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Characters of algebraic groups over number fields

Bachir Bekka and Camille Francini

Abstract. Let k be a number field, G an algebraic group defined over k, and G.k/ the group
of k-rational points in G. We determine the set of functions on G.k/ which are of positive type
and conjugation invariant, under the assumption that G.k/ is generated by its unipotent elements.
An essential step in the proof is the classification of the G.k/-invariant ergodic probability mea-
sures on an adelic solenoid naturally associated to G.k/. This last result is deduced from Ratner’s
measure rigidity theorem for homogeneous spaces of S -adic Lie groups; this appears to be the first
application of Ratner’s theorems in the context of operator algebras.

1. Introduction

Let k be a field and G an algebraic group defined over k. When k is a local field (that
is, a non-discrete locally compact field), the group G D G.k/ of k-rational points in G
is a locally compact group for the topology induced by k. In this case (and when, in
addition, k is of characteristic zero), much is known [15, 21] about the unitary dual yG
of G, the set of equivalence classes of irreducible unitary representations of G in Hilbert
spaces. By way of contrast, if k is a global field (that is, either a number field or a function
field in one variable over a finite field), then G is a countable infinite group and, unless G
is abelian, the classification of yG is a hopeless task, as follows from work of Glimm and
Thoma [20, 41]. In this case, a sensible substitute for yG is the set of characters of G we
are going to define.

Let G be a group. Recall that a function 'WG ! C is of positive type if the complex-
valued matrix .'.g�1j gi //1�i;j�n is positive semi-definite for any g1; : : : ; gn in G.

A function of positive type ' on G which is central (that is, constant on conjugacy
classes) and normalized (that is, '.e/ D 1) will be called a trace on G. The set Tr.G/ of
traces on G is a convex subset of the unit ball of `1.G/ which is compact in the topology
of pointwise convergence. The extreme points of Tr.G/ are called the characters ofG and
the set they constitute will be denoted by Char.G/.

Besides providing an alternative dual space of a group G, characters and traces appear
in various situations. Traces of G are tightly connected to representations of G in the
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unitary group of tracial von Neumann algebras (see below and Section 2.2). The space
Tr.G/ of traces on G encompasses the lattice of all normal subgroups of G, since the
characteristic function of every normal subgroup is a trace on G. More generally, every
measure preserving action of G on a probability space gives rise to an invariant random
subgroup (IRS) on G and therefore to a trace on G (see [19, §9]).

The study of characters on infinite discrete groups was initiated by Thoma [40, 41]
and the space Char.G/ was determined for various groups G (see [1, 9, 10, 14, 24, 30–32,
36, 39]).

Observe that our traces are often called characters in the literature (see, for instance,
[14, 32]).

Let k be a number field (that is, a finite extension of Q) and G a connected linear
algebraic group defined over k. In this paper, we will give a complete description of
Char.G/ for G D G.k/ under the assumption that G is generated by its unipotent one-
parameter subgroups. A unipotent one-parameter subgroup of G is a subgroup of the
form ¹u.t/ j t 2 kº, where uWGa! G is a non-trivial k-rational homomorphism from the
additive group Ga of dimension 1 to G.

The case where G is quasi-simple over k was treated in [2] and the result is that

Char.G/ D ¹z� j � 2 yZº [ ¹1Gº;

where Z is the (finite) center of G and z�WG ! C is defined by z� D � on Z and z� D 0
on G nZ. When G is semi-simple, the computation Char.G/ can easily be reduced to the
quasi-simple case (see [2, Proposition 5.1]; see also Corollary 2.13 below).

We now turn to a general connected linear algebraic group G over k. The unipotent
radical U of G is defined over k, and there exists a connected reductive k-subgroup L,
called a Levi subgroup, such that G D LU (see [28]). Set U WD U \G and L WD L \G.
Then, we have a corresponding semi-direct decomposition G D LU , called the Levi
decomposition of G (see [25, Lemma 2.2]).

Recall that L D TL0 is an almost direct product (see Section 6.3 for this notion) of
a central k-torus T and the derived subgroup L0, which is a semi-simple k-group. Assume
that G is generated by its unipotent one-parameter subgroups. Then the same holds for L.
Since every unipotent one-parameter subgroup of L is contained in L0, it follows that
G D L0.k/U , that is, the Levi subgroup L is semi-simple.

We will describe Char.G/ in terms of data attached to L and the action of L on the
Lie algebra Lie.U/ of U .

The set u of k-points of Lie.U/ is a Lie algebra over k and the exponential map
expWu! U is a bijective map. For every g in G, the automorphism of U given by conju-
gation by g induces an automorphism Ad.g/ of the Lie algebra u (see Section 3.2).

Let yu be the Pontrjagin dual of u, that is, the group of unitary characters of the additive
group of u. We associate to every � 2 yu the following subsets k�, p� of u and L� of L:

• k� is the set of elements X 2 u such that

�.Ad.g/.tX// D 1 for all g 2 G; t 2 kI
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• p� is the set of elements X 2 u such that

�.Ad.g/.tX// D �.tX/ for all g 2 G; t 2 kI

• L� is the set of g 2 L such that Ad.g/.X/ 2 X C k� for every X 2 u.

Then k� and p� are L-invariant ideals of u and L� is the kernel of the quotient adjoint
representation of L on u=k�.

Observe that k� is the largest L-invariant ideal of u contained in Ker.�/.
The setK� WD exp.k�/ is a Zariski-connected normal subgroup ofG. Moreover,P� WD

exp.p�/ is the inverse image in U of the elements in U=K� contained in the center of
G=K� (see Proposition 3.5). The map

��W P� ! S1; exp.X/ 7! �.X/

is a G-invariant unitary character of P�, which is trivial on K�.
Let Ad� denote the coadjoint action (that is, the dual action) of G on yu. We say that

�1; �2 2 yu have the same quasi-orbit underG if the closures of Ad�.G/�1 and Ad�.G/�2
in the compact group yu coincide.

We can now state our main result.

Theorem A. Let G D G.k/ be the group of k-rational points of a connected linear
algebraic group G over a number field k. Assume that G is generated by its unipotent
one-parameter subgroups and let G D LU be a Levi decomposition of G. For � 2 yu and
' 2 Char.L�/, define ˆ.�;'/WG ! C by

ˆ.�;'/.g/ D

´
'.g1/��.u/ if g D g1u for g1 2 L�; u 2 P�;

0 otherwise:

(i) We have
Char.G/ D

®
ˆ.�;'/ j � 2 yu; ' 2 Char.L�/

¯
:

(ii) Let �1; �2 2 yu and '1 2 Char.L�1/, '2 2 Char.L�2/. Thenˆ.�1;'1/ D ˆ.�2;'2/ if
and only if �1 and �2 have the same quasi-orbit under the coadjoint action Ad�

and '1 D '2.

A few words about the proof of Theorem A are in order. The essential step consists in
the analysis of the restriction 'jU to U of a given character ' 2 Char.G/. A first crucial
fact is that  D 'jU ı exp is a G-invariant function of positive type on u (for the underly-
ing abelian group structure) and is extremal under such functions (see Proposition 3.2 and
Theorem 2.11); the Fourier transform of  is a G-invariant ergodic probability measure
on yu, which can be identified with an adelic solenoid X D Ad=Qd , where A is the ring
of adèles (see Section 4.2).

Using Ratner’s measure rigidity results for homogeneous spaces of S -adic Lie groups
(see [26, 35]), we classify all G-invariant probability measures on X ; a corresponding
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description, based on Ratner’s topological rigidity results, is given for theG-orbit closures
in X . The results, which are of independent interest, are summarized as follows; for more
precise statements, see Theorems 5.8 and 5.9 below.

Theorem B. Let G be a connected algebraic subgroup of GLd defined over Q. Assume
that G D G.Q/ is generated by unipotent one-parameter subgroups and consider the
natural action of G on the adelic solenoid X D Ad=Qd .

(i) Every ergodic G-invariant probability measure on X is of the form �xCY for
a point x in X and a G-invariant subsolenoid (that is, a closed and connected
subgroup) Y of X , where �xCY is the normalized Haar measure on x C Y .

(ii) For every x 2 X , the closure of the G-orbit of x in X coincides with x C Y for
a G-invariant subsolenoid Y of X .

As far as we know, our work constitutes the first application of Ratner’s rigidity results
in the context of operator algebras.

Remark 1.1. (i) For every � 2 yu, the group L� as defined above is the set of k-
points of a normal subgroup L� of L defined over k; indeed, L� is the kernel of
the k-rational representation of L on the k-vector space u=k�. (Observe that L�
may be non-connected.) The set Char.L�/ can easily be described by the results
in [2] mentioned above (see Proposition 6.3 below).

(ii) Theorem A allows a full classification of Char.G/ for any group G as above
through the following procedure:

• determine the L-invariant ideals of u;

• fix an L-invariant ideal k of u; determine the space p of L-fixed elements in
the center of u=k and let p be its the inverse image in u;

• determine the subgroup L.k; p/ of L of all elements which act trivially
on p=k; determine Char.L.k;p//;

• let � 2 yu with k�D k; then p�D p and for ' 2 Char.L.k;p//, writeˆ.�;'/ 2
Char.G/.

See Section 7 for some examples.

(iii) The assumption that G is generated by its unipotent one-parameter subgroups
is equivalent to the assumption that the Levi component L of G is semi-simple
and that LC D L, where LC is the subgroup of L defined as in [8, §6]. A neces-
sary condition for the equality LC D L to hold is that every non-trivial simple
algebraic normal subgroup of L is k-isotropic (that is, k � rank.L/ � 1). It is
known that LC D L when L is simply-connected and split or quasi-split over k
(see [38, Lemma 64]).

(iv) A general result about Char.G/ cannot be expected when the conditionLDLC

is dropped; indeed, not even the normal subgroup structure of L is known in
general when L is k-anisotopic (see [34, Chapter 9]).
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(v) We do not know whether an appropriate version of Theorem A is valid when
k is of positive characteristic (say, when k D F.X/ for a finite field F ). The
first obstacle to overcome is that a Levi subgroup of G does not necessarily
exist; the second one is the less tight relationship between unipotent groups and
their Lie algebras; finally, Ratner’s measure rigidity theorem is not known in
full generality (see [16] for a partial result).

(vi) In the case where G is unipotent, that is, G D U , we obtain a “Kirillov type”
description of Char.U /: the mapˆW yu!Char.U /, defined byˆ.�/.u/D ��.u/
for u 2 P� and ˆ.�/.u/ D 0 otherwise, factorizes to a bijection between the
space of quasi-orbits in yu under Ad� and Char.U /. The set Char.U / was deter-
mined in [10, Theorem 4.2] and [37] and also implicitly in [33, Proposition 2.7].

We now rephrase Theorem A in terms of factor representations ofG. Recall that a fac-
tor representation of a group G is a unitary representation � of G on a Hilbert space H

such that the von Neumann subalgebra �.G/00 of L.H / is a factor (see also Section 2.2).
Two such representations �1 and �2 are said to be quasi-equivalent if there exists an iso-
morphism ˆW�1.G/

00 ! �2.G/
00 such that ˆ.�1.g// D �2.g/ for every g 2 G. A factor

representation � ofG is said to be of finite type if �.G/00 is a finite factor, that is, if �.G/00

admits a trace � ; in this case, � ı � belongs to Char.G/ and the map � 7! � ı � factorizes
to a bijection between the quasi-equivalence classes of factor representations of finite type
of G and Char.G/; for all this, see [12, Chapters 6 and 17].

The next result follows immediately from Theorem A, in combination with Proposi-
tion 2.4 below and [12, Corollary 6.8.10].

Let � D L Ë N be a semi-direct product of a subgroup L and an abelian normal
subgroup N . Let � be a unitary representation of L on a Hilbert space H and let � 2 yN
be such that �g D � for every g 2 L. It is straightforward to check that �� defined by
��.g; n/ D �.n/�.g/ for .g; n/ 2 � is a unitary representation of � on H .

Theorem C. Let G D LU be as in Theorem A.

(i) For every � 2 yu and every factor representation � of finite type of L�, the rep-
resentation �.�;�/ WD IndGL�P� ��� induced by ��� is a factor representation
of finite type of G; moreover, every factor representation of finite type of G is
quasi-equivalent to a representation of the form �.�;�/ as above.

(ii) Let �1; �2 2 yu and let �1, �2 be factor representations of finite type of L�1 , L�2 ,
respectively. Then �.�1;�1/ and �.�2;�2/ are quasi-equivalent if and only if �1
and �2 have the same quasi-orbit under the coadjoint action Ad� and �1 and �2
are quasi-equivalent.

This paper is organized as follows. In Section 2, we establish with some detail gen-
eral facts about functions of positive type on a group � which are invariant under a
group of automorphisms of �; in particular, we give for two basic results (Theorems 2.11
and 2.12) new short proofs of an operator algebraic flavor. Section 3 deals with the crucial
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relationship (Proposition 3.2) between traces on unipotent algebraic groups and invari-
ant traces on the associated Lie algebra. In Section 4, we show how the study of char-
acters on an algebraic group over Q leads to the study of invariant probability mea-
sures on adelic solenoids. Such measures as well as orbits closures are classified in Sec-
tion 5, providing the proof of Theorem B. The proof of Theorem A is completed in
Section 6. In Section 7, we compute Char.G/ for a few specific examples of algebraic
groups G.

2. Invariant traces and von Neumann algebras

We consider functions of positive type on a group � which are invariant under a group G
of automorphisms of � , which may be larger than the group of inner automorphisms of � .
A systematic treatment of such functions is missing in the literature, although they have
already been considered in [41] and [40]. In view of their importance in this article and for
the convenience of the reader as well, we establish with more detail than necessary some
general facts about them; in particular, we give new and more transparent proofs for two
crucial and non-obvious properties of these functions (Theorems 2.11 and 2.12), based on
the consideration of associated von Neumann algebras.

2.1. Some general facts on invariant traces

Let � , G be discrete groups and assume that G acts by automorphisms on � .

Definition 2.1. (i) A function 'W� ! C is called a G-invariant trace on � if

• ' is of positive type, that is, for all �1; : : : ; �n 2 C and all 
1; : : : ; 
n 2 � ,
we have

nX
i;jD1

�i N�j'.

�1
j 
i / � 0;

• '.g.
// D '.
/ for all 
 2 � and g 2 G, and

• ' is normalized, that is, '.e/ D 1.

We denote by Tr.�; G/ the set of G-invariant traces on � . In the case where
G D � and � acts on itself by conjugation, we write Tr.�/ instead of Tr.�; �/.

(ii) The set Tr.�;G/ is a compact convex set in the unit ball of `1.�/ endowed with
the weak*-topology. Let Char.�; G/ be the set of extremal points in Tr.�; G/.
In case G D � , we write as above, Char.�/ instead of Char.�; �/.

(iii) Functions ' 2 Char.�; G/ will be called G-invariant characters on � and are
characterized by the following property: if  is a G-invariant function of posi-
tive type on � which is dominated by ' (that is, ' �  is a function of positive
type), then  D �' for some � > 0.
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Remark 2.2. Assume that � is countable. Then Tr.�; G/ is metrizable and Char.�; G/
is a Borel subset of Tr.�; G/. By Choquet’s theory, every ' 2 Tr.�; G/ can be written as
integral

' D

Z
Tr.�;G/

 d�'. /

for a probability measure �' on Tr.�;G/with �'.Char.�;G//D 1. WhenG contains the
group of inner automorphisms of � , the measure �' is unique, as Tr.�; G/ is a Choquet
simplex in this case [41].

The proof of the following proposition is straightforward. Observe that, ifN is aG-in-
variant normal subgroup of � , thenG acts by automorphisms on the quotient group �=N .

Proposition 2.3. Let N be a G-invariant normal subgroup of � and let pW� ! �=N be
the canonical projection.

(i) For every ' 2 Tr.�=N;G/, we have ' ı p 2 Tr.�;G/.

(ii) The image of the map

Tr.�=N; �/! Tr.�;G/; ' 7! ' ı p

is ¹ 2 Tr.�;G/ j  jN D 1N º.

(iii) We have ' 2 Char.�=N;G/ if and only if ' ı p 2 Char.�;G/.

Let ' be a normalized function of positive type on � . Recall (see [3, Theorem C.4.10])
that there is a so-called GNS-triple .�;H ; �/ associated to ', consisting of a cyclic unitary
representation of � on a Hilbert space H with cyclic unit vector � such that

'.
/ D h�.
/�; �i for all 
 2 �:

The triple .�;H ; �/ is unique in the following sense: if .� 0;H 0; � 0/ is another GNS-triple
associated to ', then there is a unique isomorphismU WH!H 0 of Hilbert spaces such that

U�.
/U�1 D � 0.
/ for all 
 2 � and U� D � 0:

As the next proposition shows, invariant traces on a subgroup of � can be induced to
invariant traces on � .

For a function  WY ! C defined on a subset Y of a set X , we denote by z the trivial
extension of  to X , that is, the function z WX ! C given by

z .x/ D

´
 .x/ if x 2 Y;

0 if x … Y:

Proposition 2.4. Let H be a G-invariant subgroup of � and  2 Tr.H; G/. Then z 2
Tr.�; G/. Moreover, if � is a GNS-representation of H associated to  , then the GNS-
representation of � associated to z is equivalent to the induced representation Ind�H � .



B. Bekka and C. Francini 1126

Proof. Set ' WD z . It is obvious that ' is G-invariant. The fact that ' is a function of pos-
itive type can be checked directly from the definition of such a function (see [22, §32.43]).
As we need to identify the GNS-representation associated to ', we sketch another well-
known proof for this fact.

Let .�;K; �/ be a GNS-triple associated to  . Let � D Ind�H � be realized on
H D `2.�=H;K/, as in [17, §6.1, Remark 2]. Let � 2 H be defined by �.H/ D � and
�.
H/ D 0 if 
 … H . Then '.
/ D h�.
/�; �i for every 
 2 � and � is a cyclic vector
for � . So, .�;H ; �/ is a GNS-triple for '.

Attached to a given invariant trace on � , there are two invariant subgroups of � which
will play an important role in the sequel.

Proposition 2.5. Let ' 2 Tr.�;G/. Define

K' D ¹
 2 � j '.
/ D 1º and P' D ¹
 2 � j j'.
/j D 1º:

(i) K' and P' are G-invariant closed subgroups of � with K' � P' .

(ii) For x 2P' and 
 2 � , we have '.x
/D '.x/'.
/; in particular, the restriction
of ' to P' is a G-invariant unitary character of P' .

(iii) For x 2 P' and g 2 G, we have g.x/x�1 2 K' .

Proof. Let .�;H ; �/ be a GNS-triple associated to '. Using the equality case of Cauchy–
Schwarz inequality, it is clear that

K' D ¹x 2 � j �.x/� D �º and P' D ¹x 2 � j �.x/� D '.x/�º:

Claims (i), (ii) and (iii) follow from this.

We will later need the following elementary lemma.

Lemma 2.6. Let ' 2 Tr.�; G/ and 
 2 � . Assume that there exists a sequence .gn/n�1
in G such that

'.gn.
/gm.
/
�1/ D 0 for all n ¤ m:

Then '.
/ D 0.

Proof. Let .�;H ; �/ be a GNS-triple for '. We have

h�.gm.
/
�1/�; �.gn.
/

�1/�i D h�.gn.
/gm.
/
�1/�; �i D '.gn.
/gm.
/

�1/ D 0

for all m, n with m ¤ n. Therefore, .�.gn.
/�1/�/n�1 is an orthonormal sequence in H

and so converges weakly to 0. The claim follows, since '.
/ D '.
�1/ and, for all n,

'.
�1/ D '.gn.
/
�1/ D h�.gn.
/

�1/�; �i:
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2.2. Invariant traces and von Neumann algebras

We relate traces on groups to traces on appropriate von Neumann algebras.
Let � , G be discrete groups and assume that G acts by automorphisms on � . The

uniqueness of the GNS construction for functions of positive type has the following con-
sequence for G-invariant traces on � .

Proposition 2.7. Let ' 2 Tr.�; G/ and let .�;H ; �/ be a GNS-triple associated to '.
There exists a unique unitary representation g 7! Ug of G on H such that

Ug�.
/U
�1
g D �.g.
// for all g 2 G; 
 2 � and Ug� D �:

Proof. Let g 2 G. Consider the unitary representation �g of � on H given by �g.
/ D
�.g.
// for 
 2� . Since ' is invariant under g, the triple .�g ;H ; �/ is another GNS-triple
associated to '. Hence, there is a unique unitary operator Ug WH ! H such that

Ug�.
/U
�1
g D �g.
/ for all 
 2 � and Ug� D �:

Using the uniqueness of Ug , one checks that g 7! Ug is a representation of G.

We now give a necessary and sufficient condition for a G-invariant trace on � to be
a character.

Let .�;H ; �/ be a GNS-triple associated to ', and let g 7! Ug be the unitary represen-
tation of G on H as in Proposition 2.7. Let M' be the von Neumann subalgebra of L.H /

generated by the set of operators �.�/ [ ¹Ug j g 2 Gº, that is,

M' WD
®
�.
/; Ug j 
 2 �; g 2 G

¯00
:

Proposition 2.8. Let ' 2 Tr.�; G/ with associated GNS-triple .�;H ; �/ and let M' be
the von Neumann subalgebra of L.H / as above. For every T 2L.H / with 0� T � I , let
'T be defined by 'T .
/D h�.
/T �; T �i for 
 2 � . Then T 7! 'T is a bijection between
¹T 2M0' j 0 � T � I º and the set of G-invariant functions of positive type on � which
are dominated by '. In particular, we have ' 2 Char.�;G/ if and only if M0' D CI .

Proof. The map T 7! 'T is known to be a bijection between the set ¹T 2 �.�/0 j 0 �
T � I º and the set of functions of positive type on � which are dominated by ' (apply [12,
Proposition 2.5.1] to the �-algebra CŒ��, with the convolution product and the involution
given by f �.
/ D f .
�1/ for f 2 CŒ��).

Therefore, it suffices to check that, for T 2 �.�/0 with 0 � T � I , the function 'T is
G-invariant if and only if T 2 ¹Ug j g 2 Gº0.

Let T 2M0' with 0 � T � I . For every g 2 G, we have

'T .g.
// D h�.g.
//T �; T �i D hUg�.
/Ug�1T �; T �i

D h�.
/T Ug�1�; T Ug�1�i D h�.
/T �; T �i D 'T .
/;

for all 
 2 �; so, 'T is G-invariant.



B. Bekka and C. Francini 1128

Conversely, let T 2 �.�/0 with 0 � T � I be such that 'T is G-invariant. Let g 2 G.
For every 
 2 � , we have

'Ug�1T Ug .
/ D h�.
/Ug�1T Ug�; Ug�1T Ug�i D h�.
/Ug�1T �; Ug�1T �i

D hUg�.
/Ug�1T �; T �i D h�.g.
//T �; T �i D 'T .g.
// D 'T .
/:

Since 0 � Ug�1T Ug � I , it follows that Ug�1T Ug D T , by uniqueness of T ; therefore,
T 2M0' .

Let Z.�/ be the center of � . We call the subgroup

Z.�/G WD ¹z 2 Z.�/ j g.z/ D z for all g 2 Gº

the G-center of � . We draw a first consequence on the values taken by a G-invariant
character on Z.�/G .

Corollary 2.9. Let ' 2 Char.�;G/. The G-center Z.�/G of � is contained in P' .

Proof. Let .�;H ; �/ be a GNS-triple associated to '. For every z 2 Z.�/G , the opera-
tor �.z/ commutes with �.
/ and Ug for every 
 2 � and every g 2 G. It follows from
Proposition 2.8 that �.z/ is a scalar multiple of IH and hence that z 2 P' .

We will be mostly interested in the case where G contains the group of all inner auto-
morphisms of � . Upon replacing G by the semi-direct group G Ë � , we will therefore
often assume that � is a normal subgroup of G.

Let G be a discrete group and N a normal subgroup of G. Then Tr.N; G/ � Tr.N /
denotes the convex set of G-invariant traces on N and Char.N; G/ the set of extreme
points in Tr.N; G/. We first draw a consequence of Propositions 2.7 and 2.8 in the case
N D G.

Recall that a (finite) trace on a von Neumann algebra M � L.H / is a positive linear
functional � on M such that

�.TS/ D �.ST / for all S; T 2M:

Such a trace � is faithful if �.T �T / > 0 for every T ¤ 0 and normal if � is continuous on
the unit ball of M for the weak operator topology. A von Neumann algebra M which has
a normal faithful trace is said to be a finite von Neumann algebra.

Let � be a normal faithful trace on M and let T be in the center M \M0 of M with
0 � T � I . Then �T WM! C, defined by

�T .S/ D �.ST / for all S 2M;

is a normal trace on M which is dominated by � (that is, �T .S/ � �.S/ for every S 2M

with S � 0). The map T 7! �T is a bijection between ¹T 2M \M0 j 0 � T � I º and the
set of normal traces on M which are dominated by � (see [13, Chapter I, §6, Theorem 3]).

Recall that a von Neumann subalgebra M of L.H / is a factor if its center M \M0

consists only of multiples of the identity operator I .
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Corollary 2.10. Let ' 2 Tr.G/ and let .�;H ; �/ be a GNS-triple associated to '.

(i) The linear functional � WT 7! hT �; �i is a normal faithful trace on �.G/00.

(ii) The commutant M0' of M' coincides with the center of the von Neumann algebra
�.G/00 generated by �.G/. In particular, ' 2 Char.G/ if and only if �.G/00 is
a factor.

Proof. (i) One checks immediately that � , as defined above, is a trace on �.G/00. It is clear
that � is normal. Let T 2 �.G/00 be such that �.T �T / D 0. Then

kT�.g/�k2 D �
�
�.g�1/T �T�.g/

�
D �.T �T / D 0;

that is, T�.g/� D 0 for all g 2 G; hence, T D 0 since � is a cyclic vector for � . So, � is
faithful.

(ii) Observe first that, for every g 2 G, we have

Ug�.x/Ug�1 D �.gxg
�1/ D �.g/�.x/�.g�1/ for all x 2 G;

where g 7!Ug is the representation ofG as in Proposition 2.7. It follows thatUgT Ug�1 D
�.g/T�.g�1/ for every T 2 �.G/00. Hence, �.G/00 \ �.G/0 is contained in M0' .

Conversely, let T 2M0' with 0 � T � I . By Proposition 2.8, 'T 1=2 is a G-invariant
function of positive type dominated by '. The canonical extension of 'T 1=2 to �.G/00 is
a normal trace � 0 on �.G/00. Hence, by the result recalled above, � 0 D �S for a unique
S 2 �.G/0 \ �.G/00 with 0 � S � I . This shows that 'T 1=2 D 'S1=2 . Since T and S
both belong to �.G/0, it follows that T D S . So, T 2 �.G/0 \ �.G/00. Therefore, M0' is
contained in �.G/0 \ �.G/00.

The following result, which will be crucial in the sequel, appears in [41, Lemma 14];
the proof we give here for it is shorter and more transparent than the original one.

Theorem 2.11. Let G be a discrete group, N a normal subgroup of G and  2 Char.G/.
Then  jN 2 Char.N;G/.

Proof. Let .�;H ; �/ be a GNS-triple associated to  . Set ' WD  jN and let K be the
closed linear span of ¹�.x/� j x 2 N º. Then .�jN ;K; �/ is a GNS-triple associated to '.

Let g 7! Ug be the representation of G on H associated to  as in Proposition 2.7.
The subspace K is invariant under Ug for g 2 G, since Ug�.x/U�1g D �.gxg�1/ and
Ug� D �. So, the representation of G on K associated to ' is g 7! Ug jK . Let M' be the
von Neumann subalgebra of L.K/ generated by

¹�.x/jK j x 2 N º [ ¹Ug jK j g 2 Gº:

In view of Proposition 2.8, it suffices to show that M0' D CI . Let T 2 M0' with
0 � T � I . Consider the linear functional � 0 on �.G/00 given by

� 0.S/ D hST �; T �i for all S 2 �.G/00:
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We claim that � 0 is a normal trace on �.G/00. Indeed, it is clear that � is normal; moreover,
for g; h 2 G, we have

� 0.ghg�1/ D h�.ghg�1/T �; T �i D hUg�.h/Ug�1T �; T �i

D h�.h/T Ug�1�; Ug�1T �i D h�.h/T �; T �i D �
0.h/:

Let � 00 WD � C � 0, where � is the faithful trace on �.G/00 defined by ', as in Corollary 2.10.
Then � 00 is a normal faithful trace on �.G/00, and � 00 dominates � and � 0. Since �.G/00 is
a factor, it follows that � and � 0 are both proportional to � 00. Hence, there exists �� 0 such
that � 0 D �� . So,

h�.x/T �; T �i D h�.x/
p
��;
p
��i for all x 2 N:

Since T 2 ¹�.x/jK j x 2 N º0 and 0 � T � I , it follows that T D
p
�IK .

As we now show, the set of characters of a product group admits a simple description;
again, this is a result due to Thoma [40, Satz 4], for which we provide a short proof.

For sets X1; : : : ; Xr and functions 'i WXi ! C, i 2 ¹1; : : : ; rº, we denote by '1 ˝
� � � ˝ 'r the function on X1 � � � � �Xr given by

'1 ˝ � � � ˝ 'r .x1; : : : ; xr / D '1.x1/ � � �'r .xr /;

for all .x1; : : : ; xr / 2 X1 � � � � �Xr .

Theorem 2.12. Let G1, G2 be discrete groups. Then

Char.G1 �G2/ D
®
'1 ˝ '2 j '1 2 Char.G1/; '2 2 Char.G2/

¯
:

Proof. Set G WD G1 �G2.
For i D 1; 2, let 'i 2 Char.Gi /. We claim that

' WD '1 ˝ '2 2 Char.G/:

Indeed, let .�i ;Hi ; �i / be a GNS-triple associated to 'i . Then .�;H ; �/ is a GNS-triple
associated to ', where � is the tensor product representation �1 ˝ �2 on H WDH1 ˝H2

and � WD �1 ˝ �2. In view of Corollary 2.10, we have to show that �.G/00 is a factor. For
this, it suffices to show that the von Neumann algebra M generated by �.G/00 [ �.G/0

coincides with L.H /.
On the one hand, �.G/00 contains �1.G1/00˝ I and I ˝ �2.G2/00, and �.G/0 contains

�1.G1/
0 ˝ I and I ˝ �.G2/0; hence, M contains M1 ˝M2, where Mi is the von Neu-

mann algebra generated by �i .Gi /00 [ �i .Gi /0. On the other hand, since 'i 2 Char.Gi /,
we have Mi DL.Hi /. So, M contains the von Neumann algebra generated by ¹T1˝ T2 j
T1 2 L.H1/; T2 2 L.H2/º, which is L.H /.

Conversely, let ' 2 Char.G/. Let .�;H ; �/ be a GNS-triple associated to '. By Corol-
lary 2.10, M WD �.G/00 is a factor.
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For i D 1; 2, set Mi WD �.Gi /
00, where we identify Gi with the subgroup Gi � ¹eº

ofG. We claim that M1 and M2 are factors. Indeed, since M1 �M02, the center M1 \M01
of M1 is contained in M02 \M01. As M1 [M2 generate M, it follows that M1 \M01 is
contained in M0 and so in M \M0. Hence, M1 \M01 D CI , since M is a factor. So, M1

and, similarly, M2 are factors.
Next, recall (Corollary 2.10) that M has a normal faithful trace � given by �.T / D

hT �; �i for T 2M. The restriction � .1/ of � to M1 is a normal faithful trace on M1.
Let T2 2M2 with 0 � T2 � I and T2 ¤ 0. Define a positive and normal linear func-

tional � .1/T2 on M1 by

�
.1/
T2
.S/ D �.ST2/ for all S 2M1:

For S; T 2M1, we have

�
.1/
T2
.ST / D �.ST T2/ D �.ST2T / D �..ST2/T / D �.T .ST2// D �

.1/
T2
.TS/:

So, � .1/T2 is a normal trace on M1. Clearly, � .1/T2 is dominated by � .1/. Since M1 is a factor,
it follows from the result quoted before Corollary 2.10 that there exists a scalar �.T2/ � 0
such that � .1/T2 D �.T2/�

.1/, that is,

�.T1T2/ D �.T2/�.T1/ for all T1 2M1:

Taking T1 D I , we see that �.T2/ D �.T2/. It follows that

�.T1T2/ D �.T1/�.T2/ for all T1 2M1; T2 2M2;

and, in particular, ' D '1 ˝ '2, for 'i D 'jGi .

The following result is an immediate consequence of Proposition 2.12.
Recall (see Proposition 2.3) that, when N is a normal subgroup of a group G, we can

identify Char.G=N/ with the subset ¹' 2 Char.G/ j 'jN D 1º of Char.G/.

Corollary 2.13. For discrete groups G;G1; : : : ; Gr , let

pW G1 � � � � �Gr ! G

be a surjective homomorphism. Then

Char.G/ D
®
' D '1 ˝ � � � ˝ 'r j 'jN D 1 and 'i 2 Char.Gi /; i D 1; : : : ; r

¯
;

where N is the kernel of p. In particular, for ' 2 Char.G/, we have

'.g1 : : : gn/ D '.g1/ : : : '.gn/

for all gi 2 p.¹eº � � � � �Gi � � � � � ¹eº/.
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3. Traces on unipotent groups

In this section, we will show that traces on a unipotent algebraic group U are in a one-
to-one correspondence with Ad.U /-invariant positive definite functions on the Lie alge-
bra of U .

3.1. Invariant traces on abelian groups

Let A be a discrete abelian group and yA the Pontrjagin dual of A, which is a compact
abelian group. Then Tr.A/ is the set of normalized functions of positive type on A and
Char.A/ D yA.

Let Prob. yA/ denote the set of regular probability measures on the Borel subsets of yA.
For � 2 Prob. yA/, the Fourier–Stieltjes transform F .�/WA! C of � is given by

F .�/.a/ D

Z
yA

�.a/ d�.�/ for all � 2 yA:

By Bochner’s theorem (see, e.g., [22, §33]), the map F W� 7! F .�/ is a bijection between
Prob. yA/ and Tr.A/.

Let G be a group acting by automorphisms on A. Then G acts by continuous auto-
morphisms on Tr.A/ and on yA D Char.A/, via the dual action given by

'g.a/ D '.g�1.a// for all ' 2 Tr.A/; g 2 G; a 2 A:

Let .g; �/ 7! g�.�/ be the induced action of G on Prob. yA/; so, g�.�/ is the image of
� 2 Prob. yA/ under the map � 7! �g .

Let Prob. yA/G be the subset of Prob. yA/ consisting ofG-invariant probability measures
and denote by Prob. yA/Gerg the measures in Prob. yA/G which are ergodic.

Proposition 3.1. Let A be a discrete abelian group and G a group acting by automor-
phisms on A. The Fourier–Stieltjes transform F restricts to bijections

F W Prob. yA/G ! Tr.A;G/ and F W Prob. yA/Gerg ! Char.A;G/:

Proof. The claims follow from the fact that F W Prob. yA/! Tr.A/ is an affine G-equiv-
ariant map and that Prob. yA/Gerg is the set of extreme points in the convex compact set
Prob. yA/G .

3.2. Invariant traces on unipotent groups

Let k be a field of characteristic 0. Let Un be the group of upper triangular unipotent
n � n matrices over k, for n � 1. Then Un is the group of k-points of an algebraic group
over k and its Lie algebra is the Lie algebra un of the strictly upper triangular matrices.
The exponential map expW un ! Un is a bijection and, by the Campbell–Hausdorff for-
mula, there exists a polynomial map P W un � un ! un with coefficients in k such that
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exp.X/ exp.Y / D exp.P.X; Y // for all X; Y 2 un. Denote by logWUn ! un the inverse
map of exp.

Let u be a nilpotent Lie algebra over k. Then, by the theorems of Ado and Engel, u can
be viewed as Lie subalgebra of un for some n � 1 and exp.u/ is an algebraic subgroup
of Un.

Let U be the group of k-points of a unipotent algebraic group over k, that is, an
algebraic subgroup of Un for some n � 1. Then uD log.U / is a Lie subalgebra of un and
expWu! U is a bijection (for all this, see [27, Chapter 14]).

For every u 2 U , the automorphism of U given by conjugation with u induces an
automorphism Ad.u/ of the Lie algebra u determined by the property

exp.Ad.u/.X// D u exp.X/u�1 for all X 2 u:

Observe that a function ' on U is central (that is, constant on the U conjugacy classes) if
and only if the corresponding function ' ı exp on u is Ad.U /-invariant.

The following proposition will be a crucial tool in our proof of Theorem A.

Proposition 3.2. Let U be the group of k-points of a unipotent algebraic group over
a field k of characteristic zero. Let 'WU ! C. Then ' 2 Tr.U / if and only if ' ı exp 2
Tr.u;Ad.U //. So, the map ' 7! ' ı exp is a continuous affine bijection between Tr.U /
and Tr.u;Ad.U //.

Proof. Set '0 WD ' ı exp. Since ' and '0 are invariant, we have to show that ' is of positive
type on U if and only if '0 is of positive type on u.

Let Z.U / be the center of U and z the center of u. Set � WD 'jZ.U/ and �0 WD '0jz.

First step. Assume either that ' is of positive type on U or that '0 is of positive type on u.
Then � is of positive type on Z.U / and �0 is of positive type on z.

Indeed, this follows from the fact that expW z! Z is a group isomorphism.
We will reduce the proof of Proposition 3.2 to the case where ' has the following

multiplicativity property:

'.gz/ D '.g/�.z/ for all g 2 U; z 2 Z.U /: (�)

Observe that property (�) is equivalent to

'0.X CZ/ D '0.X/�0.Z/ for all X 2 u; Z 2 z; (�0)

since exp.X CZ/ D exp.X/ exp.Z/ for X 2 u and Z 2 z.

Second step. To prove Proposition 3.2, we may assume that ' has property (�0).
Indeed, since Tr.U / is the closed convex hull of Char.U / and Tr.u; U / is the closed

convex hull of Char.u; U /, it suffices to prove that if ' 2 Char.U /, then '0 is of positive
type on u, and that if '0 2 Char.u; U /, then ' is of positive type on U . Moreover, by
Corollary 2.9 and Proposition 2.5, ' has property (�) if ' 2 Char.U /, and '0 has prop-
erty (�0) if '0 2 Char.u; U /. This proves the claim.
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In view of the second step, we may and will assume in the sequel that 'WU ! C is
a central function, normalized by '.e/ D 1, with property (�). If, moreover, either ' is of
positive type or '0 is of positive type, then � 2 1Z.U / and �0 2 yu, by the first step.

Third step. Assume that either ' is of positive type or that '0 is of positive type. Assume
also that Ker�0 contains no non-zero linear subspace. We claim that both ' and '0 are of
positive type.

To show this, it suffices to prove that '0 D z�0 (that is, '0 D 0 on u n z). Indeed, since
this last statement is equivalent to ' D z� and since � 2 1Z.U / and �0 2 yz, Proposition 2.4
will imply that ' and '0 are of positive type.

Let .zi /1�i�r be the ascending central series of u; so, z1 D z, ziC1 is the inverse image
in u of the center of u=zi under the canonical map u! u=zi for every i , and zr D u.

Let .Zi .U //1�i�r be the corresponding ascending central series of U that is given by
Zi .U / D exp zi .

We show by induction on i that '0 D 0 on zi n z for every i 2 ¹2; : : : ; rº.
Indeed, let X 2 z2 n z. There exists Y 2 u with ŒY;X� ¤ 0. Since ŒY;X� 2 z and since

Ker �0 contains no non-zero linear subspace, there exists t 2 k such that �0.t ŒY; X�/ D
�0.ŒtY;X�/ ¤ 1. Upon replacing Y by tY , we can assume that �0.ŒY;X�/ ¤ 1. Since '0 is
Ad.U /-invariant, it follows from property (�) that

'0.X/ D '0.Ad.expY /.X// D '0.X C ŒY; X�/ D '0.X/�0.ŒY;X�/:

As �0.ŒY;X/� ¤ 1, we have '0.X/ D 0; so, the case i D 2 is settled.
Assume now '0 D 0 on zi n z for some i 2 ¹2; : : : ; rº. Let X 2 ziC1 n zi . Then there

exists Y 2 u such that ŒY; X� … zi�1. Let .tn/n�1 be a sequence of pairwise distinct
elements in k. Set yn D exp.tnY / 2 U . Denoting by pi�1W u ! u=zi�1 the canonical
projection, we have

pi�1.Ad.yn/X �X/ D pi�1.tnŒY; X�/;

since Œu; Œu; X�� � zi�1. As .tn � tm/ŒY;X� … zi�1, it follows that

.Ad.yn/X �X/ � .Ad.ym/X �X/ … z for all n ¤ m:

Since Ad.yn/X � X 2 zi and '0 D 0 on zi n z by the induction hypothesis, we have
therefore

'0.Ad.yn/X � Ad.ym/X/ D 0 for all n ¤ m: (��0)

We also have, by the Campbell–Hausdorff formula,

pi�1.log.Œyn; exp.X/�// D pi�1.log.exp.tnY / exp.X/ exp.�tnY / exp.�X///

D pi�1.ŒtnY;X�/;

where Œu; v� D uvu�1v�1 is the commutator of u; v 2 U . As ŒtnY; X� commutes with
ŒtmY;X�, it follows that

Œyn; exp.X/�Œym; exp.X/��1 … Z.U / for all n ¤ m:
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Since Œyn; exp.X/� 2 Zi .U / and ' D 0 on Zi .U / n Z.U / by the induction hypothesis,
we have therefore

'
�
Œyn; exp.X/�Œym; exp.X/��1

�
D 0 for all n ¤ m: (��)

If '0 is of positive type, it follows from Lemma 2.6 and from (��0) that '0.X/ D 0. If ' is
of positive type, then Lemma 2.6 and (��) imply that '.expX/ D 0, that is, '0.X/ D 0.

As a result, '0 D 0 on zi n z for every i 2 ¹2; : : : ; rº. Since zr D u, the claim is proved.

Fourth step. Assume that either ' is of positive type or '0 is of positive type. Then both '
and '0 are of positive type.

We proceed by induction on dimk u. The case dimk u D 0 being obvious, assume
that the claim is true for every unipotent algebraic group with a Lie algebra of dimension
strictly smaller than dimk u.

In view of the third step, we may assume that there exists a subspace k of z with
dimk k > 0 contained in Ker�0. Then '0 can be viewed as a function on the nilpotent Lie
algebra u=k and ' as a function of positive type on the corresponding unipotent algebraic
group U= exp.k/. Since dimk u=k is strictly smaller than dimk u, the claim follows from
the induction hypothesis.

Remark 3.3. Using induction on dimk u as well as the arguments used in the third step
of the proof of Proposition 3.2, one can easily obtain the description of Char.U / given in
Theorem A for the special case G D U .

Let G be a group acting by automorphisms on U . Every g 2 G induces an automor-
phism X 7! g.X/ of u determined by the property

exp.g.X// D g.exp.X// for all X 2 u:

Let yu be the Pontrjagin dual of the additive group yu. ThenG acts by automorphisms yu,
induced by the dual action.

Since the map  7!  ı log from the space of functions on u to the space of functions
on U is tautologicallyG-equivariant, the following result is an immediate consequence of
Propositions 3.2 and 3.1.

Corollary 3.4. Let U be as in Proposition 3.2 and let G be a group acting as automor-
phisms of U . Assume that the image of G in Aut.u/ contains Ad.U /.

(i) The map
Char.u; G/! Char.U;G/;  7!  ı log

is a bijection.

(ii) The map
Prob.yu/Gerg ! Char.U;G/; � 7! F .�/ ı log

is a bijection.
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Let G be a group of automorphisms of U containing Ad.U /. Let � 2 yu. Recall (see
Section 1) that we associated to � the following two G-invariant ideals of u

k� D
®
X 2 u j �.Ad.g/.tX// D 1 for all g 2 G; t 2 k

¯
and

p� D
®
X 2 u j �.Ad.g/.tX// D �.tX/ for all g 2 G; t 2 k

¯
:

Proposition 3.5. Let � 2 yu, pWu! u=k�, and P� D exp p�.

(i) We have
p� D p

�1.Z.u=k�/
G/;

where Z.u=k�/G is the central ideal of G-fixed elements in u=k�.

(ii) The map
��W P� ! S1; exp.X/! �.X/

is a G-invariant unitary character of P�.

Proof. (i) Let X 2 u. We have

p.X/ 2 Z.u=k�/
G
, Ad.g/X �X 2 k� for all g 2 G

, Ad.g/.tX/ � tX 2 k� for all g 2 G; t 2 k

, �.Ad.g/.tX// D �.tX/ for all g 2 G; t 2 k

, X 2 p�:

(ii) This claim is a special case of Proposition 3.2.

We will later need the following elementary lemma.

Lemma 3.6. LetU be as in Proposition 3.2 and g 2Aut.U /. LetN be a normal subgroup
of U . For X 2 u, the set

A WD
®
t 2 k j exp.�tX/ exp.g.tX// 2 N

¯
is a subgroup of the additive group of the field k.

Proof. Observe first that 0 2 A. Let t; s 2 A. Then

exp.�.t � s/X/ exp.g..t � s/X//

D exp.sX/ exp.�tX/ exp.g.tX// exp.g.�sX//

D exp.sX/
�
exp.�tX/ exp.g.tX// exp.g.�sX// exp.sX/

�
exp.�sX/

D exp.sX/
�
exp.�tX/ exp.g.tX//.exp.�sX/ exp.g.sX///�1

�
exp.�sX/:

Since N is a normal subgroup of U , it follows that t � s 2 A.
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4. Characters and invariant probability measures

In this section, we show how a character on an algebraic group over Q gives rise to an
invariant ergodic probability measure on an appropriate adelic solenoid.

4.1. Reduction to the case k D Q

Let k be a number field andG DG.k/ be the group of k-rational points of a connected lin-
ear algebraic group G over k. By Weil’s restriction of scalars (see [45, Proposition 6.1.3],
[7, §§6.17–6.21]), there is an algebraic group G0 over Q such that G is naturally isomor-
phic to the group G0 D G0.Q/ of Q-points of G0. If G D LU is a Levi decomposition
of G over k, then G0 D L0U 0 is a Levi decomposition of G0 over Q, where L0 and U 0

are the images of L and U under the isomorphism G ! G0. Moreover, G0 is generated
by its unipotent one-parameter subgroups if G is generated by unipotent one-parameter
subgroups.

The isomorphism G ! G0 induces an isomorphism u ! u0 between the additive
groups of the Lie algebras of U and of U 0 as well as an isomorphism yu0 ! yu between
their Pontrjagin duals, which are equivariant for the adjoint and co-adjoint actions of G
and G0.

Assume that Theorem A holds for G0. Then every element in Char.G0/ is of the
form ˆ�0;'0 for some �0 2 yu0 and '0 2 Char.L0

�0
/. For the corresponding � 2 yu and

' 2 Char.L�/, we have ˆ�;' 2 Char.G/. So, Char.G/ D ¹ˆ�;' j � 2 yu; ' 2 Char.L�/º.
Since the quasi-orbits of G0 in yu0 correspond to the quasi-orbits of G in yu, this shows that
Theorem A holds for G.

4.2. Restriction to the unipotent radical

Let G be the group of Q-rational points of a connected linear algebraic group over Q and
let G D LU be a Levi decomposition of G.

Let  2 Char.G/. Set ' WD  jU . By Theorem 2.11, we have ' 2 Char.U;G/. So, by
Corollary 3.4, ' D F .�/ ı log for a unique � 2 Prob.yu/Gerg, where u is the Lie algebra
of U .

We want to determine the set Prob.yu/Gerg. In the following discussion, the Lie algebra
structure of u will play no role, only its linear structure being relevant. So, we let E be
a finite-dimensional vector space over Q and recall how the Pontrjagin dual yE can be
described in terms of adèles.

Let P be the set of primes of N. Recall that, for every p 2 P , the additive group of
the field Qp of p-adic numbers is a locally compact group containing the subring Zp of
p-adic integers as a compact open subgroup. The ring A of adèles of Q is the restricted
product A D R �

Q
p2P .Qp;Zp/ relative to the subgroups Zp; thus,

A D

²
.a1; a2; a3; : : : / 2 R �

Y
p2P

Qp j ap 2 Zp for almost every p 2 P

³
:
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The field Q can be viewed as a discrete and cocompact subring of the locally compact
ring A via the diagonal embedding

Q! A; q 7! .q; q; : : : /:

Let b1; : : : ; bd be a basis of E over Q. Fix a non-trivial unitary character e of A which
is trivial on Q. For every a D .a1; : : : ; ad / 2 Ad , let �a 2 yE be defined by

�a.x/ D e

� dX
iD1

aiqi

�
for all x D

dX
iD1

qibi 2 E:

The map a 7! �a factorizes to an isomorphism of topological groups

Ad=Qd
! yE; aCQd

7! �a

(see [43, Chapter IV, §3, Theorem 3]). So, yE can be identified with the adelic solenoid
Ad=Qd . We examine now how this identification behaves under the action of GL.E/
on yE.

Set Q1 D R. Then GLd .Q/ � GLd .Qp/ acts on Qd
p for every p 2 P [ ¹1º in the

usual way; the induced diagonal action of GLd .Q/ on Ad preserves the lattice Qd , giving
rise to a (left) action of GLd .Q/ on Ad=Qd .

Let � 2 GL.E/ and let A 2 GLn.Q/ its matrix with respect to the basis b1; : : : ; bd .
One checks that

�a ı � D �Ata for all a 2 Ad :

We summarize the previous discussion as follows.

Proposition 4.1. Let E be a finite-dimensional vector space over Q of dimension d . The
choice of a basis of E defines an isomorphism of topological groups Ad=Qd ! yE, which
is equivariant for the action of GLd .Q/ given by inverse matrix transpose on Ad=Qd and
the dual action of GL.E/ on yE. This isomorphism induces a bijection

Prob.Ad=Qd /Gerg ! Prob. yE/Gerg;

for every subgroup G of GL.E/ Š GLd .Q/.

5. Invariant probability measures and orbit closures on solenoids

For an algebraic Q-subgroup of GLd which is generated by unipotent subgroups, we will
determine in this section the invariant probability measures as well as the orbits closures
on the adelic solenoid Ad=Qd . We have first to treat the case of S -adic solenoids.
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5.1. Invariant probability measures and orbit closures on S -adic solenoids

Let G be an algebraic subgroup of GLd defined over Q. For every subring R of an over-
field of Q, we denote by G.R/ the group of elements of G with coefficients in R and
determinant invertible in R. In particular, G.Q/ D G \ GLd .Q/.

Fix an integer d � 1 and let S be a finite subset of P [ ¹1º with1 2 S . Set

Qd
S WD

Y
p2S

Qd
p

and let ZŒ1=S� denote the subring of Q generated by 1 and .1=p/p2S\P . Then ZŒ1=S�d

embeds diagonally as a cocompact discrete subring of Qd
S .

The product group
G.QS / WD

Y
p2S

G.Qp/

is a locally compact group and acts on Qd
S in the obvious way. The group G.ZŒ1=S�/

embeds diagonally as a discrete subgroup of G.QS /. As G.ZŒ1=S�/ preserves ZŒ1=S�d ,
this gives rise to an action of G.ZŒ1=S�/ on the S -adic solenoid

XS WD Qd
S=ZŒ1=S�

d ;

which is a compact connected abelian group.
A unipotent one-parameter subgroup of G.QS / is a subgroup of G.QS / of the form

¹.up.tp//p2S j tp 2 Qp; p 2 Sº for Q-rational homomorphisms upWGa ! G from the
additive group Ga of dimension 1 to G.

We aim to describe the G.ZŒ1=S�/-invariant probability measures on XS as well as
orbit closures of points in XS . Our results will be deduced from Ratner’s measure rigidity
and topological rigidity theorems in the S -adic setting (see [35] and [26]); actually, we
will need the more precise version of Ratner’s results in the S -arithmetic case from [42].

5.1.1. Invariant probability measures. For a closed subgroup Y of XS and for x 2 X ,
we denote by �xCY 2 Prob.XS / the image of the normalized Haar �Y under the map
XS ! XS given by translation by x.

Let V be a linear subspace of Qd . Denote by V.Qp/ the linear span of V in Qd
p for

p 2 S . Then V.QS / WD
Q
p2S V.Qp/ is a subring of Qd

S and V.ZŒ1=S�/ WD V \ZŒ1=S�d

is a cocompact lattice in V.QS /. So, V.QS /=V .ZŒ1=S�/ is a subsolenoid of XS , that is,
a closed and connected subgroup of XS .

Proposition 5.1. Assume that G.QS / is generated by unipotent one-parameter subgroups.
Let � be an ergodic G.ZŒ1=S�/-invariant probability measure on the Borel subsets ofXS .
There exists a pair .a; V / consisting of a point a 2 Qd

S and a G.Q/-invariant linear
subspace V of Qd with the following properties:

(i) g.a/ 2 aC V.QS / for every g 2 G.QS /;

(ii) � D �xCY , where x and Y are the images of a and V.QS / in XS .
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Proof. We consider the semi-direct product

zG WD G.QS / Ë Qd
S ;

given by the natural action of G.QS / on Qd
S . Then zG is a locally compact group con-

taining
z� WD G.ZŒ1=S�/ Ë ZŒ1=S�d

as a discrete subgroup. Since G.QS / is generated by unipotent one-parameter subgroups,
there is no non-trivial morphism G ! GL1 defined over Q. It follows (see [6, Theo-
rem 5.6]) that � WDG.ZŒ1=S�/ has finite covolume in G.QS /, and so z� is an S -arithmetic
lattice in zG.

We now use the “suspension technique” from [44] to obtain an ergodic G.QS /-invari-
ant probability measure z� on zG=z� . Specifically, we embed XS as a subset of zG=z� in the
obvious way. Observe that the action of G.ZŒ1=S�/ by automorphisms on XS becomes
the action of G.ZŒ1=S�/ by translations on zG=z� under this embedding.

View � as a G.ZŒ1=S�//-invariant probability measure on zG=z� which is supported on
the image of XS . Let z� be the probability measure on zG=z� defined by

z� D

Z
G.QS /=�

tg.�/ d�.g�/;

where � be the unique G.QS /-invariant probability measure on G.QS /=� and tg.�/
denotes the image of � under the translation by g. Then z� is G.QS /-invariant and is
ergodic under this action.

By the refinement [42, Theorem 2] of Ratner’s theorem, there exists a Q-algebraic
subgroup L of G, an L.Q/-invariant vector subspace V of Qd , a finite index subgroup H
of L.QS / Ë V.QS /, and an element g 2 zG with the following properties:

• G.QS / � H
g WD gHg�1;

• H \ z� is a lattice in H ;

• z� is the unique Hg -invariant probability measure on zG=z� supported on gH z�=z� D
Hggz�=z� .

Since zG D G.QS / Ë Qd
S , there exists g0 2 G.QS / such that a WD g0g belongs to Qd

S .
Then G.QS / � H

a and, since z� is G.QS /-invariant, z� coincides with the H a-invariant
probability measure supported on H aaz�=z� . As a result, we may assume above that g D
a 2 Qd

S .
The image ta�1.z�/ of z� under the translation by a�1 coincides with the unique H -

invariant probability measure on zG=z� supported on H z�=z� . Observe that G.QS / � H
a

implies that
g.a/ � a 2 V.QS / for every g 2 G.QS /;

where we write g.a/ for gag�1.
Let

pW zG=z� ! G.QS /=�
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be the natural G.QS /-equivariant map. We have

ta�1.z�/ D

Z
G.QS /=�

ta�1.tg.�// d�.g�/; (�)

and ta�1.tg.�//.p�1.g�=�// D 1 for every g 2 G.QS /. So, formula (�) provides a de-
composition of ta�1.z�/ as an integral over G.QS /=G.ZŒ1=S�/ of probability measures
supported on the fibers of p.

Knowing that ta�1.z�/ is the H -invariant probability measure supported on H z�=z� ,
we can perform a second such decomposition of ta�1.z�/ over G.QS /=� . The measures
supported on the fibers of p in this last decomposition are translates of the normalized
Haar measure �Y of the image Y ofH \Qd

S inXS ŠQd
S
z�=z� . By uniqueness, it follows

that ta�1.�/ D �Y , that is, � D �xCY , where a is the image of x in XS (for more details,
see the proof of [44, Corollary 5.8]).

To finish the proof, observe that, since V.QS / is divisible, it has no proper subgroup
of finite index and so H \Qd

S D H \ V.QS / D V.QS /.

The pairs .x; Y / as in Proposition 5.1 for which �xCY is ergodic are characterized by
the following general result.

For a compact groupX , we denote by Aut.X/ the group of continuous automorphisms
of X and by Aff.X/ D Aut.X/ ËX the group of affine transformations of X .

Proposition 5.2. LetG be a countable group,X be a compact abelian group and ˛WG!
Aut.X/ an action of G by automorphisms of X . Let x0 2 X and let Y be a connected
closed subgroup of X such x0 C Y is G-invariant. Then Y is G-invariant and ˛g.x0/ �
x0 2 Y for every g 2 G. Moreover, the following properties are equivalent:

(i) �x0CY is not ergodic under the restriction of the G-action to x0 C Y ;

(ii) there exists a proper closed connected subgroup Z of Y and a finite index sub-
group H of G such that ˛h.x/ � x 2 Z for every x 2 x0 C Y and h 2 H ;

(iii) for every x 2 x0 C Y , the set ¹˛g.x/ � x j g 2 Gº is not dense in Y ;

(iv) there exists a subset A of x0 C Y with �x0CY .A/ > 0 such that ¹˛g.x/ � x j
g 2 Gº is not dense in Y for every x 2 A.

Proof. The fact that Y is G-invariant and that ˛g.x/� x 2 Y for every g 2 G is obvious.
The homeomorphism t W x0 C Y ! Y given by the translation by �x0 intertwines the

action ˛ of G on x0 C Y with the action ˇWG ! Aff.Y / by affine transformations of Y ,
given by

ˇg.y/ D ˛g.y/C ˛g.x0/ � x0 for all g 2 G; y 2 Y:

Moreover, the image of �x0CY under t is the Haar measure �Y on Y .
Assume that the action ˇ is not ergodic. Then there exist a proper closed connected

subgroupZ of Y which is invariant under the action ˛ ofG and a finite index subgroupH
of G such that the image ofH in Aff.Y=Z/, for the action induced by ˇ, is trivial (see [4,
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Proposition 1]). This means that ˛h.x/ � x 2 Z for every x 2 x0 C Y and h 2 H . So,
(i) implies (ii).

Assume that property (ii) holds and let x 2 x0 C Y . In this case, the image of the set
¹˛g.x/� x j g 2 Gº in Y=Z is finite. However, since Y is connected, Y=Z is infinite and
¹˛g.x/ � x j g 2 Gº is therefore not dense in Y . So, (ii) implies (iii).

The fact that (iii) implies (iv) is obvious. Assume that ˇ is ergodic. Since the sup-
port of �Y is Y , for �Y -almost every y 2 Y , the ˇ.G/-orbit of y is dense in Y , that
is, ¹˛g.x/ � x j g 2 Gº is dense in Y for �x0CY -almost every x 2 x0 C Y . Therefore,
(iv) implies (i).

We will need a description of the G.ZŒ1=S�/-invariant (not necessarily ergodic) prob-
ability measures on XS . For this, we adapt for our situation some ideas from [29, §2],
where such description was given in the context of real Lie groups.

Let 'WQd
S ! XS DQd

S=ZŒ1=S�
d denote the canonical projection. Observe that, if V

is a G.Q/-invariant linear subspace of Qd and if a 2 Qd
S is such that g.a/ 2 aC V.QS /

for all g 2 G.ZŒ1=S�/, then '.a C V.QS // is a closed and G.ZŒ1=S�/-invariant subset
of XS .

Denote by H the set of G.Q/-invariant linear subspaces of Qd . For V 2 H , define
N .V; S/ � Qd

S to be the set of a 2 Qd
S with the following properties:

• g.a/ 2 aC V.QS / for every g 2 G.ZŒ1=S�/ and

• '.¹g.a/ � a j g 2 G.ZŒ1=S�/º/ is dense in '.V.QS //.

Lemma 5.3. For V; W 2 H , we have '.N .V; S// \ '.N .W; S// ¤ ; if and only if
V D W .

Proof. Assume that '.N .V; S// \ '.N .W; S// ¤ ;. So, there exist a 2 N .V; S/ and
b 2 ZŒ1=S�d such that aC b 2 N .W; S/. It follows that '.¹g.a/� a j g 2 G.ZŒ1=S�/º/
is a dense subset of '.V.QS // and of '.W.QS //. Hence, '.V.QS // D '.W.QS //. This
implies that the R-vector space V.R/ is contained in W.R/C ZŒ1=S�d and so in W.R/,
by connectedness. Hence, V � W . Similarly, we have W � V .

We can now give a description of the finite G.ZŒ1=S�/-invariant measures on XS .

Proposition 5.4. Assume that G.QS / is generated by unipotent one-parameter subgroups
and let � 2 Prob.XS / be a G.ZŒ1=S�/-invariant probability measure on XS . For V 2H ,
denote by �V the restriction of � to '.N .V; S//.

(i) We have

�

� [
V 2H

'.N .V; S//

�
D 1I

moreover, �V .'.N .V 0; S// D 0 for all V; V 0 2 H with V ¤ V 0; so, we have
a decomposition

� D
M
V 2H

�V :
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(ii) Let V 2 H be such that �V ¤ 0. Then �V is G.ZŒ1=S�/-invariant. Moreover, if

�V D

Z
�

�V;! d!

is a decomposition of �V into ergodic G.ZŒ1=S�/-invariant components �V;! ,
then, for every ! 2 �, we have �V;! D �x!CY , where Y D '.V.QS // and x! D
'.a!/ for some a! 2 N .V; S/.

Proof. Let

� D

Z
�

�! d!

be a decomposition of� into G.ZŒ1=S�/-invariant ergodic probability measures �! onXS .
Fix ! 2 �. By Proposition 5.1, there exists a! 2 Qd

S and V! 2 H such that g.a!/ 2
a! C V!.QS / for every g 2 G.QS / and �! D �x!CY! , where Y! D '.V!.QS //

and x! D '.a!/. Since �x!CY! is ergodic, there exists a subset A! of x! C Y! with
�x!CY! .A!/D 1 such that the G.ZŒ1=S�/-orbit of x is dense in x! CY! for every x 2A!
(see Proposition 5.2). It is clear that x 2 '.N .V! ; S// for every x 2 A! . It follows that
�!.'.N .V! ; S// D 1 for every ! 2 � and hence �.

S
V 2H '.N .V; S// D 1. Since the

measurable subsets '.N .V; S// of XS are mutually disjoint (Lemma 5.3) and since H is
countable, we have a direct sum decomposition

� D
M
V 2H

Z
!WV!DV

�! d!

and �V D
R
!WV!DV

�! d! with �! D �x!CY , where Y D V.QS / and x! D '.a!/ for
some a! 2 N .V; S/.

We will later need to know that the linear subspace of points in Qd
S satisfying the first

condition defining a set N .V; S/ as above is rational.

Lemma 5.5. Let V be a G.Q/-invariant linear subspace of Qd and S a finite subset of
P [ ¹1º. There exists a linear subspace W S of Qd containing V such that®

a 2 Qd
S j g.a/ 2 aC V.QS / for all g 2 G.ZŒ1=S�/

¯
D W S .QS /:

Proof. Choose a linear complement V0 of V in Qd and let �0WQd ! V0 be the corre-
sponding projection. Let p 2 P [ ¹1º. Then

Qd
p D V.Qp/˚ V0.Qp/

and the linear extension of �0, again denoted by �0, is the corresponding projection Qd
p !

V0.Qp/.
Let g 2 GLd .Q/. Denote byWg �Qd the kernel of �0 ı .g � IQd /. For a 2Qd

p , we
have

g.a/ 2 aC V.Qp/ , a 2 Ker
�
�0 ı .g � IQd

p
/
�
:
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So, Ker.�0 ı .g � IQd
p
// D Wg.Qp/ and the linear subspace

W S
WD

\
g2G.ZŒ1=S�/

Wg

of Qd has the required property.

5.1.2. Orbit closures. We now turn to the description of orbit closures of points in XS .
Recall that 'WQd

S ! XS denotes the canonical projection.

Proposition 5.6. Assume that G.QS / is generated by unipotent one-parameter subgroups.
Let a 2Qd

S and x D '.a/ 2 XS . There exists a G.Q/-invariant linear subspace V of Qd

with the following properties:

(i) g.a/ 2 aC V.QS / for every g 2 G.QS /;

(ii) the closure of the G.ZŒ1=S�/-orbit of x in XS coincides with x C '.V.QS //.

Proof. As in the proof of Proposition 5.1, we consider the group zG D G.QS / Ë Qd
S and

embed XS as a closed subset of zG=z� , where z� D G.ZŒ1=S�/ Ë ZŒ1=S�d .
By the refinement [42, Theorem 1] of Ratner’s theorem about orbit closures, there

exist a Q-algebraic subgroup L of G, an L.Q/-invariant vector subspace V of Qd and
a finite index subgroup H of L.QS / Ë V.QS / with the following properties:

• G.QS / � H
a WD aHa�1;

• H \ z� is a lattice in H ;

• the closure G.QS /x of the G.QS /-orbit of x is H ax, that is, aH z�=z� .

We claim that
G.ZŒ1=S�/x D G.QS /x \XS :

We only have to show that G.QS /x \XS is contained in G.ZŒ1=S�/x, the reverse inclu-
sion being obvious.

Set � D G.ZŒ1=S�/ and ƒ D ZŒ1=S�d . Choose a fundamental domain � � G.QS /

for G.QS /=� which is a neighbourhood of e and a compact fundamental domainK �Qd
S

for Qd
S=ƒ.

Consider y 2 G.QS /x \ XS . Then there exists a sequence gn 2 G.QS / such that
limn.gn; e/x D y. Write gn D !n
n for !n 2 � and 
n 2 � and 
n.a/ D kn C �n for
kn 2 K and �n 2 ƒ. Then

y D lim
n
.gn; e/x D lim

n
.!n; e/.
n; e/.e; a/z� D lim

n
.!n; e/.
n; 
n.a//z�

D lim
n
.!n; e/.e; kn/z� D lim

n
.!n; !n.kn//z�:

On the one hand, it follows that limn !nın D e for some ın 2 � . So, for large n, we
have !nın 2 � and, since !n 2 �, we have ın D e, that is, limn !n D e. On the other
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hand, as K is compact, we can assume that limn kn D k 2 K exists. Therefore, we have
limn.!n; !n.kn// D .e; k/ and so y D k Cƒ and

y D lim
n
.kn Cƒ/ D lim

n
.
n.a/Cƒ/;

that is, y 2 G.ZŒ1=S�/x. So, the claim is proved.
We have

.aH z�=z�/ \XS D '.aCH \ V.QS //

and, since (as in the proof of Proposition 5.1) H \ V.QS / D V.QS /, this finishes the
proof.

5.2. Invariant probability measures and orbit closures on adelic solenoids

Let G be an algebraic subgroup of GLd defined over Q. We are now ready to deal with
the description of the G.Q/-invariant probability measures and the orbit closures for the
adelic solenoid

X WD Ad=Qd :

Denote by � the set of finite subsets S of P [ ¹1º with1 2 S .
Let S 2 � . It is well known (see [43]) that

Ad D

�
Qd
S �

Y
p…S

Zdp

�
CQd

and that �
Qd
S �

Y
p…S

Zdp

�
\Qd

D ZŒ1=S�d :

This gives rise to a well defined projection

�S W X ! XS D Qd
S=ZŒ1=S�

d

given by

�S
�
.aS ; .ap/p…S /CQd

�
D aS C ZŒ1=S�d for all aS 2 Qd

S ; .ap/p…S 2
Y
p…P

Zdp :

So, the fiber of �S over a point aS C ZŒ1=S�d 2 XS is

��1S .aS C ZŒ1=S�d / D
®
.aS ; .ap/p…S /CQd

j ap 2 Zdp for all p … S
¯
:

Observe that �S is GLd .ZŒ1=S�/-equivariant.
Let S 0 2 � with S � S 0. Then

Qd
S 0 D

�
Qd
S �

Y
p2S 0nS

Zdp

�
C ZŒ1=S 0�d ;�

Qd
S �

Y
p2S 0nS

Zdp

�
\ ZŒ1=S 0�d D ZŒ1=S�d ;
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and we have a similarly defined GLd .ZŒ1=S�/-equivariant projection �S 0;S WXS 0 ! XS .
Observe that �S D �S 0;S ı �S 0 .

Let V be a linear subspace of Qd . For p 2 P , we write V.Zp/ for the Zp-span of
V.Z/ in V.Qp/; the adèle space corresponding to V is

V.A/ D
[
S2�

�
V.QS / �

Y
p…S

V.Zp/

�
:

We denote by ' the canonical projection Ad ! X . The image of '.V.A// in X can be
written as

'.V.A// D '

�
V.R/ �

Y
p2P

V.Zp/

�
and is a closed and connected subgroup ofX . Conversely, every closed and connected sub-
group of X is of the form '.V.A// for a unique linear subspace V of Qd (see Lemma 6.1
below).

The following simple fact will be useful.

Lemma 5.7. Let V be a linear subspace of Qd . Set

� WD
\
S

'

�
V.R/ �

Y
p2S

V.Zp/ �
Y
p…S

Zdp

�
� X;

where S runs over the finite subsets of P . Then

� D '.V.A//:

Proof. It is clear that '.V.A// is contained in�. Conversely, let x 2�. Then there exists
a D .ap/p2P[¹1º 2 Ad with '.a/D x such that a1 2 V.R/ and ap 2 Zdp for all p 2 P .
We claim that ap 2 V.Zp/ for all p 2 P .

Indeed, let p0 2P . Since '.a/ 2�, there exists q 2Qd such that .ap C q/p2P[¹1º 2

Rd �
Q
p2P Zdp with a1 C q 2 V.R/ and ap0 C q 2 V.Zp0/. For every p 2 P , we

have q D .ap C q/ � ap 2 Zdp and hence q 2 Zd . Since a1 2 V.R/, we also have q D
.a1 C q/� a1 2 V.R/. Hence, q 2 V.Z/� V.Zp0/ and therefore ap0 D .ap0 C q/� q 2
V.Zp0/.

5.2.1. Invariant probability measures. We will denote by ' the canonical projection
Ad ! X and by 'S the projection Qd

S ! XS for a set S 2 � .

Theorem 5.8. Let G be a connected algebraic subgroup of GLd defined over Q. Assume
that G.Q/ is generated by unipotent one-parameter subgroups. Let� be an ergodic G.Q/-
invariant probability measure on the Borel subsets of X D Ad=Qd . There exists a pair
.a; V0/ consisting of a point a 2 Ad and a G.Q/-invariant linear subspace V0 of Qd

such that
� D �xCY ;
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for x D '.a/ and Y D '.V0.Q//. Moreover, a can be chosen so that the set ¹g.a/ � a j
g 2 G.Q/º is dense in V0.A/.

Proof. For S 2 � , let �S be the image of � under the projection

�S W X ! XS :

Then �S is a G.ZŒ1=S�-invariant probability measure on XS and, by Proposition 5.4,
we have a decomposition

�S D
M
V 2H

�S;V

with mutually singular measures �S;V on XS such that

�S;V .XS n 'S .N .V; S/// D 0:

Fix S0 2 � and V0 2 H with �S0;V0 ¤ 0 and such that

dimV0 D max¹dimV j �S;V ¤ 0 for some S 2 �º:

Write
P [ ¹1º D

[
n�0

Sn

for an increasing sequence of subsets Sn 2 � . Denote by �n instead of �Sn the image of �
under the projection �Sn WX ! XSn . Set

c WD �0.'S0.N .V0; S0/// > 0:

First step. We claim that

�n.'Sn.N .V0; Sn/// � c for all n � 1:

Indeed, let V 2 H be such that �Sn;V ¤ 0. Recall that

�Sn;S0 W XSn ! XS0

is the natural G.ZŒ1=S0�/-equivariant projection. Let

x 2 ��1Sn;S0.'S0.N .V0; S0/// \ 'Sn.N .V; Sn//:

Then, on the one hand, x0 WD �Sn;S0.x/ 2 'S0.N .V0;S0// and hence the set ¹g.x0/� x0 j
g 2 G.ZŒ1=S0�/º is dense in 'S0.V0.QS0//. On the other hand, since x 2 'Sn.N .V; Sn//

and since G.ZŒ1=S0�/ is contained in G.ZŒ1=Sn�/, the set ¹g.x/ � x j g 2 G.ZŒ1=S0�/º
is contained in 'Sn.V .QSn//. As

�Sn;S0.'Sn.V .QSn/// D 'S0.V .QS0//
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and �Sn;S0 is G.ZŒ1=S0�/-equivariant and continuous, it follows that

'S0.V0.QS0// � 'S0.V .QS0//:

This implies that V0 � V (see the proof of Lemma 5.3). It follows that V D V0, by maxi-
mality of the dimension of V0. This shows that

�n
�
��1Sn;S0.'S0.N .V0; S0/// \ 'Sn.N .V; Sn//

�
D 0 for every V ¤ V0

and hence that

�n
�
��1Sn;S0.'S0.N .V0; S0///

�
� �n.'Sn.N .V0; Sn///:

Since �0 D �S0 is the image of �n under �Sn;S0 , we have

�n
�
��1Sn;S0.'S0.N .V0; S0///

�
D �0.'S0.N .V0; S0///;

and the claim is proved.
For every n � 0, let W n D W Sn be the linear subspace of Qd defined by V0 as in

Lemma 5.5. It is clear that the family .W n/n�0 of finite-dimensional linear subspaces is
decreasing. So, there exists N � 0 such that W n D W N for all n � N . Set W WD W N .
Recall that V0 � W n for every n � 0 and hence V0 � W .

Second step. We claim that �.'.W.A// ¤ 0.
Indeed, since N .V0; Sn/ � W

n.QSn/, it follows from the first step that

�n.'Sn.W.QSn/// D �n.'Sn.W
n.QSn/// � c

for every n � N . Setting

�n WD '

�
W.Q1/ �

Y
p2Sn;p¤1

W.Zp/ �
Y
p…Sn

Zdp

�
;

this means that
�.�n/ � c for all n � N;

since �n is the image of � under �Sn .
As .�n/n�N is a decreasing sequence, it follows that

�

� \
n�N

�n

�
� c > 0:

On the other hand, we have (see Lemma 5.7)\
n�N

�n D '.W.A//

and the claim is proved.
Set Y WD '.V0.A//.
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Third step. We claim that there exists x 2 '.W.A// such that �.x C Y / D 1.
Indeed, '.W.A// is G.Q/-invariant, since W is G.Q/-invariant. By the ergodicity

of �, it follows from the second step that �.'.W.A// D 1; so, we may view � as proba-
bility measure on '.W.A//.

Let Z � '.W.A// be the support of �. Again by ergodicity of �, there exists a point
a 2W.A/ such that x D '.a/ 2 Z and such that the G.Q/-orbit of x is dense in Z. Since
g.a/ 2 aC V0.A/ for all g 2 G.Q/, this implies that Z � x C Y and so �.x C Y / D 1.

Fourth step. We claim that � is invariant under translations by elements from Y . Once
proved, it will follow that � D �xCY , by the uniqueness of the Haar measure on the
closed subgroup Y of X .

Indeed, the topological space '.W.A// � X is the projective limit of the sequence
.'.W.QSn///n�0 of the topological spaces '.W.QSn//�XSn , with respect to the canon-
ical maps '.W.QSn// ! '.W.QSm// for n � m. Consequently, the sets of the form
'.B �

Q
p…Sn

W.Zp//, where B runs over the Borel subsets of W.QSn/, generate the
Borel structure of '.W.A//.

Let n � 0. It follows from the third step and from Proposition 5.4 that the image �n
of � in XSn is the Haar measure on the coset �Sn.x C Y / of the subgroup 'Sn.V0.QSn//.
So, �n is invariant under translations by elements from 'Sn.V0.QSn//. This means that,
for every Borel subset B of W.QSn/, we have

�

�
z C '

�
B �

Y
p…Sn

W.Zp/

��
D �

�
'

�
B �

Y
p…Sn

W.Zp/

��
;

for every z 2 Y . This proves the claim.

5.2.2. Orbit closures. We now deduce the description of orbit closures of points in X
from the corresponding description in the S -adic case.

Recall that XS D Qd
S=ZŒ1=S�

d for S 2 � and that 'WAd ! X , 'S WQd
S ! XS , and

�S WX ! XS denote the canonical projections.

Theorem 5.9. Let G be a connected algebraic subgroup of GLd defined over Q. Assume
that G.Q/ is generated by unipotent one-parameter subgroups. Let a 2 Ad and x D
'.a/ 2 X . There exists a G.Q/-invariant linear subspace V0 of Qd such that the closure
of the G.Q/-orbit of x in X coincides with x C '.V0.A//.

Proof. For S 2 � , set xS WD �S .x/ 2XS . By Proposition 5.6, there exists a unique G.Q/-
invariant linear subspace VS of Qd such that

G.ZŒ1=S�/xS D xS C 'S .VS .QS //:

Fix S0 2 � such that V0 WD VS0 has maximal dimension among all the subspaces VS
for S 2 � .

We claim that the closure of the G.Q/-orbit of x in X coincides with x C '.V0.A//.
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Indeed, let P [ ¹1º D [n�0Sn for an increasing sequence of subsets Sn 2 � . Let
n � 1 and write Vn for VSn .

Since ¹g.xS0/ � xS0 j g 2 G.ZŒ1=S0�/º is dense in 'S0.V0.QS0// and since

g.xSn/ � xSn 2 'Sn.Vn.QSn// for all g 2 G.ZŒ1=S0�/;

it follows that V0 � Vn (see the first step in the proof of Theorem 5.8) and hence Vn D V0,
by maximality of the dimension of V . Therefore, we have

G.ZŒ1=Sn�/xSn D xSn C 'Sn.V0.QSn// for all n � 0:

Let n � 0 and g 2 G.ZŒ1=Sn�/. For every m � n, we have

g.xSm/ � xSm 2 'Sm.V0.QSm//

and hence

g.x/ � x 2 '

�
V0.R/ �

Y
p2Sm; p¤1

V0.Zp/ �
Y
p…Sm

Zdp

�
:

It follows (see Lemma 5.7) that g.x/ � x 2 '.V0.A// for every g 2 G.ZŒ1=Sn�/. Hence,
x C '.V0.A// is G.Q/-invariant. Since x C '.V0.A// is closed in X , this implies that

G.Q/x � x C '.V0.A//:

Conversely, let y 2 '.V0.A//. Then y D '.v/ for v D .vp/p2P[¹1º in V0.A/ with
vp 2 V0.Zp/ for all p 2P . Let U be a neighbourhood of y inX . Then U contains a set of
the form '.On �

Q
p…Sn

Zdp / for some n � 0, where On is a neighbourhood of .vp/p2Sn
in Rd �

Q
p2Snn¹1º

Zdp .
Since G.ZŒ1=Sn�/xSn � xSn is dense in 'Sn.V0.QSn//, there exists g 2 G.ZŒ1=Sn�/

such that g.xSn/ � xSn 2 'Sn.On/. As g.Zdp / � Zdp for every p … Sn, it follows that

g.x/ � x 2 '

�
On �

Y
p…Sn

Zdp

�
� U:

This shows that x C y 2 G.Q/x.

6. Proof of Theorem A

In this section, we will give the proof of Theorem A.

6.1. Invariant characters on Qd

Let G be a connected algebraic subgroup of GLd defined over Q. Using Fourier trans-
form, we establish the dual versions of Theorems 5.8 and 5.9 in terms of G.Q/-invariant
characters on Qd .
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Recall (see Section 4.2) that, after the choice of non-trivial unitary character e of A

which is trivial on Q, we can identify bQd with X D Ad=Qd by means of the GLd .Q/-
equivariant map

X !
bQd ; aCQd

7! �a;

where
�a.q/ D e.ha; qi/ for all q D .q1; : : : ; qd / 2 Qd ;

and ha; qi D
Pd
iD1 aiqi for a D .a1; : : : ; ad / 2 Ad .

By Pontrjagin duality, the map

q 7! .aCQd
7! �a.q//

is a GLd .Q/-equivariant isomorphism between Qd and the dual group yX of X . The anni-
hilator of a subset Y of X in Qd Š yX is

Y ? D
®
q 2 Qd

j �a.q/ D 1 for all aCQd
2 Y

¯
:

If Y is a closed subgroup of X , the map

q C Y ? 7! .aCQd
7! �a.q//

is an isomorphism between Qd=Y ? and yY .
We will need the following characterization of subsolenoids of X . Recall that ' is the

canonical projection Ad ! X .

Lemma 6.1. Let Y.X/ be the set of connected and closed subgroups of X and Gr.Qd /

the set of linear subspaces of Qd .

(i) The map Y ! Y ? is a GLd .Q/-equivariant bijection between the sets Y.X/

and Gr.Qd /.

(ii) For V 2 Gr.Qd /, we have '.V.A// 2 Y.X/; moreover, we have

'.V.A// \ '.W.A// D '..V \W /.A//

for every V;W 2 Gr.Qd /.

(iii) The map V ! '.V.A// is a GLd .Q/-equivariant bijection between Gr.Qd /

and Y.X/.

In particular, for every P 2 Gr.Qd /, there exists a unique V 2 Gr.Qd / such that P D
'.V.A//?.

Proof. (i) Let Y be a closed subgroup of X . Then Y is connected if and only if yY is
torsion-free (see [23, Corollary 24.19]), that is, if and only if Qd=Y ? is torsion-free.
It follows that Y is connected if and only if Y ? is a linear subspace of Qd .
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(ii) Let V 2 Gr.Qd /. Since the canonical embedding of R is dense in A=Q, the
subgroup '.V.R// is dense in '.V.A// and therefore '.V.A// is connected. Moreover,
'.V.A// is closed as it is the continuous image of the compact solenoid V.A/=V .Q/.

Let V; W 2 Gr.Qd /. It is clear that '..V \ W /.A// is contained in '.V.A// \
'.W.A//. Let a 2V.A/ be such that '.a/2 '.W.A//. Writing aD .ap/p2P[¹1º, we may
assume that ap 2 V.Zp/ for every p 2 P . So, there exists q 2 Qd such that a1 C q 2
W.R/ and ap C q 2 W.Zp/ for every p 2 P . It follows that q 2 Zd . Hence, we have
a1 2W.R/CZd . Observe that ta 2 V.A/ for every t 2Q; it follows by the same reason-
ing that ta1 2W.R/CZd for every t 2Q and hence for every t 2R, sinceW.R/CZd is
closed in Rd . By connectedness, this implies that a1 2W.R/. Since a1C q 2W.R/, we
have q 2W.Z/ and so ap 2W.Zp/ for every p 2P . Since V.A/\W.A/D .V \W /.A/,
this shows that a 2 .V \W /.A/.

(iii) As already mentioned (see the proof of Lemma 5.3), we have '.V.A//¤'.W.A//
for every V;W 2 Gr.Qd / with V ¤ W .

Let Y 2 Y.X/. Then Y ? 2 Gr.Qd /, by (i). Consider the linear subspace

V WD
®
a 2 Qd

j ha; qi D 0 for all q 2 Y ?
¯

of Qd . We claim that Y D '.V.A//.
Indeed, let q1; : : : ; qs be a basis of Y ?. For every i 2 ¹1; : : : ; sº and t 2 Q, let Vi D

¹a 2 Qd j ha; qi i D 0º and choose ai;t 2 Qd such that hai;t ; qi i D t . Then®
a 2 Ad j ha; qi i D t

¯
D Vi .A/C ai;t :

We have
Y D .Y ?/? D

®
aCQd

2 X j �a.q/ D 1 for all q 2 Y ?
¯

D
®
aCQd

2 X j �a.tq/ D 1 for all q 2 Y ?; t 2 Q
¯

D
®
aCQd

2 X j e.tha; qi/ D 1 for all q 2 Y ?; t 2 Q
¯

D
®
aCQd

2 X j ha; qi i 2 Q for every i D 1; : : : ; s
¯

D

s\
iD1

[
t2Q

'.Vi .A/C ai;t / D
s\
iD1

'.Vi .A//:

Using (ii), it follows that Y D '..
Ts
iD1 Vi /.A// D '.V.A//.

Let G be a connected algebraic subgroup of GLd defined over Q. Fix x D '.a/ 2 X
for some a 2 Ad . Let Px be the Q-linear span of ¹�g.a/��a j g 2 G.Q/º? in Qd ; so,

Px D
\

g2G.Q/; t2Q

®
q 2 Qd

j �g.a/.tq/ D �a.tq/
¯

D

\
g2G.Q/

®
q 2 Qd

j hg.a/ � a; qi 2 Q
¯
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and Px is a G.Q/-invariant linear subspace of Qd . Define �x WQd ! C by

�x.q/ D

´
�a.q/ if q 2 Px ;

0 otherwise:

Observe that �x is G.Q/-invariant and is of positive type (see Proposition 2.4), that is,
�x 2 Tr.Qd ;G.Q//.

Recall that two points x; y 2 X belong to the same G.Q/-quasi-orbit if their G.Q/-
orbits have the same closure in X .

Theorem 6.2. Let G be a connected algebraic subgroup of GLd defined over Q. Assume
that G.Q/ is generated by unipotent one-parameter subgroups. The map

X ! Tr.Qd ;G.Q//; x 7! �x

has Char.Qd ;G.Q// as image and factorizes to a bijection

X=� ! Char.Qd ;G.Q//;

where X=� is the space of G.Q/-quasi-orbits in X D Ad=Qd .

Proof. Identifying Qd with yX , the Fourier transform on X is the map

F W Prob.X/! Tr.Qd /

given by

F .�/.q/ D

Z
X

�a.q/ d�.aCQd / for all � 2 Prob.X/; q 2 Qd :

Recall (see Proposition 3.1) that F restricts to a bijection

F W Prob.X/G.Q/erg ! Char.Qd ;G.Q//:

Let x D '.a/ 2 X for a 2 Ad . By Lemma 6.1, there exists a G.Q/-invariant linear
subspace V of Qd such that Px D Y ? for Y D '.V.A//.

First step. We claim that F .�xCY / D �x .
Indeed, for every q 2 Qd , we have

F .�xCY /.q/ D

Z
Y

�aCb.q/ d�Y .b CQd / D �a.q/

Z
Y

�b.q/ d�Y .b CQd /:

Now,
R
Y
�b.q/ d�Y .b CQd / D 0 whenever b CQd 7! �b.q/ is a non-trivial character

of Y , by the orthogonality relations. This proves the claim.
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Second step. We claim that �x 2 Char.Qd ;G.Q//. In view of the first step, it suffices to
show that �xCY is ergodic.

Assume, by contradiction, that �xCY is not ergodic. Observe that G.Q/ is connected
(in the Zariski topology of GLd .Q/) and has hence no proper finite index subgroup. There-
fore, by Proposition 5.2, there exists a proper closed connected subgroup Z of Y such
that g.x C y/ 2 x C y C Z for every g 2 G.Q/ and y 2 Y . By Lemma 6.1, we can
writeZ D '.W.A// for a G.Q/-invariant proper Q-linear subspaceW of V . So, we have
g.x/� x 2 '.W.A// for every g 2G.Q/. In view of the definition of Px , this implies that

'.W.A//? D Px D Y
?
D '.V.A//?;

which is a contradiction since W ¤ V .

Third step. We claim that the closure of the G.Q/-orbit of x coincides with x C Y .
Indeed, by Theorem 5.9, there exists a G.Q/-invariant linear subspace W of Qd

such that the closure of the G.Q/-orbit of x in X coincides with x C '.W.A//, that is,
g.x/� x 2 '.W.A// for every g 2G.Q/. As in the second step, this implies thatW D V .

Fourth step. We claim that Char.Qd ;G.Q// D ¹�x j x 2 Xº. Indeed, this follows from
Theorem 5.8 and the first two steps.

Fifth step. For i D 1; 2, let ai 2 Ad and xi D '.ai /. We claim that �x1 D �x2 if and only
if x1 and x2 belong to the same G.Q/-quasi-orbit.

Indeed, assume that x1 and x2 belong to the same quasi-orbit. Then, by the third step,
we have x1 C Y1 D x2 C Y2, where Yi D P?xi . Hence, �x1 D �x2 , by the first step.

Conversely, assume that �x1 D �x2 . Then Px1 D Px2 and �a1 D �a2 on Px1 . So,
Y1 D Y2 and x1 � x2 2 Y1. Hence, x1 C Y1 D x2 C Y2 and so, by the third step, x1
and x2 belong to the same quasi-orbit.

6.2. Conclusion of the proof of Theorem A

LetG DG.Q/ be as in the statement of Theorem A,G DLU a Levi decomposition ofG,
and u the Lie algebra of U .

Let  2 Char.G/.

First step. Set ' WD  jU ı exp. There exists � 2 yu such that ' coincides with the trivial
extension to u of the restriction of � to p�, where p� is the G-invariant linear subspace of
u given by

p� D
®
X 2 u j �.Ad.g/.tX// D �.tX/ for all g 2 G; t 2 Q

¯
:

Indeed, as discussed in Section 4.2, ' 2 Char.u; G/. Identifying u with Qd , we can
view ' as an element in Char.Qd ; G/. By Theorem 6.2, there exists x 2 X such that ' is
the trivial extension to u of the restriction to Px of the unitary character � of u defined by
x 2 X . As Px D p�, the claim follows.
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Second step. We claim that

 .exp.X/g/ D  .exp.X// .g/ for all g 2 G; X 2 p�:

Indeed, since
j .exp.X//j D j'.X/j D j�.X/j D 1

for every X 2 p�, the claim follows from Proposition 2.5 (ii).

Third step. For every g 2 G and X 2 u, we have

 .g/ D  .exp.�X/ exp.Ad.g/.X//g/:

This is indeed the case, since

 .g/ D  .exp.�X/g exp.X// D  .exp.�X/ exp.Ad.g/.X//g/:

Recall that

k� D
®
X 2 u j �.Ad.g/.tX// D 1 for all g 2 G; t 2 Q

¯
I

observe that K� WD exp.k�/ is in general strictly contained in K \ U , where

K WD ¹g 2 G j  .g/ D 1º:

Let
G� D

®
g 2 G j Ad.g/.X/ 2 X C k� for all X 2 u

¯
:

Assume that G� ¤ G. Observe that this implies that � ¤ 1u. Let g 2 G nG� and fix
X 2 u such that Ad.g/.X/ �X … k�. Let

Ag;X WD
®
t 2 Q j exp.�tX/ exp.Ad.g/.tX// 2 K 

¯
:

By Lemma 3.6, Ag;X is a subgroup of Q.

Fourth step. We claim that Ag;X ¤ Q.
Indeed, assume, by contradiction, that Ag;X D Q, that is,

exp.�tX/ exp.Ad.g/.tX// 2 K for all t 2 Q:

By the Campbell–Hausdorff formula, there exists Y1; Y2; : : : ; Yr 2 u such that

exp.�tX/ exp.Ad.g/.tX// D exp
� rX
kD1

tkYk

�
for all t 2 Q;

where Y1 D Ad.g/.X/ �X . We have then

�

� rX
kD1

tkYk

�
D 1 for all t 2 Q:
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Identifying u with Qd via a basis ¹X1; : : : ;Xd º, the character � of u is given by some
a D .a1; : : : ; ad / 2 Ad via the formula

�

� dX
iD1

qiXi

�
D e

� dX
iD1

aiqi

�
for all .q1; : : : ; qd / 2 Qd

for a non-trivial unitary character e of A which is trivial on Q (see Section 4.2). It follows
that

e

� rX
kD1

tk
� dX
iD1

aiqk;i

��
D 1 for all t 2 Q;

where .qk;i /diD1 are the coordinates of Yk in ¹X1; : : : ; Xd º. This implies that

dX
iD1

aiqk;i 2 Q for every k D 1; : : : ; r:

Indeed, otherwise the image of the set² rX
kD1

tk
� dX
iD1

aiqk;i

� ˇ̌̌
t 2 Q

³
would be dense in A=Q (see [11, Theorem 2] or [5, Theorem 5.2]) and this would contra-
dict the non-triviality of e.

In particular, we have
Pd
iD1 aiq1;i 2 Q and, since Y1 D Ad.g/X � X , we obtain

�.Ad.g/.tX/ � tX/ D 1 for all t 2 Q. So, Ad.g/X � X belongs to k� and this is a con-
tradiction to the choice of X .

Fifth step. Let g 2 G nG�. We claim that  .g/ D 0.
Indeed, letX 2 u with Ad.g/.X/�X … k� and let Ag;X �Q be as in the fourth step.

Set
Bg;X WD

®
t 2 Q j exp.�tX/ exp.Ad.g/.tX// 2 P 

¯
:

Then Ag;X � Bg;X and, by Lemma 3.6 again, Bg;X is a subgroup of Q. Two cases may
occur.

– First case: Ag;X ¤ Bg;X . So, there exists t 2 Q such that

exp.�tX/ exp.Ad.g/.tX// 2 P nK :

Then, using the third and second steps, we have

 .g/ D  .exp.�X/ exp.Ad.g/.X/// .g/

and hence  .g/ D 0, since

 .exp.�X/ exp.Ad.g/.X/// ¤ 1:
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– Second case: Ag;X D Bg;X . Then Bg;X is a proper subgroup of Q by the fourth
step. So, Bg;X has infinite index in Q and we can find an infinite sequence .tn/n�1 in Q
such that tn � tm … Bg;X for all n ¤ m.

Set
un WD exp.�tnX/ exp.Ad.g/.tnX// for all n � 1:

For n ¤ m, we have

unu
�1
m D exp.�tnX/ exp.Ad.g/.tn � tm/X/ exp.tmX/

D exp.�tmX/.exp.�.tn � tm/X/ exp.Ad.g/.tn � tm/X// exp.tmX/I

since exp.�.tn � tm/X/ exp.Ad.g/.tn � tm/X/ … P and P is a normal subgroup of U ,
we have unu�1m … P and hence

 .unu
�1
m / D 0 for all n ¤ m;

by the first step.
As un coincides with the commutator Œexp.�tnX/;g� inG, it follows from Lemma 2.6

that  .g/ D 0.
It remains to determine the restriction of  to G�.
Since  jK� D 1K� , we may view  as a character of G=K�, which is the group of Q-

points of an algebraic group, and we can therefore assume that K� D ¹eº. Then G� is the
centralizer of U in G and is the group of Q-points of an algebraic normal subgroup of G.
Let G� D L1U1 be a Levi decomposition of G�. Since U1 is a unipotent characteristic
subgroup of G�, we have U1 � U . Moreover, L1 is the group of Q-points of an algebraic
subgroup L1 of G and so L1 is contained in a Levi subgroup of G. As two Levi subgroups
of G are conjugate by an element of U (see [28]), we can assume that L1 � L, that is,
L1 D L� and so, G� D L�Z.U /.

Sixth step. We claim that there exists '1 2 Char.L�/ such that

 .gu/ D '1.g/ .u/ for all g 2 L�; u 2 U:

Indeed, we can find a normal subgroupH ofLwhich centralizesL� such thatL� \H
is finite and such that LD L�H (see Proposition 6.3 below). ThenG D L�HU andHU
centralizes L�. So, the claim follows from Proposition 2.12 (see also Corollary 2.13).

Seventh step. Let � 2 yu, '1 2 Char.L�/, and let ˆ.�;'/WG ! C be defined as in Theo-
rem A. We claim that  WD ˆ.�;'/ 2 Char.G/.

Indeed, it is clear (see Proposition 2.4) that  2 Tr.G/. Write

 D

Z
�

 ! d�.!/

as an integral over a probability space .�; �/ with  ! 2 Char.G/ for every ! (see Re-
mark 2.2).
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Then ' WD  jU ı exp coincides with the trivial extension to u of the restriction of �
to p�, where p� is defined as above. It follows from Theorem 6.2 that ' 2 Char.u; G/.
This implies that the restriction of  ! to U coincides with  jU for (�-almost) every !.

Let ! 2 �. The fifth step, applied to  ! 2 Char.G/, shows that  ! D 0 on G n G�,
where G� is defined as above. By the sixth step, also applied to  ! , there exists '!1 2
Char.L�/ such that

 .gu/ D '!1 .g/ .u/ for all g 2 L�; u 2 U:

As a result, we have

'1 D

Z
�

'!1 d�.!/:

Since '1 2 Char.L�/, it follows that '!1 D '1 and hence that ' D '! for (�-almost)
every !. This shows that ' 2 Char.G/.

Eighth step. Let �1; �2 2 yu, '1 2 Char.L�1/ and '2 2 Char.L�2/. Let us show that
ˆ.�1;'1/ D ˆ.�2;'2/ if and only if �1 and �2 have the same G-orbit closure and '1 D '2.

Indeed, set i Dˆ.�i ;'i / for i D 1;2. It follows from Theorem 6.2 that 1jU D 2jU
if and only if the closures of the G-orbits of �1 and �2 coincide. If this is the case, then
k�1 D k�2 and hence G�1 D G�2 . The claim follows from these facts.

6.3. Characters of semi-simple algebraic groups

The following proposition, in combination with [2] and Corollary 2.13, shows how the
characters of the groups L� appearing in Theorem A can be described.

A group L is the almost direct product of subgroups H1; : : : ; Hn of L if the product
map H1 � � � � �Hn ! L is a surjective homomorphism with finite kernel.

Proposition 6.3. Let G be a connected semi-simple algebraic group defined over a field k.
Assume that G.k/ is generated by its unipotent one-parameter subgroups. Let L be a (not
necessarily connected) algebraic normal k-subgroup of G. Then there exist connected
almost k-simple normal k-subgroups G1; : : : ;Gr of G, a subgroup F of L.k/ contained
in the (finite) center of G, and a connected normal k-subgroup H of G with the following
properties:

(i) G.k/ is the almost direct product of L.k/ and H.k/;
(ii) L.k/ is the almost direct product of F;G1.k/; : : : ;Gr .k/;

(iii) every Gi .k/ is generated by its unipotent one-parameter subgroups.

Proof. Let L0 be the connected component of L. Let G1; : : : ;Gr be the connected almost
k-simple normal k-subgroups of G contained in L0. Then L0 is the almost direct product
of the Gi ’s and there exists a connected normal k-subgroup H of G such that G is the
almost direct product of L0 and H (see [7, §2.15]). It follows that L is the almost direct
product of L0 and L \ H and hence that L \ H is finite, since L0 has finite index in L.
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This implies that L \ H is contained in the center of G, as L \ H is a normal subgroup
of G.

Since G.k/ is generated by its unipotent one-parameter subgroups, the same is true
for Gi .k/ for every i , for L0.k/, and for H.k/. Hence, L0.k/ is the almost direct product
of G1.k/; : : : ;Gr .k/, and G.k/ is the almost direct product of L0.k/ and H.k/ (see [8,
Proposition 6.2]). It follows that L.k/ is the almost direct product of L0.k/ and F WD
L.k/ \ H.k/. From what we have seen above, F � L \ H is a subgroup of the center
of G.

7. A few examples

7.1. Abelian unipotent radical

Let L be a quasi-simple algebraic group defined over Q. Assume that L D L.Q/ is gen-
erated by its unipotent one-parameter subgroups. Let L! GL.V / be a finite-dimensional
representation defined over Q of dimension at least 2; assume that L ! GL.V .Q// is
irreducible. Set G D L Ë V.Q/. Then G is the group of Q-rational points of the algebraic
group L Ë V . Denote by F the kernel ofL!GL.V .Q// and observe that F is a subgroup
of the finite center of L. We claim that

Char.G/ D ¹' ı p j ' 2 Char.L/º [ ¹z� j � 2 Char.F /º;

where pWG!L is the canonical epimorphism. Indeed, let � 21V.Q/. The setsK� and P�
as in Theorem A areL-invariant linear subspaces of V.Q/ and so are equal either to V.Q/
or to ¹0º, by irreducibility of the representation of L on V.Q/.

• Assume that K� D V.Q/; then � D 1V.Q/ and L� D L. So, the characters of G asso-
ciated to � are the characters of L lifted to G.

• Assume that K� D ¹0º. Then P� D ¹0º (see Proposition 3.5). So, L� D F and every
element of Char.G/ associated to � is of the form z� for some � 2 Char.F /.

For instance, for every faithful Q-irreducible rational representation SL2 ! GL.V /,
we have

Char.SL2.Q/ Ë V.Q// D ¹1G ; "; ıeº;

where " is defined by ".I; v/ D 1; ".�I; v/ D �1, and ".g; v/ D 0 otherwise.

7.2. The Heisenberg group as unipotent radical

For an integer n � 1, consider the symplectic form ˇ on C2n given by

ˇ..x; y/; .x0; y0// D .x; y/tJ.x0; y0/ for all .x; y/; .x0; y0/ 2 C2n;
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where J is the .2n � 2n/-matrix

J D

�
0 In
�In 0

�
:

The symplectic group

Sp2n D ¹g 2 GL2n.C/ j tgJg D J º

is an algebraic group which is a quasi-simple and defined over Q.
The .2nC 1/-dimensional Heisenberg group is the unipotent algebraic group H2nC1

defined over Q, with underlying set C2n �C and product

..x; y/; s/..x0; y0/; t/ D
�
.x C x0; y C y0/; s C t C

1

2
ˇ..x; y/; .x0; y0//

�
;

for .x; y/; .x0; y0/ 2 C2n, s; t 2 C.
The group Sp2n acts by rational automorphisms of H2nC1, given by

g..x; y/; t/ D .g.x; y/; t/ for all g 2 Sp2n; .x; y/ 2 C2n; t 2 C:

Let
G D Sp2n.Q/ ËH2nC1.Q/

be the group of Q-points of the algebraic group Sp2n Ë H2nC1 defined over Q. Since
Sp2n is Q-split, G is generated by its unipotent one-parameter subgroups. We claim that

Char.G/ D ¹1G ; 1H2nC1.Q/; "º [ ¹z� j � 2 yZº;

where Z D ¹..0; 0/; s/W s 2 Qº is the center of H2nC1.Q/ and " is the character of G
defined by

".I; h/ D 1; ".�I; h/ D �1; and ".g; h/ D 0

for g 2 Sp2n.Q/ n ¹˙I º and h 2 H2nC1.Q/.
Indeed, the Lie algebra of H2nC1.Q/ is the .2nC 1/-dimensional nilpotent Lie alge-

bra h over Q with underlying set Q2n �Q and Lie bracket

Œ.x; y/; s/; ..x0; y0/; t � D .0; ˇ..x; y/; .x0; y0///;

for .x; y/; .x0; y0/ 2 Q2n; s; t 2 Q. The action of Sp2n.Q/ on h is given by the same
formula as for the action on H2nC1.Q/.

The Sp2n.Q/-invariant ideals k of h are ¹0º, h, and the center z of h. The corresponding
ideals p, which are inverse images in h of the G-fixed elements in h=k, are respective-
ly z, h and z.

Let � 2 yh.

• Assume that k� D ¹0º. Then p� D z. Since no element in Sp2n.Q/ n ¹eº acts trivially
on h=z Š Q2n, we have L� D ¹eº. So, the only character of G associated to � is z��.
(Observe that z�� ¤ 1Z , since k� D ¹0º.)
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• Assume that k� D h; then � D 1h and L� D Sp2n.Q/. So, the characters of G associ-
ated to � are the characters of Sp2n.Q/ lifted to G, that is, 1G , 1H2nC1.Q/, and ".

• Assume that k� D z. Then p� D z and L� D ¹eº. So, 1Z is the only character of G
associated to �.

7.3. Free nilpotent groups as unipotent radical

Let u D un;2 be the free 2-step nilpotent Lie algebra on n � 2 generators over Q; as is
well known (see [18]), u can be realized as follows. Let V be an n-dimensional vector
space over Q and set u WD V ˝^2V , where ^2V is the second exterior power of V . The
Lie bracket on u D V ˝^2V is defined by

Œ.v1; w1/; .v2; w2/� D .0; v1 ^ v2/ for all v1; v2 2 V; w1; w2 2 ^2V:

The center of u is^2V and the associated unipotent groupU is V ˚^2V with the product

.v1; w1/.v2; w2/ D
�
v1 C v2; w1 C w2 C

1

2
v1 ^ v2

�
so that the exponential mapping expWu! U is the identity. The group GLn acts naturally
on V as well as on ^2V , and these actions induce an action of GLn by automorphisms
on U given by

g.v;w/ D .gv; gw/ for all g 2 GLn.Q/; v 2 V; w 2 ^2V:

Since U coincides with the Heisenberg group H3.Q/ when n D 2, we may assume
that n � 3. Let L be the group of Q-points of an algebraic subgroup of GLn defined and
quasi-simple over Q. Assume that the representations of L on V and on ^2V are faithful
and irreducible over Q and that, moreover, L is generated by its unipotent one-parameter
subgroups (an example of such a group is L D SLn.Q/). The group G D L Ë U is the
group of Q-points of an algebraic group defined over Q andG is generated by its unipotent
one-parameter subgroups.

We claim that

Char.G/ D ¹1Gº [
®
z� ı p j � 21Z.L/¯ [ ¹ıeº [ ¹1^2V º;

where pWG ! L is the canonical epimorphism and Z.L/ the center of L.
Indeed, theL-invariant ideals k of u are ¹0º, u, and the center zD^2V . By irreducibil-

ity of theL-action on V and on^2V , the corresponding ideals p, which are inverse images
in u of the G-fixed elements in u=k, are respectively ¹0º, u and z.

Let � 2 yu.

• Assume that k� D ¹0º. Then p� D ¹0º and L� D ¹eº. So, the only character of G
associated to � is ıe .

• Assume that k� D u. Then the characters of G associated to � are the characters of L
lifted to G, that is, ¹1Gº and z� ı p for � 21Z.L/.
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• Assume that k� D z. Then p� D z and L� D ¹eº. So, 1^2V is the only character of G
associated to �.
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