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Flip graphs for infinite type surfaces

Ariadna Fossas and Hugo Parlier

Abstract. We associate to triangulations of infinite type surfaces a type of flip graph where simul-
taneous flips are allowed. Our main focus is on understanding exactly when two triangulations can
be related by a sequence of flips. A consequence of our results is that flip graphs for infinite type
surfaces have uncountably many connected components.

1. Introduction

A variety of simplicial complexes has been used to study surfaces, their homeomorphisms
and their geometric structures. For finite type surfaces, arc and curve type graphs have
been very useful tools for studying the geometry of different moduli spaces. In particular,
flip graphs give a way of measuring distance between triangulations but also provide a
coarse model for mapping class groups. In this article, we adapt flip graphs to the setting
of infinite type surfaces. As one might expect, the passage to infinite type surfaces requires
a little bit of care.

Our starting point will always be a surface † obtained by pasting together an infinite
collection of triangles, and then removing the vertices that then belong to the space of
ends of †. We define a graph F .†/ whose vertices are these triangulations up to isotopy
and whose edges come from flipping arcs that lie in quadrilaterals. More precisely, two
triangulations are joined by an edge if they are related by any number (possibly infinite)
of flips that can be performed simultaneously. This adaptation of the usual flip graph has
already been studied in the finite type case [6,8], and importantly, for infinite type surfaces
it allows one to measure distances between a larger set of triangulations. If one only allows
single flips, two triangulations can only be related if they differ by finitely many arcs (see
[12] for an example of such a flip graph).

Figuring out which triangulations are related by a sequence of flips in our setting is
exactly the main result of this paper:

Theorem 1.1. Let† be an infinite type surface. Let S and T be triangulations of†. Then,
S and T are in the same connected component of F .†/ if and only if there exists K � 0
such that for every arc ˛ of S and every arc ˇ of T the intersection numbers i.˛; T / and
i.ˇ; S/ are bounded by K.
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The proof of the theorem involves putting together a number of preliminary results,
one of them being Proposition 2.7, which uses a technique from [9, 16] which shows that
triangulations that share a multiarc form a convex subset of F .†/. The rest of the proof is
mainly combinatorial, and relies on a graph coloring argument, and in particular Brooks’
theorem.

Using Theorem 1.1, it is straightforward to construct examples of triangulations that
are not related by sequences of flip transformations, showing that F .†/ has multiple
connected components. In fact, we show:

Corollary 1.2. For any † of infinite type, F .†/ has uncountably many connected com-
ponents.

This is analogous to what happens for hyperbolic structures for infinite type surfaces.
The graph F .†/ can be thought of as a combinatorial analogue of the Teichmüller space
which, classically, is the space of conformal structures up to quasi-conformal map, and it
also has uncountably many connected components [3]. There is a metric point of view to
what we do: if one replaces triangles by ideal hyperbolic triangles, and pastes them with
0 shear, the resulting hyperbolic metric is well defined. A flip now changes the hyper-
bolic metric, but the two metrics are bi-Lipschitz equivalent. Although this analogy is not
concretely used here in any way, it would be interesting to explore to what extent F .†/

provides a combinatorial model to spaces that arise in the smooth setting.
In a more quantitative direction, our methods give the following upper and lower

bounds on flip distance between two triangulations in terms of the maximal intersection
between the individual arcs of one triangulation and the other triangulation. The following
is the combination of Corollaries 2.6 and 3.3.

Corollary 1.3. Let K � 1 be a constant and T and T 0 be triangulations of a surface †.
If for every arc ˛ of T and every arc ˇ of T 0, the intersection numbers i.˛;T 0/ and i.ˇ;T /
are bounded above by K, then T and T 0 are related by at most

2K2 � 3K �K2

flips. Conversely, if T contains an arc ˛ that satisfies i.˛; T 0/ � K, then the flip distance
between T and T 0 is at least

log4.3.K C 1//:

Note that as far as we can tell, the above statement is also new for finite type surfaces.

Organization. The article is organized as follows. In Section 2, after some definitions
and notation, we prove some results that provide the groundwork for proving the main
theorem. In particular, we show the easier direction of Theorem 1.1, the proof of which
is given in Section 3. In the final section (Section 4), we discuss some corollaries of our
results, namely about the connected components of flip graphs (Corollary 1.2).
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2. Setup and preliminary results

Let † be a connected orientable surface obtained by the following procedure. We begin
with a countable collection of triangles and paste the sides of triangles in pairs to obtain a
connected orientable surface x† (see Figure 1 for an illustration). The image of the vertices
of the triangles under the pasting is a collection of points which we denote by P and call
the ideal vertex set. We now set † D x† n P . Note that each element of P belongs to an
end of †, and although they do not belong to †, this ideal vertex set is implicit when we
use the notation †. Although it will also be used just for the topological surface obtained
by this procedure, † is really a pair consisting of the surface and its ideal vertex set.

Figure 1. Pasting triangles to obtain †.

Arcs of † are non-trivial simple paths between (non-necessarily distinct) elements of
P (so continuous mappings of Œ0; 1� to † [ P such that the image of �0; 1Œ is simple).
Note that this is not quite the same as considering properly embedded arcs as in [11], see
Remark 2.1.

We denote by A.†/ the set of arcs of † up to isotopy fixing P pointwise. We are
interested in triangulations of † by which we mean disjoint collections of arcs between
elements of P that decompose † into a collection of (open) triangles.

Note that arc and curve type graphs, in the context of infinite type surfaces, are becom-
ing a topic of increasing interest [1, 5, 10, 11]. However, to the best of our knowledge,
despite appearing in certain specific situations, such as [17], graphs with vertices being
triangulations of infinite type surfaces have not yet been studied in a general framework.

Remark 2.1. There are alternative approaches to defining flip graphs.
(1) A first alternative approach would be to consider a surface with a fixed set of

marked points and then consider maximal multiarcs (sets of isotopy classes of arcs, dis-
joint in their interior and maximal for inclusion). For finite type surfaces, these approaches
are equivalent because given any surface (of negative Euler characteristic) and non-empty
set of marked points, a maximal multiarc always decomposes the surface into triangles.
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For infinite type surfaces, if a triangulation exists, then it is maximal but the converse is
not always true. In fact, there are infinite type surfaces with a prescribed set of marked
points P which do not admit any triangulations with vertex set P . An easy example is
the following: consider a one-ended infinite genus surface and P consisting of a single
marked point. A maximal set of arcs contains an infinite number of arcs, and thus, if you
trace a small circle around the marked point and look at the intersection with arcs (if nec-
essary, realize the arcs with a metric), there will be accumulation points. These points
correspond to accumulation arcs, which cannot exist in a triangulation.

(2) In a second direction, one could consider the arcs in a different way. Given an
infinite type surface, we could consider our arcs to be properly embedded arcs between
ends (see for instance [11]), and then consider triangulations to be sets such that the com-
plementary region is a collection of (ideal) triangles. For our purposes this approach has
two drawbacks. The first is that, again unlike for finite type surfaces, maximal collections
of arcs do not necessarily correspond to an ideal triangulation (see [14] for under which
conditions a multiarc can be completed into a triangulation). In particular, like in the argu-
ment above, if you have a collection of such arcs with infinitely many arcs between two
distinct ends, it is impossible to complete them into a triangulation as they would create
accumulation points along a closed curve. A second drawback is that with this setup it
is easy to construct two arcs that intersect infinitely many times, and in particular, it is
impossible to flip a triangulation containing one of the arcs to a triangulation containing
the other. As we are interested in connected components of flip graphs, we avoid these
“obvious” obstructions to being in the same connected components from the outset.

Surfaces with sets of ideal vertices that can obviously be constructed via such a trian-
gulation include R2 nZ2 with ideal vertex set Z2 as portrayed in Figure 2. This surface is
commonly called the flute surface [2].

Figure 2. One way to (locally) paste triangles to obtain the flute surface.
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Figure 3. To the right of the Farey triangulation is the Loch Ness Monster: each “triangular” genus
1 sub surface is easily triangulated.

A more subtle surface is obtained via the standard representation of the Farey graph in
the hyperbolic plane with Q [ ¹1º as ideal vertices. Note that in this case † Š R2, so it
only has one end, and all arcs leave and terminate in this end. And yet P DQ[ ¹1º, and
there is an order on this set. Surfaces with infinite genus can also be obtained (for instance
by adding genus to each triangle in the Farey graph tessellation to obtain the Loch Ness
Monster surface as in Figure 3), but, as seen previously, any arbitrary combination of †
and P is not possible.

Now given †, we define an associated flip graph F .†/.

Definition 2.2. Let � be a (possibly infinite) multiarc of T such that every arc a 2 �
bounds two distinct triangles (that form a quadrilateral with a as a diagonal). Suppose
further that if a; b 2 � with a ¤ b, the quadrilaterals containing a and b as diagonals
are distinct. We define the triangulation f�.T / D T 0 to be the one obtained from T by
replacing every arc a 2 � by the other diagonal arc of the quadrilateral defined by the two
triangles containing a. We say that T and T 0 are related by a simultaneous flip or simply
a flip.

This allows us to define F .†/: vertices are the set of triangulations of† and there is an
edge between T and T 0 if they are related by a flip. We denote the connected components
of F .†/ by F i .†/, i 2 I , where I is an index set.

When † is of finite type, F .†/ is always connected [15] but we will see that when †
is of infinite type, it is always a graph with infinitely many connected components.

The triangulations lying in a given connected component are formed of arcs of A.†/.
Our first observations are the following.

Proposition 2.3. Let T 2 F .†/ and ˛ 2 A.†/. Then i.˛; T / < C1.

Proof. Note that this property is really dependent on our definition of arcs and triangula-
tions. An arc is a continuous map from ˛ W Œ0; 1� to †[ P and in particular ˛.0/; ˛.1/ are
vertices of triangles on which the arcs continue. In particular, there is an " > 0 such that
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Figure 4. A simultaneous flip is done performing single flips simultaneously on disjoint quadri-
laterals.

˛ intersects T the same number of times as ˛ W Œ"; 1� "�! † does. Now the argument is
similar to the remark above: if the arc intersected an infinite number of arcs of T , the inter-
section points would contain an accumulation point on † [ P . This accumulation point
cannot belong to the interior of a triangle, nor to the interior of an edge of the triangle, so
it does not belong to †.

Proposition 2.4. Let F i .†/ � F .†/ be a connected component and ˛ 2 A.†/ an arc.
Then there exists a triangulation T˛ 2 F i .†/ containing ˛.

Proof. For any T 2 F i .†/, we have i.T; ˛/ <C1. Thus there is a finite type subsurface
in which ˛ and the subset of T intersected by ˛ both live. It suffices to flip in that subsur-
face to obtain a triangulation containing ˛.

This implies that for any finite multiarc and any given connected component, there is
a triangulation containing that multiarc. This is no longer true for infinite multiarcs. In
particular, as mentioned previously, in the sequel there will be examples of triangulations
that are not related by any finite number of simultaneous flips.

The following proposition is the easy part of Theorem 1.1 and it states that if there is no
bound on the intersection between arcs of a triangulation T and another triangulation T 0,
then they cannot be related by flips.

Proposition 2.5. Let T; T 0 2 F .†/ be such that for any K > 0, there exists ˛ 2 T such
that i.˛; T 0/ � K. Then T and T 0 cannot be related by a finite number of simultaneous
flips.
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Proof. For an integer N > 0, consider a sequence of triangulations obtained from T by
flipping N times. We denote the sequence by T0 D T; : : : ; TN .

We set K D 1
3
.4NC1 � 1/ for reasons that will become apparent in what follows,

and let ˛ be an arc with i.˛; T 0/ � K. We will construct a sequence of arcs ˛i 2 Ti (by
induction) for each i D 1; : : : ; N , such that

i.˛i ; T
0/ �

1

3
.4NC1�i � 1/:

This will show that TN ¤ T 0, as i.˛N ; T 0/ > 0.
We set ˛0 to be ˛ to begin the induction.
At any stage, if the arc ˛i does not belong to those that are flipped, we set ˛iC1 WD ˛i

(and in particular its intersection number with T 0 remains unchanged). If it does belong to
an arc that is flipped, then ˛i belongs to a quadrilateral Qi with four boundary arcs, the
collection of which we denote by @Qi . Now the key observation is that the quantity

max
ı2@Qi

¹i.ı; T 0/º

is bounded below by a linear function of i.˛i ; T 0/. This is simply because any arc that
intersects ˛i must then intersect @Qi in both directions, unless it terminates at a vertex of
Qi . An arc that does not terminate in Qi contributes 2 to the intersection between @Qi
and T 0, and an arc that terminates contributes 1, unless it is the other diagonal of Qi , but
there is only one such diagonal.

Hence i.@Qi ; T 0/ � i.˛i ; T 0/ � 1, where the �1 is to account for the diagonal. Now
as Qi has 4 boundary arcs:

max
ı2@Qi

¹i.ı; T 0/º �
i.˛i ; T

0/ � 1

4
(1)

as claimed.
We now set ˛iC1 to be an arc ofQi which realizes this maximal intersection. We finish

by observing that

i.˛iC1; T
0/ �

i.˛i ; T
0/ � 1

4
�

1
3
.4NC1�i � 1/ � 1

4
D
1

3
.4N�i � 1/

as claimed. We point out that the choice ofK came from the inductive step (inequality (1))
and the fact that

NX
jD1

4j D
1

3
.4NC1�i � 1/:

So after any sequence of N flips leaving from T , the resulting triangulation always has an
arc that continues to intersect T 0, and hence cannot be T 0. As this is true for any N , the
two triangulations are never connected by a sequence of flips.

The above proof also results in the following quantitative statement.
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Corollary 2.6. If T and T 0 are such that an arc ˛ of T satisfies

i.˛; T 0/ � K

for K � 1, then the flip distance between T and T 0 is at least

log4.3.K C 1//:

Proof. The argument above shows that you need at least N flips to relate T and T 0 if

i.˛; T 0/ �
1

3
.4N � 1/:

By setting N D log4.3.K C 1//, the result follows.

One ingredient in our proofs will be the use of projections to natural subgraphs con-
sisting in the triangulations that contain a given multiarc. These projections were at least
implicitly studied in [15], and were studied in detail in [9], but in both setups, † was of
finite type and the flip graphs involved were the “usual” ones, where only a single flip was
allowed.

For a given multiarc � of † we define F i
�.†/ to be the graph of F i .†/ spanned by

all vertices T containing �. If � is finite, then F i
�.†/ is always non-empty, but otherwise,

as mentioned above, this might not be the case.
The following result has been shown in [16] for finite type surfaces, and it is true in

this more general setting as well.

Proposition 2.7. F i
�.†/ is a convex subgraph of F i .†/.

Proof. Note that the theorem is true in the finite type setting (for simultaneous flips this is
proved in [16] using the strategy for individual flips from [9]).

The basic observation that allows one to adapt the proof for the finite type setting
here is the following. We suppose F i

�.†/ is non-empty, that is, there exists at least one
triangulation of † which contains �. By Proposition 2.5, this means that for any T 2
F i .†/ we have

sup
˛2�

i.˛; T / < C1:

We are going to project a triangulation T to a triangulation containing � by “combing” T
along � (see Figure 5).

The local picture will be the same as in the finite type setting as each arc of � will
intersect a bounded number of arcs of T .

Consider a multiarc�, and give each of its arcs an orientation (the choice of orientation
does not matter).

Now, a combing projection works as follows. For a given T 2 F i .†/, each arc of T
is sent to a triangulation containing � which is defined by “combing” T along � with the
given orientation. Specifically one defines the map as follows: T is intersected by � and
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Figure 5. “Combing” a triangulation along an oriented multiarc.

hence results in a collection of subarcs which are the connected components of† n�. For
each such subarc a, we define an arc as follows: from an interior point of a (that is a non-
terminal point), extend it in both directions until the terminal points of a. These are points
of � (possibly an endpoint of �). If these are interior points of an arc ˛ of �, continue the
arc following ˛ with its orientation to its terminal endpoint. This map clearly sends a to
an arc, and sends distinct subarcs a; b to (interior) disjoint arcs. Note that different subarcs
can be sent to the same arc.

One needs to check that the result is a triangulation, namely that the connected com-
ponents of the complementary regions to the resulting multiarcs are all triangles. This is
relatively straightforward to check: the rough argument is that otherwise there is a comple-
mentary region that is of greater (arc) complexity but which must have been intersected by
arcs of T or �. These arcs must have resulted in arcs that continue to intersect the region,
hence this cannot be. A detailed argument in the finite type case can be found in both [9]
and [16], and the same argument applies here.

Thus the combing map from F i .†/ to F i
�.†/ is well defined on vertices. Now it

suffices to show that edges are sent to edges. Roughly speaking, this can be deduced from
the fact that quadrilaterals are sent to a collection of quadrilaterals, triangles or arcs, with
at most one quadrilateral in the image. And if multiple quadrilaterals are disjoint, then
their images are disjoint. Again, see [16] for a more detailed argument.

Using this projection, convexity can be deduced from the observation that the combing
map leaves points of F i

�.†/ invariant. Given two triangulations T;T 0 2 F i
�.†/, the image

of geodesic under the combing map between them is a path between them of length at
most d.T; T 0/ and entirely contained in F i

�.†/.

This proposition has an immediate consequence. Note that by a metric space of infinite
rank we mean the absence of finite rank, meaning that for any positive integer k, it contains
a quasi-convex copy Zk with the usual metric.
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Corollary 2.8. If † is of infinite type, any connected component of the flip graph is of
infinite diameter and infinite rank.

Proof. This follows from the fact that given any triangulation T 2 F i .†/, you can choose
a multiarc � � T that separates the surface into infinitely many finite type surfaces each
with their own topology:

† n � D
P[

k2N

†k :

We can now take a bi-infinite geodesic k on each of the flip graphs of the finite type
subsurfaces †k . These are naturally collections of multiarcs that live on † through the
inclusion of†k in†. This gives rise to a collection of triangulations in F i .†/ by choosing
a point of k for all k 2 N and taking the union with �. The convexity of F i

�.†/ means
that this is a convex subset giving us quasi-copies of Zk for any k 2N (the “usual” metric
and the “diagonal” metric are quasi-isometric).

3. The proof of Theorem 1.1

This section is dedicated to proving Theorem 1.1. We begin with a lemma, where we
explicitly need a property of the combing projection from Proposition 2.7.

Lemma 3.1. Let T and T 0 be triangulations of † and let ˛ be an oriented arc of T . Let
T 0˛ be the combing projection of T 0 onto F˛.†/. Then

sup
®
i.ˇ0; T / W ˇ0 2 T 0˛

¯
� sup

®
i.ˇ; T / W ˇ 2 T 0

¯
;

and i.; T 0˛/ � i.; T
0/ for every  2 T .

Proof. Note that the above quantities could be infinite. By definition, every arc ˇ0 of T 0˛
is either ˛, an arc of T 0 or the concatenation of a subarc of a ˇ 2 T 0 and a subarc of ˛.
In the first two cases, the lemma is obvious, and in the final case, the lemma follows as
i.˛; T / D 0 and thus i.ˇ0; T / � i.ˇ; T /:

Lemma 3.2. There exists a function f W N ! N such that the following holds. Let S and
T be two triangulations of † satisfying

max
®
i.˛; T /; i.ˇ; S/ W .˛; ˇ/ 2 S � T

¯
� K

for some finite K. Then there exist multiarcs �1; : : : ; �f .K/ of S such that

(i) S D
Sf .K/
iD1 �i and

(ii) if i.˛; / > 0 for ˛ 2 �i and  2 T , then i.˛0; / D 0 for all ˛0 2 �i n ¹˛º.

The function can be taken to be

f .K/ D 2 � 3K � 1:
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Proof. Consider the graph G whose vertices are the arcs of S and where two vertices
are joined by an edge when the corresponding arcs belong to the boundary of the same
triangle. Note that the degree of all vertices is uniformly bounded by 4. We can define a
distance between two arcs of S as the combinatorial distance of the corresponding vertices
of G.

Let ˛1 and ˛2 be two arcs of S both intersected by some arc ˇ of T . The arc ˇ induces
a path in† from some point in the interior of ˛1 to some point in the interior of ˛2. Hence,
this path crosses, by hypothesis, at mostK � 2 other arcs of S . Thus, the distance between
˛1 and ˛2 in G is at most K � 1.

Now take a multiarc � of S such that the distance in G for every pair of different arcs
of � is at least K. This forces any arc of T to intersect at most one arc in �.

Finally, consider the K-th power of G (the graph GK having the same vertex set as
G and where two vertices are joined by an edge if their distance in G is at most K). The
degree of all vertices of GK is uniformly bounded by 2 � 3K � 2. By Brooks’ coloring
theorem [7] there exists a .2 � 3K � 1/-coloring of the vertices of GK such that any two
adjacent vertices are of a different color. We can now define �1; : : : ; �f .K/ to be the
monochromatic multiarcs and thus f .K/ � 2 � 3K � 1.

Proof of Theorem 1.1. Suppose first that S and T are two maximal triangulations in the
same connected component of F .†/ and consider a path S D T0; T1; : : : ; Tk D T joining
them. By definition, i.˛; T0/ � 1 for all ˛ 2 T1. Note that if ˛ belongs to Ti , every arc
of T0 crossing ˛ either is the other diagonal of the quadrilateral of Ti containing ˛ or it
crosses at least one of the boundary arcs of this quadrilateral. Thus,

i.˛; T0/ � 4max
®
i.ˇ; T0/ W ˇ 2 Ti�1

¯
C 1:

Hence, for all ˛ 2 Tk the intersection with S is at most 4
k�1
3

. The same procedure applies
to the path T D S0; Tk�1 D S1; : : : ; Sk D T0 D S showing that for all ˇ 2 S the inter-
section with S is also at most 4

k�1
3

.
On the other direction, suppose that there exists K � 0 such that all arcs ˛ of S [ T

satisfy i.˛;S [ T /�K. We now apply Lemma 3.2 to decompose the maximal multiarc S
into �1; : : : ;�f .K/. To do so we give every arc of �i an orientation. For i 2 ¹1; : : : ; f .K/º
we define Ti as the combing projection of Ti�1 along (oriented) �i , with T0 D T . To
see that such a simultaneous combing projection exists, let ˛; ˛0 be two different arcs of
�i and denote by †˛ (respectively †˛0 ) the subsurface of † spanned by all triangles of
Ti�1 intersecting ˛ (respectively ˛0). Then the interiors of †˛ and †˛0 are disjoint as a
consequence of Lemmas 3.1 and 3.2. Furthermore, any arc of Ti�1 intersects at most one
of ˛; ˛0. In addition, the complexities of †˛ are uniformly bounded because they can be
triangulated with at mostK triangles. Hence, the total intersection number of Ti�1 \ Ti \
†˛ is bounded above by K2 and the distance in the corresponding flip graphs is at most
K2 (see for instance [9, Corollary 2.13]). As these surfaces †˛ have disjoint interiors,
those flips can be done simultaneously, hence there is a path in F .†/ between Ti�1 and
Ti of length at most K2. This completes the proof.
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As a corollary to the above proof, we get the following quantitative statement (which
does not require the surface to be of infinite type in any way).

Corollary 3.3. For a constant K � 0, let S and T be triangulations of a surface † such
that for every arc ˛ of S and every arc ˇ of T the intersection numbers i.˛;T / and i.ˇ;S/
are bounded above byK. Then the simultaneous flip distance between T and S is bounded
above by

2K2 � 3K �K2:

Proof. By Lemma 3.2 the function f .K/ satisfies f .K/ � 2 � 3K � 1, and this is a bound
on the number of “steps” necessary to get from T to S . As argued above, each step requires
at most K2 (simultaneous) flips, hence the result.

4. The topology of F .†/

We finish this paper with some observations about connected components of these flip
graphs. Deformations spaces of infinite type surfaces generally have infinite numbers of
connected components. For instance, Teichmüller spaces of hyperbolic structures up to
either quasi-conformal or bi-Lipschitz maps have this property (see [2,3,13]). One reason
is, because these maps only deform the lengths of geodesics by bounded amounts, and
on infinite type surfaces, you have a lot of room to construct hyperbolic structures with
wildly behaving length spectra [4].

In our setting, we use our result to show that our flip graphs have many connected
components.

Corollary 4.1. For any † of infinite type, F .†/ has uncountably many connected com-
ponents.

Proof. On † there are infinitely many disjoint simple closed curves, say ıi , i 2 N. Now
consider a triangulation T 2 F .†/.

Observation 1. Each ıi intersects finitely many arcs of T .
We argue as in Proposition 2.3. If there was a ıi that intersects infinitely many arcs

of T , there would be an accumulation of intersection points between the arcs and ıi . The
accumulation point is a point of ıi , hence a point that belongs to either the interior or the
interior of an edge of a triangle. But in either case, it cannot be the accumulation point of
a collection of arcs.

Observation 2. Any arc of T intersects a finite number of curves among ıi , i 2 N.
This is because the curves are disjoint, so for instance can be completed into a pants

decomposition, and as our arcs are two-ended, they cannot pass through infinitely many
pairs of pants.

So for each ıi , we have a finite collection of arcs of T that intersect it, which in turn
intersect a finite number of other curves. As a consequence we have:
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There exists a collection of pairs ıij ; j̨ where j 2 N, j̨ 2 T , i.ıij ; j̨ / ¤ 0, and
i. j̨ ; ıij 0 / D 0 if j ¤ j 0.

In other words, by successively choosing pairs of an intersecting curve and arc disjoint
from all previous pairs, we get this infinite collection. Up to renumbering and relabelling,
we can suppose that we have a collection ıi ; ˛i , i 2 N, such that

i.ıi ; ˛i / � i.ıiC1; ˛iC1/:

Roughly speaking, we will obtain new triangulations from T by twisting the curves
along increasing powers of Dehn twists.

To obtain an uncountable number of connected components of F .†/, we begin by
choosing a collection C of infinite subsets of N such that any two subsets contain infinitely
many different elements. (Said in other way, the difference sets are always infinite.)

Note that C is uncountable: it is of the same cardinality as infinite binary sequences
which pairwise differ in infinitely many indices. And infinite binary sequences, without the
difference condition, have the cardinality of R. And for any given infinite binary sequence,
there are at most countably many elements that only differ by a finite number of indices,
hence our restricted set is also uncountable.

Now we give each ıi an orientation, and for N 2 C , we consider the homeomorphism
'N obtained by Dehn twisting ıi mi times if i 2 N where mi is taken to be such that

i.'N .˛i /; ˛i / � i:

We now observe that ifM;N 2C andM ¤N , then 'M .T / and 'N .T / belong to different
connected components. Indeed, consider the sequence of integersM nN , which is infinite
by hypothesis, and denote them ik , k 2 N .

Thus the homeomorphism 'M acts on ˛ik by twisting mik times along ıik but 'N
leaves ˛ik invariant. Hence:

i.'N .˛ik /; 'M .˛ik // D i.˛ik ; 'M .˛ik // � ik :

So there are arcs of 'M .T / with arbitrarily large intersection with arcs of 'N .T /. Thus,
by Theorem 1.1, they lie in different connected components.
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