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Point-pushing actions for manifolds with boundary

Martin Palmer and Ulrike Tillmann

Abstract. Given a manifold M and a point in its interior, the point-pushing map describes a dif-
feomorphism that pushes the point along a closed path. This defines a homomorphism from the
fundamental group of M to the group of isotopy classes of diffeomorphisms of M that fix the
basepoint. This map is well-studied in dimension d D 2 and is part of the Birman exact sequence.
Here we study, for any d > 3 and k > 1, the map from the k-th braid group of M to the group
of homotopy classes of homotopy equivalences of the k-punctured manifold M X z, and analyse
its injectivity. Equivalently, we describe the monodromy of the universal bundle that associates to
a configuration z of size k in M its complement, the space M X z. Furthermore, motivated by our
earlier work (2021), we describe the action of the braid group of M on the fibres of configuration-
mapping spaces.

1. Introduction

LetM be a based, connected (smooth) manifold of dimension d > 2 and denote byCk. VM/

the configuration space of k unordered distinct points in its interior. We may think of it as
the moduli space of k distinct points inM . Its universal bundle is the fibre bundle Uk.M/

that associates to each k-tuple z 2 Ck. VM/ the k-punctured manifold M X z:

M X z Uk.M/

Ck. VM/:

u

The primary goal of this paper is to describe the monodromy action (up to homotopy) of
the above fibre bundle

push.M;z/W�1.Ck. VM/; z/! �0.hAut.M X z//

where hAut.M X z/ denotes the homotopy equivalences of the complement of z in M ;
whenM has boundary, we will consider the relative homotopy equivalences, and any base
point is on the boundary of M .
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Let .X; �/ be a fixed connected based space and assume that M has boundary and a
basepoint. Applying the continuous functor Map�.�;X/ (based maps toX ) fibrewise to u
defines a new fibre bundle:

Map�.M X z;X/ CMap�k.M IX/

Ck. VM/:

p

Our second goal is to give explicit formulas for the monodromy action for p (up to homo-
topy). The total space is an example of the configuration-mapping spaces studied in [7,16].
Indeed, our interest in the monodromy actions was motivated by our study of homology
stability for configuration-mapping spaces.

When z is just a single point, the monodromy map can be defined in terms of the
point-pushing map: it sends an element Œ˛� 2 �1.M; z/ to the pointed isotopy class of the
diffeomorphism that pushes the point z along the curve ˛ and is the identity outside a
small neighbourhood of the image of ˛. It is not difficult to see that the point pushing map
and more generally push.M;z/ factors through the (smooth) mapping class group:

pushsm.M;z/W�1.Ck. VM/; z/! �0.Diff.M I z//I

here Diff.M I z/ denotes the group of (smooth) diffeomorphisms of M that permute the
points in z. If the boundary of M is non-empty, we will consider those diffeomorphisms
that fix the boundary.

There is a possibly more familiar alternative description of pushsm.M;z/. For z a single
point in M , consider the fibration

Diff.M I z/! Diff.M/
eval
��!M;

where eval denotes the map that evaluates a diffeomorphism at z. AsM is path-connected,
this gives rise to the exact sequence

0! L! �1.M; z/! �0.Diff.M I z//! �0.Diff.M//! 0;

where L is by definition the kernel of the middle map.
For M D S a surface of negative Euler characteristic, the connected components of

Diff.M/ are contractible [5, 6] and hence the fibration gives rise to the Birman exact
sequence [2]

0! �1.S; z/! �0.Diff.S I z//! �0.Diff.S//! 0:

When ˛ is represented by a simple curve that has a two-sided neighbourhood in S , its
image is a product of the two Dehn twists around the two curves (oriented oppositely) that
form the boundary of a tubular neighbourhood of ˛. On the other hand, when S D T is
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the torus, Diff.T / ' T Ì SL2.Z/ [10] and eval induces an isomorphism on fundamental
groups:

�1.Diff.T /I idT / Š K D �1.T; z/ Š Z2:

Thus the smooth point-pushing map (and hence also the non-smooth version) is well-
understood when d D 2. Recently, Banks [1] completely determined the kernel L also
when d D 3. In particular, she shows that L is trivial unless the manifold M is prime and
Seifert fibred via an S1 action. In a different direction, Tshishiku [19] studies the Nielsen
realisation problem for the point-pushing map, i.e. asks when the point-pushing map can
be factored through Diff.M; z/. However, little seems to be known about the image of
the point-pushing map in higher dimensions. Here we give a complete description, up to
homotopy, of the induced self-map of M X z for any element of the fundamental group
when M has non-empty boundary. As an example, in Section 7, we study the manifolds
M d
g;1 D ]

g.S1 � Sd�1/ X VDd for d > 3 and g > 0 and show that the point-pushing map
is injective for these examples. Inspired by our calculations in these examples, we discuss
injectivity more generally in Section 8. We note that for these examplesM d

g;1, the Nielsen
realisation problem is solvable as the fundamental group is free.

Outline and results. The paper is organised as follows. Section 2 contains basic recollec-
tions about (relative) monodromy actions associated to fibrations and Section 3 discusses
equivalent definitions of the point-pushing map (see Figure 1), and considers the induced
actions for associated fibre bundles obtained from the universal bundle u by applying a
continuous functor. Restricting from now on to manifolds with boundary and dimension
d > 3, in Section 4 we note that for a k-tuple z, up to homotopy, M X z decomposes as a
wedge of M with a k-fold wedge sum of spheres Sd�1,

M X z 'M _Wk where Wk WD
Wk

Sd�1

and �1.Ck. VM/; z/ is isomorphic to the wreath product

�1.M/k Ì†k :

Thus the task of understanding the monodromy action is divided into understanding (on
each of the terms M and Wk) the action of the symmetric group elements, which is done
in Section 5, and the more complicated action of the loop elements, considered in Sec-
tion 6. The elements of the symmetric group act, up to homotopy, by the identity on M
and by permuting the k summands in the wedge product Wk ; compare Proposition 5.1.
The precise action of a loop ˛ 2 �1M is the content of Propositions 6.2 and 6.3. Roughly,
when ˛ is in the i -th factor of the wreath product, it acts on the summand Wk by taking
the i -th sphere Sd�1 and mapping a neighbourhood of its base point around ˛ before cov-
ering itself by a degree ˙1 map depending on whether ˛ lifts to a loop in the orientation
double cover ofM . The other factors ofWk are mapped by the inclusion. This completely
describes the monodromy action of ˛ on Wk !M _Wk . The action of ˛ on M depends
only on the sequence of intersections of ˛ with the .d � 1/-cells of M , or more pre-
cisely those of an embedded CW-complex K of dimension at most d � 1 such that M
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deformation retracts onto it; compare formula (6.8) and Figure 4. So, if there are no such
intersections, for example when K has no .d � 1/-cells, then the action on M is simply
given by the inclusion. However, if ˛ intersects a .d � 1/-cell � of K with intersection
number ].�; ˛/, then in addition to the inclusion of M , the monodromy action of ˛ takes
the cell � to the i -th factor of Wk by a degree ].�; ˛/ map. These assemble to give a map

M ' K� K=K.d�2/ '
_
�

Sd�1 ! Sd�1 � Wk ;

where K.d�2/ denotes the .d � 2/-skeleton of K. This completely describes the mono-
dromy action of ˛ on M ! M _Wk after projection to each factor M and Wk . The full
description of this action in Definition 6.6 takes into account the precise sequence of inter-
sections of ˛ and the .d � 1/-cells. We illustrate this latter more complicated action of ˛
with examples in Section 7. In Section 8, we discuss the general question of injectivity for
the point-pushing map. We show that, up to isomorphism, the kernel of the point-pushing
map is independent of k regardless whether diffeomorphisms, homeomorphisms or homo-
topy equivalences are considered. In particular, it is always injective when the manifold
has non-empty boundary. Our main result in this direction is contained in Proposition 8.2.
Finally, in Section 9 the induced action on the fibres of p for configuration mapping spaces
is described. As a further application we compute the number of connected components
for configuration mapping spaces in Corollary 9.5.

2. Monodromy actions

We first recall the monodromy action associated to a fibration. Let f WE!B be a continu-
ous map and write F D f �1.b/ for a point b 2 B . Assume that f satisfies the homotopy
lifting property (covering homotopy property) (cf. [11, §4.2] or [14, §7]) with respect to
the spaces F and F � Œ0; 1�. For example, this holds if f is a Hurewicz fibration, or if f
is a Serre fibration and F is a CW-complex. In particular, it holds whenever f is a fibre
bundle and either B is paracompact or F is a CW-complex.

Definition 2.1. For a space F , write hAut.F / � Map.F; F / for the space of continu-
ous self-maps F ! F , with the compact-open topology, that admit a homotopy inverse.
This is a topological monoid under composition, and grouplike, i.e. the discrete monoid
�0.hAut.F // is a group (it is the automorphism group of F in the homotopy category).

For a pair of spaces .F; F0/, we write End.F jF0/ for the topological monoid (with
the compact-open topology) of self-maps of F that are the identity on F0 and we write
hAut.F jF0/ � End.F jF0/ for the union of those path-components of End.F jF0/ cor-
responding to the invertible elements of the discrete monoid �0.End.F jF0//. Note that
hAut.F j¿/ D hAut.F /. See also Remark 8.9.
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Definition 2.2 (Monodromy actions). Under the above assumptions, the monodromy
action associated to f is the action-up-to-homotopy

monf W�1.B; b/! �0.hAut.F // (2.1)

of �1.B; b/ on F defined as follows. For an element Œ� 2 �1.B; b/ represented by a loop
 W Œ0; 1�! B , let gWF � Œ0; 1�! E be a choice of lift in the diagram:

F E

F � Œ0; 1� Œ0; 1� B

incl



.�; 0/ f

and define monf .Œ�/ D Œg.�; 1/�.

There is also a relative version of this construction. Let F0 � F be a subspace and
assume that f satisfies the relative homotopy lifting property with respect to the pairs of
spaces .F; F0/ and .F; F0/ � Œ0; 1�. For example, this holds if f is a Hurewicz fibration,
or if f is a Serre fibration and .F; F0/ is a relative CW-complex. Also assume that we
have a topological embedding i WF0 � B ,! E such that f ı i is the projection onto the
second factor and i.�; b/ is the inclusion F0 � F � E. (This says, essentially, that f
contains the trivial fibration over B with fibre F0 as a sub-fibration.)

Definition 2.3 (Relative monodromy actions). Under these assumptions, the relative
monodromy action associated to f and F0 is the action-up-to-homotopy

monf W�1.B; b/! �0.hAut.F jF0// (2.2)

constructed as follows. For an element Œ� 2 �1.B; b/ represented by a loop  W Œ0; 1�! B ,
let gWF � Œ0; 1�! E be a choice of lift in the diagram:

.F0 � Œ0; 1�/ [ .F � ¹0º/ E

F � Œ0; 1� Œ0; 1� B

.i ı .idF0 � // [ incl



incl f

and define monf .Œ�/ D Œg.�; 1/�.

Lemma 2.4. The monodromy action (2.1) and relative monodromy action (2.2) are well-
defined.

Proof. For the monodromy action (2.1), the proof is given in [16, Lemma 5.3]. The proof
for the relative monodromy action (2.2) is similar.
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3. Point-pushing actions

This section defines the point-pushing action associated to a manifold M and a finite
subset z � VM of its interior. This is given in Definition 3.2 via the monodromy action of
the “universal” bundle (3.1). This may be refined (Remark 3.3) to a smooth version, and
it has a simple geometric description (Lemma 3.4) for manifolds of dimension at least 3.
We then describe point-pushing actions on mapping spaces and other spaces associated
functorially to the complement M X z (see Definitions 3.11 and 3.12).

Definition 3.1. Let Uk.M/ WD xC1;k.M/ be the configuration space of k unordered green
points in the interior of M and one red point in M , which may lie on the boundary. There
is a fibre bundle

uWUk.M/! Ck. VM/; (3.1)

given by forgetting the red point, whose fibres are u�1.z/ DM X z. This is the universal
bundle referred to in the introduction.

Definition 3.2 (The point-pushing action). For a manifold-with-boundary M (we allow
@M D ¿) and a finite subset z � VM of cardinality k, the point-pushing action of
�1.Ck. VM/; z/ on M X z is defined as the relative monodromy action of (3.1). More
precisely, we write F D u�1.z/, let F0 D @M � M X z and note that .M X z; @M/

is a relative CW-complex, since it is a (smooth) manifold with boundary. There is an
embedding

i W @M � Ck. VM/ ,! Uk.M/;

given by colouring the point in @M red and the k points in the interior green, which satis-
fies the conditions of Definition 2.3. By Definition 2.3 and Lemma 2.4, there is therefore
a well-defined relative monodromy action

push.M;z/W�1.Ck. VM/; z/! �0.hAut.M X zj@M//: (3.2)

This is, by definition, the point-pushing action of �1.Ck. VM/; z/ on M X z. For Œ� 2
�1.Ck. VM/; z/, the homotopy class of maps

push D push.M;z/.Œ�/WM X z !M X z

(fixing @M pointwise) is called the point-pushing map of Œ� on M X z.

Remark 3.3. The monodromy action (3.2) may be refined to an action by isotopy classes
of diffeomorphisms, as in the following diagram:

�1.Ck. VM/; z/

�1.Ck. VM/; z/

�0.Diff@.M; z//

�0.hAut.M X zj@M//;

pushsm
.M;z/

push.M;z/

D i



Point-pushing actions for manifolds with boundary 1185

where Diff@.M/ denotes the topological group of diffeomorphisms ofM fixing @M point-
wise, in the smooth Whitney topology, the topology on hAut.�/ is the compact-open
topology and i is induced by the continuous injection Diff@.M; z/ ,! hAut.M X zj@M/

given by ' 7! 'jMXz .
To see this, recall (cf. [4,13,15]) that there is a fibre bundle Diff@.M/! Ck. VM/ given

by evaluating a diffeomorphism at a finite set of points, whose fibre over z is the subgroup
Diff@.M; z/ of diffeomorphisms fixing z as a subset. The map pushsm.M;z/ in the diagram
above is the connecting homomorphism in the long exact sequence of homotopy groups
of this fibre bundle. We call this action the smooth point-pushing action of �1.Ck. VM//

on M X z, and we call the map pushsm D pushsm.M;z/.Œ�/W .M; z/! .M; z/ the smooth
point-pushing map of Œ� on .M; z/.

If d D dim.M/ > 3, there is a useful geometric description of the smooth point-
pushing action, which we will use later. An element  2 �1.Ck. VM/;z/ is represented by a
certain number of oriented loops 1; : : : ; j in M , each passing through at least one point
of z, such that, for each point of z, exactly one of the loops passes through it. (The number
j 6 k of such loops is the number of cycles in the cycle decomposition of the permuta-
tion of z induced by  .) Choose representatives of the loops 1; : : : ; j that are smoothly
embedded and have pairwise disjoint images (using the fact that d > 3 for disjointness).
Also choose pairwise disjoint closed tubular neighbourhoods T1; : : : ; Tj of these loops,
which we assume to be contained in the interior of M . Define a diffeomorphism

'.T1;:::;Tj /W .M; z/! .M; z/

fixing @M pointwise and z setwise as follows. On the complement of the tubular neigh-
bourhoods, '.T1;:::;Tj / is the identity. Suppose that the tubular neighbourhood Ti contains
ki of the points of z (so k1 C � � � C kj D k) and identify Ti X .z \ Ti / with�

.Dd�1
�R/ X .¹0º � Z/

�
=�;

where � is either

• the equivalence relation given by .x; t/ � .x; t C ki /, or

• the equivalence relation given by .x; t/ � .r.x/; t C ki /, where r WDd�1 ! Dd�1 is
a fixed reflection in a hyperplane passing through 0,

depending on whether or not the loop i lifts to a loop in the orientation double cover
of M . We moreover arrange that this identification restricts to an identification of the
cores of these two tubes. Choose a smooth function �W Œ0; 1�! Œ0; 1� that takes the value
1 on Œ0; "� and the value 0 on Œ1 � "; 1� for some " > 0. Then the restriction of '.T1;:::;Tj /
to Ti , under this identification, is defined by

'.T1;:::;Tj /.x; t/ D .x; t C �.jxj//:

See Figure 1 for an illustration. We record this geometric description in the following
lemma.
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id

0 4

T1

T2

r

0 2

non-orientable loop

M

Figure 1. An example of the point-pushing action for jzj D 6 and where the loop  2 �1.C6. VM/;z/

induces a permutation of z with one 4-cycle and one 2-cycle.

Lemma 3.4 (Geometric point-pushing). Let M be a smooth manifold-with-boundary of
dimension d > 3 and let Œ� 2 �1.Ck. VM/; z/. Choose a collection of smoothly embedded
loops 1; : : : ; j and tubular neighbourhoods T1; : : : ; Tj as described above. Then

Œ'.T1;:::;Tj /� D pushsm.M;z/.Œ�/ 2 �0.Diff@.M; z//:

Associated point-pushing actions. We have so far described the “universal” point-push-
ing action of �1.Ck. VM/; z/ on the complement M X z, for a subset z � VM with jzj D k.
We now discuss induced point-pushing actions associated to continuous endofunctors
T W Top ! Top or T W Top� ! Top� (or, more generally, to a continuous functor of the
form (3.6)).

Definition 3.5 (Associated fibre bundles). We first recall that, if f WE ! B is a fibre
bundle with fibre F (and structure group Homeo.F / in the compact-open topology),
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and if T W Top ! Top is a continuous endofunctor (covariant or contravariant) of the
topologically-enriched category of spaces, there is an associated fibre bundle

fT WTfib.E/! B (3.3)

with fibre T .F /, constructed by “applying T fibrewise” to E. More precisely, the functor
T restricts to a continuous group (anti-)homomorphism

Homeo.F /! Homeo.T .F //; (3.4)

and we define (3.3) to be the Borel construction Prin.E/ �Homeo.F / T .F /, where Prin.E/
! B is the principal Homeo.F /-bundle associated to f , and where Homeo.F / acts on
T .F / via (3.4). (See [17, §§8–9] for more details.)

There is an exactly analogous construction if f is a fibre bundle in the pointed cat-
egory Top� (i.e. with structure group Homeo�.F /) and T WTop� ! Top� is a continuous
endofunctor of the topologically-enriched category of based spaces Top�. In this case, T
restricts to a continuous group homomorphism

Homeo�.F /! Homeo�.T .F //; (3.5)

so we may define (3.3) to be the Borel construction Prin�.E/ �Homeo�.F / T .F /, where
Prin�.E/! B is the principal Homeo�.F /-bundle associated to f , and Homeo�.F / acts
on T .F / via (3.5).

Definition 3.6 (Configuration-mapping spaces). Let X be any space and consider the
(contravariant) continuous functor

T D Map.�; X/WTop! Top:

The fibre bundle associated by T to the bundle (3.1) is denoted by

CMapk.M IX/ WD Tfib.Uk.M//! Ck. VM/;

and its total space is the k-th configuration-mapping space of M and X . A point in
CMapk.M IX/ consists of a configuration z � VM in the interior of M and a continu-
ous map M X z ! X .

If @M ¤ ¿, the fibre bundle (3.1) admits a canonical section given by z 7! .z; �/,
where � 2 @M is a choice of basepoint, allowing us to reduce its structure group to the
based homeomorphism group Homeo�.M X z/, where z is a basepoint of Ck. VM/. Thus,
choosing a basepoint for X , we may also consider the fibre bundle associated to (3.1) by
the continuous functor T D Map�.�; X/WTop� ! Top�, which is denoted by

CMap�k.M IX/ WD Tfib.Uk.M//! Ck. VM/:

A point in CMap�k.M IX/ consists of a configuration z � VM in the interior ofM together
with a based continuous map M X z ! X .
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Definition 3.7 (Associated fibre bundles, II). The structure group of the bundle (3.1) may
be reduced further to Homeo@M .M; z/, the group of self-homeomorphisms of M that fix
z setwise and @M pointwise. Hence any continuous functor

T WHomeo@M .M; z/! Top (3.6)

(i.e., any space with a continuous action of Homeo@M .M; z/) associates to (3.1) a new
fibre bundle

Tfib.Uk.M//! Ck. VM/

by taking the Borel construction of the associated principal Homeo@M .M; z/-bundle.

Remark 3.8. For comparison, the associated fibre bundles of Definition 3.5 above cor-
respond to continuous functors (3.6) that are of the form

Homeo@M .M; z/
�jMXz
����! Homeo.M X z/ � Top! Top;

in other words, that factor through an endofunctor of Top. However, there are interesting
(and more subtle) examples that do not extend in this way, as we show in the next example.

Definition 3.9 (Configuration-mapping spaces, II). Fix a basepoint � 2 @M , a based space
X and a subset c � ŒSd�1; X� of unbased homotopy classes of maps Sd�1! X . If M is
non-orientable, we assume that c consists of fixed points under the involution of ŒSd�1;X�
given by a reflection of Sd�1. There is a continuous functor

Mapc�.�; X/WHomeo@M .M; z/! Top (3.7)

defined as follows. The unique object on the left-hand side is sent to the space (with the
compact-open topology) of based, continuous maps f WM X z ! X with “monodromy”
valued in c. The last condition means that, if eWDd ! M is an embedding such that
z \ e.Dd / is a single point in the interior of e.Dd /, then the homotopy class of f ı ej@Dd

lies in c. (If M is orientable, we fix an orientation and require that e is orientation-
preserving in the preceding sentence.) One may then check that the natural action of
' 2 Homeo@M .M; z/ on the mapping space Map�.M X z; X/ preserves the subspace
Mapc�.M X z;X/. The fibre bundle associated by (3.7) to the bundle (3.1) is denoted by

CMapc;�
k
.M IX/! Ck. VM/; (3.8)

and its total space is the k-th based configuration-mapping space ofM andX with “mono-
dromy” or “charge” in c.

Remark 3.10. Configuration-mapping spaces are discussed in more detail in [16, §2], and
may be generalised to configuration-section spaces, which are defined in [16, §3]. There
are also many other natural continuous functors T WTop! Top or T WHomeo@M .M; z/!
Top that may be used to construct interesting fibre bundles associated to the “universal”
bundle (3.1). For example, one could take T to be suspension †k.�/, symmetric powers
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SP k.�/ or configuration spaces Ck.�/, each of which lead to a certain flavour of bicol-
oured configuration spaces. Other interesting examples are co-representable functors, such
as the based and free loop-space functors�.�/ and L.�/, which lead to spaces of config-
urations equipped with (based or free) continuous loops in their complement.

Definition 3.11 (Associated point-pushing action). For a space T with a continuous action
of Homeo@M .M; z/, viewed as a continuous functor T WHomeo@M .M; z/! Top, we have
from Definition 3.7 a fibre bundle

Tfib.Uk.M//! Ck. VM/

with fibre T . The associated point-pushing action of �1.Ck. VM/; z/ on T is then the
monodromy action of this fibre bundle, denoted by

push.M;z;T /W�1.Ck. VM/; z/! �0.hAut.T //:

Definition 3.12 (Point-pushing action on mapping spaces). In particular, if we specialise
to the case T D Mapc�.M X z;X/ for a based space X and a subset c � ŒSd�1; X�, as in
Definition 3.9, we have an associated point-pushing action

push.M;z;X;c/W�1.Ck. VM/; z/! �0.hAut.Mapc�.M X z;X///

which is the monodromy action of the fibre bundle (3.8). This can be generalised to a
point-pushing action of �1.Ck. VM/; z/ on Mapc..M X z;D/; .X;�// for any subset D �
@M .

The following elementary lemma relates the point pushing action of �1.Ck. VM/; z/

on M X z (Definition 3.2) and its associated point-pushing action on the mapping space
Mapc..M Xz;D/; .X;�// (Definition 3.12). Choose k pairwise disjoint balls inM centred
at the points z and let

sWSd�1 � ¹1; : : : ; kº ,!M X z

be the inclusion of their boundaries. Denote by hAuts.M X zj@M/ � hAut.M X zj@M/

the subspace of homotopy automorphisms f of M X z such that f ı s ' s ı g for some
homotopy automorphism g of Sd�1 � ¹1; : : : ; kº. Note that the point-pushing action (3.2)
takes values in �0 of this subspace.

Lemma 3.13. The point-pushing action of �1.Ck. VM/; z/ on Mapc..M X z;D/; .X; �//
is obtained from its point-pushing action on M X z by pre-composition. In other words,
the following diagram commutes:

�1.Ck. VM/; z/

�1.Ck. VM/; z/

�0.hAuts.M X zj@M//

�0
�
hAut

�
Mapc..M X z;D/; .X;�//

��
;

push.M;z/

push.M;z;X;c/

D ı
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where the right vertical homomorphism is defined by composition. In particular, the action
up to homotopy of �0.hAuts.M Xzj@M// on the mapping space Map..M Xz;D/; .X;�//
preserves the subspace Mapc..M X z; D/; .X; �// for each subset c � ŒSd�1; X�,
assuming, if M is non-orientable, that c is closed under the involution given by reflecting
in Sd�1.

Remark 3.14. We have focused in this section (except in Remark 3.3 and Lemma 3.4) on
monodromy actions – by homotopy automorphisms – of fibrations (as discussed abstractly
in Section 2). This is because our main result is an explicit description of the monodromy
action by homotopy automorphisms of the universal bundle (3.1) (and, as a corollary, of
the configuration-mapping bundle (3.8)). However, the constructions of this section also
have direct analogues for monodromy actions by homeomorphisms (diffeomorphisms)
of fibre bundles (smooth fibre bundles). See also Section 8, where we discuss kernels of
point-pushing actions in all three settings.

4. Formulas for point-pushing actions

LetM be a connected manifold of dimension d > 3, let z � VM be a k-point configuration
in its interior,D � @M an embedded .d � 1/-dimensional disc in its boundary, X a based
space and c�ŒSd�1;X� a non-empty set of unbased homotopy classes of maps Sd�1!X .
Our goal is to give explicit formulas for the point-pushing action of �1.Ck. VM/; z/ on
M X z (Definition 3.2). These will be given in the following two sections; in this section
we first fix notation and the identifications that we will use.

Notation 4.1. Let Wk denote a wedge
Wk

Sd�1 of k copies of the .d � 1/-sphere.

Construction 4.2. Let us choose an explicit homotopy equivalence of pairs

.M X z;D/ ' .M _Wk ;�/; (4.1)

as follows (see Figure 2 for an illustration). Choose a d -dimensional closed disc B in
M containing the configuration z in its interior and such that B \ @M is a .d � 1/-
dimensional disc in @M containing (but not equal to) D, and such that the closure of
the complement .B \ @M/ XD is also a disc. (In Figure 2, we may assume that D D
@M \ B 0.) Note that the closure M 0 of M X B in M is also homeomorphic to M . Also
note that we have M 0 \ .B \ @M/ D @.B \ @M/ and D \ @.B \ @M/ ¤ ¿ by the con-
dition that the closure of the complement .B \ @M/XD is a disc. ThusD \M 0 ¤ ¿, so
we may choose a basepoint � ofM inD \M 0. Choose also k embedded .d � 1/-spheres
in B such that each sphere intersects @B at the basepoint � and nowhere else, the spheres
are pairwise disjoint except for � and each sphere “wraps once around each of the points
of z” (this is more formally expressed by the condition thatB X z must deformation retract
onto the union of the spheres). The union of M 0 and the spheres is homeomorphic to the
wedge sum on the right-hand side of (4.1), and there is a deformation retraction of M X z
onto this subspace, supported in B X z, fixing the basepoint � and sending D onto ¹�º.
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T

[ D B D B 0 DM 0

�

DM

ı

Figure 2. An embedding of M _ .
WkSd�1/ into M X z as a deformation retract, together with a

loop ı in B 0 [M 0 based at z \ B 0 and a tubular neighbourhood T of its intersection with M 0. The
disc D � @M is the intersection @M \ B 0.

Notation 4.3. From now on, we will write �1.Ck. VM/; z/ just as �1.Ck.M//, leaving the
basepoint z implicit, and using the fact that the inclusionCk. VM/ ,!Ck.M/ is a homotopy
equivalence.

Notation 4.4. By the smooth version of the point-pushing action (see Remark 3.3), an
element  2 �1.Ck.M// induces (an isotopy class of) a self-diffeomorphism

pushsm WM !M;

fixing @M pointwise and z setwise, which has an explicit geometric representative
'.T1;:::;Tj / given by Lemma 3.4 if dim.M/ > 3. We denote its restriction to a self-diffeo-
morphism of M X z by

� WM X z !M X z:

By abuse of notation, we also denote by � the (homotopy class of a) homotopy self-
equivalence of M _ Wk fixing � induced via the deformation retraction given in Con-
struction 4.2:

M X z M X z

M _Wk M _Wk :

�

�

'incl ' Construction 4.2 (4.2)
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Recall that, for dim.M/ > 3, the fundamental group �1.Ck.M// decomposes as the
semi-direct product �1.M/k Ì†k . (See [8, Theorem 9], [3, Theorem 1], or [18, Lemma
4.1] for a generalisation.) Concretely, the isomorphism

‡ W�1.Ck.M/; z/ Š �1.M; z0/
k Ì†k (4.3)

is given as follows, and depends on the choice of a contractible ball B containing the base
configuration z and the point z0. Any loop  of k-point configurations in M based at z
consists of an ordered tuple of paths in M given by the motions of the individual points.
(The paths are ordered according to their ordering at time t D 0, and this is determined
by a fixed ordering of the base configuration z.) If we collapse B to a point, we obtain
a k-tuple .˛1; : : : ; ˛k/ of based loops in M=B . Together with the permutation �./ of
z Š ¹1; : : : ; kº induced by  , and using the isomorphism �1.M/Š �1.M=B/ induced by
the collapse map M !M=B , this determines an element ‡./ D .˛1; : : : ; ˛k I �.// of
the semi-direct product �1.M; z0/k Ì†k .

In the next two sections, we give explicit formulas for the bottom horizontal map of
(4.2) for  D .˛1; : : : ; ˛k I �/ 2 �1.M/k Ì†k under this decomposition.

Notation 4.5. We collect here some additional notation that will be used in the following
two sections.

• For a wedge A _ B , we write incA (resp. incB ) for the inclusion of the first (resp.
second) summand, and similarly we write prA (resp. prB ) for the projection onto the
first (resp. second) summand.

• For pointed spaces A; B; C and a pointed map f WA _ B ! C , we will sometimes
write f as a .1 � 2/-matrix:

f D
�
fA fB

�
;

where fA D f ı incA and fB D f ı incB . Note that fA and fB jointly determine f ,
since _ is the coproduct in the category of pointed spaces.

• Similarly, for pointed spaces A;B; C;D and a pointed map f WA _ B ! C _D, we
will sometimes write f as a .2 � 2/-matrix:

f D
�
fA fB

�
 

�
CfA CfB

DfA DfB

�
;

where CfA D prC ı f ı incA, etc. Note that the pair of CfA andDfA does not determ-
ine fA (since _ is not a product), so the .2 � 2/-matrix-notation loses information.
(This is why we write “ ” instead of “D” in this case.)

• As mentioned above, we have for dim.M/ > 3 a splitting �1.Ck.M// Š �1.M/k Ì
†k . Thus, for each � 2 †k and ˛ 2 �1.M/, we have elements

.1; : : : ; 1I �/ and .˛; 1; : : : ; 1I id/ 2 �1.Ck.M//;

which we will denote simply by � and ˛ by abuse of notation. We will always use
these letters for elements of these two subgroups of �1.Ck.M//, and we will denote
a general element of �1.Ck.M// by  .
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• We take the basepoint of Sd�1 to be the south pole, and write

pinchWSd�1 ! Sd�1 _ Sd�1

for the map that collapses the equator of Sd�1 to a point. The wedge sum on the
right-hand side identifies the north pole of the left summand with the south pole of
the right summand. We take the basepoint of Sd�1 _ Sd�1 to be the south pole of the
left summand (in particular, not the point at which the wedge sum is taken); with this
choice, pinch is a based map.

• We write
collWSd�1 ! Œ0; 1�

for the “collapse” map that projects Sd�1 � Rd onto the d -th coordinate (so the
south pole goes to �1 and the north pole goes to 1) and then linearly reparametrises
by x 7! 1

2
.x C 1/.

Remark 4.6. Since �1.Ck.M// is generated by elements of the form .1; : : : ; 1I �/ and
.˛; 1; : : : ; 1I id/ (which we henceforth denote simply by � and ˛) for � 2 †k and ˛ 2
�1.M/, it will suffice to give explicit formulas for

�� and �˛WM _Wk !M _Wk

up to basepoint-preserving homotopy, for all � 2 †k and ˛ 2 �1.M/. This will be done
in Sections 5 and 6 respectively.

Terminology 4.7. The elements � D .1; : : : ; 1I �/ will be called symmetric generators
of �1.Ck.M// and the elements ˛ D .˛; 1; : : : ; 1I id/ will be called loop generators of
�1.Ck.M//.

5. Symmetric generators

The action of the symmetric generators of �1.Ck.M// on M _ Wk is fairly easy to
describe.

Proposition 5.1. For any element � 2 †k we have

�� D idM _ �] D
�
incM incWk ı �]

�
 

�
idM �

� �]

�
;

where �] denotes the obvious self-map of Wk D
Wk

Sd�1 determined by the permutation
� , and � denotes the constant map to the basepoint.

Proof. In the geometric model '.T1;:::;Tj / (see Lemma 3.4) for the point-pushing diffeo-
morphism of .M; z/ induced by  D .1; : : : ; 1I �/, we may assume that the tubular
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neighbourhoods T1; : : : ; Tj are all contained in the codimension-zero ball B � M (see
Figure 2). This follows from the concrete description of the isomorphism (4.3):

�1.Ck.M// Š �1.M/k Ì†k :

Since '.T1;:::;Tj / is the identity outside of the tubular neighbourhoods, this implies that
�� ' idM _  , for some automorphism  of Wk .

To see that  ' �], first consider a collection of k small, unbased .d � 1/-spheres sur-
rounding the points of z, contained in the union of tubular neighbourhoods T1 [ � � � [ Tj .
It follows from its explicit description in Lemma 3.4 that '.T1;:::;Tj / permutes the homo-
topy classes of these spheres according to � . Since these spheres form a free basis for
the homology group Hd�1.B X z/ Š Zk , the effect of '.T1;:::;Tj / on Hd�1.M X z/ Š
Hd�1.B X z/ ˚ Hd�1.M

0/ is to permute the k different Z factors of Hd�1.B X z/
according to � . Identifying Wk with the wedge of embedded .d � 1/-spheres in Figure 2,
we have a canonical isomorphism Hd�1.Wk/ Š Hd�1.B X z/ Š Zk . It follows that the
effect of  on Hd�1.Wk/ is to permute the k factors of Hd�1.Wk/ Š Zk according to � .
By the Hurewicz theorem, we have Hd�1.Wk/ Š �d�1.Wk/. Since Wk is a wedge of
spheres,  WWk ! Wk is determined up to based homotopy by its effect on �d�1.Wk/;
thus  ' �].

6. Loop generators

For any ˛ 2 �1.M; �/, the point-pushing map �˛WM X z ! M X z may be assumed
(up to basepoint-preserving homotopy) to be supported in a tubular neighbourhood of an
embedded loop ˛0 inM , based at one of the points of the configuration z, in the homotopy
class determined by conjugating ˛ with a path in B from � to this point (see Figure 2).
We may choose ˛0 and its tubular neighbourhood T to be contained in M 0 [ B 0, so the
support of �˛WM X z ! M X z is contained in M 0 [ B 0. Under the identification (4.1),
this implies the following.

Lemma 6.1. For any ˛ 2 �1.M/, up to based homotopy, �˛WM _Wk !M _Wk is of
the form

�˛ D x�˛ _ idWk�1 ;

where x�˛ is a self-map of M _ Sd�1, unique up to based homotopy.

We therefore just have to describe the map x�˛ for each ˛ 2 �1.M/. We first do this
under an additional assumption on the manifold M . Recall that the handle-dimension of
a manifold is the smallest i such that M may be constructed using handles of degree at
most i . Using the cores of such a handle decomposition, this implies that M deforma-
tion retracts onto an embedded CW-complex of dimension equal to the handle dimension
of M . Since M , in our situation, is connected and has non-empty boundary, its handle-
dimension is necessarily at most dim.M/ � 1.
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Proposition 6.2. Suppose that the handle dimension of M is at most dim.M/ � 2. Then,
for any element ˛ 2 �1.M/ we have

x�˛ D
�
incM ..˛ ı coll/ _ sgn.˛// ı pinch

�
 

�
idM ˛ ı coll ' �
� sgn.˛/

�
; (6.1)

where sgn.˛/WSd�1 ! Sd�1 has degree C1 if ˛ lifts to a loop in the orientation double
cover of M and degree �1 otherwise. The other notation is explained in Notation 4.5.

If the handle dimension of M is equal to dim.M/ � 1 (the maximum possible), the
formula for x�˛ is more complicated. The following proposition gives the general formula.

Proposition 6.3. For any element ˛ 2 �1.M/ we have

x�˛ D
�
t˛ ..˛ ı coll/ _ sgn.˛// ı pinch

�
 

�
idM ˛ ı coll ' �
t˛ sgn.˛/

�
; (6.2)

where sgn.˛/ is as in Proposition 6.2 and the mapst˛ andt˛ are described in Section 6.2
below.

In Section 6.1, we prove Proposition 6.2. In Section 6.2, we first define the maps
t˛ and t˛ in the statement of Proposition 6.3 (Definitions 6.5 and 6.6) and then prove
Proposition 6.3.

In each case we prove the descriptions on the left-hand side of (6.1) and of (6.2), and
those on the right-hand side in terms of .2� 2/matrices follow as a consequence. We note
that in each case the top-right entry of the matrix is a priori equal to ˛ ı collWSd�1!M ,
but this is nullhomotopic as a based map, so it may be replaced with �. In contrast, the
appearance of ˛ ı coll in the formulas on the left-hand side of (6.1) and of (6.2) may not
be replaced by �, since it is part of a description of a map Sd�1 !M _ Sd�1 where the
sphere is first collapsed to Œ0;1�_Sd�1, so in this case the interval may not be deformation
retracted to its basepoint 0, since its other endpoint 1 is attached to the sphere Sd�1, which
is wrapped with sign˙1 around the Sd�1 summand of M _ Sd�1.

6.1. Below the maximal handle dimension

Proof of Proposition 6.2. Let us write

• x�M˛ WM !M _ Sd�1 for the restriction of x�˛ to the M summand of M _ Sd�1;

• x�S˛ WS
d�1!M _ Sd�1 for the restriction of x�˛ to the Sd�1 summand ofM _ Sd�1.

In this notation, to prove Proposition 6.2, we need to show that

x�M˛ ' incM and x�S˛ ' ..˛ ı coll/ _ sgn.˛// ı pinch: (6.3)

We first prove the right-hand side of (6.3). This may in fact be seen purely geomet-
rically from Figure 2. We need to describe the effect of �˛ on the loop (representing
a .d � 1/-sphere) pictured in the bottom-left corner of that figure. As mentioned at the
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beginning of this section, �˛ may be assumed to be supported in a tubular neighbourhood
T of a loop based at the puncture z \ B 0 and supported in M 0 [ B 0, as pictured in Fig-
ure 2. To see the effect of point-pushing along the tube T on the .d � 1/-sphere based
at � pictured in the figure, it is easier first to replace it, up to homotopy equivalence, by
a .d � 1/-sphere encircling the puncture z \ B 0 together with a “tether” connecting this
sphere to the basepoint � (this corresponds to the pinch and collapse maps in the formula
(6.3)). Point-pushing along T has the effect on the tether of sending it around a loop homo-
topic to ˛. On the .d � 1/-sphere encircling the puncture, it acts by a map of degree ˙1
depending on whether the tubular neighbourhood T is orientable or not, in other words,
whether or not ˛ lifts to a loop in the orientation double cover of M , which is exactly
sgn.˛/. Putting this all together, we obtain the desired formula on the right-hand side of
(6.3).

We prove the left-hand side of (6.3) in two steps:

• x�M˛ ' incM ı �˛ for some self-map �˛WM !M ;

• �˛ ' idM .

Since the handle dimension ofM is at most d � 2, there is an embedded CW-complex
K �M of dimension at most d � 2, such thatM deformation retracts ontoK. (Construc-
ted, for example, using the cores of a handle decomposition of M with handles of index
at most d � 2.) The restriction of x�M˛ to K is a map of the form

K !M _ Sd�1:

Choose a CW-complex structure on M extending that of K and give Sd�1 the unique
CW-complex structure with a single 0-cell and a single .d � 1/-cell. With respect to these
choices, we may homotope the map above to be cellular, so that every r-cell of K is
mapped into a cell of dimension at most r . This implies that the image of the map must
intersect Sd�1 only in the basepoint, so we have a factorisation up to homotopy

x�M˛ jK WK !M ,!M _ Sd�1;

for some map K !M . Since the inclusion of K into M is a homotopy equivalence, this
implies also that x�M˛ itself factorises up to homotopy as a self-map �˛ of M followed by
the inclusion into M _ Sd�1. This establishes the first claim above.

We next have to prove that �˛ is homotopic to the identity. Consider the following
diagram.

M M

M _ Sd�1 M _ Sd�1

M M

�˛

x�˛

id

(6.4)
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The upper vertical inclusions are both the inclusion of the M summand into M _ Sd�1.
The lower vertical inclusions are both the embedding of M _ Sd�1 into M illustrated
in Figure 2. The bottom square commutes up to homotopy since any point pushing map
becomes homotopic to the identity once the puncture(s) have been filled in. The top square
commutes up to homotopy by what we have just proven: that x�M˛ factors through �˛ up
to homotopy. The composition of the left-hand vertical maps is homotopic to the identity
M ! M , and similarly for the right-hand side. Hence three out of the four sides of the
outer square of (6.4) are homotopic to the identity, so the fourth side �˛ must also be
homotopic to the identity.

This completes the proof of Proposition 6.2.

Remark 6.4. This also proves half of Proposition 6.3, since that proposition is equivalent
to the two statements

x�M˛ ' t˛ and x�S˛ ' ..˛ ı coll/ _ sgn.˛// ı pinch; (6.5)

and in the proof above we did not use the hypothesis on the handle-dimension ofM when
proving the right-hand side of (6.3), which is the same as the right-hand side of (6.5).

6.2. In the maximal handle dimension

In this subsection, we first define the maps t˛ and t˛ appearing in the statement of
Proposition 6.3. These depend, a priori, on some additional choices, including a CW-
complex K � M onto which M deformation retracts. However, Proposition 6.3 implies
that they do not depend on these additional choices up to homotopy (see Remark 6.7).

Definition 6.5. LetK �M be a CW-complex of dimension at most d � 1 embedded into
M such that M deformation retracts onto K. Assume also that K has exactly one 0-cell
and that, for any i -cell � of K, if ˆ� WDi ! K denotes its characteristic map, then the
restriction

ˆ� jint.Di /W int.Di /! K �M

is a smooth embedding. This exists since M is connected and has non-empty boundary,
so its handle-dimension is at most d � 1: such a CW-complexK may be constructed from
the cores of a handle decomposition of M with one 0-handle. Let ˛ 2 �1.M/ and choose
a representative loop of ˛ that is a smooth embedding, transverse to the interior of every
cell of K and also transverse to @M . (For the assumption that the representative of ˛ may
be chosen to be an embedding, we are using the fact that M has dimension at least 3.)
Note that the fact that ˛ is transverse to the cells ofK implies that it must be disjoint from
the .d � 2/-skeleton K.d�2/ of K.

Given these choices, we define the map t˛WM ! Sd�1 as follows:

t˛WM ! K� K=K.d�2/ Š
_
�

Sd�1 ! Sd�1; (6.6)
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where the map M ! K is a homotopy inverse of the inclusion, the index � runs over all
.d � 1/-cells of K and the � -th component of the last map is a map Sd�1 ! Sd�1 of
degree ].�; ˛/, which is the algebraic intersection number of (the interior of) � with ˛.

There are two subtleties in this definition: we need to choose the identification of
K=K.d�2/ with a wedge of .d � 1/-spheres unambiguously and we need to ensure that
the algebraic intersection number ].�; ˛/ is well-defined.

For the first point, we simply choose, arbitrarily and once and for all, an orientation of
Sd�1 and an orientation of each open .d � 1/-cellˆ� .int.Dd�1// ofK. The identification
ofK=K.d�2/ with a wedge of copies of Sd�1 is then well-defined, up to based homotopy,
by taking it to be orientation-preserving on each open .d � 1/-cell.

For the second point, to ensure that the algebraic intersection number ].�; ˛/ is well-
defined, we need an orientation of ˛ and of each open .d � 1/-cell � , as well as a local
orientation of M at each intersection point of ˛ with the interior of � , i.e., each point of

ˆ� .int.Dd�1// \ ˛.Œ0; 1�/: (6.7)

We have already chosen orientations of each open .d � 1/-cell � , and ˛ is an oriented
loop, so it remains to choose local orientations of M at each point of (6.7). We do this in
several steps:

• We have already chosen an orientation of Sd�1, which is embedded into B 0 (see Fig-
ure 2).

• Let R denote the closure of the connected component of B 0 X Sd�1 that is disjoint
from z, and let R0 D R X ¹�º. Then R0 is a codimension-zero submanifold ofM with
boundary @R0 D .@B 0 X ¹�º/ t .Sd�1 X ¹�º/. The orientation of Sd�1 determines an
orientation of R0 and hence of @B 0 X ¹�º.

• In particular, this restricts to an orientation of @M \ B 0 X ¹�º D D X ¹�º. Choos-
ing a slightly larger disc in @M containing D in its interior, this determines a local
orientation of @M at the basepoint �.

• This, together with ˛, determines a local orientation of M at � as follows: we take it
to be the local orientation of M at � such that the algebraic intersection number of
˛jŒ1�";1� with @M at � isC1.

• If M is orientable, this then determines an orientation of M , and in particular local
orientations of M at each point of (6.7).

• IfM is non-orientable, we have to be more careful. Choose " > 0 such that all intersec-
tion points (6.7) are contained in ˛.Œ"; 1�/ and choose a closed tubular neighbourhood
T of ˛jŒ";1�. Since T is an orientable codimension-zero submanifold of M containing
� and each point of (6.7), we may use it to transport the local orientation of M at � to
a local orientation of M at each point of (6.7).

We note that this definition does not depend on our arbitrary choices of orientations
for Sd�1 and for each open .d � 1/-cell � of K:
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• Suppose that we reverse the orientation of one .d � 1/-cell �0. This affects the identi-
fication of K=K.d�2/ with the wedge of .d � 1/-spheres in a way that corresponds to
inserting an automorphism of

W
�S

d�1 that sends each sphere to itself, has degree �1
on the �0 component and has degreeC1 on all other components. However, it also has
the effect of reversing the sign of the algebraic intersection number ].�0; ˛/, so these
effects cancel each other out after composing all maps in (6.6).

• Suppose that we reverse the orientation of Sd�1. This affects the identification of
K=K.d�2/ with the wedge of .d � 1/-spheres in a way that corresponds to inserting
an automorphism of

W
�S

d�1 that sends each sphere to itself and has degree �1 on
each component. However, it also has the effect of reversing the local orientations
of M at each intersection point (6.7) for each � , and so it reverses the sign of each
algebraic intersection number ].�; ˛/. Again, these effects cancel each other out after
composing all maps in (6.6).

This completes the definition of the map t˛WM ! Sd�1.

For the definition of t˛ , we again use an embedded CW-complexK �M as in Defin-
ition 6.5, and choose a representative loop of ˛ 2 �1.M/ as in Definition 6.5.

Definition 6.6. We now define a map t˛WM !M _ Sd�1 whose composition with the
projection prSd�1 WM _ S

d�1 ! Sd�1 is t˛ . This is the map

t˛WM ! K !M _ Sd�1; (6.8)

where the first map is a homotopy inverse of the inclusion and the second map is defined
as follows. On the .d � 2/-skeleton it is defined to be the inclusion K.d�2/ � K �M �
M _Sd�1. We now extend this to each .d � 1/-cell ofK, in other words, for each .d � 1/-
cell � of K, we define a map

t˛;� WDd�1
!M _ Sd�1 (6.9)

whose restriction to @Dd�1 is equal to the attaching map �� W @Dd�1 ! K.d�2/ of �
followed by the inclusion K.d�2/ � K � M � M _ Sd�1. We define the map (6.9) in
several steps:

• Denote the intersection points of ˛ with the interior of � by

ˆ� .int.Dd�1// \ ˛.Œ0; 1�/ D ¹y1; : : : ; ynº

and write xi D ˆ�1� .yi / 2 int.Dd�1/.

• Let

" D 1
8

min
�®
jxi � xj j for i; j 2 ¹1; : : : ; nº; i ¤ j

¯
[
®
1 � jxi j for i 2 ¹1; : : : ; nº

¯�
and write Si D @B".xi / for the boundary of the ball of radius " around xi . Let �
be the equivalence relation that collapses each Si � Dd�1 to a (different) point, for
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i 2 ¹1; : : : ; nº. There is a canonical homeomorphism

Dd�1=� Š Dd�1
[n

G
n

Sd�1; (6.10)

where the notation [n indicates that we are taking the union along n distinct base-
points, more precisely we identify xi 2 Dd�1 with the basepoint of the i -th copy
of Sd�1, for i 2 ¹1; : : : ; nº. The homeomorphism (6.10) is given on B".xi /=Si �
Dd�1=� by identifying the ball B".xi / with Dd�1 by dilatation and translation, and
then using the standard (stereographic) identification Dd�1=@Dd�1 Š Sd�1. It is
given by the identity outside of each of the larger balls B2".xi /, and on each subspace
.B2".xi / X int.B".xi ///=Si it is the homeomorphism

.B2".xi / X int.B".xi ///=Si ! B2".xi /

given by xi C y 7! xi C .jyj=" � 1/y (i.e. “stretching” inwards by a factor of two).
Let

cnWD
d�1
! Dd�1

[n

G
n

Sd�1

be the quotient map Dd�1� Dd�1=� followed by the identification (6.10). Com-
posing this with the “pinch and collapse map” .coll _ id/ ı pinch (see Notation 4.5)
on each Sd�1 factor, we obtain a quotient map

xcnWD
d�1
! Dd�1

[n

G
n

�
Œ0; 1� _ Sd�1

�
:

See Figure 3 for a visual illustration of this construction.

• Finally, we define (6.9) by t˛;� D t˘˛;� ı xcn, where the map

t˘˛;� WD
d�1
[n

G
n

�
Œ0; 1� _ Sd�1

�
!M _ Sd�1

is defined on each piece of the domain as follows.

– On the Dd�1 piece, t˘˛;� is given by the characteristic map ˆ� WDd�1 ! K fol-
lowed by the inclusion K �M �M _ Sd�1.

– On the i -th Œ0; 1� piece, t˘˛;� is the path ˛jŒ˛�1.yi /;1� in M (rescaled so that its
domain is Œ0; 1�). Note that this path ends at the basepoint.

– On the i -th Sd�1 piece, t˘˛;� is a based map Sd�1 ! Sd�1 of degree "i 2 ¹˙1º,
where the sign "i is determined as follows.

• As in Definition 6.5, the chosen orientation of Sd�1 determines a local orient-
ation of M at �.

• We have also chosen an orientation of Dd�1, and ˆ� is a smooth embedding
on the interior of Dd�1, so we also have an orientation of ˆ� .int.Dd�1//.
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Figure 3. The quotient map xcnWDd�1 ! Dd�1 [n
F
n.Œ0; 1� _ S

d�1/ from Definition 6.6.

This determines a local orientation of M at the intersection point yi : namely
the one with respect to which the intersection number of ˆ� .int.Dd�1// with
˛.Œ0; 1�/ at yi isC1.

• If M is orientable, these two local orientations each determine an orientation
of M , and we set "i to beC1 if they agree and �1 if they disagree.

• If M is non-orientable, we have to be more careful, just as in Definition 6.5.
Choose ı > 0 such that all intersection points y1; : : : ; yn are contained in
˛.Œı; 1�/ and choose a tubular neighbourhood T of ˛jŒı;1�. Since T is an orient-
able codimension-zero submanifold of M containing � and yi , the two local
orientations of M (at � and at yi ) each determine an orientation of T . We set
"i D C1 if they agree and "i D �1 if they disagree.

One may see, as in Definition 6.5, that this construction of t˛ is independent of the
choices of orientation of Sd�1 and Dd�1.

Remark 6.7. A priori, the maps t˛WM ! Sd�1 and t˛WM !M _ Sd�1 described in
Definitions 6.5 and 6.6 depend on the choice of embedded CW-complexK and the choice
of representative of ˛ 2 �1.M/ that is a smooth embedding and transverse to @M and
each open cell of K. However, a consequence of Proposition 6.3 is that these maps, up
to basepoint-preserving homotopy, do not depend on these choices; they depend only on
the element ˛ 2 �1.M/. This is because Proposition 6.3 identifies these two maps with
certain maps derived from the point-pushing map �˛ , which depends up to homotopy only
on ˛ 2 �1.M/.
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Proof of Proposition 6.3. As pointed out in Remark 6.4, we have already proven one half
of Proposition 6.3 while proving Proposition 6.2. The remaining statement to prove is

x�M˛ ' t˛WM !M _ Sd�1: (6.11)

We will first prove the two (jointly weaker) statements

prM ı x�
M
˛ ' idM and prSd�1 ı x�

M
˛ ' t˛; (6.12)

which correspond to the .2 � 2/-matrix description of x�˛ on the right-hand side of (6.2).
Consider the following homotopy-commutative diagram.

M M _ Sd�1 M _ Sd�1

M M

x�˛

id
id

(The square is the same as the bottom square of (6.4).) The two vertical inclusions are
both the embedding of M _ Sd�1 into M illustrated in Figure 2. But this is homotopic to
the projection prM of M _ Sd�1 onto its first summand, so prM ı x�

M
˛ is the composition

from the top-left to the bottom-right of the diagram, and hence homotopic to the identity.
This proves the left-hand side of (6.12).

Next, we prove the right-hand side of (6.12). We start by giving another description of
the map

w˛ D prSd�1 ı x�
M
˛ WM ! Sd�1

using Figure 2. Choose a path p in B 0 from � to the point z \ B 0 and choose a loop
ı in B 0 [ M 0, intersecting @M 0 transversely in two points, in the homotopy class of
p � ˛ � xp. Also choose a tubular neighbourhood T of ı \M 0 in M 0. Geometrically, the
map w˛WM ! Sd�1 is then given by starting in M 0, including into M X z, applying the
point pushing map along the loop ı and then collapsing onto the copy of Sd�1 contained
in B 0. Clearly the complement M 0 X T of the tubular neighbourhood T is sent to the
basepoint under this map. To describe how w˛ acts on T , we use the following identific-
ations. The intersection T \ @B 0 consists of two disjoint .d � 1/-discs T0 and T1, where
we assume that T0 contains the intersection point of ı \ @B 0 where ı is pointing into M 0

and T1 contains the intersection point of ı \ @B 0 where ı is pointing into B 0. We may then
identify T with T1 � Œ0; 1�, write @lT D @T X .int.T0/ [ int.T1// and describe the map
w˛ restricted to T , as a map of pairs .T; @lT /! .Sd�1;�/, by

.T; @lT / Š .T1; @T1/ � Œ0; 1�! .T1; @T1/! .T1=@T1; @T1=@T1/ Š .S
d�1;�/; (6.13)

where the middle two maps are the obvious projections and the identification on the right-
hand side is induced by the projection T1� Sd�1 given by

T1 ,! @B 0
r
�! @B 0

�
�!! @B 0 Š Sd�1;
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where r is a reflection in the .d � 1/-sphere @B 0, � is a self-surjection of @B 0 with the
properties that ��1.�/D @B 0 X int.T1/ and � is locally orientation-preserving on int.T1/,
and the homeomorphism @B 0 Š Sd�1 is given by a based isotopy in B 0 between @B 0 and
the embedded copy of Sd�1 in B 0 in Figure 2.

We now use this geometric description of w˛ to show that it is homotopic to the
map t˛ defined in Definition 6.5. Let K be a CW-complex of dimension at most d � 1
embedded into M 0, such that M 0 deformation retracts onto K. We need to show that the
restriction of w˛ to K factors as

K� K=K.d�2/ Š
_
�

Sd�1 ! Sd�1; (6.14)

where the � -th component of the right-hand map is a map f� W Sd�1 ! Sd�1 of degree
].�; ı/. By smooth approximation and transversality, we may assume that each .d � 1/-
cell � of K is smoothly embedded into M 0 and that ı and T have been chosen so that (a)
each r-cell ofK, for r 6 d � 2, is disjoint from T and (b) each � \ T , for � a .d � 1/-cell
ofK, consists of finitely many .d � 1/-discs each intersecting ı transversely in one point.

By property (a), and since M 0 X T is sent to the basepoint by w˛ , we see that its
restriction to K must factor through the projection K� K=K.d�2/. So we just have to
show that f� has degree ].�; ı/. By property (b) and the description (6.13) of w˛jT , each
component of the disjoint union of .d � 1/-discs � \ T contributes either C1 or �1 to
deg.f� /. Being careful about (local) orientations as explained in Definition 6.5, we see
that the sum of these C1’s and �1’s is precisely the algebraic intersection number ].�; ı/
of � and ı.

This completes the proof that w˛jK factors as in (6.14), and hence that w˛ ' t˛ , in
other words, the right-hand side of (6.12).

The proof of (6.11) is similar to the proof above of the right-hand side of (6.12):
looking at Figure 2 and using a geometric model for the point-pushing map supported in
a tubular neighbourhood of an embedded loop representing ˛, one checks carefully that
the definition of t˛ from Definition 6.6 is a correct description of x�M˛ up to homotopy.
This is explained in Figure 4, which depicts the map x�M˛ induced by point-pushing along
˛ and compares it to the definition of t˛ .

7. Examples

To illustrate the more complicated setting whereM is non-simply-connected and has max-
imal handle dimension, we discuss some explicit examples, namely

M D .S1 � S2/ X int.D3/

and more generally

M D .S1 � S2/].S1 � S2/] � � � ].S1 � S2/„ ƒ‚ …
g copies

X int.D3/
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M 0

B

y1 y2

y3

�

T

˛

�

(2)
˛ \ � viewed in Dd�1

�

inc ıˆ�

˛jŒ˛�1.x/;1�

˙id

M

M

Sd�1

(1) ˛ \ � viewed in M

˛

y1 y2 y3 Sd�1

Figure 4. Two views of the map x�M˛ WM !M _ Sd�1 induced by point-pushing along an embed-
ded loop ˛, and in particular its effect on a .d � 1/-cell � . In (1), we view the loop ˛ (in red) and a
neighbourhood of its intersections ¹y1; : : : ; ynºwith � (in blue) from withinM . From the geometric
description of point-pushing (Lemma 3.4), the result of point-pushing is as depicted in the bottom
half of (1): the n small disc neighbourhoods of ¹y1; : : : ; ynº in � are pulled along ˛ and wrapped
around the Sd�1 summand of M _ Sd�1. From this, we may deduce the description of x�M˛ up to
homotopy given in part (2) of the figure. At the top of (2), we view the disc Dd�1� (whose image
under the characteristic map ˆ� is the cell � ) in blue and its intersection ¹y1; : : : ; ynº with ˛ as a
configuration of red points. We also choose small disc neighbourhoods of each of these points (now
depicted in green), divided into three concentric regions. Translating the depiction of x�M˛ from (1)
into this viewpoint, we see that the blue region (the complement of the small green disc neighbour-
hoods) is fixed by x�M˛ , in other words, it is simply mapped into M by the characteristic map ˆ� of
the cell. For each small green disc neighbourhood, its image under x�M˛ is illustrated as a light blue
surface in (1); projecting this onto � [ ˛ [ Sd�1 does not change it up to homotopy, and this may
then be described in (2) as follows: the outer region of each green disc is “stretched” to cover the
whole green disc (and then mapped into M via the characteristic map ˆ� ); the intermediate region
is collapsed to an interval and then mapped intoM via a terminal segment of the loop ˛; the central
region is collapsed to a sphere and then mapped with degree ˙1, depending on local orientations,
to the Sd�1 summand of M _ Sd�1. This is precisely the map (6.9) from Definition 6.6 (see in
particular Figure 3), which is the restriction of t˛ to the cell � . Thus for each .d � 1/-cell � , the
restrictions of x�M˛ and of t˛ to � are homotopic relative to its boundary; hence x�M˛ ' t˛ .
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which all have maximal handle-dimension dim.M/� 1 D 2 and which have fundamental
groups Z and Fg (the free group on g generators), respectively. Indeed, the following
computations generalise to all

M DM d
g;1 D .S

1
� Sd�1/].S1 � Sd�1/] � � � ].S1 � Sd�1/„ ƒ‚ …

g copies

X int.Dd /

for d > 3 and g > 0.

Example 7.1. First, consider M D .S1 � S2/ X int.D3/ and let ˛ be a generator of
�1.M/ Š Z. By Proposition 6.3, the point-pushing map

x�˛WM _ S
2
!M _ S2

has a simple explicit description when restricted to the S2 summand, and is homotopic to
the (in general complicated) map t˛WM !M _ S2 of Definition 6.6 when restricted to
the M summand.

In this example, M is homotopy equivalent to S1 _ S2 (see Figure 5 for a picture of
an embedded S1 _ S2 onto which it deformation retracts). So, under this identification,
the point pushing map x�˛ is an endomorphism of S1 _ S2 _ S2. We will label the 1- and
2-spheres with subscripts ˛, � and p to indicate which of the spheres they correspond to
(light or dark red spheres in Figure 5). Thus our aim is to describe (up to based homotopy)
the map

x�˛WS
1
˛ _ S

2
p _ S

2
� D X ! X D S1˛ _ S

2
p _ S

2
� :

This is an element of the homotopy set hX; Xi D �0.Map�.X; X//, which becomes a
monoid under composition. In fact, we know of course that x�˛ must be an invertible
element of this monoid, i.e. an element of �0.hAut�.X//, but we will describe it as an
element of the larger monoid hX; Xi. In order to do this, we first describe the monoid
hX;Xi explicitly.

First, note that there is a bijection

hX;Xi Š �1.X/ � �2.X/ � �2.X/;

and that �1.X/ Š Z¹˛º, the free (abelian) group generated by ˛. The second homotopy
group of X is the same as that of its universal cover, and using Hilton’s theorem [12] to
compute homotopy groups of wedges of spheres, we see that

�2.X/ Š Z¹˛np; ˛n� j n 2 Zº;

the free abelian group generated by the symbols ˛np and ˛n� for each n 2 Z. Moreover,
the action of �1.X/DZ¹˛º is given by ˛:˛npD ˛nC1p and ˛:˛n� D ˛nC1� . This means
that we may write �2.X/ Š ZŒ˛˙1�¹p; �º D ZŒ�1.X/�¹p; �º as a free module over the
group-ring of �1.X/. Putting these identifications together, we have

hX;Xi Š Z¹˛º � ZŒ˛˙1�¹p; �º � ZŒ˛˙1�¹�; pº (7.1)
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�

˛

T

p

Figure 5. The picture is to be thought of as S3 with three open balls (in blue) cut out, and the
boundaries of two of them (the top two) identified by a reflection. This is a model for the manifold
M D .S1 � S2/ X int.D3/. The embedded copy of S1 _ S2 is drawn in red, consisting of a 1-
sphere called ˛ and a 2-sphere called � . The manifold M deformation retracts onto this subspace.
As a model for M with a puncture removed, we glue back in the top half of the lower 3-ball (so the
boundary now consists of the light blue shaded 2-disc together with the southern hemisphere of the
lower blue 2-sphere) and then remove the black point. This manifold (let us call it M 0) deformation
retracts onto the embedded wedge sum S1 _ S2 _ S2 consisting of ˛, � and the dark red 2-sphere
called p. The green solid cylinder called T is a tubular neighbourhood of ˛, isotoped slightly so that
it contains the puncture in its interior. Thus, the effect of the point-pushing map on ˛ may be realised
explicitly by a diffeomorphism of the manifold M 0 supported in the interior of T , as described in
Lemma 3.4.

as a set. To describe the monoid operation (composition) on hX;Xi under this identifica-
tion, it is useful to include it into the larger monoid h zX; zXi, where

zX '
_
i2Z

S2
˛ip
_

_
i2Z

S2
˛i �

is the universal cover of X . Since _ is the coproduct for pointed spaces, we have

h zX; zXi ŠM2.M
vf
Z .Z//; (7.2)
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the monoid of 2� 2 block matrices whose entries are vertically-finite Z�Z matrices with
entries in Z. (Vertically-finite means that each column has only finitely many non-zero
entries.) For example, the .i; j / entry in the bottom-left block of the matrix corresponding
to f W zX ! zX records the degree of the map

S2
˛jp

,! zX
f
��! zX � S2

˛i �
:

Once a compatible base point in zX is fixed, each based self-map of X lifts uniquely up to
homotopy to a based self-map of zX , so there is an injection hX;Xi ,! h zX; zXi. Under the
identifications (7.1) and (7.2), this is given by�

k˛;
X
i

˛i .mip C ni�/;
X
i

˛i .rip C si�/
�
7!

�
A B

C D

�
;

where each of the matrices A; B; C; D is a diagonally constant matrix of slope �k, in
other words its .i; j / entry is equal to its .i � jk; 0/ entry; in particular, it is determined
by its 0-th column, and the 0-th columns of A D .aij /, B D .bij /, C D .cij /, D D .dij /
are given by

ai0 D mi ; bi0 D ri ; ci0 D ni ; di0 D si :

For example, the identity X ! X corresponds to .˛;p; �/, which is sent to
�
I 0
0 I

�
; and the

map X ! X that is the identity on the two S2 factors and collapses the S1 factor to the
basepoint corresponds to .0; p; �/, which is sent to

�
10 0
0 10

�
, where 10 is the matrix with 1s

on the 0-th row and 0s elsewhere.
Since the operation on h zX; zXi is just multiplication of matrices, one may use this

inclusion of monoids to deduce a formula for the operation on hX;Xi under the identific-
ation (7.1), which is given as follows:�

k˛;
X
i

˛i .mip C ni�/;
X
i

˛i .rip C si�/
�

ı

�
k0˛;

X
j

˛j .m0jp C n
0
j �/;

X
j

˛j .r 0jp C s
0
j �/

�
D

�
kk0˛;

X
i;j

˛iCjk
�
.mim

0
j C rin

0
j /p C .nim

0
j C sin

0
j /�

�
;

X
i;j

˛iCjk
�
.mir

0
j C ris

0
j /p C .nir

0
j C sis

0
j /�

��
:

By considering the action on the universal cover, and using Definition 6.6 and Propos-
ition 6.3, we may write the element x�˛ 2 hX;Xi in terms of these explicit descriptions of
hX;Xi as

x�˛ D .˛; ˛p; � C p/:

Similarly, we may calculate that

x�˛�1 D .˛; ˛
�1p; � � ˛�1p/:
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As a sanity check, let us verify that these are indeed inverse elements in the monoid. After
including into the larger monoid h zX; zXi, we have

x�˛ D

�
I .1/ I

0 I

�
and x�˛�1 D

�
I .�1/ �I .�1/

0 I

�
;

where A.`/ denotes the matrix obtained by shifting A vertically upwards by ` steps, and
these matrices are clearly inverses. This description also in particular encodes the fact that
x�˛ acts on �1.X/ Š Z¹˛º by the identity and on H2.X IZ/ Š Z¹p; �º by

�
1 1
0 1

�
. (The

action onH2 is obtained by applying the operationM vf
Z .Z/! Z that takes the sum of the

entries in the 0-th column to each entry of the 2 � 2 block matrix.)
The element x�˛ D .˛; ˛p; � C p/ 2 hX;Xi has infinite order: this can be detected by

its action on H2.�IZ/, but one may also directly calculate:

.x�˛/
n
D .˛; ˛p; � C p/ ı � � � ı .˛; ˛p; � C p/„ ƒ‚ …

n

D .˛; ˛np; � C .1C ˛ C � � � C ˛n�1/p/;

using the inclusion into h zX; zXi and the identity I .`/I .k/ D I .`Ck/. Hence the point-
pushing homomorphism

�1.M/ Š Z¹˛º ! �0.hAut�.M _ S2// � hX;Xi

is injective. This factors through the point-pushing homomorphism

�1.M/! �0.Homeo�.M X �//;

which is therefore also injective.

Example 7.2. Consider the more general example of

M D .S1 � S2/].S1 � S2/] � � � ].S1 � S2/„ ƒ‚ …
g copies

X int.D3/:

Now M is homotopy equivalent to a wedge of g circles (labelled by ˛1; : : : ; ˛g ) and g
two-spheres (labelled by �1; : : : ; �g ), so the point-pushing homomorphism is of the form

�1.M/ Š Fg D h˛1; : : : ; ˛gi ! �0.hAut�.X// � hX;Xi; (7.3)

where
X D S1˛1 _ : : : _ S

1
˛g
_ S2�1 _ : : : _ S

2
�g
_ S2p :

Here h˛1; : : : ; ˛gi denotes the free group generated by ˛1; : : : ; ˛g and hX;Xi denotes the
monoid �0.Map�.X; X//, as before. We would like to describe the point-pushing maps
x�˛1 ; : : : ; x�˛g (the images of ˛1; : : : ; ˛g ) as elements of this monoid.
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Generalising the discussion in the previous example, suppose that X is a wedge of a
number of circles indexed by a set A and a number of two-spheres indexed by a set B . We
then have

�1.X/ Š FA and �2.X/ Š ZŒFA�B;

where FA is the free group on the set A, ZŒFA� is its integral group-ring and ZŒFA�B is
the free ZŒFA�-module on the set B . The underlying set of the monoid hX;Xi is therefore

hX;Xi Š
Y
A

FA �
Y
B

ZŒFA�B:

To understand the operation of composition, it is again convenient to embed this into the
larger monoid h zX; zXi, by lifting self-maps of X to self-maps of its universal cover

zX '
_
w2FA

_
b2B

S2wb :

This monoid is isomorphic to the monoid MB.M
vf
FA
.Z// of B � B block matrices whose

entries are FA �FA integer matrices that are vertically finite (each column has only finitely
many non-zero entries).

Returning to our setting (and writing �0 D p for notational convenience), we have
A D ¹˛1; : : : ; ˛gº and B D ¹�0; : : : ; �gº, so

hX;Xi D

gY
iD1

h˛1; : : : ; ˛gi �

gY
iD0

Zh˛˙11 ; : : : ; ˛˙1g i¹�0; : : : ; �gº;

h zX; zXi DMgC1

�
M vf
h˛1;:::;˛g i

.Z/
�
;

(7.4)

where Zh˛˙11 ; : : : ; ˛˙1g i denotes the ring of non-commutative Laurent polynomials with
coefficients in Z in the variables ˛1; : : : ;˛g . The embedding of monoids hX;Xi ,!h zX; zXi
is given by

.w1; : : : ; wg ; f0; : : : ; fg/ 7!

0B@A00 � � � A0g
:::

: : :
:::

Ag0 � � � Agg

1CA ;
where the matricesAij are determined as follows. First, considerw D .w1; : : : ;wg/ as the
endomorphism of h˛1; : : : ; ˛gi that sends the letter ˛i to the word wi . Each matrix Aij is
“diagonally constant of slope �w”, in the sense that if we write Aij D .au;v/u;v2h˛1;:::;˛g i,
then au;v D au:w.v/�1;1. In particular, each of these matrices is determined by its 1st
column. Finally, the 1st columns of each of these matrices are determined by setting
.au;1/ij equal to the coefficient of u�i in fj .

We may now describe the point-pushing maps x�˛1 ; : : : ; x�˛g and their inverses under
the identifications (7.4). Namely, we have

x�˛i D .˛1; : : : ; ˛g ; ˛i�0; �1; : : : ; �i�1; �i C �0; �iC1; : : : ; �g/;

x�˛�1i
D .˛1; : : : ; ˛g ; ˛

�1
i �0; �1; : : : ; �i�1; �i � ˛

�1
i �0; �iC1; : : : ; �g/
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as elements of hX;Xi, and

x�˛i D

0BBBB@
I .˛i / � � � I � � �

:::
: : :

:::

0 � � � I � � �

:::
:::

: : :

1CCCCA ; x�˛�1i
D

0BBBB@
I .˛

�1
i / � � � �I .˛

�1
i / � � �

:::
: : :

:::

0 � � � I � � �

:::
:::

: : :

1CCCCA (7.5)

as elements of h zX; zXi, where unspecified entries agree with the identity matrix, and A.w/

denotes the result of shifting the matrix A vertically by w, in other words, if A D .au;v/
and A.w/ D .bu;v/, then bu;v D au:w�1;v .

From this description, we deduce a formula for x�w for any word w in the generators
˛1; : : : ; ˛g . Note that we are not assuming that the word w is reduced.

Proposition 7.3. Let w be a word in the generators ˛1; : : : ; ˛g . Then

x�w D .˛1; : : : ; ˛g ; w�0; �1 C f1.w/�0; �2 C f2.w/�0; : : : ; �g C fg.w/�0/

as an element of hX;Xi, and

x�w D

0BBBBB@
I .w/ A1.w/ A2.w/ � � � Ag.w/

0 I 0 � � � 0

0 0 I � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � I

1CCCCCA
as an element of h zX; zXi, where the non-commutative Laurent polynomials fi .w/ and
matrices Ai .w/ are defined as follows. Write

w D w1˛
"1
i w2˛

"2
i � � �w`˛

"`
i w`C1;

where thewj are words not involving ˛˙1i and "j 2 ¹˙1º and let xwj be the initial subword

xwj D

´
w1˛

"1
i w2˛

"2
i � � �wj if "j D C1;

w1˛
"1
i w2˛

"2
i � � �wj˛

�1
i if "j D �1

of w. Then

fi .w/ D
X̀
jD1

"j xwj and Ai .w/ D
X̀
jD1

"j I
. xwj /:

Proof. The description of x�w as an element of hX;Xi will follow from its description as
an element of h zX; zXi via the embedding of monoids described earlier, so we only have
to prove the latter. Multiplying out the matrices (7.5) corresponding to the letters of the
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word w, it is clear that x�w is of the form0BBBBB@
I .w/ ‹1.w/ ‹2.w/ � � � ‹g.w/

0 I 0 � � � 0

0 0 I � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � I

1CCCCCA ;

so we just have to verify that ‹i .w/ D Ai .w/. We first note that, directly from the defini-
tion, the matrices Ai .w/ have the following property: if w D w0w00, then

Ai .w/ D Ai .w
0/C I .w

0/Ai .w
00/: (7.6)

We also observe from (7.5) that the equality ‹i .w/ D Ai .w/ is true if w is the letter ˛i or
its inverse.

We now prove that ‹i .w/ D Ai .w/ by induction on the number of letters of w that
are equal to ˛i or ˛�1i . If this is zero, i.e. if w does not contain ˛˙1i , then Ai .w/ D 0

and also ‹i .w/ D 0, since it is the .0; i/ entry in a product of matrices that each have the
property that their i -th rows and columns agree with the identity matrix. This establishes
the base case. If there are ` > 1 letters of w that are equal to ˛i or ˛�1i , then we may
write w D w0˛"iw

00, where w00 does not contain ˛˙1i . Applying the base case to w00, the
inductive hypothesis to w0 and using the observation above, we already know that

‹i .w
00/ D 0 D Ai .w

00/; ‹i .w
0/ D Ai .w

0/; ‹i .˛
"
i / D Ai .˛

"
i /:

Writing just the rows and columns indexed by 0 and i , we therefore have0B@I
.w/ � � � ‹i .w/
:::

: : :
:::

0 � � � I

1CA D
0B@I

.w 0/ � � � ‹i .w
0/

:::
: : :

:::

0 � � � I

1CA
0B@I

.˛"i / � � � ‹i .˛
"
i /

:::
: : :

:::

0 � � � I

1CA
0B@I

.w 00/ � � � ‹i .w
00/

:::
: : :

:::

0 � � � I

1CA

D

0B@I
.w 0/ � � � Ai .w

0/
:::

: : :
:::

0 � � � I

1CA
0B@I

.˛"i / � � � Ai .˛
"
i /

:::
: : :

:::

0 � � � I

1CA
0B@I

.w 00/ � � � Ai .w
00/

:::
: : :

:::

0 � � � I

1CA

D

0B@I
.w/ � � � Ai .w/
:::

: : :
:::

0 � � � I

1CA ;
where we apply the identity (7.6) twice to deduce the final equality.

In particular, we note that the coefficient of the generator p D �0 in the middle com-
ponent of x�w is exactly w 2 Fg � ZŒFg � D Zh˛˙11 ; : : : ; ˛˙1g i. This implies that the
point-pushing homomorphism (7.3) is injective.
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The two examples above go through identically if S1 � S2 is replaced with S1 � Sd�1

for any d > 3; we obtain the same formulas for the point-pushing maps x�˛ , and the point-
pushing homomorphism ˛ 7! x�˛ is injective. Thus we have seen that, for any manifold of
the form

M DM d
g;1 D .S

1
� Sd�1/].S1 � Sd�1/] � � � ].S1 � Sd�1/„ ƒ‚ …

g copies

X int.Dd /

for d > 3 and g > 0, the point-pushing homomorphism

pushM W�1.M/! �0.Homeo�.M X �//! �0.hAut�.M _ Sd�1//

is injective. For d D 2 this is also true: Recall that the point-pushing homomorphism is
part of the Birman exact sequence [2]:

1! �1.M
2
g;1/ D F2g ! �1g;1 ! �g;1 ! 1:

In the next section, we put these facts into context by discussing the kernel of the
point-pushing map more generally and for any number of configuration points.

8. The kernel of the point-pushing map

Let M be a smooth, connected manifold of dimension d > 3 and fix a ball D �M in the
interior of M containing the base configuration z. This determines an identification (4.3)
of �1.Ck.M//with the semi-direct product �1.M/k Ì†k . For Cat2¹Diff;Homeo;hAutº,
recall from Section 3 that the point-pushing map

pk W�1.Ck.M//! �0.Cat.M; z// (8.1)

is the monodromy of the bundle Ck;1.M/! Ck.M/, viewed either as a smooth bundle,
a topological bundle or a Serre fibration.1

Except when CatD hAut and k> 2, this may equivalently be described as a connecting
homomorphism in the long exact sequence of the fibration Cat.M/ ! Ck.M/ taking
an automorphism ' to its evaluation '.z/ at the base configuration z. (Note that such a
description is impossible for CatD hAut and k > 2, since homotopy automorphisms need
not be injective, so there is no well-defined map hAut.M/! Ck.M/ in this case.) Thus
if Cat 2 ¹Diff;Homeoº, or if Cat D hAut and k D 1, the point-pushing map fits into an
exact sequence of the form

1! ker.pk/! �1.Ck.M//! �0.Cat.M; z//! �0.Cat.M//! 1:

1In Section 3, we focused on the CatD hAut setting, but the CatD Homeo and CatD Diff settings are
exactly parallel.
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When the boundary @M is non-empty, the point-pushing map (8.1) factors as

pk W�1.Ck.M//! �0.Cat@.M; z// (8.2)

followed by �0.Cat@.M; z//! �0.Cat.M; z//, where Cat@.M/ � Cat.M/ denotes the
subspace of Cat-automorphisms of M that fix @M pointwise.

Despite the differences between the categories of Diff and Homeo on the one hand and
hAut on the other, the following results hold for all three. Note though that ker.p1/ and
ker.pk/ may be different groups for the three different categories.

Proposition 8.1 (see also [1, Lemmas 2.4 and 2.5]). Let k D 1. Then

ker.p1/ � Z.�1.M//;

i.e. the kernel of (8.1) is contained in the centre of �1.M/. If @M ¤ ¿, then (8.2) is
injective.

Proposition 8.2. In general, we have that

ker.pk/ D �.ker.p1//;

i.e. the kernel of (8.1) is equal to the diagonal of ker.p1/k � �1.M/k � �1.Ck.M//,
where we use the identification of �1.Ck.M// with �1.M/k Ì †k fixed above. If
@M ¤ ¿, then (8.2) is injective.

The first proposition is an immediate consequence of the following basic lemma.

Lemma 8.3 ([11, p. 40]). For any space X , the image of the map �1.hAut.X//! �1.X/

induced by evaluation at some point x 2 X has image contained in the centre Z.�1.X//.

Proof of Proposition 8.1. By the long exact sequence, the kernel of (8.1) is equal to the
image of the map �1.Cat.M// ! �1.M/ induced by evaluation at the point z1 2 M .
The first statement then follows from Lemma 8.3. Similarly, the kernel of (8.2) is equal
to the image of the map on �1 induced by the evaluation map Cat@.M/!M at z1 2M .
But evaluation at z1 is homotopic to evaluation at some point in @M ¤ ¿ (since M is
path-connected), so this map is nullhomotopic.

Proof of Proposition 8.2 in the smooth or topological setting. In this proof, we assume
that Cat2 ¹Diff;Homeoº, and we use the long exact sequence into which the point-pushing
map (8.1) fits. We give a separate proof in the setting CatD hAut further below. That proof
also works in the smooth or topological category, but it is more involved, so we give a more
geometric proof in these categories first.

Using the identification of �1.Ck.M// with �1.M/k Ì †n and the long exact se-
quence, we have a diagram

�1.Cat.M// �1.M/k Ì†k �0.Cat.M; z//

�1.hAut.Ck.M/// †k

pk

(8.3)
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whose top row is exact and right vertical map records the permutation of z induced by
the automorphism. It follows from the right-hand side of this diagram that ker.pk/ is con-
tained in �1.M/k . A diffeomorphism or homeomorphism ofM induces a diffeomorphism
or homeomorphism – in particular, a homotopy automorphism – of Ck.M/, and so the top
left arrow factors through

�1.hAut.Ck.M///! �1.M/k Ì†k :

From Lemma 8.3 it thus follows that ker.pk/ is contained in the centreZ.�1.M/k Ì†k/.
Together with the fact that ker.pk/ � �1.M/k , we deduce that it is contained in the diag-
onal copy of Z.�1.M// in

Z.�1.M//k � �1.M/k � �1.M/k Ì†k :

(Except when k D 2 and �1.M/ D 1, the centre Z.�1.M/k Ì†k/ is precisely this diag-
onal copy of Z.�1.M//. On the other hand, in the somewhat degenerate special case of
k D 2 and �1.M/ D 1, the centre of �1.M/k Ì †k is †2.) Next, we consider the com-
mutative diagram

�1.Cat.M// �1.M/k

�1.M/

.�/

.��/
proj1

where the image of (�) is ker.pk/ and the image of (��) is ker.p1/ (these identifica-
tions follow, again, from the relevant long exact sequences, for general k and for k D 1
respectively). We know already that ker.pk/ is equal to�.G/�Gk for a certain subgroup
G � Z.�1.M// � �1.M/. Since this is a diagonal subgroup of the product �1.M/k , the
projection onto the first factor restricts to an isomorphism of �.G/ onto G � �1.M/.
By commutativity of the above diagram, it follows that G D ker.p1/. This concludes the
proof of the first statement of the proposition. For the second statement, we repeat the
same arguments with Cat replaced by Cat@ everywhere to obtain a similar formula, and
then apply Proposition 8.1.

For the proof of Proposition 8.2 in the homotopy setting, we will use the following
basic lemmas.

Lemma 8.4. Let A � X be a cofibration and Y any space, and assume that X and
A are exponentiable, for example locally compact Hausdorff. Then the restriction map
Map.X; Y /!Map.A; Y / is a Serre fibration. Moreover, the restriction map hAut.X/!
Map.A;X/ is also a Serre fibration.

Proof. The first step is to prove that, for any space Z, the inclusion Z � A ,! Z � X is
also a cofibration. This is most easily seen using the characterisation [11, PropositionA.18]
of cofibrations A ,! X as precisely those inclusions for which X � Œ0; 1� retracts onto
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.X � ¹0º/ [ .A � Œ0; 1�/. If r is a retraction witnessing that A ,! X is a cofibration, then
idZ � r is a retraction witnessing that Z � A ,! Z �X is a cofibration.

Now suppose that we have a homotopy lifting problem as follows:

Z � ¹0º Y X

Z � Œ0; 1� Y A:

f

g

(8.4)

By taking adjoints twice (since X and A are exponentiable), we may rewrite this as

Z � A Y Œ0;1�

Z �X Y:

g 0

ev0

f 0

This admits a lift h0WZ � X ! Y Œ0;1�, since Z � A ,! Z � X is a cofibration. Taking
adjoints twice again, we obtain a lift hWZ � Œ0; 1�! Y X of (8.4). Thus we have shown
that

Map.X; Y / D Y X ! Y A D Map.A; Y /

is a Hurewicz fibration, so in particular a Serre fibration.
In particular, this says that the restriction map Map.X; X/! Map.A; X/ is a Serre

fibration. In general, whenever E! B is a Serre fibration and E0 � E is a union of path-
components, the restriction E0! B is also a Serre fibration. Since hAut.X/ is a union of
path-components of Map.X;X/, this implies the second statement of the lemma.

Lemma 8.5. Let A � B � X be cofibrations of exponentiable spaces such that B admits
a strong deformation retraction onto A. Then the inclusion hAutB.X/ ,! hAutA.X/ is a
weak homotopy equivalence.

Here we write hAutA.X/ for the space of homotopy automorphisms of X that agree
with the identity on A. We will also use the notation MapA.B; X/ for the space of maps
B ! X that agree with the inclusion on A.

We will use this lemma below when X is a manifold, B � X is an embedded inter-
val and A is a point in this interval. (Manifolds are locally compact Hausdorff, hence
exponentiable.)

Proof of Lemma 8.5. Consider the commutative diagram

hAutB.X/ hAutA.X/

hAut.X/ hAut.X/

MapA.B;X/ Map.B;X/ Map.A;X/:

id

�jB �jA

�jA
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The maps denoted �jB and �jA are restrictions to B respectively A, and are Serre fibra-
tions by Lemma 8.4. Let r WB ! A be a retraction of B onto A and let ht WB ! B be
a homotopy between incBA ı r and idB relative to A. Then incXA ı r is a point in the
bottom-left space MapA.B; X/ and a deformation retraction Ht of this space onto the
point ¹incXA ı rº is given byHt .f /D f ı ht . From the long exact sequence of homotopy
group it follows that the bottom horizontal map�jA induces isomorphisms on �� for �> 1
and an injection on �0. This map is also clearly surjective since any map A! X may be
extended to B using the retraction r , so it is a weak homotopy equivalence. It then follows
from the 5-lemma (and a little extra care in degree 0) that hAutB.X/ ,! hAutA.X/ is a
weak homotopy equivalence.

Proof of Proposition 8.2 in the homotopy setting. In this setting, we cannot use the long
exact sequence, so we give a different argument. First, the right-hand side of diagram
(8.3) implies that ker.pk/ � �1.M/k . We then consider the commutative square in dia-
gram (8.5) below, where the subscript z means that z is fixed pointwise. It follows that
ker.pk/ � ker.p1/k .

We next show that ker.pk/ contains the diagonal �.ker.p1//. Fix an element a1 2
�1.M/, set a D .a1; : : : ; a1/ 2 �1.M/k and consider the diagram

�0.hAutI .M//

�1.M/k �0.hAutz.M//

�1.M/ �0.hAut.M; zi //

pk

proji
p1

(8.5)

for some fixed i (say i D 1), where I � M is an embedded interval containing the con-
figuration z and again the subscript I means that I is fixed pointwise. We observe that the
element pk.a/ 2 �0.hAutz.M// may be lifted to an element ' 2 �0.hAutI .M//, defined
as follows. Choose an isotopy of embeddings I ,!M starting at the inclusion, pulling the
interval I around the loop a1 and then ending at the inclusion again. This may be construc-
ted similarly to the explicit description of the (smooth) point-pushing map in Lemma 3.4
and Figure 1, using a tubular neighbourhood of an embedded representative of the loop
a1, which is a Dd�1-bundle over a1, and a choice of trivial sub-I -bundle. Extend this
by the isotopy extension theorem to a path in Diff.M/ from id to '. Then ' is a diffeo-
morphism (hence homotopy automorphism) of M fixing I pointwise and representing
pk.a/ when considered as a homotopy automorphism of M fixing z � I pointwise. Now
if we assume that a1 2 ker.p1/, it follows that ' D 1 2 �0.hAutI .M//, since the inclusion
hAutI .M/ ,! hAut.M; z1/ is a weak homotopy equivalence by Lemma 8.5, so in partic-
ular it induces an injection on �0. It then also follows that a D .a1; : : : ; a1/ 2 ker.pk/.

Finally, let us suppose that ker.pk/ ¤ �.ker.p1//. Then there must be an element
a D .a1; : : : ; ak/ 2 ker.pk/ X �.ker.p1//. Since a1 2 ker.p1/, we already know that
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z1

z2 z3

z4
z5

A2

A5

A3

A4

Tub.b2/

Tub.b5/

Tub.b3/

Tub.b4/

Figure 6. The paths Ai and the support of the point-pushing automorphism pk.b/.

.a�11 ; : : : ; a�11 / 2 ker.pk/, so we also have b D .b1; : : : ; bk/ 2 ker.pk/ X �.ker.p1//,
where bi D aia�11 , in particular b1 D 1. Choose embedded paths Ai from z1 to zi for each
i 2 ¹2; : : : ; kº that are pairwise disjoint except at z1. Also choose embedded loops based at
zi representing bi (also denoted bi by abuse of notation) for each i 2 ¹2; : : : ; kº. We may
assume that the loops bi are pairwise disjoint, and also disjoint from the arcs Aj except at
zi . We also assume that the point-pushing automorphism pk.b/ 2 hAut.M; z/ has support
contained in a small tubular neighbourhood of the union of the loops bi . See Figure 6. By
assumption, there is a homotopy id ' pk.b/ of self-maps .M; z/! .M; z/. Restricting
this to the embedded path Ai , we see that Ai ' pk.b/.Ai / relative to endpoints. Thus, we
have

bi ' A
�1
i � pk.b/.Ai / ' A

�1
i � Ai ' �;

where � denotes concatenation of paths. So b D .1; : : : ; 1/, which is a contradiction.
This finishes the proof of the first statement of the proposition. For the second state-

ment, just as before, we repeat the same arguments with hAut replaced by hAut@ every-
where to obtain a similar formula, and then apply Proposition 8.1.

Remark 8.6. The kernel of (8.1) for kD 1, in the 3-dimensional topological (equivalently
smooth) setting, has been understood completely by [1]. By Proposition 8.2, it is therefore
also understood completely for all k in the 3-dimensional topological/smooth setting.

Remark 8.7. If M does not necessarily have boundary, but it is equipped with marked
points that are required to be fixed under automorphisms, then the corresponding point-
pushing map

pk W�1.Ck.M X P //! �0.CatP .M; z//

is injective when the set P � M of marked points is non-empty, just as in the @M ¤ ¿
setting. For k D 1 this follows since ker.p1/ is the image of the map on �1 induced by
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evaluation CatP .M/! M at a point z1 2 M X P , which is homotopic to evaluation at
a point in P , hence nullhomotopic. For higher k, the proof above adapts to show that
ker.pk/ D �.ker.p1// also in this setting, and hence pk is also injective.

Remark 8.8 (A fake Dehn twist). Lemma 8.5 in the setting .X; B; A/ D .S; D; ¹�º/

for a surface S with embedded closed disc D � S with centre � 2 D has the following
potentially counter-intuitive consequence. Let TD 2 hAutD.S/ be a Dehn twist supported
in a small annular neighbourhood of D in S . Then the element

ŒTD� 2 �0.hAutD.S// (8.6)

of the mapping class group of S relative to D is trivial: this is because its image in
�0.hAut�.S// is clearly trivial – one may simply untwist TD while keeping the point
� fixed – and the map �0.hAutD.S// ! �0.hAut�.S// is injective by Lemma 8.5. In
contrast, the element

ŒTD� 2 �0.hAut@D.S X int.D/// (8.7)

is well-known to be non-trivial (and of infinite order) in the mapping class group of S X
int.D/ relative to the boundary-component @D, as long as S is not the 2-sphere or the
2-disc.2

Notice that such an apparent discrepancy cannot occur if hAut.�/ is replaced with
Homeo.�/ or Diff.�/, since in these two cases there is a canonical homeomorphism
between CatD.S/ and Cat@D.S X int.D// for Cat 2 ¹Homeo;Diffº.

The reason for this apparent discrepancy in the Cat D hAut setting is illustrated by
exhibiting an explicit nullhomotopy of (8.6): see Figure 7. This nullhomotopy depends on
the fact that points may be mapped into the disc D (hence why it does not work for (8.7))
and also the fact that homotopy equivalences may be non-injective (hence why it does not
work for Cat 2 ¹Homeo;Diffº).

Remark 8.9. There is a subtle difference between the space hAutA.X/ involved in
Lemma 8.5 and the proof of Proposition 8.2 and the space hAut.X jA/ defined in Sec-
tion 2, namely:

hAut.X jA/ D
®
f 2 Map.X;X/ j f jA D idA and

f admits a homotopy inverse relative to A
¯
;

hAutA.X/ D
®
f 2 Map.X;X/ j f jA D idA and f admits a homotopy inverse

¯
;

so clearly hAut.X jA/ � hAutA.X/. In general, if A � X is a cofibration and f WX ! X

restricts to the identity on A and admits a homotopy inverse, then one may find both a left

2To see this, write  for a curve in the interior of S X int.D/ parallel to @D, so that T D TD , and
choose an arc ˛ in S X int.D/ with both endpoints on @D so that i.˛; /D 2, where i.�;�/ is the minimal
geometric intersection number amongst isotopic representatives. Then i.T k .˛/; ˛/ is strictly increasing as
k!1. See [9, Proposition 3.2] for details (in the case of closed surfaces, which may easily be adapted to
compact surfaces with boundary).
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Figure 7. A nullhomotopy of the “fake Dehn twist” in the (homotopy automorphism version of
the) mapping class group of S relative to D. The blue lines indicate twisting in an annular region.
The central grey disc is D. The green annulus surrounding D in some of the pictures indicates
that the inner boundary of the green annulus is mapped to itself by the identity (as it must be), the
outer boundary of the green annulus is sent to the midpoint of the disc, and the interior of the green
annulus is “turned inside out” and mapped onto the grey discD. The untwisting of the Dehn twist in
steps 3 and 4 is well-defined exactly because the outer boundary of the green annulus is collapsed to
a point. The homotopies in steps 1 and 6 are given by gradually “folding” the green annulus inwards,
while keeping the grey disc fixed, until the outer boundary of the green annulus is collapsed to the
midpoint of the disc. Steps 2 and 5 are not strictly necessary, since one could directly perform the
homotopies of steps 1 and 6 with the larger green annulus, but they perhaps make the picture more
intuitive.

homotopy inverse for f relative to A and a right homotopy inverse for f relative to A, but
these may not necessarily coincide. On the other hand, if the space Map.A;A/ is simply-
connected, then one may always find a two-sided homotopy inverse for f relative to A,
and so in this case the two spaces hAutA.X/ and hAut.X jA/ are equal. In particular, this
holds if A D D is a disc.

9. Formulas for associated point-pushing actions on mapping spaces

As an immediate corollary of Proposition 5.1, Lemma 6.1 Proposition 6.2 and Lemma
3.13, we obtain (under certain assumptions on M ) a formula for the associated point-
pushing action (Definition 3.12) of �1.Ck.M// on the mapping space Mapc�.M X z; X/,
under the identification

Mapc�.M X z;X/ ' Map�.M;X/ � .�
d�1
c X/k (9.1)

induced by the identification of M X z with M _
Wk

Sd�1 (see Construction 4.2). On
the right-hand side of (9.1), �d�1c X denotes the union of path-components of �d�1X
corresponding to the subset c � ŒSd�1; X�.
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Remark 9.1. There are two natural actions on the space�d�1c X . First, there is an action-
up-to-homotopy of �1.X/ on �d�1X , which restricts to an action-up-to-homotopy on
the subspace �d�1c X (this is because the subset c � ŒSd�1; X� corresponds to a union of
�1.X/-orbits of �d�1.X/).

Second, there is an involution of �d�1X given by precomposition with a reflection
of Sd�1 in a hyperplane containing the basepoint; this involution commutes with the
action-up-to-homotopy of �1.X/. If c � ŒSd�1; X� is invariant under the corresponding
involution of ŒSd�1; X�, then this involution restricts to the subspace �d�1c X . In our
situation, the involution will only be relevant if M is non-orientable, in which case we
have assumed (see Definition 3.9) that c � ŒSd�1; X� is a subset of the fixed points under
the involution, so in particular it is invariant under the involution.

Corollary 9.2. Suppose that d D dim.M/ > 3 and that M satisfies at least one of the
following conditions:

• M is simply-connected, or

• the handle-dimension of M is at most d � 2.

Then the point-pushing action of  D .˛1; : : : ; ˛k I�/ 2 �1.Ck.M// Š �1.M/k Ì†k on
the mapping space Mapc�.M X z;X/, under the identification (9.1), is given as

.˛1; : : : ; ˛k I �/ � .f; g1; : : : ; gk/ D .f; xg1; : : : ; xgk/ (9.2)

(see also Figure 8), where xgi D f�.˛i /:g�.i/: sgn.˛i /, and

• for an element ˛ 2 �1.M/ we write sgn.˛/DC1 if ˛ lifts to a loop in the orientation
double cover of M and sgn.˛/ D �1 otherwise,

• the actions of �1.X/ and of ¹˙1º on �d�1c X are as described in Remark 9.1.

Proof. It suffices to check this for elements of the form .1; : : : ; 1I �/ and .˛; 1; : : : ; 1I id/
(symmetric and loop generators), which we denote simply by � and ˛ by abuse of notation.

By Proposition 5.1, the action of � on M X z ' M _ Wk is the identity on the M
summand and permutes the k copies of Sd�1 in Wk D

Wk
Sd�1. Lemma 3.13 tells us

that the associated point-pushing action of � on Map�.M; X/ � .�
d�1
c X/k is induced

from its point-pushing action onM _Wk by precomposition, so we deduce that it acts by
the identity on the Map�.M;X/ component and the�d�1c X components are permuted by
��1 (the inverse occurs since precomposition is contravariant).

Similarly, Lemma 3.13 implies that the point-pushing action of ˛ on Map�.M;X/ �
.�d�1c X/k is induced from the point-pushing action of ˛ onM _Wk , which is described
by Lemma 6.1 and Proposition 6.2, by precomposition. Putting this together, we see
that ˛ sends the tuple .f; g1; : : : ; gk/ to the tuple .f; f�.˛/:g1: sgn.˛/; g2; : : : ; gk/, as
desired. Specifically, the f entry in this tuple follows from the left-hand side of (6.3), the
f�.˛/:g1: sgn.˛/ entry follows from the right-hand side of (6.3) and the remaining entries
follow from Lemma 6.1.
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Figure 8. The action of the point-pushing map associated to  D .˛1; : : : ; ˛k I�/ 2 �1.Ck.M// on
the mapping space Map�.M;X/ � .�

d�1
c X/k . The loop  is represented in blue, the elements of

the mapping space in black and the point-pushing map is represented in green.

Remark 9.3. Part of the formula (9.2) remains valid without the additional hypothesis
on M . More precisely, assuming still that dim.M/ > 3 but removing the second hypo-
thesis (so M is now allowed to be non-simply-connected and to have maximal handle-
dimension), the formula for the action of  D .˛1; : : : ; ˛k I �/ becomes

.˛1; : : : ; ˛k I �/ � .f; g1; : : : ; gk/ D .‹; xg1; : : : ; xgk/; (9.3)

where the entry ‹ is not in general f , but rather a based map M ! X that depends in a
subtle way on f , the loop  and the elements gi . For example, when  D .˛; 1; : : : ; 1I id/,
the map ‹WM ! X is given by the composition

fold ı .f _ g1/ ı t˛WM !M _ Sd�1 ! X _X ! X;

where t˛ is the map defined in Definition 6.6. To see this, recall that the equations (6.3)
describe the point-pushing action of a loop generator ˛ under the additional assump-
tions on M , and the equations (6.5) describe the point-pushing action of ˛ without these
assumptions. The right-hand equation of (6.3) agrees with the right-hand equation of (6.5),
which is why the tuple .xg1; : : : ; xgk/ occurs in (9.3), just as in (9.2). However, the left-
hand equation of (6.3) is simply x�M˛ ' incM , whereas the left-hand equation of (6.5) is
x�M˛ ' t˛ .

Remark 9.4. Corollary 9.2 is used in [16, §8] to prove a certain split-injectivity result
for maps between configuration-mapping spaces. More precisely, there is a natural map of
spectral sequences converging to the map on homology induced by the stabilisation map

CMapc;�
k
.M IX/! CMapc;�

kC1
.M IX/:



M. Palmer and U. Tillmann 1222

Under the hypotheses on M assumed in Corollary 9.2, this map of spectral sequences is
split-injective on E2 pages. For the precise statement, see [16, Theorem 8.12].

Corollary 9.2 may also be used to understand the path-components of configuration-
mapping spaces of manifolds of dimension at least 3. As an example, we have the follow-
ing.

Corollary 9.5. Suppose that d D dim.M/ > 3, M is orientable and either

• M is simply-connected, or

• the handle-dimension of M is at most d � 2.

Then there is a natural bijection

�0.CMapc;�
k
.M IX// Š

G
f 2hM;Xi

SP k.cf /; (9.4)

where hM;Xi D �0.Map�.M;X//, the notation SP k.�/ means .�/k=†k and cf is the
pre-image of c � ŒSd�1; X� under the quotient map

�d�1.X/=f�.�1.M//! �d�1.X/=�1.X/ D ŒS
d�1; X�:

Proof. By the long exact sequence associated to the bundle (3.8), the left-hand side of
(9.4) is naturally in bijection with the set of orbits of

�0.Mapc�.M X z;X// Š hM;Xi � Qc
k

under the monodromy (i.e., point-pushing) action of �1.Ck.M//, where Qc denotes the
pre-image of c � ŒSd�1; X� under the quotient map

�d�1.X/! �d�1.X/=�1.X/ D ŒS
d�1; X�:

Corollary 9.2 implies that the elements of �1.Ck.M// act on a tuple .Œf �; Œg1�; : : : ; Œgk �/
by (i) permuting the Œgi �’s and (ii) acting on each Œgi � (individually) by f�.�1.M// 6
�1.X/. The formula (9.4) follows.
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