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Currents on cusped hyperbolic surfaces and
denseness property

Dounnu Sasaki

Abstract. The space GC.†/ of geodesic currents on a hyperbolic surface † can be considered as a
completion of the set of weighted closed geodesics on†when† is compact, since the set of rational
geodesic currents on†, which correspond to weighted closed geodesics, is a dense subset of GC.†/.
We prove that even when† is a cusped hyperbolic surface with finite area, GC.†/ has the denseness
property of rational geodesic currents, which correspond not only to weighted closed geodesics on
† but also to weighted geodesics connecting two cusps. In addition, we present an example in which
a sequence of weighted closed geodesics converges to a geodesic connecting two cusps, which is an
obstruction for the intersection number to extend continuously to GC.†/. To construct the example,
we use the notion of subset currents. Finally, we prove that the space of subset currents on a cusped
hyperbolic surface has the denseness property of rational subset currents.

1. Introduction

Let† be a hyperbolic surface with finite area (possibly with geodesic boundary). Geodesic
currents on †, which were introduced by Bonahon in [1] as a generalization of measured
geodesic laminations on †, have been successfully studied when † is closed or compact.
They have been employed in the study of the Teichmüller space, mapping class groups,
Kleinian groups, counting curves problems, and so on (see [6] for a recent survey).

A geodesic current on † is a (positive) �1.†/-invariant Radon measure on the space

@12
z† WD

®
S � @1 z† j #S D 2

¯
for the boundary at infinity, @1 z†, of the universal cover z† of †. Note that an element of
@12
z† corresponds to an unoriented geodesic line on z†. We endow the space GC.†/ of

geodesic currents on † with the weak-� topology.
For each closed geodesic  on †, we can define a counting geodesic current � by

considering all the lifts of  to z†. We regard c� (c 2 R�0), which is called a rational
geodesic current, as a weighted closed geodesic on †. When † is compact, it has been
proven in [1] that the set of rational geodesic currents on† is a dense subset of GC.†/. In
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this sense, we say that GC.†/ has the denseness property (of rational geodesic currents).
For a general hyperbolic surface†we say that GC.†/ has the denseness property if the set
of rational currents, which is a weighted “discrete” measure corresponding to the G-obits
of some point of @12 z†, is a dense subset of GC.†/ (see Definition 2.8).

However, when † has cusps, it has not been proven that GC.†/ has the denseness
property. We remark that if † has cusps, then a geodesic ` connecting two cusps, which
is the projection of a geodesic line connecting two parabolic fixed points of @1 z†, also
induces a counting geodesic current �` similarly by considering all the lifts of `.

In this paper, we prove that the space GC.†/ of geodesic currents on a cusped hyper-
bolic surface † with finite area has the denseness property. Our strategy for the proof is
based on [3] and [10]. For a given geodesic current�2GC.†/, we construct aG-invariant
family of quasi-geodesics on z† that induces a sum of counting geodesic currents approxi-
mating �. To use the method in the case of compact hyperbolic surfaces, we cut off cusps
along horocyclic curves around the cusps. One of the aspects of the proof is that such
horocyclic curves are chosen more closely to cusps as we approximate � more precisely.

Other results. In Section 5, we present an example in which a sequence of weighted
closed geodesics converges to any given geodesic connecting two cusps in the space
GC.†/ of geodesic currents on a cusped hyperbolic surface†. As a result, we can see that
the set of weighted closed geodesics is a dense subset of GC.†/. Moreover, we construct
an example in which a sequence of weighted geodesics connecting two cusps converges
to any given closed geodesic in GC.†/, which implies that the set of weighted geodesics
connecting two cusps is a dense subset of GC.†/.

In Section 6, for a cusped hyperbolic surface †, we present a concrete example to
prove that the intersection number cannot extend continuously to GC.†/. To construct
the example, we use the sequence of weighted closed geodesics converging to a geodesic
connecting two cusps in Section 5. Note that according to [4, Theorem 2.4], if we restrict
GC.†/ to the subset consisting of “compact supported” geodesic currents, then the inter-
section number can be extended continuously. We present another sketch of the proof by
using the method in [10], which was used to prove the continuity of the extension of the
intersection number to the space of subset currents.

In Section 8, we prove that the space SC.†/ of subset currents on a cusped hyperbolic
surface † also has the denseness property. The notion of subset currents was introduced
by Kapovich and Nagnibeda as a natural generalization of geodesic currents, and the study
of subset currents began with the case of subset currents on free groups in [7] and [9]. See
[10] for the study of subset currents on a compact hyperbolic surface, where the denseness
property of rational subset currents has been proven.

A subset current on a hyperbolic surface† is a �1.†/-invariant Radon measure on the
hyperspace

H .@1 z†/ WD
®
S � @1 z† j S W closed; #S � 2

¯
:

For a finitely generated subgroup H of �1.†/ whose limit set ƒ.H/ contains at least two
points, which means that ƒ.H/ belongs to H .@1 z†/, we can define a counting subset
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current �H 2 SC.†/ by considering the �1.†/-orbit of ƒ.H/. Then the set of weighted
counting subset currents is proven to be a dense subset of SC.†/. We remark that the
property of SC.†/ is quite different from that in the case of a compact hyperbolic surface
because SC.†/ includes more types of rational subset currents (see Theorem 2.6). We
present some interesting examples in Section 5, one of which is useful for the proof of the
denseness property of geodesic currents on †.

2. Preliminary

In this section, we present the definition of geodesic currents and subset currents in a
unified manner, and we summarize the results of this paper.

LetG be a group acting continuously on a topological spaceX . The topological spaces
that we deal with in this paper are always locally compact, separable, and completely
metrizable.

We denote byMG.X/ the space ofG-invariant (positive) locally finite Borel measures
on X , and we endow MG.X/ with the weak-� topology, i.e., a sequence ¹�nº of MG.X/

converges to � 2MG.X/ if and only ifZ
fd�n ����!

n!1

Z
fd�

for every continuous function f WX ! R with compact support. Recall that a Borel mea-
sure � on X is G-invariant if for any g 2 G, the push-forward measure g�.�/ of � by g
is equal to �. Recall that g�.�/.E/ D �.g�1.E// for any Borel subset E of X . A Borel
measure � on X is said to be locally finite if �.K/ is finite for any compact subset K
of X . We note that a locally finite Borel measure on X , which is a locally compact Polish
space, is inner regular and outer regular (see [8, 2.18 Theorem]), and hence satisfies the
condition of a Radon measure.

Definition 2.1 (Geodesic currents and subset currents on hyperbolic groups). LetG be an
infinite (Gromov) hyperbolic group and let @G be the (Gromov) boundary of G. Set

@2G WD
®
S � @G j #S D 2

¯
;

H .@G/ WD
®
S � @G j S W closed and #S � 2

¯
:

We endow H .@G/ with the Vietoris topology, which is generated by the set of the forms®
S 2 H .@G/ j S � U

¯
and

®
S 2 H .@G/ j S \ U 6D ;

¯
for an open subset of @G. This topology coincides with the topology induced by the Haus-
dorff distance on @G with respect to some metric on @G compatible with the topology.
We endow @2G with the subspace topology of H .@G/. Note that the action of G on @G
naturally induces the action of G on @2G and H .@G/.
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We refer to GC.G/ WD MG.@2G/ as the space of geodesic currents on G and its ele-
ments as geodesic currents. We refer to SC.G/ WD MG.H .@G// as the space of subset
currents on G and its elements as subset currents.

Definition 2.2 (Geodesic currents and subset currents on hyperbolic surfaces). Let † be
a hyperbolic surface possibly with (closed) geodesic boundaries. Hyperbolic surfaces that
we deal with in this paper are always complete, oriented, and connected. In addition, we
usually assume that a hyperbolic surface has finite area. We consider the universal cover
z† of † as a convex subspace of the hyperbolic plane H. Then the boundary at infinity
of z†, denoted by @1 z†, is the limit set of z† in H, which is the set of accumulation points
of z† in the boundary @H. Note that the fundamental group �1.†/ of † acts on z† and
on @1 z†. When �1.†/ has a parabolic element p as an isometry of H, the projection of
the neighborhood of the fixed point p1 of p to † is called a cusp neighborhood, and we
call † a cusped hyperbolic surface.

For @1 z†, we also use the notation @12 z† and H .@1.†// that we have introduced
above. We refer to GC.†/ WD MG.@

1
2
z†/ as the space of geodesic currents on † and

its elements as geodesic currents. We refer to SC.†/ WD MG.H .@1 z†// as the space of
subset currents on † and its elements as subset currents.

Remark 2.3 (Motivation for this paper). If the hyperbolic surface† is compact, thenGD
�1.†/ is a hyperbolic group and there exists a natural G-equivariant homeomorphism
�G W @G ! @1 z†, which means that the action of G on @G essentially equals the action
of G on @1 z†. Then we can see that �G induces the isomorphism from GC.G/ to GC.†/
and from SC.G/ to SC.†/.

However, when † has some cusps, G D �1.†/ is a free group of finite rank, which
means that G is a hyperbolic group; however, the property of GC.G/ (or SC.G/) is quite
different from those of GC.†/ (or SC.†/). The main purpose of this paper is to investigate
the spaces GC.†/ and SC.†/ in this case.

We remark that even when † has some cusps, there exists a natural G-equivariant
continuous map � from @G to @1 z†, which is referred to as the Cannon–Thurston map.
However, � is surjective but not injective. We consider this Cannon–Thurston map and its
application in Section 4.

Definition 2.4. LetG be a group acting continuously on a topological spaceX . For x 2X ,
we define a G-invariant Borel measure �x on X as

�x D
X

g Stab.x/2G=Stab.x/

ıgx ;

where Stab.x/D ¹g 2 G j g.x/D xº and ıgx is the Dirac measure at gx on X . Note that
�x.E/ equals the number of G-orbits of x for a Borel subset E � X .

We remark that in the context of geodesic currents and subset currents, we need to see
whether �S is locally finite or not for S 2 @12 z† or H .@1 z†/. When the hyperbolic surface
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† is compact, SC.†/ is isomorphic to SC.�1.†// and the following proposition solves
this problem.

Theorem 2.5 (see [10, Theorem 2.8]). Let G be an infinite hyperbolic group. Let S 2
H .@G/. The G-invariant measure �S is locally finite if and only if H WD Stab.S/ is a
quasi-convex subgroup ofG and S coincides with the limit setƒG.H/ ofH . In particular,
if a subset current � 2 SC.G/ has an atom S , then Stab.S/ is a quasi-convex subgroup
of G and S D ƒG.Stab.S//.

Note that if S 2 @2G, then the equality S D ƒG.H/ for a subgroup H of G implies
that H is a subgroup hhi generated by h 2 G. When G is a free group of finite rank, a
subgroup H of G is quasi-convex if and only if H is finitely generated.

We generalize the above theorem to the case of subset currents on cusped hyperbolic
surfaces and prove the following theorem (see Section 3 for further details). Recall that
the limit set ƒ.H/ of a subgroup H of �1.†/ (in z†) is the limit set of the orbit H.x/ for
some x 2 z†.

Theorem 2.6. Let † be a cusped hyperbolic surface with finite area and let G be the
fundamental group of †. Let S 2 H .@1 z†/. The G-invariant measure �S is locally finite
if and only if H WD Stab.S/ is a finitely generated subgroup of G, and there exists a finite
set P of parabolic fixed points of @1 z† (possibly empty) such that S D ƒ.H/ tH.P /.
Note that H can be the trivial subgroup ¹idº; then, P contains at least two points.

Remark 2.7. Let† be a cusped hyperbolic surface with finite area and letG be the funda-
mental group of†. For a non-trivial finitely generated subgroupH ofG with #ƒ.H/� 2,
we can consider theG-invariant measure �ƒ.H/. Then we need to note that Stab.ƒ.H// is
not necessarily equal toH . In general,H is a finite-index subgroup of Stab.ƒ.H//, which
implies that Stab.ƒ.H// is also finitely generated. Therefore, �ƒ.H/ is locally finite. We
define

�H WD
X

gH2G=H

ıgƒ.H/:

Then we see that �H D k�ƒ.H/ if H is a k-index subgroup of Stab.H/.
When H D hgi for a hyperbolic element g 2 G, we write �g in place of �hgi.
When #ƒ.H/ D 1, i.e., H D hgi for a parabolic element g 2 G, we consider �H as

the zero measure on H .@1 z†/ for convenience. In Theorem 2.6, if #ƒ.H/ D 1, then P
contains at least one point.

Definition 2.8. Let G be a group acting continuously on a topological space X . We say
that � 2MG.X/ is rational if there exist c � 0 and x 2 X such that � D c�x , and set

M r
G.X/ D

®
� 2MG.X/ j �W rational

¯
:

We say that � 2MG.X/ is discrete if there exist c1; : : : ; cn � 0 and x1; : : : ; xn 2 X such
that

� D c1�x1 C � � � C cn�xn ;
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and set
M d
G .X/ D

®
� 2MG.X/ j �W discrete

¯
;

which is an R�0-linear span of M r
G.X/. Note that the discrete G-invariant measure � 2

M d
G .X/ is different from the usual discrete measure, which can be an infinite sum of

rational measures.

In the context of geodesic currents and subset currents, we will use the notation

GCr .G/; GCd .G/; SCr .G/; GCr .†/; : : :

and so on to denote rational or discrete currents. We summarize some important theorems
related to the denseness property of such subsets.

Theorem 2.9 (see [3]). LetG be an infinite hyperbolic group. The set GCr .G/ of rational
geodesic currents is a dense subset of GC.G/.

Theorem 2.10 (see [7]). Let F be a free group of finite rank. The set SCr .F / of rational
subset currents is a dense subset of SC.F /.

Theorem 2.11 (see [10]). Let G be a surface group, i.e., the fundamental group of a
closed hyperbolic surface. The set SCr .G/ of rational subset currents is a dense subset of
SC.G/.

We remark that if we consider the case in which a (discrete) group G acts on X prop-
erly discontinuously, the denseness of M r

G.X/ in MG.X/ might seem to be unnatural.
However, the action of a hyperbolic group G on @2G and on H .@G/ is far from properly
discontinuous, and we can prove that GCr .G/ is a dense subset of GCd .G/.

We also remark that for a general infinite hyperbolic group G, it is still open whether
SCr .G/ is a dense subset of SCd .G/ or not.

From the above-mentioned results, it is natural to consider the question of whether the
space of geodesic currents (or subset currents) on a “cusped” hyperbolic surface has such
a denseness property. The following two theorems are the main results of this paper.

Theorem 2.12. Let † be a cusped hyperbolic surface with finite area. The set GCr .†/ of
rational geodesic currents is a dense subset of GC.†/.

Theorem 2.13. Let † be a cusped hyperbolic surface with finite area. The set SCr .†/ of
rational subset currents is a dense subset of SC.†/.

From the results of Theorem 5.4, we can improve Theorems 2.12 and 2.13 as follows:

Theorem 2.14. Let † be a cusped hyperbolic surface with finite area. The set®
c�g j c > 0; g 2 �1.†/W hyperbolic element

¯
is a dense subset of GC.†/. Note that c�g corresponds to a weighted closed geodesic
on †.
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Theorem 2.15. Let † be a cusped hyperbolic surface with finite area. The set®
c�H j c > 0; H < �1.†/Wfinitely generated subgroup

¯
is a dense subset of GC.†/.

In addition, we can also obtain the following denseness theorem as a corollary of
Proposition 5.5.

Theorem 2.16. Let † be a cusped hyperbolic surface with finite area. The set®
c�¹p;qº j c > 0; p; q 2 @

1 z†W disjoint parabolic fixed points
¯

is a dense subset of GC.†/. Note that c�¹p;qº corresponds to a geodesic connecting two
cusps.

3. Rational currents on cusped hyperbolic surfaces

Let † be a cusped hyperbolic surface with finite area and let G be the fundamental group
of †. In this section, we present the proof of Theorem 2.6.

Assumption 3.1. In general, † can have some geodesic boundary; however, for simplic-
ity, we assume † has no boundary throughout the paper. Then we regard the hyperbolic
plane H as the universal cover of †. Actually, in most cases, the same argument works
for a cusped hyperbolic surface with boundary by replacing H with the universal cover z†
of †. Let � be the canonical projection from H to †.

Definition 3.2 (Horocycle parameter). For each cusp p of †, we can take a parabolic
fixed point � 2 @H corresponding to p. A horocycle h around p is the projection of a
horocycle centered at � from H to †.

Assume that † has k cusps and take disjoint horocycles h1; : : : ; hk around each cusp.
Then we refer to a set ¹h1; : : : ; hkº of horocycles as a horocycle parameter of †. We say
that a horocycle parameter �D ¹h1; : : : ; hkº is large if each horocycle hi around a cusp pi
is “close” to pi for i D 1; : : : ; k, i.e., the radius of a horocycle centered at �i corresponding
to hi is small.

For a horocycle parameter � D ¹h1; : : : ; hkº, we define †� as a surface with non-
geodesic boundaries obtained by cutting off cusps from † along each hi . We assume that
†� includes the horocycles h1; : : : ; hk , which implies that †� is a compact subset of †.

Fix some horocycle parameter �. We set H� WD�
�1.†�/�H. Take a Dirichlet funda-

mental domain F corresponding to the action ofG on H. Then we see that F� WDF \H�

is a compact fundamental domain corresponding to the action of G on H�.
Recall that for S 2 H .@H/, the convex hull CH.S/ of S is the smallest convex subset

of H including all geodesic lines connecting two points of S . For a bounded subset K
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of H, we define a set A.K/ as

A.K/ WD
®
S 2 H .@H/ j CH.S/ \K 6D ;

¯
:

From [10, Lemmas 3.7 and 3.8], A.K/ is a relatively compact subset of H .@H/, and for
any compact subset E of H .@H/, there exists a bounded subset K of H such that A.K/
includes E. Moreover, if K is compact, so is A.K/.

Lemma 3.3. Let � be a G-invariant Borel measure on H .@H/. The measure � is locally
finite if and only if �.A.F�// <1 for some �.

Proof. The “only if” part follows immediately since F� is a compact subset of H and
A.F�/ is a compact subset of H .@H/.

We prove the “if” part. Take any compact subset E of H .@H/. Then we can take a
compact subsetK of H such that A.K/ includesE. ForK \H�, there exist g1; : : : ; gm 2
G such that

K \H� � g1F� [ � � � [ gmF�:

Note that H nH� is a union of infinite open horodisks, and K intersects at most finitely
many open horodisks H1; : : : ;Hn. Hence, we have

K � g1F� [ � � � [ gmF� [ .K \H1/ [ � � � [ .K \Hn/;

which implies that

A.K/ � A.g1F�/ [ � � � [ A.gmF�/ [ A.K \H1/ [ � � � [ A.K \Hn/:

Since A.giF�/ D giA.F�/ for i D 1; : : : ; m, we see that

�.A.giF�// D �.giA.F�// D �.A.F�// <1:

Hence, it is sufficient to see that �.A.K/ \Hj / <1 for j D 1; : : : ; n.
Consider the upper-half plane model of H and assume that Hj is a horodisk centered

at1, i.e.,
Hj D

®
x C iy 2 H j x; y 2 R; t < y

¯
for some t > 0. Since K is compact, we can take a; b; c 2 R such that

K \Hj �
®
x C iy 2 H j a � x � b; t < y � c

¯
:

Moreover, there exist a0; b0 2 R such that if a geodesic line ` on H intersects K \Hj ,
then ` must intersect the segment®

x C i t 2 H j a0 � x � b0
¯
:

The point is that this segment can be covered by a finite union of gF� (g 2 G). Therefore,
�.A.K// is finite and so is �.E/, which implies that � is locally finite.
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From the argument in the above proof, we see that for any geodesic line ` on H, there
exists g 2 G such that ` intersects gF�. Hence,

G.A.F�// D H .@H/ and G.A.F�/ \ @2H/ D @2H;

which implies that the actions of G on @2H and on H .@H/ are cocompact. From [10,
Theorem 2.23], we can obtain the following proposition.

Proposition 3.4. Let † be a cusped hyperbolic surface with finite area. The space
GC.†/ DMG.@

1
2
z†/ of geodesic currents on † and the space SC.†/ DMG.H .@1 z†//

of subset currents on† are locally compact, separable, and completely metrizable spaces.

From the above proposition and Theorem 2.14, we can regard GC.†/ as a “comple-
tion” of weighted closed geodesics on †.

We apply Lemma 3.3 to the G-invariant Borel measure �S for some S 2 H .@H/. Set
H D Stab.S/. Then

�S .A.F�// D #
®
gH 2 G=H j gS 2 A.F�/

¯
D #

®
gH 2 G=H j g CH.S/ \ F� 6D ;

¯
D #

®
gH 2 G=H j g.CH.S/ \H�/ \ F� 6D ;

¯
D #

®
gH 2 G=H j .CH.S/ \H�/ \ g

�1F� 6D ;
¯
:

To count the number of cosets gH , we consider a fundamental domain corresponding to
the action of H on CH.S/ \H�. Then we can obtain the following lemma.

Lemma 3.5. Let S 2 H .@H/ and H D Stab.S/. Let FS be a Dirichlet fundamental
domain corresponding to the action of H on CH.S/. Note that H can be ¹idº; then,
FS D CH.S/. The measure �S is locally finite if and only if H� \ FS is compact for
some �.

Proof. The point of this proof is the local finiteness of a Dirichlet fundamental domain,
i.e., any compact subset K � H intersects only finitely many translates of a Dirichlet
fundamental domain.

First, we consider the “if” part. For gH 2G=H , assume that .CH.S/\H�/\ g
�1F�

6D ;. Then there exists h 2 H such that

h.FS \H�/ \ g
�1F� 6D ;:

This implies that .FS \H�/ \ h
�1g�1F� 6D ;. Hence, the number of such h�1g�1 2 G

is at most finite since FS \H� is compact. Therefore, �S .A.F�// is finite, which implies
that �S is locally finite.

Now, we consider the “only if” part. We prove the contraposition. Assume that
H� \ FS is not compact. Then there exists an infinite distinct sequence ¹giºi2N of G
such that

.FS \H�/ \ g
�1
i F� 6D ;:
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Note that if giH D gjH for i 6D j , then there exists h 2 H such that gih D gj , and we
have

.FS \H�/ \ g
�1
i F� 6D ; and h.FS \H�/ \ g

�1
i F� 6D ;:

Since giF� is compact, the number of such h 2 G is at most finite. Hence,

#
®
giH j i 2 N

¯
D1;

which implies that �S .A.F�// D1.

From the above lemma, we see that the compactness of H� \ FS is independent of
the base point of the Dirichlet fundamental domain FS and the horocycle parameter �.

Lemma 3.6. Let S 2 H .@H/ and H D Stab.S/. Let FS be a Dirichlet fundamental
domain corresponding to the action ofH on CH.S/. The intersection FS \H� is compact
if and only ifH is finitely generated and there exists a finite set P of parabolic fixed points
of @H (possibly empty) such that S D ƒ.H/ t H.P /. Note that H can be the trivial
subgroup ¹idº; then, P contains at least two points.

Proof. When S consists of two points, the statement follows immediately. Hence, we
assume that #S � 3.

When H is trivial, we have S D P and FS D CH.S/; then the statement follows
immediately.

When H is generated by one parabolic element ˛ of G, then ƒ.H/ D ¹˛1º and
CH.ƒ.H// is empty. Then for an appropriate base point for the Dirichlet domain FS we
can take P � S such that S D ƒ.H/ tH.P / and FS is a convex hull of ƒ.H/ t P .
Note that P contains a point x such that ˛.x/ 2 P . Hence, FS \H� is compact if and
only if P is a (non-empty) finite set of parabolic fixed points.

We assume that #ƒ.H/ � 2 hereafter. The quotient space CH.ƒ.H//=H , which is
called the convex core of H , has finite area or is a circle if and only if H is finitely
generated. Let FH be a Dirichlet fundamental domain corresponding to the action of H
on CH.ƒ.H//.

First, we prove the “if” part. Since H is finitely generated, FH has finite area. Hence,
H� \ FH is compact. Moreover, the quotient space of the action of H on each connected
component of CH.S/ n CH.ƒ.H//, which is called a crown, also has finite area. There-
fore, H� \ FS is compact.

Next, we prove the “only if” part. We can assume that the base point of FS coincides
with the base point of FH . Since H� \FS is compact, so is H� \FH , which implies that
H is finitely generated. Moreover, FS and FH are finite polygons whose vertices can be
on @H. If a vertex v of FS is on @H, then v is a parabolic fixed point since H� \ FS is
compact. This implies that the set P 0 of all vertices of FS on @H consists of finitely many
parabolic fixed points. Since CH.S/ D H.FS /, we can see that

S D ƒ.H/ [H.P 0/:
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Set P D P 0 nƒ.H/. Since H acts on @H nƒ.H/ properly discontinuously, we have

S D ƒ.H/ tH.P /;

as required.

From the above lemmas, Theorem 2.6 follows.

Remark 3.7. In the proof of the denseness property, we will construct � 2 SC.†/ denoted
as

� D
X
i2I

ıSi

for Si 2 H .@1 z†/ (i 2 I ). Since � is G-invariant, �Si is also a subset current on † for
every i 2 I . Moreover, there are finite i1; : : : ; ik 2 I such that

� D �Si1 C � � � C �Sik

by Lemma 3.3, which implies that � is a discrete subset current on †.

4. Cannon–Thurston maps and currents

Let † be a cusped hyperbolic surface with finite area and let G be the fundamental group
of †. For simplicity, we assume that † has no boundary; however, this assumption is
not necessary. Recall Remark 2.3. We have the Cannon–Thurston map � from @G to
@1 z† D @H, which is a surjective continuous G-equivariant map sending Œ¹xnº� 2 @G to
the limit point of xn.y/2 @H for some point y 2H. Then � naturally induces a continuous
map

H�WH .@G/! yH .@H/ D H .@H/ [
®
¹xº j x 2 @H

¯
;

whose topology is the Vietoris topology, which coincides with the topology induced by a
Hausdorff distance. Note that S 2 H .@G/ is a compact subset of @G and so is �.S/ D
H�.S/.

Lemma 4.1. For any compact subset E of H .@H/, the preimage H��1.E/ is compact.

Proof. Take any compact subset E of H .@H/. To obtain a contradiction, suppose that
H��1.E/ is not compact. Note that yH .@G/ is a compactification of H .@G/ with respect
to a Hausdorff distance. Hence, we can take a sequence Sn of ��1.E/ converging to ¹xº
for some x 2 @G in yH .@G/. Since H� is continuous, H�.Sn/ converges to H�.¹xº/.
Therefore, the compact set E includes a sequence H�.Sn/ converging to H�.¹xº/ 62 E,
which is a contradiction.

For � 2 SC.G/, by considering the push-forward by H�, we have aG-invariant mea-
sure H��.�/ on yH .@H/ since H� is G-equivariant. Then the restriction of the measure
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H��.�/ to H .@H/, denoted by �SC.�/, is locally finite from the above lemma. Similarly,
we can obtain a map �GC from GC.G/ to GC.†/. Note that the continuity of �SC (and
�GC) is not trivial since in the construction we restrict a measure on yH .@H/ to H .@H/.

Lemma 4.2. The maps �SCWSC.G/! SC.†/ and �GCWGC.G/!GC.†/ are R�0-linear
and continuous.

Proof. The R�0-linearity follows immediately by the definition. We prove that �SC is
continuous. The continuity of �GC follows from the same proof. Take a sequence �n
(n 2 N) of SC.G/ converging to � 2 SC.G/. It is sufficient to prove that �SC.�n/ con-
verges to �SC.�/. Take any continuous function f WH .@H/! R with compact support.
Since we have

supp.f ıH�/ � H��1.supp.f //;

the support supp.f ıH�/ is compact from the above lemma. This implies thatZ
fd�SC.�n/ D

Z
f ıH�d�n ����!

n!1

Z
f ıH�d� D

Z
fd�SC.�/:

Therefore, �SC.�n/ converges to �SC.�/.

By the definition of rational subset currents, we see that �SC maps rational subset
currents of SC.G/ to rational subset currents of SC.†/. More concretely, for a non-trivial
finitely generated subgroup H of G, the limit set ƒG.H/ of H in @G is mapped to the
limit set ƒ.H/ of H in @H by the map H�. This implies that the subset current

�GH D
X

gH2G=H

ıgƒG.H/ 2 SC.G/

is mapped to the subset current

�H D
X

gH2G=H

ıgƒ.H/ 2 SC.†/

by �SC. Note that ifH is the trivial subgroup, we define �GH and �H to be the zero measure
for convenience.

Similarly, for a non-trivial h 2 G, the geodesic current

�Gh D
X

ghhiG=hhi

ıgƒG.hhi/ 2 GC.G/

is mapped to the geodesic current

�h D
X

ghhiG=hhi

ıgƒ.hhi/ 2 GC.†/

by �GC. Note that if h is a parabolic element, then �h is the zero measure.
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Recall that by Theorem 2.10 for a free group F of finite rank,

SCr .F / D
®
c�GH j c > 0; H < GWfinitely generated subgroup

¯
is a dense subset of SCd .F / D Span.SCr .F // (see Theorem 2.9 for the case of geodesic
currents). Hence, by the continuity of �SC and �GC, we can obtain the following lemma.

Lemma 4.3. The set®
c�H 2 SC.†/ j c > 0; H < GWfinitely generated subgroup

¯
is a dense subset of the R�0-linear span

Span
�®
c�H 2 SC.†/ j c > 0; H < GWfinitely generated subgroup

¯�
;

and the set ®
c�h 2 GC.†/ j c > 0; h 2 G

¯
is a dense subset of the R�0-linear span

Span
�®
c�h 2 GC.†/ j c > 0; h 2 G

¯�
:

Remark 4.4. We remark that �SC and �GC are not surjective. In fact, there exists no
S 2H .@G/ such that �S is rational, and S is mapped to the set ¹˛1; ˇ1º of two different
parabolic fixed points for two parabolic elements ˛ and ˇ of G.

If �S is rational, then for the stabilizer H D Stab.S/, we have S D ƒG.H/. Then
�.S/D ¹˛1; ˇ1º implies thatH includes ˛k and ˇl for some k; l 2 Z n ¹0º. Therefore,
we have S � ƒG.h˛k ; ˇli/; then

¹˛1; ˇ1º D �.S/ D ƒ.H/ � ƒ.h˛k ; ˇli/;

which is a contradiction.

5. Approximation of geodesic line by sequence of closed geodesics

In this section, we present some interesting examples of convergence sequences of rational
geodesic currents or subset currents on a cusped hyperbolic surface. One of the examples
is a sequence of closed geodesics converging to a weighted geodesic connecting two cusps,
which is used for the proof of Theorem 2.12.

Let † be a cusped hyperbolic surface with finite area, and let G be the fundamental
group of †. Recall Assumption 3.1.

Proposition 5.1. Let ˛; ˇ 2 G be parabolic elements. Assume that the fixed point ˛1 2
@H of ˛ is different from the fixed point ˇ1 2 @H of ˇ. Then the sequence ¹�˛nˇnº con-
verges to 2�¹˛1;ˇ1º in GC.†/ when n tends to infinity. Note that ˛nˇn is a hyperbolic
element of G for every n 2 N.
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We need the following lemma to prove the above proposition.

Lemma 5.2. Let ˛; ˇ 2 G be parabolic elements with ˛1 6D ˇ1. Then the sequence
¹�h˛n;ˇniº of subset currents converges to �¹˛1;ˇ1º.

Proof. First of all, we note that the limit set ƒ.h˛n; ˇni/ of the subgroup h˛n; ˇni con-
verges to ¹˛1; ˇ1º with respect to the Hausdorff distance on @H by applying the Ping-
Pong lemma to ˛n and ˇn when n tends to infinity.

Next, let Fn be a Dirichlet fundamental domain based at some point on the geodesic
Œ˛1; ˇ1� with respect to the action of h˛n; ˇni on the convex hull CH.h˛n; ˇni/ WD
CH.ƒ.h˛n; ˇni//.

Consider the compact subsurface †� of † with respect to some horocycle parameter
�. Set H� D �

�1.†�/. Then we can see that for any horocycle parameter �, the sequence
Fn \H� of compact subsets converges to Œ˛1; ˇ1� \H� with respect to the Hausdorff
distance on H.

Now, take any continuous function f WH .@H/! R�0 with compact support and take
a compact subset K of H such that the support supp.f / of f is included in A.K/ D
¹S 2 H .@H/ j CH.S/\K 6D ;º. Take r > 0 and assume that H� � B.K; r/. Moreover,
we assume that n is large enough so that the Hausdorff distance between Fn \H� and
Œ˛1; ˇ1� is smaller than r .

SetG0 D ¹g 2G j gŒ˛1; ˇ1�\B.K; r/ 6D ;º, which is a finite set because �¹˛1;ˇ1º
is a locally finite measure on @2H and �¹˛1;ˇ1º.A.B.K; r/// is finite. We see that if n is
sufficiently large, then the map

�WG0 ! G=h˛n; ˇni; g 7! gh˛n; ˇni

is injective. Actually, for g1; g2 2G0, if g1h˛n;ˇni D g2h˛n;ˇni, then g�12 g1 2 h˛
n;ˇni.

Since G0 is a finite set, so is ¹g�12 g1 j g1; g2 2 G0º. Note that G D �1.†/ is a free group.
There exists a largest positive integer k such that ˛˙k or ˇ˙k appears in ¹g�12 g1 j g1; g2 2

G0º as a reduced word. If n is larger than k, then g�12 g1 D id, which implies that g1 D g2.
By the definition, we haveZ

fd�h˛n;ˇni D
X

gh˛n;ˇni2G=h˛n;ˇni

f .gƒ.h˛n; ˇni//:

We want to prove that if n is sufficiently large, thenX
gh˛n;ˇni2G=h˛n;ˇni

f .gƒ.h˛n; ˇni// D
X
g2G0

f .gƒ.h˛n; ˇni//:

Set
J D

®
gh˛n; ˇni 2 G=h˛n; ˇni j gƒ.h˛n; ˇni/ 2 supp.f /

¯
:

Then it is sufficient to prove that �.G0/ � J for a large n. Take any gƒ.h˛n; ˇni/ 2 J .
Then g CH.h˛n; ˇni/ \ K 6D ;, which implies that there exists h 2 h˛n; ˇni such that
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ghFn \ K 6D ;. Since Fn \H� is included in the r-neighborhood of Œ˛1; ˇ1� \H�,
we have

ghŒ˛1; ˇ1� \ B.K; r/ 6D ;;

which implies that gh 2 G0 and �.gh/ D gh˛n; ˇni.
From the above, for a sufficiently large n, we haveZ

fd�h˛n;ˇni D
X

gh˛n;ˇni2G=h˛n;ˇni

f .gƒ.h˛n; ˇni//

D

X
g2G0

f .gƒ.h˛n; ˇni//

����!
n!1

X
g2G0

f .g¹˛1; ˇ1º/ D

Z
fd�¹˛1;ˇ1º:

This implies that �h˛n;ˇni converges to �¹˛1;ˇ1º.

Proof of Proposition 5.1. First, we note that h˛nˇni is a cyclic subgroup of h˛n;ˇni. Take
any continuous function f W@2H!R�0 with compact support. Then we can takeK � H,
r > 0 and G0 for f as in the proof of Lemma 5.2. We remark that from the argument in
the above proof for a sufficiently large n 2 N and gh˛n; ˇni 2 .G=h˛n; ˇni/ n �.G0/, we
see that

g CH.h˛n; ˇni/ \K D ;;

which implies that
g CH.h˛nˇni/ \K D ;:

By using a bijection

G=h˛nˇni ! G=h˛n; ˇni � h˛n; ˇni=h˛nˇni;

we have

�h˛nˇni D
X

gh˛nˇni2G=h˛nˇni

ıgƒ.h˛nˇni/

D

X
gh˛n;ˇni2G=h˛n;ˇni

X
hh˛nˇni2h˛n;ˇni=h˛nˇni

ıghƒ.h˛nˇni/:

Hence, for a sufficiently large n, we see thatZ
fd�h˛nˇni D

X
g2G0

X
hh˛nˇni2h˛n;ˇni=h˛nˇni

f .ghƒ.h˛nˇni//

By considering the Ping-Pong of ˛n and ˇn for a large n, we deduce that ghƒ.h˛nˇni/
does not belong to the support of f unless hh˛nˇni is equal to

h˛nˇni or ˛�nh˛nˇni D ˇnh˛nˇni:
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We add a supplementary explanation to this claim after the proof. Note that ƒ.h˛nˇni/
and ˛�nƒ.h˛nˇni/D ƒ.hˇn˛ni/ converge to ¹˛1; ˇ1º when n tends to infinity. There-
fore, for a sufficiently large n,Z

fd�h˛nˇni D
X
g2G0

�
f .gƒ.h˛nˇni//C f .gƒ.hˇn˛ni//

�
����!
n!1

X
g2G0

2f .g¹˛1; ˇ1º/ D

Z
fd2�¹˛1;ˇ1º:

This implies that �h˛nˇni converges to 2�¹˛1;ˇ1º.

We remark that h˛nˇni (or h˛�nˇni) corresponds to the boundary of the convex core
CH.h˛n; ˇni/=h˛n; ˇni. In this case, ƒ.h˛nˇni/ and ƒ.hˇn˛ni/ correspond to the two
boundary components of CH.h˛n; ˇni/, which converges to Œ˛1; ˇ1� with respect to the
Hausdorff distance on xH when n tends to infinity.

From the proof of Lemma 5.2, we see that more generally �h˛m;ˇni converges to
�¹˛1;ˇ1º when m and n tend to infinity. In addition, for finitely many parabolic elements
˛1; : : : ; ˛k 2 G (k � 2) whose fixed points ˛11 ; : : : ; ˛

1
k

are pairwise distinct, we can see
that

�h˛n1 ;:::;˛
n
k
i ����!
n!1

�¹˛11 ;:::;˛
1
k
º:

More generally, we can prove the following proposition.

Proposition 5.3. Let S 2 H .@H/ satisfying the condition that H D Stab.S/ is a finitely
generated subgroup of G, and S D ƒ.H/ tH.¹˛11 ; : : : ; ˛

1
k
º/. Then we have

�hHt¹˛n1 ;:::;˛
n
k
ºi ����!

n!1
�S :

Proof. We present a sketch of the proof when ƒ.H/ includes at least two points. Even
in the other cases the following argument works. Set Hn D hH t ¹˛n1 ; : : : ; ˛

n
k
ºi. By

considering the Ping-Pong lemma, for a sufficiently large n, Hn is the free product of
h˛n1 i; : : : ; h˛

n
k
i, andH . Moreover, we see that the sequence of limit setsƒ.Hn/ converges

to S in H .@H/.
Let B be a boundary component of the convex hull CH.H/ D CH.ƒ.H//, which is a

geodesic line connecting two points ofƒ.H/. Let I be the open interval of @H connecting
the endpoints of B . We note that I does not contain any points of ƒ.H/ and assume that
I contains ˛11 ; : : : ; ˛

1
k

. Take some base point b on B . Take the Dirichlet fundamental
domain Fn based at b corresponding to the action ofHn on CH.Hn/ and take the Dirichlet
fundamental domain F based at b corresponding to the action of H on CH.S/.

From the choice of the base point b, we can see that for any horocycle parameter �, the
sequence Fn \H� of compact subsets converges to F \H� with respect to the Hausdorff
distance on H. (When H is the trivial subgroup, the base point b can be any point in
CH.Hn/, and F D CH.S/.) Then by the same argument as in Lemma 5.2, we see that
�Hn converges to �S .
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From Lemma 4.3, Proposition 5.1 and Proposition 5.3, we can obtain the following
theorem.

Theorem 5.4. Let † be a cusped hyperbolic surface with finite area. The set®
c�H 2 SC.†/ j c > 0; H < �1.†/Wfinitely generated subgroup

¯
is a dense subset of

SCd .†/ D
®
� 2 SC.†/ j �W discrete subset current

¯
;

and the set ®
c�g 2 GC.†/ j c > 0; g 2 �1.†/W hyperbolic element

¯
is a dense subset of

GCd .†/ D
®
� 2 GC.†/ j �W discrete geodesic current

¯
:

Now, we prove the “opposite” of Proposition 5.1:

Proposition 5.5. For every hyperbolic element g 2 G D �1.†/, there exists a sequence
of pairs of parabolic fixed points ¹pn; qnº of @1 z† such that 1

2n
�¹pn;qnº converges to �g

when n tends to infinity.

Proof. Let p;q be parabolic fixed points of @H such that the geodesic line Œp; q� intersects
with the axis Ax.g/ D CH.ƒ.hgi// D Œg1; g�1� of g. We denote by g�1 the repelling
fixed point of g and denote by g1 the attracting fixed point of g. Then we set

pn D g
�np and qn D g

nq:

Note that pn converges to g�1 and qn converges to g1 when n tends to infinity. We
prove that 1

2n
�¹pn;qnº converges to �g . Our strategy is almost the same as in the proof of

Proposition 5.2.
Take any continuous function f W @2H! R�0 with compact support and a compact

subset K � H such that A.K/ includes supp.f /. Let x be the intersection point of Œp; q�
and Ax.g/. For a positive integer n, set

Ln WD Œg
�nx; gnx� � Ax.g/:

Define Pn to be the geodesic ray from g�nx to g�np and defineQn to be the geodesic ray
from gnx to gnq. For a sufficiently large n, by combining Pn, Ln andQn we can obtain a
quasi-geodesic line `n connecting g�np to gnq which is included in the r-neighborhood
of the geodesic line Œpn; qn� for some constant r > 0 by the stability of geodesics (see
Figure 1). We can also assume that the r-neighborhood of `n includes Œpn; qn�.

Let G0 be a subset of the complete system of representatives of G=hgi satisfying the
condition that for any h 2 G0, the orbit h¹g1; g�1º belongs to A.B.K; r//, i.e.,

hAx.g/ \ B.K; r/ 6D ;:



D. Sasaki 1094

Figure 1. In the right of the figure, we see that �.`n/ D �.Œp; q�/ [ �.Ax.g// and the Ln-part of
�.`n/ goes round �.Ax.g// 2n times. Hence, it is intuitively natural that “ 1

2n`n” converges to “g”.

Then we have Z
fd�g D

X
h2G0

f .h¹g�1; g1º/

since A.K/ includes supp.f /.
Now, we set

H0 WD
®
h 2 G j hŒp; q� \ B.K; r/ 6D ;

¯
and

Gn WD
®
h 2 G j h`n \ B.K; r/ 6D ;

¯
for n 2 N. For h 2 G, if h¹pn; qnº 2 A.K/, then hŒpn; qn� \ K 6D ; and hence h`n \
B.K; r/ 6D ;, which implies that h 2 Gn. Therefore,Z

fd�¹pn;qnº D
X
h2Gn

f .h¹pn; qnº/:

Note that h`n \ B.K; r/ 6D ; implies that

hPn \ B.K; r/ 6D ;; hLn \ B.K; r/ 6D ; or hQn \ B.K; r/ 6D ;:

If hPn \ B.K; r/ 6D ;, then hg�nŒp; q� \ B.K; r/ 6D ; and so h 2 H0gn. Similarly, if
hQn \B.K; r/ 6D ;, then hgnŒp; q�\B.K; r/ 6D ; and so h 2H0g�n. Now, we consider
the case in which hLn \B.K; r/ 6D ;. Since Ln D Œg�nx; gnx� is included in Ax.g/, we
see that hAx.g/ \ B.K; r/ 6D ;, which implies that

h 2
®
ugm j u 2 G0; m 2 Z

¯
:

We remark that the number ofm 2 Z satisfying the condition that ugmLn \B.K; r/ 6D ;
is at most finite since Ln is a finite geodesic segment.

We can assume that for every u 2 G0, we have uŒx; gx� \ B.K; r/ 6D ;. Then for
u 2 G0, we see that

ugmLn \ B.K; r/ 6D ; for m 2 Œ�nC 1; n� \ Z:
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Hence, for each u 2 G0, we can take a finite subset Znu of Z such that

Hn WD
®
h 2 G j hLn \ B.K; r/ 6D ;

¯
D
®
ugm j u 2 G0; m 2 Z

n
u

¯
;

and 2n � #Znu � 2nC d for some constant d > 0 depending on the diameter of B.K; r/.
Moreover, Znu includes Œ�nC 1; n� \ Z.

From the above, we see thatˇ̌̌ 1
2n

Z
fd�¹pn;qnº �

Z
fd�g

ˇ̌̌
D

ˇ̌̌ 1
2n

X
h2Gn

f .h¹pn; qnº/ �
X
u2G0

f .u¹g�1; g1º/
ˇ̌̌

�

ˇ̌̌ 1
2n

X
h2Hn

f .h¹pn; qnº/ �
X
u2G0

f .u¹g�1; g1º/
ˇ̌̌

C
1

2n

X
h2H0gn[H0g�n

jf .h¹pn; qnº/j

�

ˇ̌̌ X
u2G0

X
m2Znu

1

2n
f .ugm¹pn; qnº/ �

X
u2G0

f .u¹g�1; g1º/
ˇ̌̌
C
2#H0
2n

max jf j

�

X
u2G0

ˇ̌̌ X
m2Znu

1

2n
f .ugm¹pn; qnº/ � f .u¹g

�1; g1º/
ˇ̌̌
C

#H0
n

max jf j:

Now, it is sufficient to see that for each u 2 G0, the sumX
m2Znu

1

2n
f .ugm¹pn; qnº/ D

X
m2Znu

1

2n
f .u¹gm�np; gmCnqº/

converges to f .u¹g1; g�1º/ when n tends to infinity. The idea is almost the same as that
of the proof of limn!1

1
n

Pn
kD1 ak D ˛ for a sequence ¹anº of R converging to ˛ 2 R.

Fix u 2 G0 and " > 0. Since f is continuous, there exists N 2 N such that if j; k � N ,
then

jf .u¹g�jp; gkqº/ � f .u¹g�1; g1º/j < ":

Note that we have the equation

Y nu WD
®
m 2 Znu j m � n � �N and mC n � N

¯
D Œ�nCN; n �N� \ Z

since Znu includes Œ�nC 1; n� \ Z. Therefore,ˇ̌̌ X
m2Znu

1

2n
f .ugm¹pn; qnº/ � f .u¹g

1; g�1º/
ˇ̌̌

�
1

2n

X
m2Y nu

ˇ̌
f .u¹gm�np; gmCnqº/ � f .u¹g1; g�1º/

ˇ̌
C

1

2n

X
m2ZnunY

n
u

�
jf .u¹gm�np; gmCnqº/j C jf .u¹g1; g�1º/j

�
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<
2n � 2N C 1

2n
� "C

#Znu � #Y nu
2n

2max jf j

�
2n � 2N C 1

2n
� "C

d C 2N � 1

n
max jf j ����!

n!1
":

This completes the proof.

6. Discontinuity of intersection number on cusped hyperbolic surface

For a compact hyperbolic surface †, the intersection number i of closed geodesics was
continuously extended to an R�0-bilinear functional i WGC.†/ � GC.†/! R�0 in [1],
i.e., for any closed geodesics 1; 2 on †, we have

i.�1 ; �2/ D i.1; 2/;

where �1 represents a counting geodesic current �c for c 2 �1.†/ satisfying the condi-
tion that a representative of c is freely homotopic to 1. Note that if c1; c2 2 �1.†/ are
conjugate, then �c1 D �c2 .

However, when † is a cusped hyperbolic surface, we can see that the intersection
number i cannot extend continuously to an R�0-bilinear functional i WGC.†/�GC.†/!
R�0. The reason is as follows. Let ˛;ˇ 2 �1.†/ be parabolic elements such that the fixed
point ˛1 of ˛ is different from the fixed point ˇ1 of ˇ. From Proposition 5.1 we have

�˛nˇn ����!
n!1

2�¹˛1;ˇ1º:

Then the intersection number of ˛nˇn and the geodesic ` connecting two cusps corre-
sponding to ¹˛1; ˇ1º tends to infinity but the self-intersection number of ` is finite.

We remark that according to [4, Theorem 2.4], for a cusped hyperbolic surface † and
any horocycle parameter � the intersection number

i WGC.†/ � GC�.†/! R�0

is continuous for

GC� WD
®
� 2 GC.†/ j Œx; y� � H� for any ¹x; yº 2 supp.�/

¯
:

Roughly speaking, by restricting H� we can prove the continuity of i in the same manner
as that in [1]. In the rest of this section, we present another sketch of the proof of the
continuity by using the argument in [10, Section 5.3], which was used for the proof of the
continuity of the generalized intersection number on SC.†/.

Let † be a cusped hyperbolic surface. Fix a Dirichlet fundamental domain F for the
action of G D �1.†/ on H. By removing some edges of F , we assume that G.F / D H
and gF \ F D ; for any non-trivial g 2 G. Set

	F D
®
.S1; S2/ 2 @2H � @2H j CH.S1/ \ CH.S2/ is a point in F

¯
:
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Then we define
i.�; �/ D � � �.	F /

for any �;� 2 GC.†/. We see that i.�1 ; �2/ equals the intersection number of 1 and 2
for any closed geodesic or geodesic connecting two cusps 1; 2. Remark that � � �.	F /

is independent of the choice of F since �; � are G-invariant.
Fix any .�; �/ 2 GC.†/ � GC�.†/ and take a sequence ¹.�n; �n/º of GC.†/ �

GC�.†/ converging to .�; �/. From the Portmanteau theorem [10, Proposition 5.45], if
� � �.@	F / D 0, then �n � �n.	F / converges to � � �.	F /. However, in general,
� � �.@	F / is not necessarily zero. Note that .S1; S2/ 2 @	F satisfies one of the fol-
lowing two conditions:

(1) S1 6D S2 and CH.S1/ \ CH.S2/ is a point on @F ;

(2) S1 D S2 and CH.S1/ \ xF 6D ;.

From the assumption that � 2 GC�, for the condition (1), it is enough to consider the case
in which CH.S1/ \ CH.S2/ is a point on @F \H�; for the condition (2), it is enough to
consider the case in which CH.S1/ \ . xF \H�/ 6D ;.

For the condition (1), by moving the center of F we can assume that the measure of
such .S1; S2/ by � � � equals 0 (see [10, Lemma 5.51] for further details).

For the condition (2), we see that if the set of such .S; S/ has a non-zero measure for
� � �, then � and � have a common atom ıS for .S; S/ 2 @	F . Since � 2 GC�, S is
the limit set of hgi for a hyperbolic element g 2 G. Then we can prove that there exists
a small open neighborhood V of .S; S/ such that � � �.V n ¹.S; S/º/ is arbitrary small
(see the proof of [10, Theorem 5.39] for further details). As a result, we can prove that
�n � �n.	F / converges to � � �.	F /. This implies that the intersection number

i WGC.†/ � GC�.†/! R�0

is continuous.

7. Proof of denseness property of rational geodesic currents

Let † be a cusped hyperbolic surface (recall Assumption 3.1). The main purpose of this
section is to prove that the space GC.†/ has the denseness property of rational geodesic
currents (Theorem 2.12). From Theorem 5.4, it is sufficient to prove that the set GCd .†/
of discrete geodesic currents is a dense subset of GC.†/.

Our strategy for the proof is based on the proof of the denseness property of rational
geodesic currents on a hyperbolic group in [2] and the proof of the denseness property
of rational subset currents on a surface group in [10]. For a given geodesic current � 2
GC.†/, we construct a G-invariant family of quasi-geodesics on H, which induces a
discrete geodesic current on† approximating � by considering the limit set of each quasi-
geodesic. To construct the quasi-geodesics, we introduce the notion of a “round-path”,
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which is an analogy of a “round-graph” in [10]. Roughly speaking, by combining a G-
invariant family of round-paths we can obtain a G-invariant family of quasi-geodesics
on H.

Fix a fundamental domain F for the action of G D �1.†/ on H such that F is a
convex polygon whose vertices on @H are parabolic fixed points of G. We can obtain
such a fundamental domain by cutting† along some geodesics connecting two cusps. We
remove some edges of F , which is a boundary component of F , such that G.F / D H
and gF \ F D ; for any g 2 G n ¹idº. In this setting, the set Side.F / of side-pairing
transformations of F is a basis of the free group G. Then we consider the Cayley graph
Cay.G/ of G with respect to the basis Side.F /. Recall that the vertex set V.Cay.G// of
Cay.G/ is G; the edge set E.Cay.G// is G � Side.F /, and an edge .g; a/ 2 E.Cay.G//
connects g to ga. We endow Cay.G/ with the path metric dG such that every edge has
length 1. Note that g1; g2 2 V.Cay.G// are adjacent if and only if g1F and g2F are
adjacent.

Let BG.g; r/ be the closed ball centered at g 2 G D V.Cay.G// with radius r � 0 in
Cay.G/. Take some horocycle parameter � and set

F� WD F \H� D F \ ��1.†�/:

For g 2 G and r 2 N [ ¹0º, we consider the r-neighborhood

BG.gF ; r/ D
G

h2V.BG.g;r//

hF

of gF with respect to dG and the r-neighborhood

BG.gF�; r/ D BG.gF ; r/ \H� D

G
h2V.BG.g;r//

hF�

of gF� with respect to dG .
For an edge e of F , which is included in xF but not necessarily included in F , we

call e \H� an edge of F�. For a horocycle U on H, which corresponds to a boundary
component of †�, we call the intersection U \ F a horocyclic edge of F�. We say that e
is an edge of BG.gF�; r/ if e is an edge of hF� for some h 2 BG.g; r/.

The notion of a round-path, which we define in the following, will play a fundamental
role in the proof of the denseness property of rational geodesic currents. Roughly speak-
ing, a round-path of BG.gF�; r/ is an information of how a geodesic line on H passes
through BG.gF�; r/.

Definition 7.1 (Round-path and cylinder). For a sequence of edges e1; : : : ; ek of the r-
neighborhood BG.gF�; r/, we say that Œe1; : : : ; ek � is a round-path of BG.gF�; r/ if
there exists a geodesic line ` in H passing through e1; : : : ; ek in this order while passing
through BG.gF�; r/. In this case we say that ` passes through the round-path Œe1; : : : ; ek �.
Note that we can also consider the case that a quasi-geodesic passes through Œe1; : : : ; ek �
similarly. We identify Œe1; : : : ; ek � with Œek ; ek�1; : : : ; e1� since we do not consider the
direction of `.
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We add a supplementary explanation to the above definition for completeness. When `
passes through the intersection point of an horocyclic edge e and another non-horocyclic
edge of F�, we consider ` to be passing through the horocyclic edge e. When ` passes
through the intersection point v of two horocyclic edges e1 of h1F� and e2 of h2F� and v
belongs to h1F�, we consider ` to be passing through e1. For a round-path pD Œe1; : : : ; ek �
of BG.gF�; r/, if ei is a horocyclic edge of hiF�, eiC1 is a horocyclic edge of hiC1F�
and h1; h2 are neither the same nor adjacent in Cay.G/, then we do not consider such a
round-path p and consider Œe1; : : : ; ei � or ŒeiC1; : : : ; ek � instead of p, i.e., if a geodesic
line ` passes through e1; : : : ; ek in this order while passing through BG.gF�; r/, then we
consider ` to be passing through e1; : : : ; ei or eiC1; : : : ; ek .

For a round-path p of BG.gF�; r/, we define the cylinder Cyl.p/ with respect to p to
be the subset of @2H consisting of S satisfying the condition that CH.S/ passes through p.
We denote by Rr .g/ the set of all round-paths of BG.gF�; r/ that contain an edge e of
gF� with e \ gF� 6D ;. Note that Rr .g/ is a finite set.

For a round-path p D Œe1; : : : ; ek � 2 Rr .g/ and h 2 G, we can define hp to be
Œhe1; : : : ; hek � 2 Rr .hg/. Hence, we have the action of G on the union

F
g2G Rr .g/.

Example 7.2. In Figure 2, we present three examples of round-paths in the upper-half
plane model of H. In the left of Figure 2, the geodesic line ` passes through e1; e2; e3
and e4 in this order, all of which are not horocyclic edges. In the center of Figure 2, the
geodesic line ` passes through e1; e2; e3 and e4 in this order, and e2; e3 are horocyclic
edges. In the right of Figure 2, the geodesic line ` passes through e1; e2; e2 and e3 in
this order, and only e2 is a horocyclic edge. Note that a horocyclic edge is not a geodesic
segment.

Figure 2. Example of round-paths.

By the definition of round-paths, we see that for two different round-paths p1; p2 2
Rr .g/,

Cyl.p1/ \ Cyl.p2/ D ;:

Moreover, we haveG
p2Rr .g/

Cyl.p/ D
®
S 2 @2H j CH.S/ \ gF� 6D ;

¯
D A.gF�/

since CH.S/ passes through an edge e of gF� with e \ gF� ¤ ; for S 2 @2H if and only
if CH.S/ \ gF� 6D ;.
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Now, we prepare some lemmas related to round-paths and cylinders.

Lemma 7.3. Take any L > 0. If a horocycle parameter � is sufficiently large, then for any
r 2 N, g 2 G and p D Œe1; : : : ; ek � 2 Rr .g/ such that e1; ek are horocyclic edges, the
distance

d.e1; ek/ WD inf
®
d.x; y/ j x 2 e1; y 2 ek

¯
is larger than L.

Proof. Fix some horocycle parameter �0. Assume that the horocycle parameter � is larger
than �0 so that the distance between each boundary component of †�0 and the boundary
component of †� corresponding to the same cusp is larger than L=2. Then considering
that †�; †�0 are subsurfaces of †, we see that if a geodesic line ` on † goes into †�
from a cusp neighborhood, then ` goes down the cusp neighborhood to †�0 . Take any
x 2 e1 and y 2 ek . Then �.Œx; y�/ goes into †� at x and goes out from †� at y, which
implies that �.Œx; y�/ passes through the cusp neighborhood between †� and †�0 twice.
Therefore, the length of Œx; y� is larger than L.

Let d xH be the distance function on xH D H [ @H, which is the restriction of the
Euclidean distance to the Poincaré disk model of H. We define the distance function d@2H

on @2H as
d@2H.S1; S2/ D max

®
max
x2S1

d xH.x; S2/;max
x2S2

d xH.S1; x/
¯

for S1;S2 2 @2H, which is the restriction of the Hausdorff distance on H .@H/with respect
to d xH to @2H.

Lemma 7.4. Fix g 2 G and " > 0. If a horocycle parameter � and r 2 N are sufficiently
large, then for any p 2 Rr .g/, the diameter of Cyl.p/,

diam.Cyl.p// WD sup
®
d@2H.S1; S2/ j S1; S2 2 Cyl.p/

¯
;

is smaller than ".

Proof. To obtain a contradiction, suppose that there exists " > 0 such that for any horo-
cycle parameter �0 and r0 2 N, there exist � larger than �0, r � r0, p 2 Rr .g/ and
S1; S2 2 Cyl.p/ such that d@2H.S1; S2/ � ". We can assume that for some x1 2 S1, we
have d xH.x1; S2/ > 0 without loss of generality. Then there exists "0 > 0 depending only
on " such that d xH.x1;CH.S2// > "0. Hence, for the closed ball B xH.x; "

0/ centered at x
with radius "0, we have

B xH.x; "
0/ \ CH.S2/ D ;:

Now, we assume that r0 and �0 are sufficiently large such that for any y 2 @H, some
edges of BG.gF�; r/ are included in B xH.y; "

0/. Moreover, we can assume that an end
edge e of p is included in B xH.x; "

0/. Since S2 2 Cyl.p/, we have CH.S2/ \ e 6D ;.
Hence, CH.S2/ \ B xH.x; "

0/ 6D ;, which is a contradiction.
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From the proof of the above lemma and the stability of quasi-geodesics on a Gromov
hyperbolic space, we can obtain the following lemma. Recall that for a � 1, b > 0, an
.a; b/-quasi-geodesic on H is an .a; b/-quasi-isometric embedding from an interval of R
to H. The quasi-geodesics that we are going to construct later are piecewise geodesics.

Recall that for a subset A of H the limit set A.1/ of A is the set of accumulation
points of A in @H.

Lemma 7.5. Fix g 2 G, a � 1, b � 0 and ı0 > 0. If a horocycle parameter � and r 2 N
are sufficiently large, then for any p D Œe1; : : : ; ek � 2Rr .g/, if an .a; b/-quasi-geodesic `
passes through e1; : : : ; ek in this order while passing through BG.gF�; r/, then the limit
set `.1/ of ` is contained in the ı0-neighborhood of Cyl.p/.

Proof. To obtain a contradiction, assume that `.1/ is not contained in the ı0-neighbor-
hood of Cyl.p/. Then we can take ı00 > 0 depending on ı0, S 2 Cyl.p/ and x 2 S such
that B xH.x; ı

0
0/\CH.`.1//D ;. However, by the same argument as in the above lemma,

if � and r is sufficiently large, then B xH.x; ı
0
0/ \ ` 6D ; and one of the limit points of

` is contained in B xH.x; ı
0
0/. This implies that B xH.x; ı

0
0/ \ CH.`.1// 6D ;, which is a

contradiction.

Since the proof of the denseness property of rational geodesic currents is long and
includes many constants and parameters, we will write “setting” when we fix something
related to the proof.

Setting 1. Fix � 2 GC.†/ and assume that � is not the zero measure. Fix " > 0. Take
any continuous functions f1; : : : ; fl W@2H! R�0 with compact supports. Take the neigh-
borhood of � as follows:

U."If1; : : : ; fl / D
°
� 2 GC.†/ j

ˇ̌̌Z
fid� �

Z
fid�

ˇ̌̌
< " .i D 1; : : : ; l/

±
:

Take a compact subset K of H such that

A.K/ D
®
S 2 @2H j CH.S/ \K 6D ;

¯
includes the support supp.fi / of fi for i D 1; : : : ; l . From now on we assume that the
horocycle parameter � is large enough so that K is included in H�. In addition, we take
r0 2 N such that K is included in

BG.F�; r0/ D
G

h2V.BG.id;r0//

hF�:

Note that the family of U."If1; : : : ; fl / forms a fundamental system of neighborhoods
of �. We are going to construct a discrete geodesic current, i.e., a finite sum of rational
geodesic currents

� D c1�1 C � � � C ct�t .c1; : : : ; ct > 0/;

belonging to the neighborhood U."If1; : : : ; fl /.
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Lemma 7.6. There exists a subset O ofG
h2V.BG.id;r0//

Rr .h/

such that [
h2V.BG.id;r0//

A.hF�/ D
G
p2O

Cyl.p/: (�)

Proof. Recall the discussion before Lemma 7.3. For each h 2 V.BG.id; r0//, we have

A.hF�/ D
G

p2Rr .h/

Cyl.p/:

First, we set
O D

G
h2V.BG.id;r0//

Rr .h/;

and we remove some round-paths from O such that O satisfies the above condition (�).
Taking a labeling of the elements of V.BG.id; r0//, we have

V.BG.id; r0// D ¹g1; : : : ; gsº:

For p1 2Rr .gi1/;p2 2Rr .gi2/, if Cyl.p1/\Cyl.p2/ 6D ; and i1< i2, then we remove p2
from O. We continue this operation for each pair of p1;p2 2O one by one. Finally, we can
obtain O such that for any p1; p2 2 O so that p1 6D p2, we have Cyl.p1/\ Cyl.p2/ D ;.

Now, it is sufficient to prove that[
h2V.BG.id;r0//

A.hF�/ �
G
p2O

Cyl.p/:

Take any S 2
S
A.hF�/. Let i be the smallest number in ¹1; : : : ; sº such that CH.S/

passes through giF�. Then we can take p 2 Rr .gi / such that S 2 Cyl.p/. Since CH.S/
does not pass through g1F�; : : : ; gi�1F�, the round-path p does not have an edge e inter-
secting

g1F� t � � � t gi�1F�:

Therefore, for any p0 2Rr .g1/ t � � � tRr .gi�1/, we have Cyl.p/\ Cyl.p0/D ;, which
implies that p is not removed from the original O in the above operation. Hence, p 2 O,
and

S 2 Cyl.p/ �
G
p02O

Cyl.p0/;

as required.

Notation 7.7. Let m be a Borel measure on a topological space �. Set jmj WD m.�/. For
a non-empty Borel subset A of�, we denote bymjA the restriction ofm to A, i.e., for any
Borel subset E of �,

mjA.E/ WD m.A \E/:
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The support of m, denoted by supp.m/, is the smallest closed subset A of � such that
m.Ac/ D 0.

The following lemma will play a fundamental role in proving that a certain geodesic
current � belongs to the neighborhood U."If1; : : : ; fl / of �.

Lemma 7.8. There exist a horocycle parameter �, a radius r 2 N of round-path, y" > 0
and ı0 > 0 such that if a geodesic current � 2 GC.†/ satisfies the following conditions,
then � belongs to U."If1; : : : ; fl /:

(1) Take O satisfying the condition (�) in Lemma 7.6. There exists a Borel measure
�p for each p 2 O such that

�jA.K/ D
X
p2O

�pjA.K/I

(2) supp.�p/ is included in the ı0-neighborhood B.Cyl.p/; ı0/ of Cyl.p/ for every
p 2 O;

(3)
ˇ̌
j�pj � �.Cyl.p//

ˇ̌
< y" for every p 2 O.

Proof. Let f 2 ¹f1; : : : ; flº. Take O satisfying the condition (�) in Lemma 7.6. Recall
that

supp.f / � A.K/ �
[

h2V.BG.id;r0//

A.hF�/ D
G
p2O

Cyl.p/:

Hence, we haveˇ̌̌Z
fd� �

Z
fd�

ˇ̌̌
D

ˇ̌̌Z
fd

X
p2O

�p �
X
p2O

Z
Cyl.p/

fd�
ˇ̌̌

�

X
p2O

Cyl.p/\A.K/ 6D;

ˇ̌̌Z
fd�p �

Z
Cyl.p/

fd�
ˇ̌̌
:

Since f is uniformly continuous, for "2 > 0, there exists "1 > 0 such that

sup
x;y2@2H
d.x;y/<"1

jf .x/ � f .y/j < "2:

Take 0 < ı0 < "1. By Lemma 7.4 there exist � and r such that the diameter diam.Cyl.p//
is smaller than "1 � ı0 for any p 2 O, which implies that the diameter of B.Cyl.p/; ı0/
is smaller than "1.

For each p 2 O, take some xp 2 Cyl.p/. Then we haveˇ̌̌Z
fd�p �

Z
Cyl.p/

fd�
ˇ̌̌

�

ˇ̌̌Z
fd�p � f .xp/j�pj

ˇ̌̌
C

ˇ̌̌
f .xp/j�pj �

Z
Cyl.p/

fd�
ˇ̌̌
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� "2j�pj C
ˇ̌
f .xp/j�pj � f .xp/�.Cyl.p//

ˇ̌
C

ˇ̌̌
f .xp/�.Cyl.p// �

Z
Cyl.p/

fd�
ˇ̌̌

� "2j�pj C jf .xp/j �
ˇ̌
j�pj � �.Cyl.p//

ˇ̌
C "2�.Cyl.p//:

Set O0 WD ¹p 2 O j Cyl.p/ \ A.K/ 6D ;º. We obtainX
p2O0

ˇ̌̌Z
fd�p �

Z
Cyl.p/

fd�
ˇ̌̌

� "2
X
p2O0

.j�pj C �.Cyl.p///Cmaxf
X
p2O0

ˇ̌
j�pj � �.Cyl.p//

ˇ̌
< "2

X
p2O0

.2�.Cyl.p//C y"/Cmax jf j � #O0 � y"

< 2"2�.B.A.K/; "1//C ."2 Cmax jf j/y" � #O0:

Note that Cyl.p/ is included in the "1-neighborhood B.A.K/; "1/ of A.K/ for p 2 O0.
Since � is a regular measure, the value �.B.A.K/; "1// is close to �.A.K// when "1 is
small. Hence, we can consider �.B.A.K/; "1// as given. In addition, if we take a suffi-
ciently small "2, which influences � and r , then "2�.B.A.K/; "1// is smaller than "=2.
Remark that the cardinality #O0 can become larger when � and r become larger. There-
fore, we take sufficiently small y" after fixing � and r . As a result, we can see thatˇ̌̌Z

fd� �

Z
fd�

ˇ̌̌
<
"

2
C
"

2
< ";

as required.

Setting 2. Fix a horocycle parameter �, a radius r 2 N of round-path, y" > 0 and ı0 > 0
as in the above lemma. From Lemma 7.5 and the proof of the above lemma, for some
a � 1, b � 0, we can also assume that for any p D Œe1; : : : ; ek � 2 O with p 2 Rr .g/, if
an .a; b/-quasi-geodesic ` passes through e1; : : : ; ek in this order while passing through
BG.gF�; r/, then the limit set `.1/ of ` is included in the ı0-neighborhoodB.Cyl.p/;ı0/
of Cyl.p/. Note that the number of g 2G satisfying the condition that p 2Rr .g/ for some
p 2 O is finite.

Definition 7.9 (Connectability). Let u; v 2 G be adjacent vertices in Cay.G/. Let p D
Œe1; : : : ; ek � 2Rr .u/ and assume that p passes through an edge e of vF� with e \ vF� 6D

;. Then the restriction of p to

BG.uF�; vF�; r/ WD BG.uF�; r/ \ BG.vF�; r/;

denoted by pju;v , is defined as a sub-round-path Œei ; eiC1; : : : ; ej � of p if the edges of p
included in BG.uF�; vF�; r/ are ei ; eiC1; : : : ; ej . We call Œei ; eiC1 : : : ; ej � a round-path
of BG.uF�; vF�; r/. We remark that a round-path of BG.uF�; vF�; r/ always includes
an edge eu of uF� with eu \ uF� ¤ ; and an edge ev of vF� with ev \ vF� ¤ ;. In
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addition, there exists p0 2Rr .v/ such that the restriction p0ju;v of p0 to BG.uF�; vF�; r/

equals pju;v .
For p1 2Rr .u/ and p2 2Rr .v/, we say that p1 and p2 are connectable if p1 includes

an edge ev of vF� with ev \ vF� ¤;, p2 includes an edge eu of uF� with eu \ uF� ¤;,
and p1ju;v D p2ju;v .

For � 2 GC.†/, we define the map

x�W
G
g2G

Rr .g/! R�0

as
x�.p/ WD �.Cyl.p// for p 2

G
g2G

Rr .g/:

Note that since � is G-invariant, the map x� is determined by a finite number of the values
¹x�.p/ºp2Rr .id/.

For adjacent u; v 2 G and any round-path J of BG.uF�; vF�; r/, we haveG
p2Rr .u/

pju;vDJ

Cyl.p/ D
G

p02Rr .v/

p0ju;vDJ

Cyl.p0/

since each side of the equation can be considered as the cylinder with respect to J . Hence,
we can obtain X

p2Rr .u/

pju;vDJ

�.Cyl.p// D
X

p02Rr .v/

p0ju;vDJ

�.Cyl.p0//

and hence X
p2Rr .u/

pju;vDJ

x�.p/ D
X

p02Rr .v/

p0ju;vDJ

x�.p0/: (�J )

By considering the action of G on the Cayley graph Cay.G/, the system of the equa-
tions (�J ) for all adjacent u; v 2 G and all round-path J of BG.uF�; vF�; r/ can be
considered as a finite homogeneous system of linear equations with respect to the vari-
ables x�.p/ for p 2 Rr .id/. Since the coefficients of these equations are integer, by [10,
Lemma 8.11] there exists a rational solution approximating x�, which induces a map

� W
G
g2G

Rr .g/! Z�0

satisfying the following conditions:

(1) � isG-invariant, i.e., for any p 2
F
g2G Rr .g/ and h 2G, we have �.p/D �.hp/;

(2) there exists M 2 N such that for any p 2
F
g2G Rr .g/, we haveˇ̌̌ 1

M
�.p/ � �.Cyl.p//

ˇ̌̌
< y"I
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(3) for any adjacent u; v 2 G and any round-graph J of BG.uF�; vF�; r/,X
p2Rr .u/

pju;vDJ

�.p/ D
X

p02Rr .v/

p0ju;vDJ

�.p0/: (�0J )

The point is that 1
M
� approximates x� and satisfies the same property.

Now, considering �.p/ copies of round-paths p for each p 2
F
g2G Rr .g/, we will

construct a family of G-invariant quasi-geodesics by combining the round-paths modulo
the equation (�0J ), which will induce a discrete geodesic current �� . Then

� D
1

M
��

will satisfy the condition in Lemma 7.8, which implies that � belongs the neighborhood
U."If1; : : : ; fl /.

First, in the same manner as in [10, Theorem 8.12], we construct a graph � thatG acts
on. We define the vertex set V.�/ of � to be the set

¹v.g; p; i/ºg2G;p2Rr .g/;iD1;:::;�.p/:

We regard v.g;p; i/ as a copy of v.g;p; 1/ for i D 2; : : : ; �.p/ and we write it v.g;p/ for
short when no confusion arises. When �.p/ D 0, there exists no vertex v.g; p; i/. Define
an action of G on � as

hv.g; T; i/ D v.hg; hT; i/

for h 2G and v.g;T; i/ 2 V.�/. Define a map � from V.�/ to V.Cay.G// to be the natural
projection, i.e., for v.g; t; i/ 2 V.�/,

�.v.g; t; i// D g:

We define the edge set E.�/ by connecting two vertices in V.�/ G-equivariantly in
the following way. For each u 2 Side.F / and each round-path J of BG.F�; uF�; r/, we
connect a vertex v.id; p; i/ to a vertex v.u; p0; i 0/ such that

pju;v D J D p
0
ju;v:

Since for each round-path J of BG.F�; uF�; r/, the equation (�0J ) holds, the number of
vertices v.id;p; i/2 ��1.id/with pju;v D J is equal to the number of vertices v.u;p0; i 0/2
��1.u/ with p0ju;v D J . Hence, there exists a one-to-one correspondence between®

v.id; p; i/ 2 ��1.id/ j pju;v D J
¯

and
®
v.u; p0; i 0/ 2 ��1.u/ j p0ju;v D J

¯
:

Then we spread the above edges by the action of G. Explicitly, for two vertices v.id; p; i/
and v.u; p0; i 0/ connected by an edge, we connect hv.id; p; i/ to hv.u; p0; i 0/ by an edge
for every h 2 G.
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From the above, we obtain a graph � that G acts on; moreover, the G-equivariant
map �W V.�/! V.Cay.G// naturally extends to the G-equivariant map �W � ! Cay.G/
satisfying the condition that the restriction of � to each connected component of � is
injective. From the above construction, for two adjacent u;v 2 V.Cay.G//, if two vertices
v.u; p/ and v.v; p0/ are connected by an edge, then p and p0 are connectable.

Lemma 7.10. For every vertex v 2 V.�/, the degree of v is smaller than or equal to 2,
which implies that a connected component Y of � is a point or homeomorphic to an
interval of R. Moreover, if a connected component Y of � is not a finite subgraph, then Y
is not a half-line but a line, i.e., homeomorphic to R.

In addition, if v.g;p/ 2 V.�/ is an end vertex of a finite connected component Y of � ,
p D Œe1; : : : ; ek � and e1 is an edge of gF�, then e1 is a horocyclic edge of gF�.

Proof. Let v.g; p/ 2 V.�/. For the round-path p 2 Rr .g/, there exists a geodesic line `
that passes through p. If the vertex v.g; p/ is connected to v.gu; p0/ for u 2 Side.F / t
Side.F /, then ` passes through guF�. By the definition of the fundamental domain F ,
the number of such u is at most two. Hence, the degree of v.g; p/ is smaller than or equal
to 2.

Next, we consider a connected component Y of � that is not a finite subgraph. The
point is that G acts on the graph � and the quotient graph G n � is a finite graph since we
have

#V.G n �/ D #��1.id/ D
X

p2Rr .id/

�.p/ <1:

Hence, the quotient graph of Y by the stabilizer of Y with respect to the action of G is
also a finite graph, which implies that Y can not be a half-line.

Consider a connected component Y of � and assume that Y has infinite vertices. Since
Y is a line, we can assign a number to the vertex set V.Y / of Y such that

V.Y / D ¹v.gi ; pi /ºi2Z

and v.gi˙1; pi˙1/ is connected to v.gi ; pi / for any i 2 Z. Moreover, we can obtain a bi-
infinite sequence Œei �i2Z of edges by combining the round-paths ¹piºi2Z since adjacent
round-paths of ¹piºi2Z are connectable.

Even when Y has at most finitely many vertices, we can obtain a finite sequence
¹v.gi ; pi /º of vertices and a finite sequence Œei � of edges in the same manner.

Lemma 7.11. Let Y be a connected component of � . There exists an infinite piecewise
geodesic `.Y / passing through the sequence Œei � of edges in this order such that every
bending angle of `.Y / is larger than �=2 and every geodesic piece of `.Y / is long enough
that `.Y / is an .a; b/-quasi-geodesic line (see Setting 2 for the constants a; b).

Proof. Case 1. First, we consider the case in which Y is a line. We assume that every
ei is not a horocyclic edge for convenience. For a finite subsequence Œei�r ; : : : ; eiCr � of
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Figure 3. The way of combining geodesic segments ¹`ir ºi2Z.

Œei �, there exists a round-path pj such that Œei�r ; : : : ; eiCr � is a subsequence of pj . Hence,
there exists a geodesic segment `i starting from ei�r toward eiCr and passing through
ei�r ; : : : ; eiCr in this order. We combine the sequence ¹`irºi2Z of geodesic segments
in the following way (see Figure 3) and construct an infinite piecewise geodesic `.Y /
passing through the sequence Œei � of edges in this order. Assume that r is a multiple of 4
for convenience.

(1) If `ir and `irCr intersect at t while passing through eirC r
4

and eirC 3r
4

, then we
combine `ir and `irCr at t .

(2) If `ir and `irCr do not intersect while passing through eirC r
4

and eirC 3r
4

, then we
take the intersection point s of `ir and eirC r

4
and take the intersection point t of

`irCr and eirC 3r
4

, and we combine `ir with the geodesic segment Œs; t � at s and
combine Œs; t � with `irCr at t .

From the above, we see that the length of every geodesic piece of `.Y / is larger than

r

2
inf
®
d.x; y/ j x; y belong to non-adjacent edges of F�

¯
:

Each bending angle of `.Y / is larger than �=2 if r is sufficiently large. Hence, if r is
sufficiently large, then `.Y / is an .a; b/-quasi-geodesic line (see Supplementation 7.12).

Case 2. Now, we consider the case in which Y is a finite segment. Let Œe0; : : : ; em� be
the finite sequence of edges that we obtained by combining the round-paths. Then the
end edges e0 and em must be horocyclic edges by the construction of � . If m is smaller
than or equal to 2r , then there exists a geodesic segment Œs; t � starting from e0 toward em
and passing through e0; : : : ; em in this order. Then we combine Œs; t � with the geodesic
ray Œs; �� starting from s to the parabolic fixed point � that the horocycle including e0 is
centered at. Similarly, we combine Œs; t � with the geodesic ray Œt; �� starting from t to the
parabolic fixed point � that the horocycle including em is centered at (see Figure 4). This
piecewise geodesic `.Y / satisfies the condition in the lemma since the length of Œs; t � is
sufficiently large by Lemma 7.3.

If m is larger than 2r , then we take geodesic segments

`r ; `2r ; : : : ; `cr .0 � m � cr < r/
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Figure 4. The way of extending Œs; t � to `.Y /.

and combine them in the same manner as above. Note that `cr is a geodesic segment
starting from ecr�r to em. Then we combine the resulting piecewise geodesic with the
geodesic rays from its ends to the corresponding parabolic fixed points in the same manner
as above. The resulting piecewise geodesic `.Y / satisfies the condition in the lemma if r
is sufficiently large.

Supplementation 7.12. It is well known that a piecewise geodesic, each bending angle of
which is bounded from below and each segment of which is sufficiently long, is a quasi-
geodesic. Since we could not find any literature on this claim, we give the proof here for
the convenience of the reader.

We use the fact that a local quasi-geodesic is a quasi-geodesic (see [5, p. 25]). Since
each segment of the piecewise geodesic ` can be sufficiently long, it is enough to see that
the neighborhood of each corner is a quasi-geodesic. Therefore, we consider the case of
Figure 5. By the trigonometry of right triangles in the hyperbolic plane, we have

cosh.d.v; x// D
cos˛1
sinˇ1

D
cos˛2
sinˇ2

:

Therefore,

cosh.d.v; x// �
1

max¹sinˇ1; sinˇ2º
�

1

sin ˇ1Cˇ2
2

:

Figure 5. The vertex v of the triangle is a corner of ` and the vertices u;w are on the segments of `.
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This implies that d.v; x/ is bounded above by a constant C depending on the bending
angle ˇ1 C ˇ2. Then we see that

d.u; v/C d.v;w/ � d.u; x/C d.x; v/C d.v; x/C d.x;w/ � d.u;w/C 2C:

Hence, the neighborhood of the corner v of ` is a .1; 2C /-quasi-geodesic. This completes
the proof.

Define Comp.�/ to be the set of all connected components of � . Note that the action of
G on � induces the action of G on Comp.�/. However, since for each Y 2 Comp.�/, the
construction of `.Y / is not G-equivariant in the above proof, we add some supplementary
explanation.

For Y 2 Comp.�/ homeomorphic to R and an infinite quasi-geodesic `.Y / satisfying
the condition in the above lemma, the limit set `.Y /.1/ 2 @2H is uniquely determined
by the bi-infinite sequence of the round-paths pi . Hence, we see that g`.Y /.1/ equals
`.gY /.1/ for any g 2 G. When Y is finite, the limit set `.Y /.1/ is determined by the
end edges of Œei �, which implies that g`.Y /.1/ equals `.gY /.1/ for any g 2 G

Therefore, we can obtain a family ¹`.Y /ºY2Comp.�/ of infinite quasi-geodesics such
that `.Y / satisfies the condition in the above lemma for every Y 2 Comp.�/ and G acts
on ¹`.Y /.1/ºY2Comp.�/, i.e., for any Y 2 Comp.�/ and any g 2 G

`.gY /.1/ D g`.Y /.1/:

As a result, we can obtain the G-invariant measure

�� D
X

Y2Comp.�/

ı`.Y /.1/

on @2H. We will see that � WD 1
M
�� satisfies the condition in Lemma 7.8.

Condition (1) and (2) in Lemma 7.8. For each p 2 O with p 2 Rr .g/, we set

��;p D
X

v.g;p/2V.Y /

ı`.Y /.1/;

where the sum is taken over all Y 2 Comp.�/ satisfying the condition that v.g; p; i/ 2
V.Y / for some i D 1; : : : ; �.p/. Then by Lemma 7.11 and Setting 2 we see that the support
supp.��;p/ is included in the ı0-neighborhood B.Cyl.p/; ı0/ of Cyl.p/.

Note that by the definition of O we have°
Y 2 Comp.�/ j `.Y / \

[
h2V.BG.id;r0//

hF 6D ;
±

D

G
p2O

®
Y 2 Comp.�/ j v.g; p/ 2 V.Y / for g with p 2 Rr .g/

¯
:
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In other words, for Y 2 Comp.�/, we have v.g; p/ 2 V.Y / for p 2 O \Rr .g/ if and
only if

`.Y / \
G

h2V.BG.id;r0//

hF� 6D ;:

SinceK is included in
F
h2V.BG.id;r0// hF�, we can assume that if `.Y / does not intersectF

h2BG.r0;id/ hF , then `.Y /.1/ does not belong to A.K/. Hence, the following equality
holds:

�� jA.K/ D
X
p2O

��;pjA.K/:

As a result, by defining �p to be 1
M
��;p for each p 2 O, we have

�jA.K/ D
X
p2O

�pjA.K/:

This is the required equality in condition (1) in Lemma 7.8.

Condition (3) in Lemma 7.8. By the definition of ��;p for each p 2 O, we have

j�pj D
1

M
#
®
Y 2 Comp.�/ j v.g; p/ 2 V.Y /

¯
D

1

M
#
®
v.g; p; i/ 2 V.�/ j i D 1; : : : ; �.p/

¯
D

1

M
�.p/:

Hence, for each p 2 O,ˇ̌
j�pj � �.Cyl.p//

ˇ̌
D

ˇ̌̌ 1
M
�.p/ � �.Cyl.p//

ˇ̌̌
< y";

which is the required inequality.
Finally, since ��;p is a finite measure for every p 2 O, we have that ��.A.K// is

finite. We can assume that K is sufficiently large. Then we see that �� is a locally finite
measure from Lemma 3.3. Moreover, by Remark 3.7, �� is a discrete geodesic current.
Therefore, it follows by Lemma 7.8 that �D 1

M
�� is a discrete geodesic current belonging

to U."If1; : : : ; f`/. This completes the proof of Theorem 2.12.

8. Proof of denseness property of rational subset currents

Let † be a cusped hyperbolic surface. Since our strategy for the proof of the denseness
property of rational subset currents is the same as in the case of geodesic currents, we only
present a sketch of the proof in this section. We introduce the notion of an appropriate set
of round-paths and the subset cylinder with respect to it, which plays the same role as a
round-path and the cylinder with respect to it.
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We use the setting given at the beginning of Section 7, which we used in order to
define the notion of round-paths. Take the fundamental domain F , the set Side.F / of
side-pairing transformations of F and the Cayley graph Cay.G/ of G with respect to the
basis Side.F / in the same manner as in Section 7. We also take some horocycle parameter
� and some radius r 2 N.

Definition 8.1 (Weak convex hull, set of round-paths and subset cylinder). For a set S 2
H .@H/, we define the weak convex hull WCH.S/ of S to be the union of all geodesic
lines connecting two points of S .

Let g 2 G. Let T be a set of round-paths of BG.gF�; r/, which includes some round-
paths not passing through gF�. Note that T is a finite set. We say that T is appropriate if
there exists S 2 H .@H/ satisfying the following two conditions:

(1) for every round-path p 2 T , there exists a geodesic line ` connecting two points
of S such that ` passes through p, i.e., for p D Œe1; : : : ; ek � 2 T , ` passes through
e1; : : : ; ek in this order while passing through Bg.gF�; r/;

(2) for every geodesic line ` connecting two points of S , there exists p 2 T such that
` passes through p.

If S 2 H .@H/ satisfies the above two conditions, we say that the restriction of WCH.S/
to BG.gF�; r/ equals T .

For an appropriate set T of round-paths, we define the subset cylinder SCyl.T / with
respect to T to be the subset of H .@H/ consisting of an element S satisfying the condition
that the restriction of WCH.S/ to BG.gF�; r/ equals T . We denote by R�r .g/ the set of
all appropriate sets of round-paths that contains a round-path containing an edge e of gF�
with e \ gF 6D ;. Note that R�r .g/ is a finite set.

The notion of subset cylinder has the same property as that of cylinder, and we have
the equality G

T2R�r .g/

SCyl.T / D
®
S 2 H .@H/ j CH.S/ \ gF� 6D ;

¯
D A.gF�/:

The properties that we proved in Section 7 from Lemma 7.4 to Lemma 7.8 except
Lemma 7.5 can be naturally generalized to the subset current version.

The subset current version of Lemma 7.5 is as follows:

Lemma 8.2. Fix g 2G, a � 1, b � 0 and ı0 > 0. There exist a large horocycle parameter
� and a constant ı1 > 0 such that for a sufficiently large r 2 N and any T 2 R�r .g/, if a
set Y of .a; b/-quasi-geodesics satisfies the following conditions:

(1) jY j D
S
`2Y ` is ı1-quasi-convex;

(2) for every ` 2 Y passing throughBG.gF�; r/, there exists p 2 T such that ` passes
through p;

(3) for every p 2 T , there exists ` 2 Y such that ` passes through p,

then the limit set jY j.1/ of jY j is contained in the ı0-neighborhood of SCyl.T /.
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Proof. Recall that jY j is ı1-quasi-convex if for any x;y 2 jY j, the geodesic segment Œx;y�
connecting x to y is included in the ı1-neighborhood of jY j with respect to the hyperbolic
metric on H.

To obtain a contradiction, we suppose that jY j.1/ is not contained in the ı0-neighbor-
hood of SCyl.T /. Then there exists ı00 > 0 depending on ı0 such that we can take S 2
SCyl.T / and x 2 S such that

B xH.x; ı
0
0/ \WCH.jY j.1// D ;;

or we can take x 2 jY j.1/ and S 2 SCyl.T / such that

B xH.x; ı
0
0/ \WCH.S/ D ;:

First, we consider the former case. By the same argument as in Lemma 7.4, if �; r are
sufficiently large, then there exists a round-path pD Œe1; : : : ; ek � such that ek is sufficiently
close to x in xH, which implies that one of the end points of an .a; b/-quasi-geodesic line
` passing through p must be contained in B xH.x; ı

0
0=2/. Therefore, we can see that

B xH.x; ı
0
0/ \WCH.jY j.1// 6D ;;

which is a contradiction.
Next, we consider the latter case. In this case, the quasi-convexity of jY j in the con-

dition (1) plays an important role because x can be an end point of a quasi-geodesic far
away from BG.gF�; r/ if we do not assume the condition (1). Take ` 2 Y such that one of
the end points of ` is sufficiently close to x and take `1 2 Y passing through some round-
path p1 2 T containing an edge of gF�. Since jY j is ı1-quasi-convex, by considering a
geodesic segment connecting y 2 `\B xH.x; ı

0
0=4/ to some point on `1, which is included

in the ı1-neighborhood of jY j, there exists `2 2 Y passing through p2 2 T such that p2
contains an edge e of BG.gF�; r/ sufficiently close to x in xH. Then WCH.S/ includes a
geodesic line passing through p2, which must intersect B xH.x; ı

0
0/, i.e.,

B xH.x; ı
0
0/ \WCH.S/ 6D ;;

which is a contradiction.

The notion of connectability can be also generalized to the subset current version. For
adjacent u; v 2 V.Cay.G//, T1 2 R�r .u/ and T2 2 R�r .v/, we say that T1 and T2 are
connectable if the following conditions hold:

(1) T1 contains a round-path containing an edge e of vF� with e \ vF� ¤ ;;

(2) T2 contains a round-path containing an edge e of uF� with e \ uF� ¤ ;;

(3) the restriction of T1 to BG.uF�; vF�; r/ coincides with the restriction of T2 to
BG.uF�; vF�; r/.
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Fix a non-zero measure � 2 SC.†/. Then we can approximate � by

� W
G
g2G

R�r .g/! Z�0

satisfying the subset current version of the conditions in Section 7. From � , we construct
a graph � that G acts on in the same manner as in Section 7, i.e.,

V.�/ D ¹v.g; T; i/ºg2G;T2R�r .g/;iD1;:::;�.T /

and if v.u;T / and v.v;T 0/ is connected by an edge, then u; v are adjacent in Cay.G/, and
T and T 0 are connectable.

Now, we consider each connected component Y of � and construct a set of quasi-
geodesics by combining round-paths

¹pºv.g;T /2V.Y /;p2T :

The biggest difference between the case of subset currents and the case of geodesic cur-
rents is that Y is a sub-tree of Cay.G/, which is much more complicated than a finite
segment or a bi-infinite line. Define Comp.�/ to be the set of all connected components
of � .

Let Y 2Comp.�/, v.g;T /2 V.Y / and p 2 T . We remark that p may not pass through
an edge of gF� but passes through h0F� for some h0 2 V.BG.g; r//. Then we can take
a geodesic path of vertices in Y connecting v.g; T / to v.h0; T0/ since there exists S 2
H .@H/ such that the restriction of WCH.S/ to BG.gF�; r/ equals T , which must pass
through every g0F� for every g0 2 G on a geodesic path connecting g to h0 in Cay.G/. In
addition, T0 contains a round-path p0 including p as a sub-round-path.

Considering the extension of p0 by the connectability, we can obtain a finite or bi-
infinite sequence ¹v.hi ; Ti /ºi of V.Y / centered at v.h0; T0/ satisfying the following
conditions:

(1) v.hi ; Ti / is connected to v.hiC1; TiC1/ by an edge for every i (except the case in
which the vertex v.hiC1; TiC1/ does not exist);

(2) for each i , there exists pi 2 Ti such that pi and piC1 are connectable;

(3) the sequence ¹v.hi ; Ti /ºi ends at i1 or �i2 for i1; i2 2 Z�0 if and only if one of
the end edges of pi1 or p�i2 is a horocyclic edge.

Note that even when ¹v.hi ; Ti /º is infinite, we do not know whether it is bi-infinite or not.
For the sequence ¹v.hi ; Ti /º, by combining the round-paths ¹piº, we can take a

sequence Œei � of edges, which is independent of the choice of h0. Then in the same manner
as in Lemma 7.11 we can obtain an .a; b/-quasi-geodesic `.Y; p/ passing through Œei � in
this order. Once we fix `.Y; p/, we define `.Y; p0/ to be `.Y; p/ for every p0 2 T 0 for
v.u; T 0/ 2 V.Y / satisfying the condition that p0 is a sub-sequence of the sequence Œei �.
We define jY j as

jY j WD
[

v.g;T /2V.Y /;p2T

`.Y; p/:
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By the definition, we see that ¹`.Y; p/º satisfies conditions (2) and (3) in Lemma 8.2.
After the following lemma, we will prove that jY j is ı1-quasi-convex for some constant ı1,
which depends on a; b; �;H and a constant s appearing in the following lemma.

Lemma 8.3. Let v.g�m; T�m/; : : : ; v.gm; Tm/ be a geodesic path of vertices in Y for
m 2 N. Let H be a connected component of H nH�, which is a horodisk centered at a
parabolic fixed point � of G. Assume that for each i 2 ¹�m; : : : ; mº a horocyclic edge ei
of giF� is included in the boundary @H of H . Then there exists s 2 N depending only on
� such that ifm� 3s, then jY j includes a geodesic ray emanating from one of e�m; : : : ; em
to �. We also assume that the radius r for sets of round-paths is much larger than s.

Proof. Consider the upper-half plane model of H and assume that H is a horodisk cen-
tered at1. Then the boundary @H of H is ¹x C y0

p
�1 j x 2 Rº for some y0 2 R that

depends on �. The endpoints of e0 are x0C y0
p
�1 and x0C ˛C y0

p
�1 for some ˛ > 0.

We can assume that x0 C y0
p
�1 is the right endpoint of e�1 and x0 C ˛ C y0

p
�1 is

the left endpoint of e1. Let s be the smallest positive integer satisfying the condition that
s˛ > y0 C 2˛.

To obtain a contradiction, suppose that m � 3s and jY j does not include any geodesic
rays emanating from one of e�m; : : : ; em to 1. Take S 2 SCyl.T0/. Since r > s, there
exist �i ; �i 2 S such that the geodesic Œ�i ; �i � passes through giF� for i D �s; : : : ; s.
By the assumption, �i and �i belong to R (we assume that �i < �i ), and Œ�i ; �i � does not
intersect two non-adjacent edges of e�s; : : : ; es , which implies that �i � �i < 2y0 C 2˛
for i D �s; : : : ; s (see Figure 6).

Figure 6. Setting of the proof of Lemma 8.3.

Then we can see that

�i < x0 C .i C 1/˛ and �i > x0 C i˛

since Œ�i ; �i � \ giF� ¤ ;. Hence,

�s � ��s > x0 C s˛ � .x0 C .�s C 1/˛/ D 2s˛ � ˛ > 2y0 C 2˛:

Note that

�s < �s C 2y0 C 2˛ < x0 C .s C 1/˛ C 2s˛ < x0 C .3s C 1/˛ � x0 C .mC 1/˛

and

��s > ��s � 2y0 � 2˛ > x0 � s˛ � 2s˛ > x0 C .�3s/˛ � x0 C .�m/˛:
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Therefore, Œ��s; �s� intersects with two non-adjacent edges of e�m; : : : ; em. This implies
that jY j includes a geodesic ray emanating from one of e�m; : : : ; em to 1, which is a
contradiction.

Proof of the quasi-convexity of jY j. Let x; y 2 jY j. Take v.g; T /; v.g0; T 0/ 2 V.Y / and
p 2 T , p0 2 T 0 such that x 2 `.Y;p/ and y 2 `.Y;p0/. When x (or y) belongs to a geodesic
ray in a horodisk of H nH�, it is enough to consider the nearest point x0 2 H� \ `.Y; p/

from x (or the nearest point y0 2 H� \ `.Y; p
0/ from y). Hence, we can assume that

x 2 gF� and y 2 g0F�.
Take a geodesic path of vertices

v.g0; T0/ D v.g; T /; v.g1; T1/; : : : ; v.gk ; Tk/ D v.g
0; T 0/

in Y . From the shape of the fundamental domain F , we can see that the geodesic Œx; y�
passes through g0F ; g1F ; : : : ; gkF in this order. If Œx; y� is included in H�, then Œx; y� is
included in the diam.F�/-neighborhood of jY j since for every giF�, there exists a quasi-
geodesic of jY j passing through giF�.

Now, we consider the case in which Œx; y� is not included in H�. Assume that Œx; y�
goes into a horodisk H while passing through giF and goes out from H while passing
through giCtF . If t < 6s, then there exists a constant Cs > 0 depending on a; b; �; s such
that

Œx; y� \

iCt[
jDi

gjF

is included in the .diam.F�/ C Cs/-neighborhood of jY j. If t � 6s, then Œx; y� inter-
sects some geodesic rays that are pieces of quasi-geodesics of jY j while passing throughSiCt
jDi gjF by Lemma 8.3. Therefore, Œx; y� is included in the ı1-neighborhood of jY j for

a constant ı1 depending on a; b; � and s.

Now, we can obtain a discrete subset current

�� WD
X

Y2Comp.�/

ıjY j.1/ 2 SC.†/;

and we can prove that 1
M
�� approximates the given � 2 SC.†/ for some M 2 N. We

omit the rest of the proof since it is almost the same as in the case of geodesic currents.
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