recall that the homotopy invariant cat(X) is defined to
be the minimal integer k for which there exists a cover of X by open sets Uy, . .., Uy such
that each inclusion U; < X is null-homotopic; see [11] for further details.) Finally, the
cohomological dimension of w, denoted cd(7r), may be defined topologically as the min-
imal d such that H4+1(K (7, 1); M) = 0 for all local coefficient systems M on K (7, 1),
or algebraically as the projective dimension of the trivial module Z in the category of
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m-modules. It is easy to check that if one of these invariants is zero, then 7 is the trivial
group, and the other two invariants are zero as well. Note that all three invariants may be
infinite; this happens for example if 7 has torsion elements.

With these definitions, the theorems we will generalise are as follows. Eilenberg and
Ganea showed in [15] that for any discrete group 7 there is a chain of inequalities

cd(mr) < cat(r) < gd(7w) < sup{3, cd(m)},

and furthermore if cd(7r) = 2 then cat(;r) = 2, and if cat(;r) = 1 then 7 is a free group and
cd(wr) = gd(;r) = 1. As a consequence of a more general theorem about ends of groups,
proved by Stallings [39] in the finitely generated case and extended to the general case by
Swan [40], a group has cd(;r) = 1 if and only if it is free (if and only if cat(xr) = gd(7) =
1). Hence we see that all three invariants are equal, except for the possibility of a group &
with cd(7r) = cat(sr) = 2 and gd(7r) = 3. The statement that such groups cannot exist has
become known as the Eilenberg—Ganea conjecture, and remains unsolved.

Suppose now that a second discrete group G acts on 7 by automorphisms. Then 7
will be called a group with operators in G, or a G-group for short. We will define the
equivariant cohomological dimension, equivariant geometric dimension and equivariant
LS category of such groups with operators, and show that the theorems of Eilenberg—
Ganea and Stallings—Swan generalize to the equivariant setting when G is finite.

Our definitions will employ the notions of Bredon cohomology and classifying spaces
with respect to families of subgroups, which we now briefly recall (full definitions and
references will be given in Section 2 below). A non-empty collection F of subgroups of
a group I is called a family if it is closed under conjugation and taking subgroups. A
classifying space for I" with respect to the family ¥ is a I'-CW complex E#(I") such
that every I'-space with isotropy in ¥ admits a '-map X — E#(I"), unique up to I'-
homotopy. This is equivalent to asking that the fixed sub-complex Eg (I')# is empty for
H ¢ ¥, and contractible for H € & . Such a classifying space always exists, and is unique
up to I'-homotopy type. The geometric dimension of T with respect to the family ¥,
denoted gd & (I"), is the minimal dimension of a classifying space E# (I').

The orbit category O T has as objects the I'-sets I'/H for H € ¥ and as morph-
isms the I'-maps. An Oz I'-module is a contravariant functor from Q% I" to the category
of abelian groups. The category of @ I'-modules is an abelian category with enough
projectives, so homological algebra machinery may be applied there. The cohomological
dimension of " with respect to the family ¥, denoted cd# (I"), is defined to be the pro-
jective dimension of the constant @ #'-module Z, which takes the value Z on all objects
I'/H and the identity on all morphisms. Equivalently, cd# (I") is the least dimension d
such that H4T1(Q¢T; M) := Exté?r (Z, M) = 0 for all OgI'-modules M. Since the
augmented cellular chain complex of a classifying space E# (I") is a projective resolu-
tion of Z, one has cd# (I') < gd#(I"). By a theorem of Liick and Meintrup [29] one has
gd#(I") < sup{3, cd#(I")}, generalizing part of the Eilenberg—Ganea result mentioned
above.
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Returning to the case of a G-group 7, we consider the family of subgroups of the semi-
direct product 7 x G generated by the base group 1 x G =~ G. Thatis, we let § = ¥ (G)
denote the family of subgroups of = x G which are conjugate to a subgroup of G.

Definition 1.1. The equivariant geometric dimension and equivariant cohomological
dimension of the G-group m are defined respectively by

gdg(m) :=gdg(w xG) and cdg () := cdg(m x G).

Recall that for a G-space X with G a compact Lie group, the equivariant LS category
catg (X) was defined in [31] to be the minimal integer k for which there exists a cover
of X by open G-invariant subsets Uy, ..., Ur such that each inclusion U; — X is G-
homotopic to a map with values in a single orbit. This notion is G-homotopy invariant. The
equivariant LS category of the G-group r is defined to be the equivariant LS category of
a G-homotopy type of K(m, 1)’s, described as follows. The classifying space Eg (7w x G)
for the family § described above is a contractible space on which w =~ 7w x 1 acts freely,
so the orbit space Eg(r x G)/m is a K(m, 1). Since Eg(;r x G) is unique up to (7 x G)-
homotopy equivalence, the orbit space Eg(w x G)/m is unique up to G-homotopy equi-
valence.

Definition 1.2. The equivariant LS category of the G-group 7 is defined to be
catg () := catg(Eg(mw x G)/m).

Remark 1.3. In Lemma 3.1 below we show that as a model for the classifying space
E¢(mr x G) we may take E 7, the infinite join of copies of 7, so that catg () = catg (Bx),
the equivariant LS category of Milnor’s classifying space for w. Note that B, while
infinite dimensional, may have the G-homotopy type of a finite complex. We remark that
Eg( x G) /7 (and in particular B7) is an Eilenberg—Mac Lane G-space of type (7, 1)
in the sense of Elmendorf [16], where 7™ : OG — Grp given by G/H + nH isthe OG-
group determined by the system of fixed subgroups of 7. Here QG is the orbit category
for the family of all subgroups of G.

With all these definitions in place, we can now state our main results.

Theorem 1.4 (Equivariant Eilenberg—Ganea theorem). Let w be a discrete G-group,
where G is finite. Then the chain of inequalities

cdg () < catg(w) < gdg(7w) < sup{3,cdg ()}

is satisfied. Furthermore, if cdg () = 2 then catg () = 2.

In light of the general inequalities cdg (I') < gd# (") < sup{3, cd#(I")} alluded to
above, the new contribution of this result is the definition of the equivariant LS category
of a G-group, and its determination in terms of homological algebra. When the group G, or
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more generally its action on 7, is trivial, we shall see below that the equivariant cohomo-
logical and geometric dimensions agree with their non-equivariant counterparts. Hence
Theorem 1.4 generalizes the classical Eilenberg—Ganea theorem.

It is easily verified that cdg (I") = 0 if and only if gd#(I') = O if and only if ¥
contains I' (and therefore is the family of all subgroups of I'). Thus all three equivariant
dimensions are zero precisely when the group 7 is trivial. The second main result of this
paper characterises G-groups of equivariant cohomological dimension one, assuming G
is finite.

Theorem 1.5 (Equivariant Stallings—Swan theorem). Let & be a discrete G-group, where
G is finite. The following are equivalent:

(1) gdg () =1;
(2) catg(w) =1,
() cdg(m) = I;

(4) 7 is a non-trivial free group with basis a G-set.

When G acts trivially, the implication (3) = (4) is the Stallings—Swan theorem. Our
proof of Theorem 1.5 uses a strengthening of Stallings—Swan due to Dunwoody [14],
which may be stated as follows. As is customary, we denote by cd(I") and gd(T") the
cohomological and geometric dimensions of the group I" with respect to the farrmy FIN
of finite subgroups. Then Dunwoody shows that cd(I") = 1 if and only if gd(I") = 1. When
G is finite and 7 is torsion-free, the condition cdg () = 1 entails that our family § of
subgroups of & x G coincides with IN . This is not obvious, and is a consequence of
the following theorem, which is our main algebraic result.

Theorem 1.6. Let T" be a finite group, and let ¥ be any family of proper subgroups of T.
Then cdg (I') > 2.

The following conjecture appears to be well known among experts (see [27]).

Conjecture 1.7. If T is any group and ¥ is any family of subgroups of T', then cdz (I') =
1 ifand only ifgd& (I') = 1.

To the best of our knowledge, this conjecture is proved in the literature only for the
trivial family (by Stallings—Swan), the family #IN (by the result of Dunwoody men-
tioned above), and for the family VEYE€ of virtually cyclic subgroups, assuming I" is
countable (by a theorem of Degrijse [12]). The work of Petrosyan and Prytuta [34] shows
that the conjecture holds for chamber transitive lattices in buildings with the family given
by all the stabilisers.

We observe that Theorem 1.6 verifies Conjecture 1.7 for a large class of families.

Corollary 1.8. Let " be any group, and let ¥ be any family of subgroups of T" that
does not contain the family FIN of finite subgroups. Then cd#(I') = 1 if and only if

gdz(I') = 1.
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Proof. Suppose H < I is finite and not in ¥. Then Shapiro’s Lemma 2.4 and Theorem
1.6 yield
2 < dpng (H) < cdg (D).

Thus cdg (I") = 1 is impossible. On the other hand, gd¢ (I") = 1 would imply that I" acts
on a tree without H -fixed points, which is also impossible [38]. ]

Remark 1.9. Theorems 1.4 and 1.5 suggest that the equivariant group cohomology of the
G-group  with coefficients in an Og¢( x G)-module M should be defined by

HE(: M) := H*(Og(w % G): M) = Exth_ .. (L. M).

Given a w x G-module N, one obtains a Og (7 x G)-module N ) by taking fixed points
(this is a form of co-induction). For such coefficient modules, our definition agrees with
that of Inassaridze [22], who defines the equivariant group cohomology of & with coef-
ficients in N to be H*( x G, G; N), the relative group cohomology in the sense of
Hochschild [21] and Adamson [1] (see also Benson [4, Section 3.9]). As observed in
[33, Section 2], one has an isomorphism H*(7r x G,G; N) =~ H*(Og(mw x G); N(_)).
Hence our definition generalizes that of Inassaridze by allowing as coefficients arbitrary
O¢(m x G)-modules which may not be co-induced from 7 x G-modules. In theory our
cdg () could exceed the equivariant cohomological dimension derived from Inassaridze’s
definition, but we do not currently know any examples where this is the case.

We mention also the paper of Cegarra—Garcia-Calcines—Ortega [7] which predates
[22] and contains a slightly different definition of equivariant group cohomology with
coefficients in a w x G-module.

Combining Theorems 1.4 and 1.5 gives the following corollary and question.

Corollary 1.10. If i is a discrete G-group with G finite, then
cdg () = catg () = gdg (7).

except for the possibility of a G-group w with cdg () = catg(w) = 2 and gdg(w) = 3.
In particular, catg () = cdg () always.

Question 1.11 (Equivariant Eilenberg—Ganea conjecture). Does there exist a G-group &
with cdg () = 2 and gdg () = 3?

The structure of the paper is as follows. In Section 2 we recall necessary material
on Bredon cohomology and cohomology of small categories in general, and derive some
basic facts about equivariant dimensions as specializations. In Sections 3 and 4 we prove
Theorems 1.4 and 1.5 respectively. The proof of Theorem 1.5 relies on Theorem 1.6,
whose proof is given in Section 5.
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2. Preliminaries on Bredon cohomology

‘We now recall the necessary material on Bredon cohomology with respect to families, and
cohomology of small categories more generally. In this section I will denote an arbitrary
discrete group.

Definition 2.1. A set of subgroups ¥ of I is called a family if ¥ is closed under conjug-
ations and taking subgroups.

It is often convenient to consider I'-CW complexes (see [28, Section I.1]) with isotropy
in the family & . Such I'-CW complexes are I"-spaces built out of cells of type I'/H x D",
n € Z, where H € ¥ . The classifying I'-space E¢ (T") is the universal I'-CW complex
with isotropy in ¥ in the following sense: For any I'-CW complex X with isotropy in ¥,
there is a continuous I'-map X — Eg¢(I") which is unique up to I"-homotopy. The I'-
space E¢ (') is uniquely characterised up to I'-homotopy equivalence by the following
properties: E¢ (') is a T-CW complex and the H -fixed subspace E# (I")H is contractible
if H € ¥ and empty otherwise. Any such space is called a model for E (T").

There are many ways to construct such a classifying space, see for example [28,
Chapter I, Proposition 2.3] or [30, Definition 2.1]. To sketch the latter construction, we
recall first the (¥ -)orbit category O#T'. The category Q¢ has the cosets I'/H with
H € ¥ as objects and I'-equivariant maps as morphisms. One can consider a covari-
ant functor from O« T to the category of I'-spaces sending I'/H to I'/H considered as
a discrete I'-space. The Bousfield—Kan homotopy colimit of this functor is a model for
Eg ().

The above described model for E# (I") is too big and is usually infinite dimensional.
Often one can construct small models for E¢ (I"). An especially well studied special
case is ¥ = FIN, the family of finite subgroups of I". The I'-space Egzy (") plays
an important role in geometric group theory and algebraic and topological K-theory (via
the Farell-Jones conjecture and Baum—Connes conjecture) and is often finite dimensional
and cocompact. For example when I' = Z x Z /2, the infinite dihedral group, a model for
E g1y (T) is the real line R with the sign and translation actions. This is a one-dimensional
cocompact model for E ¢z (I'), whereas the construction in the previous paragraph yields
an infinite dimensional space.

The latter example shows that it makes sense to try to find a minimal model for E ¢ (T").
The first step towards this is to find the minimal dimension such a model can have. This is
the geometric dimension of the group I with respect to the family ¥, denoted by gd & (I").
More precisely,

gde(I') := min{dimX | X is a model for Ey(l")},

where dim stands for the CW-dimension. To compute gd¢ (I") one needs some homo-
logical algebra. With this goal in mind, we recall the definition of cohomology of a
category with coefficients in a functor. For details we refer to [28, Chapter II, Section 9
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and Chapter III, Section 17]. We will mostly need this in the case of the orbit category,
however we will also need cohomology of certain posets and other related categories.

Let € be a small category and let F : €°° — Ab be a functor into the category of
abelian groups (i.e. a contravariant functor on €). Such a functor is referred to as a €-
module. The category of €-modules and natural transformations is denoted by €-Mod.
This category is an abelian category and has enough projective objects. Projective objects
are direct summands of sums of representable modules (often referred to as free modules)
which have the form

Pzre- cal.

where « runs over some indexing set and the C, are the representing objects in €. Let
Z : €°? — Ab denote the constant module which assigns the value Z to every object in €
and the identity homomorphism to every morphism in €. The n-th cohomology of € with
coefficients in a €-module F : '€°° — Ab is defined to be the Ext-group

H"(€; F) := Extg ;q(Z, F).

(We will below shorten the notation Ext’é_MO 4o Ext% .) There is a more direct way without

using homological algebra to define H” (€; F), using a certain bar construction. But this
will not be needed in this paper and we do not recall the construction.
Next we recall the following well-known definition.

Definition 2.2. Let € be a small category. The cohomological dimension of €, denoted
by cd(€), is the projective dimension of the constant module Z : €°° — Ab. Equivalently,
cd(€) is equal to the minimum of lengths of projective resolutions of Z. Yet another
equivalent definition uses Ext-groups:

cd(€) = max{n | Ext}(Z, F) # 0 for some F}.

Now given a family of subgroups ¥ of I', we can specialise the above definitions to the
orbit category @« I". Given a functor M : O T'°P — Ab (also referred to as a coefficient
system), one gets the cohomology groups

H*(O5T; M) :=Exty_r(Z, M).
We are now ready to recall one of the most important definitions for this paper:

Definition 2.3. The cohomological dimension of T with respect to the family ¥ is the
(possibly infinite) number cd(@#I") and is denoted by cd# (I").

There is a close connection between cdg (I') and gd 4 (I"). By [29, Theorem 0.1] one
has the following inequalities:

cdz () < gdg(I) < sup{3, cdg (T)},

The Eilenberg—Ganea conjecture states that if cd(I") = 2 (and hence is torsion-free), then
I" has 2-dimensional K(T', 1). It turns out that the analog of this conjecture for general
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families is false. Brady, Leary and Nucinkis showed in [6] that for certain right-angled
Coxeter groups W(L) and the family ¥ = FIN, the generalised Eilenberg—Ganea con-
jecture fails. In other words, they proved that cdgzy (W(L)) = 2 but gdg7 (W(L)) = 3.

If the family ¥ contains the full subgroup T', then it is easy to see that one may take
as E¢ (') a one-point space with the trivial I action. Consequently,

Fref — gdey(M) =0 = cdg(I) =0.

Conversely, if cdg (I') = 0 then [41, Lemma 2.5] of Symonds implies that ¥ has a unique
maximal element which is self-normalizing, and it follows that I € ¥ (see [19, Proposi-
tion 3.20]). Hence

dyT)=0 < gdpy(M) =0 < Teg.

It is conjectured that for a general family ¥ one has cd#(I') = 1 if and only if
gd# (I") = 1. For the trivial family this is known and it is the celebrated Stallings—Swan
theorem [39, 40]. For the family IV this conjecture also holds and it is the theorem
of Dunwoody [14]. The present paper addresses this conjecture for I' a finite group by
showing that for any proper family ¥ one always has cdg (I") > 1. We also prove the con-
jecture for the family § of sub-conjugates of G in the semi-direct product & x G, when
is a G-group with G finite.

Next, we recall the definition of Bredon cohomology Hg (X; M) which generalises
the cohomology groups H*(O#T'; M). Let I' be a discrete group, ¥ a family of sub-
groups, X a I'-CW complex and M : Oz 1'°? — Ab a coefficient system. The space X
gives a natural chain complex C , (X) of O¢ I"-modules defined by

C.(X)(T/H) = C.(X ™),

where Cy(—) denotes the cellular chain complex with integer coefficients. The Bredon
cohomology of X with coefficients in M is defined by

HL(X; M) := H'(Homg, r(C,(X), M)).

Here Homg,r(C,(X), M) is the cochain complex of natural transformations from
C.(X) to M. Given a model for E# (I"), it follows from [29, Lemma 2.6] that the chain
complex C,(E#(I")) of O '-modules is a free resolution of Z. This implies that there
is a natural isomorphism:

HL(Ez(T); M) = H' (Homg, r(C,(Ex(T)), M))
= Exty, p(Z, M) = H' (OzT; M).

We now recall Shapiro’s lemma for families, which plays a fundamental rdle in this
paper. Let I be a group, ¥ a family of subgroups of I and H a subgroup of I". Then

HNF ={Ke¥|K<H)
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is a family of subgroups of H. Pre-composing with the functor
I'xg —:0Qpng H - Oz
which sends H/K to I'/ K induces the restriction functor
resEI :O¢I'-Mod — Ogns H-Mod .

Since it is induced by pre-composition, we get that resll; is exact, preserves direct sums
and sends Z to Z. Moreover, a straightforward calculation shows that the following double
coset formula of Mackey type holds:

resy (Z[OsT(—.T/K) = @ Z[OungH(— H/H NEK)].
ge€H\T/K

This implies that resll; preserves projective resolutions of Z. The functor resgl has a right
adjoint

coindly : Opng H-Mod — OgT'-Mod
called co-induction (see [19, Chapter 1, Section 10], for example). One has the following

generalization of the well-known Shapiro’s lemma.

Lemma 2.4. Let ¥ be a family of subgroups of a group T, and let H be a subgroup of T'.
Then for all M € Ogng H-Mod and n € Z one has isomorphisms

H"(Ogng H; M) = H" (O T; coindy (M)),
which are natural in M. Consequently,

cdyng (H) < cdg(I).

Shapiro’s lemma has a geometric counterpart, which is trivial to prove but nevertheless
useful.

Lemma 2.5. Let ¥ be a family of subgroups of a group T, and let H be a subgroup
of T. Then any model for the classifying space E¢ (I") is also a model for Egng (H).
Consequently,

gdyng (H) < gdg(T).

Proof. Let X be a model for E¢ (I"). By restriction of the action, X becomes an H-CW
complex. Given K € H N ¥, since K € ¥ we have that XX is (weakly) contractible.
Given K < H with K ¢ H N ¥, we must have K ¢ ¥ and therefore XX is empty. =

Recall that in the introduction we have defined the equivariant cohomological and
geometric dimensions

cdg () :=cdg(m xG) and gdg(w) :=gdg(m xG),
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where 7 is a discrete G-group and § is the family of sub-conjugates of G in the semi-
direct product = x G. We observe that 7 x G € § if and only if 7 is trivial, and so

cdg(mr) =0 <= gdg(n) =0 <= 7 istrivial.
Since w N'g = {1}, Shapiro’s lemma gives
cd(m) < cdg(w) and gd(w) < gdg (7).

Thus the equivariant dimensions are bounded below by the non-equivariant dimensions
(and are infinite if 7 contains torsion elements). When G acts trivially on 7, both inequal-
ities become equalities. For in this case, § is the family of subgroups of the normal
subgroup G < 7 x G = 7 x G, and we have the following general result.

Lemma 2.6. Let N < T be a normal subgroup, and let ¥ = F (N) be the family of
subgroups of I which are contained in N. Then

cdz(T) =cd(I'/N) and gdg () =gd(T'/N).

Proof. We have an inclusion functor F : I'/N — O, where I'/N is regarded as a
category with one object. Associated to F' are two functors

resg : OzT-Mod - I'/N-Mod, M +— M(T'/N)

and
indg : T/N-Mod - O¢T-Mod, P +— (I'/H — P = p),

where in the second definition we first regard P as a I"-module via the projection I' —
I'/ N and then take fixed points. The reader can verify that both resr and indr are exact,
preserve direct sums and free modules, and send constant Z to constant Z. This gives the
first equality.

It is easily verified that any model for E(I"/ N), regarded as a '-CW complex via the
quotient map I' — I'/ N, is model for E# (I"). Conversely, if X is a model for E¢ ("),
then XV is a contractible complex on which I'/ N acts freely, hence a model for E(T'/N).
This gives the second equality. ]

Remark 2.7. An alternative definition of the equivariant cohomological dimension of a
G-group can be given, using Inassaridze’s definition of equivariant group cohomology [22]
as recalled in Remark 1.9. Given a (7 x G)-module N, we obtain an Og(r x G)-module
N ) by taking fixed sub-modules over each orbit. Define

chG(yr) = sup{n | H"(Og(m x G); N©)) # 0 for some (v x G)-module N}.

One may check that co-induction along the functor Q37 — Og(m x G) sends a 7-
module M to (Hom, (Z[x x G], M)). In other words, it is the composition of the
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usual co-induction from s-modules to (7w x G)-modules with taking fixed sub-modules.
An argument with Shapiro’s lemma therefore yields the first inequality below:

cd(rr) < cd () < cdg (7).

We do not know whether the second inequality, which is immediate from the definitions,
can be strict.

3. The equivariant Eilenberg—Ganea theorem

In this section we give the proof of Theorem 1.4. Recall that 7 is a discrete G-group, where
G is a finite group. We denote the image of an element @ € 7 under g € G by é«. The
semi-direct product 7 X G has group multiplication given by («, g) - (8, /) = (@B, gh).

As a discrete space, 7w admits left actions of 7 (induced by the group operation) and
G (given by the action). These actions are compatible, in the sense that for all g € G and
o, B € m we have & (a¢ff) = $a® B, and so we get a left action of the semi-direct product
7w % G on m, given by

(@,8) a9 =a®ag, g€G, a,ap € 7.

For k > 0 let Eym denote the (k 4+ 1)-fold topological join of the discrete space 7.
Note that Exm is naturally a k-dimensional simplicial complex of the homotopy type
of a wedge of k-spheres. The (r x G)-action on 7w extends diagonally to an action on
Ej 7, making it into a (7 x G)-CW complex. Taking the colimit of the obvious inclusions
Egn — Eyy17m = (Egm) % 7, we obtain the infinite join Ex = .o Ex7 as an infinite
dimensional (7 x G)-CW complex. -

Lemma 3.1. The space En is a model for Eg(mw % G).

Proof. We must show that the isotropy of Ex lies in &, and that for each H € § the fixed
point set (Ex)# is contractible.

We use a standard notation in which elements of the infinite join Ex are represented
as (non-commutative) formal sums Y _ #;o; with ¢; € [0, 1] almost all zero, > #; = 1 and
a; € 7 for all i. Then the action is given by («, g) - > _tia; = Y tiad ;.

Let H < 7 x G denote the stabiliser of ) t;o; € Ex. Choose an index i such that
t; > 0, and note that for all («, g) € H we have a®«a; = «;. One verifies that

@ D, g)(@, 1) = (@ 'afa;,g) = (1, 8),

so that H is conjugate in = x G to a subgroup of G. It follows that Ex has all isotropy
groups in the family §.

Now suppose H < G. There is an evident homeomorphism (En)¥ =~ E(x ), hence
(En)H is contractible. Its translates (¢, g) E (n ) = (En)@®8)H(xg )" are therefore also
contractible. Hence the fixed-point sets are contractible for all groups in §, and Ex is a
model for Eg(r x I') as claimed. |
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Let Bm = (Em)/m, the orbit space of the free (left) w-action on Ex. The G-action
on Em descends to a G-action on the quotient Bz, and we have defined catg () :=
catg (Bm).

Definition 3.2 ([10,20]). Given a G-fibration p : E — B, the equivariant sectional cat-
egory, denoted secatg (p), is the minimal integer k for which there exists a cover of B by
G-invariant open sets Uy, ..., Ug, on each of which p admits a local G-section (i.e., a
continuous G-map s; : U; — E such that p os; = incl : U; < B).

For the definition of G-fibration, see [42, p.53]. Let p : Ex — B be the quotient
map. Then p is a G-fibration (since it is a locally trivial (7, &, G)-bundle over a G-para-
compact base; compare [42, Chapter I, Exercise 7.5.5]).

Proposition 3.3. The equivariant category catg (Bm) is equal to secatg(p), where p :
En — B is the quotient map.

Proof. Ttis shown in [10, Corollary 4.7] thatif ¢ : E — B is a G-fibration such that

(i)  E is G-categorical (i.e., the identity map on E is G-homotopic to a map with

values in a single orbit); and

(i) gq(EH) = BH for all subgroups H < G;
then secatg(q) = catg(B). We will show that conditions (i) and (ii) hold for ¢ = p :
En — Bm.

We have shown in Lemma 3.1 that Ex is a model for E¢ (st x G). It follows that En
is also a model for Egng(G) (see Lemma 2.5). However, G N9 = AL L is the family
of all subgroups of G, and so Ex is G-homotopy equivalent to a point, and in particular
is G-categorical. Hence (i) is satisfied.

Next, let H < G be any subgroup. Clearly p((Ex)f) € (Bm)H, and we must show
surjectivity. So let x € (Bm)f. Since p is surjective, there exists y € p~1(x) € Ex.
Although y need not be fixed by H, for all g € H there exists a unique (since 7 acts
freely on Em) element o € 7 such that «z®y = y. Representing y as a formal sum
> tia;, we find that for every i such that ; > 0, and for all g € H, the equation

agfa; = a; equivalently, fo; = a;lai, (D

holds. Let j be any specific index such that z; > 0. We claim that ozj_ly e (En)H; as
p(ozj_l y) = Xx, this verifies condition (ii). This is a straightforward calculation using equa-
tion (1): forall g € H,

g(le‘Olj_loli> = Ztig(aj_lai)
= > )
= St ) (o5 )

= E tiotj_loei. |
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Corollary 3.4. The equivariant category catg(Bm) equals the minimal integer k such
that there exists a (m x G)-equivariant map Ex — Ey .

Proof. By Proposition 3.3 we have catg (Br) = secatg(p), where p : Emr — B is the
quotient map. We use the characterization of G-sectional category in terms of G-sections
of fibred joins, observed in [20, Proposition 3.4]. In particular, since p : Emr — Bmisa
G-fibration over a paracompact base space, secatg (p) < k if and only if the (k + 1)-fold
fibred join py : Jgn (Em) — B admits a (global) G-section.

The G-fibration p : Ex — B is G-fibrewise homeomorphic to the associated fibra-
tionq : Ew X, m — B with fibre i, as follows. Sticking with left actions, the total space
En x, 7 is the orbit space of Ex x m under the diagonal -action given by

(oz, (Ztiai,ﬂ» — (Ztiaai,aﬂ>.

There is a G-homeomorphism ¢ : Exw x, 7 — Em given by [> t;a;, Bl = Y t; 7 i,
where the action of G on Ex X, 7 is given by (g, [>_ tia;, B]) — [>_ ti%w;, £ B]. This
action preserves the fibres of the projections to Br.

It follows from [20, Proposition 3.4] that secatg (p) < k if and only if the (k + 1)-fold
fibred join g of ¢ : Emw X5, m — Bm admits a G-section. By Schwarz [35, Proposition 1],
gk can be identified with the associated fibration Q : Ew X, Exm — B with fibre the
(k 4+ 1)-fold join Exm. Here the G-action on the total space is given by

(g, [Ztiai,soﬂo +---+Sk/3k]) — [Ztig“i»sogﬂo +“'+Skg,3k]-

Sections of Qy correspond to w-maps Ex — Ejm, while G-sections of Qj correspond
to (w x G)-maps Ex — Ej . More explicitly, givena (r x G)-map ¥ : Ex — Epm, we
obtain a G-section o : Br — Em X, Exm of Qj by setting a[e] = [e, ¥ (e)] fore € Ex.
Conversely, given a G-section 0 : Bm — En X, Exn we define ¥ : Emx — Ejm using
the formula o[e] = [e, ¥ (e)]. Checking that v is a (w x G)-map is straightforward. =

Corollary 3.5. The equivariant category catg(Bm) equals the minimal integer k such
that Em is a (w x G)-homotopy retract of a (m x G)-CW complex of dimension k.

Proof. Suppose catg(Br) < k. By Corollary 3.4, there exists a (x x G)-map ¢ : Ex —

Ejm. By Lemma 3.1, the space Ex is a classifying space Eg(mr x G) for the family §.

Since Eym is a sub-complex of Em, it too has isotropy in ¥, and therefore there is a

classifying (r x G)-map ¢ : Exm — Em. Since (r x G)-maps Ewr — Em are unique

up to (7 x G)-homotopy, the composition ¢ o i is (r x G)-homotopic to the identity.

Therefore E is a (7 x G)-homotopy retract of Ey 7, which has dimension k.
Conversely, suppose we have a factorisation

EnLLi)En

of the identity map up to (& x G)-homotopy, where L is a (wr x G)-CW complex of
dimension k. Observe that this implies that L7 = @ for subgroups H < 7 x G notin §.
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Let f : Exm — Enx denote the inclusion. We use the equivariant Whitehead theorem (see
[42, Theorem 11.2.6] or [32, Theorem 1.3.2], for example) to show that the map L — Ex
factors through f up to (7 x G)-homotopy. For this let v : Con(z x G) — Z be the
function on conjugacy classes of subgroups of & x G given by

k ifHeg,

V) = {—1 itH ¢ 9.

and observe that L has dimension at most v and that f is a v-equivalence. Therefore
f* . [L, Ek”]nxG - [La Eﬂ]nxG

is surjective. We therefore have a (w x G)-map Ewx — L — Ejm, and by Corollary 3.4
this implies that catg(Bw) < k. |

We are now in a position to prove Theorem 1.4, restated here for convenience.

Theorem 3.6 (Equivariant Filenberg—Ganea theorem). Let w be a discrete G-group,
where G is finite. Then the chain of inequalities

cdg () < catg () < gdg () < sup{3, cdg ()}
is satisfied. Furthermore, if cdg (1) = 2 then catg(w) = 2.

Proof. As noted above, the inequalities cdg (1) < gdg (1) < sup{3, cdg ()} follow from
the more general [29, Theorem 0.1] applied to the family §.

Suppose gdg () < k, meaning there is a k-dimensional (x x G)-CW complex L
which is a model for E¢ (7 x G). By uniqueness of classifying spaces and Lemma 3.1,
there is a (w x G)-homotopy equivalence Ex ~ L. In particular, Ex is a (7 x G)-
homotopy retract of L, and catg (1) = catg (Bmw) < k by Corollary 3.5. Hence catg () <
gdg (7).

Now suppose that catg () < k. By Corollary 3.5 the identity map on Ex factors up
to (r x G)-homotopy through a (7 x G)-CW complex L of dimension k. Then for any
i >k and Qg (7w x G)-module M, the identity homomorphism on the Bredon cohomo-
logy group Hy(Em; M) = H'(Og(r x G); M) factors through H, (L; M) = 0. Hence
cdg(m) <k.

To prove the final statement, we invoke equivariant obstruction theory. First note that
in order to prove that catg () < 2, it is sufficient to show the existence of a (7 x G)-
equivariant map Ex — L, where L := Ex® denotes the 2-skeleton of E . For given
such a map, composing with the inclusion L < Ex gives a map Ex — Em, which by
uniqueness of classifying maps must be (7 x G)-homotopic to the identity. Hence Ex is a
(m » G)-homotopy retract of the 2-dimensional complex L, and we invoke Corollary 3.5.

Note that for all H € §, the fixed subcomplex L equals the 2-skeleton of the con-
tractible space (Em)f, hence is simply-connected, and in particular n-simple for all 7.
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The obstructions to the existence of an equivariant map Ewx — L lie in Bredon cohomo-

logy groups
Hy W (Emiz, (L) = H" ' (Og(n % G); m, (L)),

where 1, (L) : Og(wr x G) — Ab is defined by z,(L)(wx x G/H) = 7 (LH) for all
H €8 (compare [32, Section 5], [30, Theorem 2.6]). When cdg (7) = 2, these groups are
trivial for n > 2, and they are trivial for n < 1 by the simple-connectivity of L alluded
to above. ]

4. The equivariant Stallings—Swan theorem

In this section we will prove Theorem 1.5 from the introduction, restated below as The-
orem 4.4. The proof relies on Theorem 1.6 (proved in the next section), as well as the
concept of non-abelian cohomology to relate the family § of subgroups of = x G to the
family FIN of finite subgroups. We use the standard notations cd(I") := cdgzy (I") and
gd(I") := gdgzy ().

Recall that a 1-cocycle ¢ : G — m is a function satisfying ¢ (gh) = ¢(g)8¢(h) for
all g, h € G. Define an equivalence relation on 1-cocycles by declaring ¢; ~ ¢, if there
exists a € 7 such that ¢; (g) = @~ '¢o(g)%a forall g € G. The set of equivalence classes is
denoted by H'(G: ), and called the first non-abelian cohomology of G with coefficients
in w. A 1-cocycle is called principal if it has the form ¢ = ¢, for some a € w, where
¢a(g) = a8 (a1) for all g € G. Note that principal 1-cocycles are all equivalent to the
trivial 1-cocycle which is constant at the identity of . Thus H'(G; ) is naturally based
by the class of principal 1-cocycles, which we denote by 1.

Proposition 4.1. Assume that G is finite and that 7 is torsion-free. Then § = FIN if
and only if HY(H; ) = {1} for all subgroups H < G.

Proof. Assume § = FIN.Let¢ : H — 7 be a 1-cocycle. We obtain a finite subgroup
Hgy of m x G by setting Hy = {(¢(h),h) | h € H}, which by assumption is conjugate to
a subgroup of G. Thus there exists some («, g) € 7 x G for which (o, g) "' Hy (e, g) <
1 x G. This means that for all 7 € H, we have

(o, @) (p(h), (e, g) = (£ (@ ' p(h)a), g " hg) € 1 x G,

and therefore @ ' ¢ (h)*a = 1 € , or p(h) = " (¢~ 1), and ¢ is principal. Hence we have
H'(H:;m) = {1} as claimed.

Conversely, assume H'(H;m)={0) for all H < G. Since G is finite, § € FIN.
So let H < 7 X G be finite; we must show that Heg. Let p 1w xG — G denote
the projection, and let H := p(ﬁ ) < G. Observe that, since 7 is torsion-free, the inter-
section 7w N H is trivial. By the characterisation of subgroups of semi-direct products
(described for instance by Usenko [43]), there exists a 1-cocycle ¢ : H — 7 such that
H= {(¢pg (h),h) | h € H}. By assumption, ¢y is principal. Thus there exists & € 7 such
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that
H={("(@").h) | heH} = (a0, 1)1, H)(a, )"

Hence H € ¢ as claimed. [

Example 4.2. Let 7 = Z with G = Z /2 acting by the sign automorphism. Then 7 x G
= 7 % Z/2 is the infinite dihedral group, and since H!(G; ) is of order 2 we have
G # FIN in this case.

In fact, there exist subgroups H < 7 x G isomorphic to Z /2 which are not conjugate
to G. By Shapiro’s Lemma 2.4, we have

00 =cd(Z/2) = cdgng(H) < cdg(mr x G) = cdg ().

Note that cd( x G) = gd(w x G) = 1 in this case.
More generally, if there exists a finite subgroup H < 7 x G such that K ¢ § for every
non-trivial subgroup 1 # K < H, then cdg () = gdg(7w) = oo.

Example 4.3. The following example, contained in [26], illustrates that cdg (77) can be
finite even when § # FIN. Furthermore, in this example one has

cd(r xG) =3 > 2 =cdg(n),

which together with Example 4.2 illustrates that we cannot expect a general inequality
between the proper cohomological dimension of the semi-direct product and the equivari-
ant cohomological dimension. We thank an anonymous referee for pointing out the second
equality above and its proof.

There is an admissible action of G = As on an acyclic 2-dimensional flag complex
L without G-fixed points, such that L# is acyclic (and in particular non-empty) for all
proper subgroups H < As. This fundamental example due to Floyd and Richardson [18]
appears in many papers, including [2, 3,5, 6].

Let Ry be the right-angled Artin group associated to the 1-skeleton L™, and let 7 =
Hj, be the associated Bestvina—Brady group, that is, the kernel of the map ¢ : Ry, — Z
which maps all generators to 1 € Z. The action of A5 on L induces action of A5 on Ry,
and on Hp . For the semi-direct product Hy, x As, it is shown in [26, Theorem 3] that

(a) there are infinitely many conjugacy classes of subgroups As < Hy x As which
project isomorphically to As;

(b) all subgroups H < Hj x As which project isomorphically to a conjugate of
proper subgroup H < As are conjugate.

Hence § # FIN, by item (a). We remark that [26, Theorem 6] gives
ved(Hp % As) = cd(Hp) =2, cd(Hp x As) = gd(HL » As) = 3.

We will show that cd4,(Hz) = 2. For this we recall some facts about the universal
cover of the Salvetti complex of the right-angled Artin group Ry, which is a CAT(0)
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(hence contractible) cube complex X on which Ry acts freely [5,26]. Choosing a base
point xo € X allows us to index the k-cubes of X as (axo, {v1,...,Vt}), where ¢ € R,
and the vertices vy, ..., v form a k-clique in LM n particular, the vertices of X are
indexed as axg with @ € Ry. The Ry -action is given by

B - (@xo, {vr, ..., vc}) = (Baxo, {vi..... vk}).

There is an Ry -equivariant map 4 : X — R, where R is given the standard structure of a
Z-CW complex with O-cells n € Z, and Ry, acts via the homomorphism ¢ : Ry, — Z and
translation. In fact, one can define h(axg) = ¢(«) on vertices, then extend in an affine
way to each cube. The level set Q := h~!(0) C X is a sub-complex which is no longer
cubical, but carries the structure of an Hy-CW complex. In the example at hand, X is
3-dimensional and Q is 2-dimensional.

The group As acts on Ry and Hj, as described above, and also on X via

g - (axo. {v1. ..., vx}) = Baxe. {Fvr..... 8 vk )).

This action is compatible with the action of Ry, and hence X becomes an (R, X A5)-CW
complex. The sub-complex Q is in the same way an (Hy x A5)-CW complex.

The cellular chain complex C,(Q) of Q is a free resolution of Z of length 2 in the
category of Og (Hy »x As)-modules. To prove this it suffices to show that for any subgroup
I' < Hy x As, the fixed point set QT is acyclic if I' € ¢ and empty if T" ¢ .

The 2-complex Q is acyclic, by [5, Corollary 7.2]. Thus by a theorem of Segev [2,37],
each QT is either acyclic or empty. If ' € § then I' = aHa ™! for some o € Hy and
H < As. Then QT contains the vertex axo, and is therefore acyclic. Conversely, if Q1 is
non-empty, it contains some vertex axo with « € Hy. Then I' < Stab(axg) = aAsal,
and it follows that I" € §. |

‘We now turn to the proof of Theorem 1.5, restated here for convenience.

Theorem 4.4 (Equivariant Stallings—Swan theorem). Let & be a discrete G-group, where
G is finite. The following are equivalent:

(1) gdg () =1;
(2) catg(w) = 1;
() ddg(m) = L;

(4) = is a non-trivial free group with basis a G-set.

Proof. The implications (1) = (2) = (3) follow from Theorem 1.4 and the fact that all
three invariants are zero if and only if 7 is trivial.

Let us prove that (4) = (1). Suppose that 7 is a non-trivial free group with basis a
G-set. Then as a K(7r, 1) we may take a graph X with a single vertex and edges indexed
by the basis elements. The group G acts by fixing the vertex and permuting the edges
according to the action of G on the basis (preserving orientations), turning X into a G-
CW complex. The universal cover X is a tree, with vertices indexed by the elements of .
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Itis also a (& x G)-CW complex, which we claim is a model for E¢(;r x G). The action
of = x G on the vertices is given by («, g) - 29 = a®ay, so as in the proof of Lemma 3.1
we conclude that the isotropy of any vertex of X isin §. Since an element fixes an edge if
and only if it fixes both its vertices, and § is closed under intersections, we see that X has
isotropy in §. Finally, we observe that since G fixes the vertex 1 € X, any conjugate of
G must fix a vertex and hence the fixed sub-complexes XH for H € § are all non-empty
and are trees, therefore contractible. We conclude that gdg () = 1.

It remains only to prove that (3) = (4). So suppose that cdg(;r) = 1. By Shapiro’s
lemma cd(r) < cdg () = 1, and hence 7 is a non-trivial free group by Stallings—Swan.
It remains to show that 7 admits a basis which is permuted by G.

Firstly we claim that § = ¥IN. This is a consequence of our main algebraic result
Theorem 1.6. For suppose H is a finite subgroup of 7 x G notin §. Then H N'§ is a
family of proper subgroups of H, and Theorem 1.6 together with Shapiro’s lemma yields

2 <cdgng(H) < cdg(m x G) = cdg (),

contradicting cdg () = 1.

Thus we find that cdg(;r) = cd(wr x G) = 1; but then a well-known result of Dun-
woody [13, 14] implies that gdg () = gd(wr x G) = 1. Hence w x G acts on a tree T
with finite stabilisers. (This also follows from a result of Karrass—Pietrowski-Solitar [25],
Cohen [9] and Scott [36], since & x G is virtually free.) The actionof 1 =7 x 1 I x G
on T is free, and the quotient X := 7'/ is a 1-dimensional G-CW complex with 7 as fun-
damental group. Taking the barycentric subdivision if necessary, we may assume that X is
a simplicial G-graph. The result will follow if we can show that X has a G-invariant span-
ning tree Xy, for then the quotient graph X/ Xg is a G-CW complex model for K(r, 1)
with a single 0-cell, and the G-set of (oriented) 1-cells gives a basis of .

The following lemma is proved in [24], under the assumption that X is finite. The
same proof can be seen to work for X infinite. We will check below that the G-graph
X := T/ satisfies its conditions and this will complete the proof of the theorem.

Lemma 4.5. Let G be a finite group and let X = (V, E) be a simplicial G-graph. If
VO £ @, then X admits a G-invariant spanning tree Xg if and only if for each v € V the
sub-graph X G fixed by the stabiliser G, of v is connected.

Since the action of the finite group G on the tree 7 must fix some vertex xg, the
induced action of G on X := T'/x fixes the vertex vo = [x¢]. Thus it suffices to show that
for any vertex v = [x] of X, the fixed sub-graph X * is connected.

Let H = G, be the stabiliser of v = [x]. Observe that H acts on the orbit 7x C T.
Thus for all 4 € H there is a unique oy, € 7 such that ”x = ay,x. The function ¢ : H — 7
given by h a;l is a 1-cocycle. For if i, k € H then

oppX = hky = h(kx) = h(akx) = hakhx = hakahx,
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from which it follows that

P (hk) = (ani) ™" = (@3 ) ") = p()" (k).

Since § = FIN, by Proposition 4.1 we have H'(H ;) = {1} and hence ¢ is prin-
cipal. This means there exists o € 7 such that o (¢™!) = oe;l for all h € H. It follows
that o' x € mx is an H-fixed point, since for all 7 € H we have

h(o:_lx) = h(a_l)hx = h(oz_l)ozhx = oz_loe;lozhx =a lx.

Then the unique geodesic in 7 from a~!x to xq is contained in 7, and its image in
the quotient graph is a path in X# from v to vg, which shows that X # is connected. This
completes the proof. ]

5. Proof of Theorem 1.6

In this section we give the proof of Theorem 1.6, which states that for any finite group I"
and any proper family ¥ we have cdg (I") > 2. We begin with two lemmas which reduce
to the case of finite simple groups and the family & of all proper subgroups.

Lemma 5.1. If Theorem 1.6 holds for any finite group I" and the family & of all proper
subgroups of T, then it holds for any finite group T and any family ¥ of proper subgroups
of T.

Proof. If ¥ = P, then we are done. Assume that ¥ # #. Then we can choose H; which
is a proper subgroup and which is not an element of ¥. By Lemma 2.4,

cdp,ng (Hy) < cdg ().

The family H; N ¥ only contains proper subgroups. If it contains all proper subgroups,
then we are done by assumption and the latter inequality. Otherwise choose a proper
subgroup H, < H; which does not belong to H; N ¥ . We can continue this proced-
ure inductively. Since the group I' is finite, the procedure has to terminate after finitely
many steps, meaning that eventually we will find a subgroup H such that H N ¥ is the
family of all proper subgroups of H. Now again the assumption and Lemma 2.4 imply

cdg(I') > cdpng (H) > 2. L]

Next we reduce the proof of Theorem 1.6 to simple groups. For this consider a group T,
a family of subgroups %, and a normal subgroup N <1 I". Consider the family of sub-
groups of I'/ N defined by

Fn:={L<T/N|p(L)eF},
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where p : ' — T'/N is the projection. This map induces a functor
p*:0¢,T/N - 95T

which pulls back the group action. More precisely it sends (I'/N)/(S/N), where N < S
and S € ¥, to the coset I'/S. The latter functor in turn by pre-composition provides a
functor

P+ OgI'-Mod — Oz, I'/N-Mod.

Since it is induced by pre-composition, p«(Z) = Z and p. is exact and it preserves direct
sums. Finally, for any S € ¥, we have an isomorphism of O, I'/ N -modules

p+(Z[OF T (= T/S)) = Z[OF T (p*(-).T/S)]
= Z[0gy/N(=.(T/N)/(S/N))]

if N <§,and

px(Z[0gT(=.T/S)) =0
if N is not contained in S. These follow since (I'/S)V is isomorphic as a I'/ N-set to
(I'/N)/(S/N) when N < S and is empty otherwise. Hence we conclude that p, pre-
serves projective resolutions of Z and hence the following well-known lemma holds.

Lemma 5.2. Let I be a group, ¥ a family of subgroups of T, and N < T' a normal
subgroup. Then
cdgy (T/N) < cdgz (T).

As a consequence we get a further reduction for the proof of Theorem 1.6:

Corollary 5.3. If Theorem 1.6 holds for any finite simple group G and the family & of all
proper subgroups of G, then it holds for any finite group T and any family ¥ of proper
subgroups.

Proof. Let T" be any finite group and #r the family of all proper subgroups of I'. By
Lemma 5.1 it suffices to prove that cdp . (I') > 2. If ' is simple, we are done by the
assumption. If it is not simple, then there exists a proper non-trivial normal subgroup
N; <T.ByLemma 5.2, we get

cdpy, (T/N1) < cdpy (1),

where &r, y, is the family of all proper subgroups of I'/ N;. Now if I'/ Ny is simple, then
we are done. Otherwise we find a proper non-trivial normal subgroup N, in I'/N;. We
can continue the procedure inductively. Since the group I’ is finite and each step produces
a group of strictly smaller cardinality than in the previous step, this procedure has to
terminate after finitely many steps, meaning that we will find a simple quotient G of I
such that

cdp(G) < cdp. (),

where & is the family of all proper subgroups of G. By assumption this finishes the
proof. ]
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The rest of the proof consists in showing that cd» (G) > 2 for any finite simple group
G and the family & of all proper subgroups.

First we give a general lemma which bounds cd# (I") from below in terms of the
cohomology of the poset of subgroups in F.

Lemma 5.4. Let I" be a group and ¥ a family of subgroups of T'. Let A (I') denote the
poset of all subgroups of T contained in . Then

cd(Ag (I) < cdg (I).

Proof. Consider the category O '« of pointed objects in O I". The objects of Oz I'x
are pairs (I'/H, yH), where H € ¥ and morphisms are equivariant maps which respect
the distinguished cosets (note that O ¢ I'y is the Grothendieck construction of the functor
0T — Sets, sending a coset to its underlying set). It is easy to see that there is at most
one morphism between any two objects in Q¢ I[',.

We have the forgetful functor

u:0¢I'y > Q¢TI
which forgets the distinguished coset. Pre-composing with # induces a functor
u* : O#I'-Mod — O#T«-Mod

which clearly sends Z to Z, is exact and preserves direct sums. Moreover, forany H € ¥,
we have an isomorphism of @ I'x-modules

W (Z[0gT (- T/H)) = P Z[OsT(— (T/H,yH))].
yHel'/JH

Hence u* preserves projective resolutions of Z. Consequently,
cd(0# ) < cdg (D).

Now the obvious functor Az (I') - O« sending H € ¥ to (I'/H, 1H) is fully-
faithful and essentially surjective, showing that A (I") is equivalent to @ ¢ 'y and thus
cd(O%T'x) = cd(A#(T)). This finishes the proof. |

In view of Corollary 5.3 and Lemma 5.4, Theorem 1.6 will be proved once we can
prove the following result.

Proposition 5.5. Let G be a non-abelian finite simple group and P denote the family of
all proper subgroups of G. Then cd(Ap(G)) > 2.

Remark 5.6. If G is a cyclic group of prime order, then cd»(G) = ¢d(G) = oo, and in
that case it trivially holds that the cohomological dimension is bigger than 1.

To prove the proposition, we will begin by proving the following:
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Proposition 5.7. Let G be a non-abelian finite simple group. The lattice Ap(G) of proper
subgroups of G contains two non-empty collections of subgroups A and B such that:

(1) All subgroups in A are maximal.

(2) Forevery b € B there are at least two subgroups ay,a, € A such that b C ay and
b C as.

(3) Foreverya € A there are at least two subgroups by, by € B such that by C a and
b2 Ca.

(4) The cardinality of every b € B is the maximal cardinality of intersection of two
maximal subgroups.

Proof. We begin by showing that G contains two maximal subgroups H and K such
that H N K is non-trivial and not normal in H nor in K. For this, start with a maximal
subgroup H < G. Since H is maximal, it is self normalizing, so H # H& forevery g ¢ H.
Now, if H N H& = 1 for every g ¢ H, then H is called a Frobenius complement in G.
By [23, Theorem 7.2], G has a normal subgroup N suchthat HN = Gand H N N = 1.
This contradicts the simplicity of G.

We thus know that some maximal subgroups of G intersect non-trivially. Take such
a pair of maximal subgroups (H;, H,) for which |H; N H;| is maximal. We first would
like to show that we can assume that H; N H, is not normal in H; nor in H,. Indeed, it
is impossible that Hy N H; is normal in both H; and H,, because then the normalizer of
H; N H, contains (Hy, Hy) = G since H; and H, are maximal and distinct. This implies
that H; N H, is normal in G, contradicting the fact that G is simple.

Assume then that H; N H, is normal in Ay but not in H,. Take x € H;\ H,. Then
x(Hy N Hy)x™!' = H; N H,. In particular, we have that

HyNHy = lex_l N tzx_l C tzx_l.

The maximality of H, implies that N (H,) = H, because G is simple, so H, # x Hyx L.

The subgroup H; N H, is then contained in the two distinct maximal subgroups H, and
xH,x~!. By the maximality assumption on |H; N H,| we see that H; N H, = H, N
xH,x~!. This intersection is not normal in H,, and by conjugating by x we see that it is
also not normal in x H,x ! as required.

We thus have a diagram of the form

H K
NS
T

where H and K are maximal subgroups of G, and T = H N K is non-trivial and not nor-
mal in A nor in K. Since T is not normal in K, there is y; € K\H such that
yiTy! # T. There is also y, € H\K such that y,Ty;! # T. The previous diagram
then gives us the following diagram:
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yiHy7! (r1y2)K(y1y2)™

/\/\/

VATE (1y2)T(y1y2) ™

Take now the subgroup collections

A= {(172)" K132 ™"}, ez U012 v H((132)"y) ™ ez
B :={(n172)"T(1y2) ™"}, ez YU {012 yDT(0132)" yD) ™'}z

We prove that they satisfy the conditions of the proposition. Firstly, all subgroups in A
are maximal, since they are all conjugate to either H or to K. Secondly, in order to prove
the second and third conditions it will be enough to prove them for the subgroups K and
yiHy;'in Aand T and y;Ty;! in B, since all other subgroups are conjugate to these
subgroups by (y1y2)" for some n € Z.

The group K contains 7 and y;Ty;'. These are different subgroups in B by the
assumption on y;. Similarly the group y; Hy;! contains the subgroups y;Ty;' and
(7192)T(y1y2)~! from B. Again, these subgroups are distinct because of the way we
chose y5.

The subgroup y; Tyy! is contained in K and in y; Hy;'. These two subgroups are
different, since if y; H yl_1 = K, then from the fact that y; € K it follows that H = K
which is a contradiction. Similarly, 7 is contained in (y1y2) 'y H((y1y2) " 'y1)~! =
y;'Hy, = H and in K. Again, these two subgroups are different. Finally, the last con-
dition on subgroups in B follows from the way we constructed the subgroups in B. This
finishes the proof of the proposition. ]

1

‘We next recall some notations and results from [8]. Since the modules in [8] are covari-
ant functors, and the modules here are contravariant functors, we will change the notations
accordingly. If € is a lattice then the depth of x € € is the maximal n such that there is
a chain of the form x = x, < x,—1 < --- < x¢ in €. For elements x, y € € we say that
x covers y if y < x and there is no z € € such that y < z < x. A vertex in € is called
superfluous if it is either maximal and covers a unique element, or it is of depth 1 and is
covered by a unique maximal element. The poset E(€) is the poset resulting from € by
successively removing superfluous elements from €. Cheng showed that the isomorph-
ism type of E(€) is independent of the order of removal of superfluous elements from €
[8, Proposition 1.4]. He also proved the following:

Lemma 5.8 ([8, Lemma 1.7]). Let € be a finite poset with an initial object. Then
cd(€) < 1 ifand only if E(€) = {x}.

Remark 5.9. The lemma in [8] is phrased for finite posets with a terminal object. Since
we are considering here contravariant functors instead of covariant functors, we reverse
the results accordingly.
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Proof of Proposition 5.5. Let A and B be two collections of subgroups of G given by
Proposition 5.7. By removing superfluous elements according to a specific regime, we
will see that E(Ap»(G)) contains all subgroups in A and in B, and is therefore not a
singleton. This will be enough by Lemma 5.8.
Let
C=Ap(G)2€; 26 2---2€, = E(C)

be a chain of posets, where €; 1 results by removing one superfluous element from €;
for every i. Since the order of removing the superfluous elements does not change the
isomorphism type of E(€y), we can (and we will) assume that €;4; is formed from €;
by removing a maximal superfluous element only if there are no superfluous elements of
depth 1.

We will prove by induction that A and B are contained in €;. For i = 0 this is clear.
Assume now that A U B C €;. Let x be the superfluous element removed from €; to form
Ciy1.If x ¢ AU B, we are done. If x € A U B and x has depth 1 in €;, then necessarily
Xx € B since all the elements of A are maximal. But an element in B of depth 1 is covered
by at least two maximal elements in A. This implies that x is not superfluous, which is a
contradiction.

Assume then that x is a maximal element in €;. Then x € A. Since x is superfluous, x
covers a unique element y € €;. There are at least two distinct elements by, b, € B such
that by, b, < x. Since y is the unique element which x covers, it must hold that by, b, <y
as well.

We claim that the element y must have depth 1. Indeed, if y is not of depth 1, then there
isachain y = y, < yp—1 < --+ < yo where yo is maximal and n > 1. Since x covers y,
it holds that yo # x. It follows that y is contained in the intersection x N yq. By property
(4) of the collection B, this implies that the cardinality of y is at most the cardinality
of the subgroups in B, and since by, b, < y, we get by = b, = y. This contradicts our
assumption that by # b,.

Next, we claim that y is a superfluous element. Since it has depth 1, this means that we
formed €; 1 from €; by removing a maximal superfluous element while €; has a depth 1
superfluous element, contrary to our assumption.

Assume by contradiction that y is not superfluous. Then there is a maximal element
m # x in €; such that y < m. In the group G we can thus find a maximal subgroup m’
such that m < m’. We then have the inequality

bi.bh<y<xnm'.

But the cardinality of b; and b, is the maximal cardinality among intersection of two
different maximal subgroups. This implies that all inequalities are in fact equalities, and
we get by = b = y = x N'm’. But this contradicts the fact that by # b,, and we are
done. |

Example 5.10. It follows from [2, Example 5.1] (see also [3, Section 6]) that cdp (As5) <
2, where P is the family of all proper subgroups of the alternating group As. Hence using
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Theorem 1.6, we conclude that cdp (As) = 2. This example shows that Theorem 1.6 is
optimal.
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