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Invariable generation does not pass to finite index
subgroups

Gil Goffer and Nir Lazarovich

Abstract. Using small cancellation methods, we show that invariable generation does not pass
to finite index subgroups, answering questions of Wiegold (1977) and Kantor–Lubotzky–Shalev
(2015). We further show that a finitely generated group that is invariably generated is not necessar-
ily finitely invariably generated, answering a question of Cox (2021). The same results were also
obtained independently by Minasyan (2021).

1. Introduction

Definition 1.1 (Dixon [5]). Let G be a group. A subset S � G invariably generates G if
for every function S ! G, s 7! gs , the set of conjugates ¹sgs j s 2 Sº generates G. (We
denote gh WD h�1gh.)

A group G is invariably generated (or IG) if it has an invariably generating set, or
equivalently, if G invariably generates itself. A group G is finitely invariably generated
(or FIG) if it has a finite invariably generating set.

Dixon’s original definition referred to finite groups. However, an equivalent definition
was previously studied by Wiegold in the context of general (finite or infinite) groups [25].
Kantor, Lubotzky and Shalev [15] were the first to consider Dixon’s definition for infinite
groups, and to notice that it coincides with Wiegold’s definition.

It is shown in [15, 25] that the classes of IG groups and FIG groups are closed under
extensions and include all finite groups. It follows that a group with a finite index normal
IG (resp. FIG) subgroup is IG (resp. FIG). The following slight generalization is probably
known to experts, yet we include a proof of this theorem in Section 2.

Theorem A. A group containing a finite index IG (resp. FIG) subgroup is IG (resp. FIG).

In contrast, we prove the following theorem, answering questions of Wiegold [26] and
Kantor–Lubotzky–Shalev [15].

Theorem B. There exists a FIG group with an index 2 non-IG subgroup.
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In the context of topological groups, it was shown in [15] that a topologically finitely
generated group that is topologically invariably generated is not necessarily topologically
finitely invariably generated. We therefore find it relevant to state the following theorem,
answering a question of Cox [3].

Theorem C. There exists a finitely generated group that is invariably generated, but not
finitely invariably generated.

The proofs of Theorem B and Theorem C rely on an iterative small cancellation con-
struction. The same results were obtained independently by Minasyan [21] using similar
methods.

Invariable generation has been studied for various groups and classes of groups. IG
groups include virtually solvable groups [25], the Lamplighter group [15] and Thompson’s
group F [8]. There are uncountably many non-IG groups [12] which include convergence
groups (and in particular hyperbolic groups) [7], Thompson’s groups T and V [8], Osin’s
infinite group with only two conjugacy classes [23], and certain arithmetic groups with the
congruence subgroup property [9]. For linear groups FIG is equivalent to solvability [15].
Invariable generation of wreath products was studied in [3]. As finite groups are always
FIG, questions addressed in this context regard the minimal size of a (perhaps random)
invariably generating set. In particular, it was thoroughly studied for Sn [4–6,24] and other
finite groups [14, 18].

Organization of the paper. In Section 2 we include the proof of Theorem A. In Section 3
we give a brief statement of the tools used in the proofs of Theorems B and C. In Sections
4 and 5 we prove Theorems B and C, respectively. In Section 6 we review the necessary
preliminaries on the geometry of hyperbolic groups and prove relevant lemmas on qua-
siconvex subgroups. In Section 7 we review the small cancellation theory of hyperbolic
groups developed by Ol’shanskii [22]. We also show that one can find small cancella-
tion words with specific properties, and prove the main lemmas of Section 3. Section 8 is
devoted to the hexagon property which is an ingredient of the proof of Theorem B.

2. Proof of Theorem A

Definition 2.1. LetG be a group, and S �G a subset. A subgroupH �G is S -conjugacy
complete if it intersects the conjugacy classes of all elements of S .

When S D G we say that H is conjugacy complete.

The following equivalent definitions of invariable generation were observed in [15,25].

Lemma 2.2. Let G be a group, and S � G a subset. The following are equivalent:

(1) S invariably generates G.

(2) G does not contain a proper S -conjugacy complete subgroup.
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(3) Every non-trivial transitive action G Õ X has an element s 2 S without fixed
points.

Wiegold [25] proved that the class of IG groups is closed under extensions, in fact the
following slightly stronger result holds.

Proposition 2.3. Let G be a group, N � H � G be subgroups and N C G. Let S � H
and S 0 � G. If H is invariably generated by S , and G=N is invariably generated by (the
image of) S 0, then G is invariably generated by S [ S 0.

Proof. LetGÕX be a transitive action on a set with jX j � 2. We want to find an element
of S [ S 0 which acts without fixed points on X .

Since N is normal, we know that G=N Õ X=N . If jX=N j � 2, then since G=N is
invariably generated by S 0, there exists an element s0 2 S 0 that acts without fixed points
on X=N and hence also on X . If jX=N j D 1, thenN , and henceH , act transitively on X ,
and since H is invariably generated by S , there is an element s 2 S which acts without
fixed points on X .

In particular, we can deduce Theorem A.

Proof of Theorem A. If H is a finite index IG (resp. FIG) subgroup of G, then N D
CoreG.H/ D

T
g2G g

�1Hg is of finite index in G. Since every finite group is FIG, we
get that N � H � G satisfy the assumptions of Proposition 2.3 which implies that G is
IG (resp. FIG).

3. Toolbox

In this section we describe the toolbox for the main constructions. Since the main con-
structions are based on small cancellation quotients and HNN extensions, we summarize
in this section the main relevant lemmas regarding these two constructions. We believe
that a reader who is familiar with small cancellation theory would feel fairly comfortable
with these lemmas, whose proofs follow standard techniques. We therefore postpone their
proofs to later sections.

Throughout the rest of the paper we assume familiarity with notions in hyperbolic
group theory (cf. for example [2, 10, 13, 22]).

3.1. Small cancellation quotients

We use the small cancellation theory developed by Ol’shanskii [22] for hyperbolic groups,
which we outline more precisely in Section 7.

Roughly speaking, we say that a set of quasigeodesic words R in a hyperbolic group
satisfies small cancellation if whenever two distinct words in R fellow-travel, they do so
for only a small proportion of their lengths. Similarly, we say that a set of quasigeodesic
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words R has small overlap with another set of quasigeodesic words K , if whenever a word
in R fellow-travels with a word in K , it does so for only a small proportion of its length.
The exact form of small cancellation conditions that we use is defined in Definitions 7.3
and 7.5, and excludes relations which are powers.

Lemma 3.1. Let G be a torsion-free hyperbolic group, and let H;K1; : : : ; Kn be quasi-
convex subgroups ofG. IfH is non-elementary and non-commensurable1 intoK1; : : : ;Kn,
then for every m there exists a subset of m words R D ¹w1; : : : ; wmº � H with arbitrar-
ily small cancellation and arbitrarily small overlap with K1; : : : ; Kn, and every wi 2 R

satisfies E.wi / D hwi i where E.wi / WD ¹x 2 G j 9n ¤ 0W xwni x
�1 D w˙ni º.

If moreover G has an involution � which exchanges two non-commensurable2 ele-
ments a; b 2 H , and �.¹K1; : : : ; Knº/ D ¹K1; : : : ; Knº, then R can be chosen so that
�.R/ D R.

A sketched proof for Lemma 3.1 is found in Section 7.

Remark 3.2. Let G and H; K1; : : : ; Kn be as in Lemma 3.1, and let u1; : : : ; um be
quasigeodesic words inG. The wordsw1; : : : ;wm 2H can be chosen such thatw1u1; : : : ;
wmum have arbitrarily small cancellation and arbitrarily small overlap with K1; : : : ; Kn.

A version of the following lemma was proved by Minasyan [19, Theorem 1]. For a
detailed independent proof see [11, Section 7.4] (the arXiv version of the present paper).

Lemma 3.3. LetG be a torsion-free hyperbolic group, and letK1; : : : ;Kn be quasiconvex
subgroups of G. Then, for every finite set of words R D ¹w1; : : : ; wmº with small enough
cancellation and small enough overlap with K1; : : : ; Kn the following holds:

(1) The quotient G=hhRii is torsion-free and hyperbolic.

(2) For every 1 � i � n, the subgroup Ki embeds in G=hhRii as a quasiconvex sub-
group.

(3) For every 1 � i; j � n, if Ki is non-commensurable into Kj in G, then the same
holds in G=hhRii.

3.2. HNN extensions

The HNN extensions which we use have cyclic edge stabilizers. In this case, one has the
following theorem.

1We use the term “commensurable” to refer to the equivalence of subgroups up to conjugation and
passing to finite index. That is, two subgroups H;H 0 in G are commensurable if there exists g 2 G such
that Hg \H 0 has finite index in both Hg and H 0. Similarly, H is commensurable into H 0 if there exists
g 2 G such that Hg \H 0 has finite index in Hg .

2Elements are commensurable if they generate cyclic subgroups which are commensurable. Similarly,
an element is commensurable into a subgroup H if the cyclic subgroup it generates is commensurable
into H .
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Theorem 3.4 ([17, Theorem 4] or [16, Theorem 1.2]). Let G be a hyperbolic group act-
ing on a tree with cyclic edge stabilizers, then the vertex stabilizers of G are quasiconvex.
In particular, in hyperbolic HNN extensions with cyclic edge stabilizers, quasiconvex sub-
groups of vertex groups are quasiconvex in the HNN extension.

Since we will need more control over the possible conjugations of elements, we recall
the definition of k-acylindrical HNN extensions.

Definition 3.5. Let k 2 N. An action G Õ T of a group on a tree is k-acylindrical if
for every 1 ¤ g 2 G the fixed-point set of g in T has diameter � k. Equivalently, the
pointwise stabilizer in G of a geodesic path of length k C 1 in T is trivial.

An HNN extension (and more generally a graph of groups) is k-acylindrical if the
action on its associated Bass–Serre tree is k-acylindrical.

It is easy to verify the following sufficient condition for 2-acylindricity of a double
HNN extension.

Lemma 3.6. Let A be a group, and C;C 0;D;D0 be distinct subgroups of A. Assume that
for all g 2 A, X 2 ¹C 0;D0º, and Y 2 ¹C;C 0;D;D0º,

gXg�1 \ Y ¤ 1 H) X D Y; g 2 X:

Then, the (double) HNN extensionG D hA;s; t j C s D C 0;Dt DD0i is 2-acylindrical.

Under the condition of 2-acylindricity it is easy to see the following.

Lemma 3.7. Let A; C; C 0; D; D0; G be as in Lemma 3.6. Let U; V be two non-com-
mensurable subgroups ofA. Assume thatU and V are not commensurable intoC 0 andD0.
Then, U and V are non-commensurable in G.

Proof. The lemma follows from Britton’s lemma and the assumption on C; C 0; D;D0 in
Lemma 3.6.

3.3. Quasiconvex subgroups

Lemma 3.8 (Ol’shanskii [22]). Let x;y 2G be non-commensurable elements. Then there
exists N > 0 such that hxN ; yN i � G is a free quasiconvex subgroup.

Theorem 3.9 ([20, Theorem 1]). Let G be a hyperbolic group, let H; K1; : : : ; Kk be
quasiconvex subgroups, and suppose H is not commensurable into any of the Ki . Then
there exists h 2 H which is not commensurable into any of the Ki .

Theorem 3.9 was proved by Minasyan in [20, Theorem 1]. A short independent proof
is also given in the arXiv version of the present paper, see [11, Section 7.1].
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Lemma 3.10. Let Q1; : : : ; Qm � G be some non-elementary quasiconvex subgroups of
G, and let g1; : : : ; gn be infinite order elements of G. Then, there exist r1; : : : ; rn 2 G
such that K D hgr11 ; : : : ; g

rn
n i is a quasiconvex free subgroup and Q1; : : : ; Qm are not

commensurable into K.

The proof of this lemma appears in Section 6.2.

4. Proof of Theorem B

We prove that the following proposition implies Theorem B.

Proposition 4.1. There exist a finitely generated non-IG group G, an element x 2 G, and
an involution � 2 Aut.G/ such that for all g 2 G, hxg ; �.xg/i D G.

Proof of Theorem B. Let G and � be as in Proposition 4.1. Consider the group zG D G Ì
h�i. By construction, G contains an index 2 non-IG subgroup. It remains to show that zG
is FIG. We claim that zG is invariably generated by S D ¹x; �º. That is, hx Qg ; � Qg

0

i D zG for
all Qg; Qg0 2 zG.

Let zH D hx Qg ; � Qg
0

i. We may assume that � 2 zH , by conjugating zH by . Qg0/�1 if
necessary.

We can write Qg D g�" 2 zG where g 2 G and " 2 ¹0; 1º. Since �;xg�
"
2 zH , it follows

that both xg and xg� D �.xg/ are in zH . By the assumption, G D hxg ; �.xg/i � zH , but
since also � 2 zH we get that zH D zG.

Proof of Proposition 4.1. We construct by induction a group G with the desired prop-
erties. Let us start with G.0/ D F.x; x0; y; y0/, the free group generated by the letters
x; x0; y; y0, and let � 2 Aut.G.0// be the involution exchanging x $ y; x0 $ y0. Enu-
merate the elements of G.0/ D ¹g1; g2; g3; : : :º.

Assume we have constructed a sequence G.0/� G.1/� � � � of quotients, G.n/ D
G.0/=Ni where N1 � N2 � � � � is an increasing sequence of normal subgroups, and such
that each group G.n/ satisfies the following:3

(B1) The subgroup hx; x0i contains some conjugates of g1; : : : ; gn.

(B2) hx; x0i is a proper subgroup.

(B3) The automorphism � descends to G.n/.

(B4) The conjugate xgn �-generates G.n/, i.e., G.n/ D hxgn ; �.xgn/i.

Consider the limit
G D lim

�!
G.n/ D G.0/=

�[
Nn
�
:

It is a finitely generated group by construction. The subgroup hx; x0i is conjugacy com-
plete by (B1) and proper by (B2), implying thatG is non-IG. In addition, � is an involution
of G by (B3), and for all g 2 G, hxg ; �.xg/i D G by (B4).

3We abuse notation and think of elements of G.0/ as their images in G.n/.
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To complete the proof of Proposition 4.1 it remains to construct a sequence of quo-
tients as above. To build the sequence G.n/ we will use small cancellation, and therefore
we would like to assume more on the groups in the process.

(B5) The group G.n/ is a torsion-free hyperbolic group.

(B6) hx; x0i is free and quasiconvex.

(B7) hx; x0i and hy; y0i are not commensurable.

(B8) The elements x; y are non-commensurable. In particular, hx; yi is non-elemen-
tary.

(B9) (The hexagon property) If �; � 0 2 hx; x0i and z 2 G.n/ satisfy �z D �..� 0/z/,
then � 0 D �˙1.

Remark 4.2. Property (B7) implies (B2). In fact, it follows from (B7) that hx; x0i has
infinite index in G.n/.

Property (B9) implies that if a; b 2 G.n/ are non-commensurable and �.b/ D a, then
ha; bi is not commensurable into hx; x0i. Otherwise, there exist z 2 G.n/, �; � 0 2 hx; x0i
and N 2 N such that aN D �z and bN D .� 0/z . Applying � on the second equation
gives aN D �..� 0/z/, from which �z D �..� 0/z/ follows. Property (B9) then implies that
� 0 D �˙1, contradicting the assumption that a; b are non-commensurable.

It is easy to verify that G.0/ satisfies the above (B1)–(B9). Note that (B1) and (B4)
are vacuous for G.0/.

Starting with G.n � 1/, we will build G.n/ in a three step process:

Step 1. Conjugating gn into hx; x0i using HNN. Let g D gn. If g D 1, set G00.n/ D
G.n� 1/ and skip to Step 3. Otherwise, the assumptions of Lemma 3.1 withH D hx; x0i,
K1 D hgi, K2 D h�.g/i, K3 D hy; y0i are satisfied by (B5), (B6), (B7) and (B8). There-
fore, we can find a word w 2 hx; x0i such that w satisfies arbitrarily small cancellation
in G.n � 1/, and has arbitrarily small overlap with hgi; h�.g/i and hy; y0i. Since �.w/ 2
hy;y0i it follows that w;�.w/ satisfy arbitrarily small cancellation and small overlap with
hgi; h�.g/i.

Let G0.n/ be the (double) HNN extension

G0.n/ D hG.n � 1/; s; t j gs D w; �.g/t D �.w/i:

Extend � by setting it to exchange s $ t .
Even though G0.n/ is not a quotient of G.n � 1/ one can make sense of properties

(B1)–(B9) for G0.n/. By the induction hypothesis g1; : : : ; gn are conjugate into hx; x0i in
G.n � 1/ and therefore also in G0.n/; the new HNN relations also conjugate g D gn to
hx; x0i, hence G0.n/ satisfies (B1). It is also immediate that G0.n/ satisfies (B2), (B3).

Since w; �.w/ satisfy arbitrarily small cancellation in G.n � 1/, by Remark 3.2 we
see that gs D w and �.g/t D �.w/ are also small cancellation relations (in the hyperbolic
group G.n � 1/ � F.s; t/). It follows that w can be chosen so that G0.n/ satisfies (B5) by
Lemma 3.3 (1).
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Moreover, the groups C D hgi;D D h�.g/i; C 0 D hwi;D0 D h�.w/i satisfy the con-
ditions of Lemma 3.6 as we know that E.C 0/ D C 0 and E.D0/ D D0 by Lemma 3.1.
Therefore the HNN extension G0.n/ will satisfy (B6) by Theorem 3.4. It will also satisfy
(B7) and (B8) by Lemma 3.7 applied toU D hx;x0i;V D hy;y0i and toU D hxi;V D hyi.
The proof that the hexagon property (B9) is preserved is slightly more technical and
appears in Lemma 8.2.

Note that at this pointG0.n/ is not a quotient ofG.n� 1/, and it satisfies all properties
except for (B4). In the next step, we introduce new relations toG0.n/, to make it a quotient
of G.n � 1/.

Step 2. AbsorbingG0.n/ in a quotient ofG.n� 1/ using small cancellation. As explained
in Remark 4.2, it follows from (B7) that hx; x0i has infinite index in G.n � 1/, and both
are quasiconvex in G0.n/ by (B6) and Theorem 3.4. Using Lemma 3.7, we see that the
conditions of Lemma 3.1 are satisfied for H D G.n � 1/; K1 D hx; x0i; K2 D hy; y0i in
G0.n/. Hence, by the “moreover” part of the lemma, we can find u 2 hx;x0;y;y0i such that
u;�.u/ have arbitrarily small cancellation in G0.n/, and such that u;�.u/ have arbitrarily
small overlap with the subgroups hx; x0i and hy; y0i. Set

G00.n/ D G0.n/=hhs D u; t D �.u/ii:

By the way it is defined the composition G.n � 1/ ,! G0.n/� G00.n/ is onto. It
also follows that G00.n/ satisfies (B1) and (B3). By Remark 3.2 the relations s D u and
t D �.u/ can be chosen to satisfy arbitrarily small cancellation and small overlap with
hx; x0i and hy; y0i. Properties (B5), (B6), (B7) and (B8) then follow from Lemma 3.3,
and the hexagon property (B9) is postponed to Lemma 8.1. As explained in Remark 4.2,
property (B2) follows.

At this point, G00.n/ is a quotient of G.n � 1/ that satisfies all properties except for
(B4), which will be taken care of in the last step of the construction.

Step 3. Forcing �-generation using small cancellation. Recall that we denote g D gn.
By (B8) x; y are non-commensurable. It follows that so are xg and �.xg/ D y�.g/. As
explained in Remark 4.2, it follows from property (B9) that hxg ; �.xg/i is not commen-
surable into hx; x0i. Using this and (B6), we see that H D hxg ; �.xg/i and K1 D hx; x0i,
K2 D hy; y

0i satisfy the assumptions for the “moreover” part of Lemma 3.1. Hence, there
exist v; v0 2 hxg ; �.xg/i such that v; v0; �.v/; �.v0/ satisfy arbitrarily small cancellation
in G00.n/ and have arbitrarily small overlap with hx; x0i and hy; y0i.

In order to take care of property (B4), we set

G.n/ D G00.n/=hhx D v; x0 D v0; y D �.v/; y0 D �.v0/ii:

We have G.n � 1/� G00.n/� G.n/. It follows from the construction that G.n/
satisfies (B1), (B3) and (B4). As in Step 2, properties (B5), (B6), (B7) and (B8) follow
from Lemma 3.3. The hexagon property (B9) holds by Lemma 8.1, and (B2) follows.
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5. Proof of Theorem C

In the following section we construct a finitely generated IG group that is not FIG, proving
Theorem C.

Let F D F.a; b/ be the free group generated by a; b, and let F D ¹g1; g2; : : :º be an
enumeration of its elements. Assume we have found a function h W F � F ! F , elements
¹rij ºi�j � F , and a quotient F � G that satisfy:

(P1) For all s; t; u 2 F , has; bt ; h.s; t/ui D G.4

(P2) For all n 2 N, hgrn11 ; : : : ; g
rnn
n i ¤ G.

It is then easy to see that (P1) implies that G is IG, while (P2) implies that it is not
FIG. We therefore wish to find such data.

We first establish some notation. Enumerate

F � F D
®
.s1; t1/; .s2; t2/; : : :

¯
;

.F � F / � F D
®
..sj1 ; tj1/; u1/; ..sj2 ; tj2/; u2/; : : :

¯
:

Let
N\
D
®
i \ 2 N j ji\ … ¹j1; : : : ; ji\�1º

¯
;

i.e., the set of indices of the enumeration of .F � F / � F for which a pair .s; t/ is intro-
duced for the first time. When using the notation i \, we implicitly assume that the element
i \ is in the set N\.

Set F D G.0/. In the n-th step of the induction, n � 1, we will construct:

• a group G.n/ which is a quotient G.n � 1/� G.n/;

• an image for the pair .sjn ; tjn/ under h, in case this pair has not yet appeared in a
previous level; that is, in case n 2 N\;

• elements rnk 2 F for all 1 � k � n, and a subgroup Kn WD hg
rn1
1 ; : : : ; g

rnn
n i;

• elements xni\ 2 F for all 1 � i \ � n;

such that the following properties hold in G.n/:

(C0) G.n/ is a torsion-free hyperbolic group.

(C1) hasjn ; btjn ; h.sjn ; tjn/
uni D G.n/.

(C2) a; b are non-commensurable.

(C3) For all 1 � i \ � n, h.sj
i\
; tj

i\
/ is not commensurable into K1; : : : ; Ki\�1.

(C4) For all 1 � i � n, Ki is free and quasiconvex. Since G is torsion-free but not
free, it follows from Stallings’ theorem that Ki have infinite index in G.n/, and
in particular it is proper.

(C5) For all 1 � i \ � k � n, xki\ 2 ha
sj
i\ ; b

tj
i\ i is not commensurable into Kk .

4As usual we interpret elements of F as their image under the quotient map in G.



G. Goffer and N. Lazarovich 1276

Finally, we set G D lim
�!

G.n/. Notice that property (C1) for G.n/ implies that

hasji ; btji ; h.sji ; tji /
ui i D G.n/ for all i � n;

since G.n/ is a quotient of G.i/. In particular, we get that (P1) holds for G. Furthermore,
by the definition of the groups Ki , property (C4) implies (P2) for G.

It is easy to see that G.0/ D F satisfies the above assumptions. Notice however that
most conditions are vacuous in this case, as they are defined for i � 1 only. We now
describe the inductive step. Suppose we have defined the groups G.0/; : : : ;G.n� 1/ with
the auxiliary data described above such that they satisfy (C0)–(C5).

Step 1. Defining h.sjn ; tjn/. If n … N\, skip this step. Otherwise, n 2 N\ and hence the
image of the pair .sjn ; tjn/ under h was not previously defined. By Theorem 3.9, there
exists an element inG.n� 1/ that is not commensurable intoK1; : : : ;Kn�1. Set h.sjn ; tjn/
to be such an element.

At this point, (C3) holds also for i D n, in G.n � 1/.

Step 2. Constructing G.n/. By the induction hypothesis and Step 1, (C3) for 1 � i \ � n
and (C5) for 1 � i \ � k < n hold in G.n � 1/. It follows that hasjn ; btjn ; h.sjn ; tjn/

uni

contains an element which is not commensurable into K1; : : : ; Kn�1.
By Lemma 3.1, there exist words wa; wb 2 H D hasjn ; btj;n ; h.sjn ; tjn/

uni with arbi-
trarily small cancellation in G.n � 1/ and arbitrarily small overlap with K1; : : : ; Kn�1,
hai; hbi, ¹hh.sji ; tji /iºi�n, and ¹hxki\iºi\�k�n�1. Define

G.n/ D G.n � 1/=hhwa D a;wb D bii:

By Lemma 3.3 (1), property (C0) persists under small cancellation quotients, and so it
holds inG.n/. Moreover, it follows from the new relations that hasjn ; btjn ; h.sjn ; tjn/

uni D

G.n/, and so (C1) holds for G.n/ as well. Similarly, properties (C2) and (C3) hold in the
quotient G.n/ by Lemma 3.3 (3) and the induction hypothesis.

Regarding the other two properties: For all 1 � i � n � 1, (C4) holds in G.n/ by
Lemma 3.3 (2), since the relations have small overlap with K1; : : : ;Kn�1. Similarly, (C5)
for 1 � i \ � k � n � 1 holds in G.n/ by Lemma 3.3 (3). It remains to construct Kn and
show (C4) for i D n, and (C5) for k D n. This is done in the next step.

Step 3. Constructing rn1; : : : ; rnn and xni\ . We have seen that (C2) holds in G.n/, i.e.,
a; b are non-commensurable in G.n/. Hence for every 1 � i \ � n, ha

sj
i\ ; b

tj
i\ i is non-

elementary. LetQi\ � ha
sj
i\ ; b

tj
i\ i be some non-elementary quasiconvex subgroup which

exists by Lemma 3.8. By Lemma 3.10, there exist rn1; : : : ; rnn such that the group Kn WD
hg
rn1
1 ; : : : ; g

rnn
n i is quasiconvex and free, and such that for every 1 � i \ � n, Qi\ is not

commensurable into Kn. By Theorem 3.9, for every 1 � i \ � n there exists xni\ 2 Qi\
that is not commensurable into Kn.

The construction of rn1; : : : ; rnn ensures (C4) for i D n, while the choice of xni\
ensures (C5) for k D n. This completes the proof of Theorem C.
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6. Geometry of hyperbolic groups and quasiconvex subgroups

Let G be generated by a finite set S . We denote by �.G; S/ the Cayley graph of G with
respect to S . Let w be a word over S . We write kwk to denote the length of w as a word.
We use the same notation, kpk, to denote the length of a path p. We often abuse notation
and identify a path in �.G; S/ with its label. For an element g 2 G, we denote by jgj
the distance in �.G; S/ between g and 1G . Given � 2 .0; 1� and c � 0, a path p is a
.�; c/-quasigeodesic if for every subpath p0 � p, �kp0k � c � jp0j.

Throughout this section, G is assumed to be a ı-hyperbolic group.

6.1. Basic geometry of hyperbolic groups

In this subsection we collect some standard lemmas regarding the geometry of hyperbolic
groups. The proofs of Lemmas 6.1 and 6.2 can be found in Ol’shanskii’s article [22].

Two paths at Hausdorff distance d from each other are said to d -fellow-travel, or
simply fellow-travel, if d is independent of their lengths. The following lemma shows that
two quasigeodesics whose endpoints are close must fellow-travel.

Lemma 6.1 (Fellow-traveling). Given � 2 .0; 1� and c � 0, there exists ı0 � 0 such that
for every " � 0, there exists "0 � 0 with the following property. If p1q1p2q2 is a .�; c/-
quasigeodesic rectangle and kp1k; kp2k � ", then there exist subpaths q0i � qi of length
kq0ik > kqik � "

0 such that q01 and q02 are of Hausdorff distance at most ı0 from each other.

In the lemma, q01 and q02 ı
0-fellow-travel, and thus q1 and q2 .ı0 C 2"0/-fellow-travel.

A group H is called elementary if it is virtually cyclic, i.e., contains a finite index
cyclic subgroup. When G is hyperbolic, every infinite order element g 2 G is contained
in a unique maximal elementary subgroup E.g/ � G, which is given by

E.g/ D
®
x 2 G j 9n ¤ 0W xgnx�1 D g˙n

¯
:

If G is moreover torsion-free, then E.g/ is cyclic by Stallings’ theorem.

Lemma 6.2. Suppose that G is torsion-free, and let g; h 2 G be non-trivial elements.
There exist constants M > 0 and � > 0 such that: If for some m � M , xgmy D hn and
max¹jxj; jyjº � �m, then g; h are commensurable and g ¤ h�1. If moreover g D h, then
x; y 2 E.g/.

It follows from the lemma that if large powers of g and h fellow-travel, then g and h
must be commensurable.

Lemma 6.3 (Corner trimming). For all � 2 .0; 1�, c � 0 and k 2 N there exist ı0 � 0,
�0 2 .0; 1� and c0 � 0 such that if p1; : : : ; pk are .�; c/-quasigeodesic words, then there
exist (possibly empty) words v1; : : : ; vk�1 with kvik � ı0 and (possibly empty) subwords
p01; : : : ; p

0
k

of p1; : : : ; pk , respectively, such that

p1 : : : pk D p
0
1v1p

0
2v2 : : : vk�1p

0
k

in G, and the word on the right-hand side is a .�0; c0/-quasigeodesic in G.
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Proof. The case k D 2 follows from slimness of quasigeodesic triangles in hyperbolic
groups, and for k > 2 it follows by inductively applying the case k D 2.

Lemma 6.4 (Local-to-global; see the remark following [2, Corollary 1.14]). Let �2 .0;1�,
c � 0. Then there exist �0 2 .0; 1�, c0 � 0, L > 0 such that if p is a path for which every
subpath of length at most L is .�; c/-quasigeodesic, then p is .�0; c0/-quasigeodesic.

6.2. Constructing non-commensurated elements and quasiconvex subgroups

Proof of Lemma 3.10. Let Q1; : : : ; Qm � G be some non-elementary quasiconvex sub-
groups ofG, and let g1; : : : ;gn be infinite order elements ofG. We wish to find r1; : : : ; rn 2
G such that K D hgr11 ; : : : ; g

rn
n i is a quasiconvex free subgroup and Q1; : : : ; Qm are not

commensurable into K.
Let � D min¹ı.Q1/; : : : ; ı.Qn/º where ı.Qi / is the critical exponent of Qi , i.e., the

infimal ˛ for which
P
w2Qi

e�˛jwj converges. The critical exponent is a commensurability
invariant.

By Lemma 6.5 below we can choose r1; : : : ; rn 2 G such that ı.K/ < � where K D
hg
r1
1 ; : : : ;g

rn
n i is a quasiconvex free subgroup. It follows thatQ1; : : : ;Qn are not commen-

surable into K, as otherwise by the monotonicity of the critical exponent ı.Qi / � ı.K/,
which contradicts the assumption ı.K/ < �.

Lemma 6.5. Given g1; : : : ; gn 2 G and � > 0, there exist r1; : : : ; rn 2 G such that K D
hg
r1
1 ; : : : ; g

rn
n i is a quasiconvex free group with critical exponent ı.K/ < �.

We remark that it follows from Arzhantseva [1] that given a quasiconvex free subgroup
hg
r1
1 ; : : : ; g

rn�1
n�1 i, there exists g 2 G such that hgr11 ; : : : ; g

rn�1
n�1 ; gi is again quasiconvex and

free. However, we wish to choose g to be a conjugate of the pre-given gn.

Proof. Let r 01; : : : ; r
0
n be pairwise non-commensurable elements, such that r 0j is non-

commensurable to gj . We claim that forM large enough the elements rj D .r 0j /
M satisfy

the requirements.

Quasiconvexity of K. We first show that for large enough M , every word w 2 K D
hg
r1
1 ; : : : ; g

rn
n i of the form

w D .r�1i1 g
˙k1
i1

ri1/.r
�1
i2
g
˙k2
i2

ri2/ : : : .r
�1
ia
g
˙ka
ia

ria/; (6.1)

k1; : : : ; ka > 0, is a quasigeodesic with some quasigeodesicity constants (independent
of a, k1; : : : ; ka and M ). It suffices to prove it locally, using the local-to-global princi-
ple (Lemma 6.4). More precisely, we want to show that each subpath r�1ij g

˙kj
ij

rij and
each subpath rij r

�1
ijC1

is a long enough quasigeodesic for some quasigeodesicity constants
(independent of a, k1; : : : ; ka and M ).

Let �1; c1 be such that all powers of g1; : : : ; gn and of r 01; : : : ; r
0
n are .�1; c1/-quasi-

geodesic. Let �2; c2; ı0 be as in the corner trimming lemma (Lemma 6.3) applied for �1; c1
and k D 3. The corner trimming process gives the following. For each path of the form
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p D p1p2p3 D r
�1
ij
g
˙kj
ij

rij there exist (possibly empty) words v1; v2 with kvik � ı0 and
(possibly empty) subwords p01; p

0
2; p

0
3 of p1; p2; p3, respectively, such that p1p2p3 D

p01v1p
0
2v2p

0
3 inG, and the word on the right-hand side is a .�2; c2/-quasigeodesic. Denote

further by p001 ; p
00
2 ; p

000
2 ; p

00
3 the subpaths of p1; p2; p2; p3 such that

p1 D p
0
1p
00
1 ; p2 D p

00
2p
0
2p
000
2 ; p3 D p

00
3p
0
3:

(In case p02 is empty, take p002p
000
2 D p2 to be any partition). We wish to prove that p001 ; p

00
2 ;

p0002 ; p
00
3 are all bounded, and therefore the original path p D r�1ij g

˙kj
ij

rij is close to the
quasigeodesic p01v1p

0
2v2p

0
3.

Suppose toward contradiction that at least one of p001 ; p
00
2 ; p

000
2 ; p

00
3 is long. In case p02 is

not the empty word, the relation p001p
00
2 D v1, in which kv1k � ı0, implies that p001 fellow

travels with p002 . The relation p0002 p
00
3 D v2, kv2k � ı0, implies the same for p0002 and p003 .

In case p02 is empty, we get the relation p001p2p
00
3 D v1v2, kv1v2k � 2ı0, which implies

that either p2 fellow travels with one of p001 or p003 , or, by Lemma 6.2, in case p2 is itself
short, that p2 belongs to E.r 0ij /. All the cases of fellow traveling described above are
impossible by Lemma 6.2 when M is large enough, since r 0ij is non-commensurable with
gij . It follows that the lengths kp001k;kp

00
2k;kp

000
2 k;kp

00
3k are indeed bounded, and the bound

only depends on g1; : : : ; gn and r 01; : : : ; r
0
n. Let B denote their common upper bound, then

kp1p2p3k � kp
0
1v1p

0
2v2p

0
3k C 2B:

In particular, p1p2p3 D r�1ij g
˙kj
ij

rij is a .�;c/-quasigeodesic where �D �2 and cD c2C
2B .

Similarly, one performs corner trimming on p D p1p2 D rij r
�1
ijC1

to obtain that
p1p2 D p

0
1v1p

0
2 in G, and the right-hand side is .�2; c2/-quasigeodesic. Since rij ; rijC1

are non-commensurable, we can use Lemma 6.2 to obtain a bound, say B again, on the
length of the shortcut, namely on kp1p2k � kp01v1p

0
2k. We get that p1p2 D rij r

�1
ijC1

is a
.�; c/-quasigeodesic as well.

By the local-to-global principle (Lemma 6.4) applied to �; c, there exist �0 2 .0; 1�,
c0 � 0 and L > 0. For large enough M the subpaths r�1ij g

˙kj
ij

rij and rij r
�1
ijC1

have length
> L and are .�; c/-quasigeodesics. Thus, by Lemma 6.4, w is a .�0; c0/-quasigeodesic,
and �0; c0 are independent of a, k1; : : : ; ka and M .

It follows that K is quasiconvex and free.

Small critical exponent. To get ı.K/ < �we recall that the critical exponent is the infimal
˛ such that the series

P
w2K e

�˛jwj converges. In order to show convergence for ˛ < �,
it is enough to find �0 < � such that for every large enough R,

#
®
w 2 K j jwj < R

¯
< e�

0R:

Let N > 0. Let M be large enough so that any word w of the form (6.1) is .�0; c0/-
quasigeodesic. By perhaps enlarging M even more, we can assume that for some C > 0,
every w of the form (6.1) satisfies

jwj > NaC Ck
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in G, where k D
Pa
jD1 kj . As the number of words of the form (6.1) is at most .2n/a

�
k
a

�
,

we obtain

#
®
w 2 K j jwj < R

¯
� #

®
w is of the form (6.1) j NaC Ck � R

¯
�

X
NaCCk�R

.2n/a

 
k

a

!

�

X
NaCCk�R

.2n/a
�ke
a

�a

�

R
NX
aD1

�2ne
a

�a R�Na
CX
kD1

ka: (6.2)

Replacing all elements in the inner sum by .R�Na
C

/a, we get

(6.2) �

R
NX
aD1

�2ne
a

�a�R �Na
C

�aC1

�

R
NX
aD1

�R �Na
C

��2ne
C

�a�R �Na
a

�a
: (6.3)

The function .1�x
x
/x obtains a maximum D in the interval .0; 1�. Substituting aN

R
for x,

one has �R �Na
a

�a
� N aD

R
N for a 2 Œ1; R

N
�:

Thus,

(6.3) �

R
NX
aD1

�R �Na
C

��2ne
C

�a
N aD

R
N

�
R

N

�R
C

��2ne
C

� R
N
N

R
ND

R
N

� eln R2

NC C
R
N ln 2neNDC � e˛.N/R;

where ˛.N /! 0 asN !1. In particular, for large enoughN we have that�0 WD ˛.N /<
�, and so the expression above is bounded by e�

0R, as required.

7. Small cancellations with small overlaps

In this section we review the main definitions for small cancellation theory following
Ol’shanskii [22], we then prove that one can find small cancellation words with specific
properties, and prove the main lemmas of Section 3.
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7.1. Small cancellation conditions

A set of words R is symmetrized if it is closed under taking cyclic permutations and
inverses.

Definition 7.1 (Pieces). Let R and K be symmetrized sets of words in S , and " > 0. Let
U be a subword of a word R 2 R. Then U is called a (K; ")-piece if there exists a word
R0 2K such that

(1) R D UV , R0 D U 0V 0 as words, for some words U 0; V; V 0;

(2) U 0 D CUD in G for some words C;D in S such that max¹kCk; kDkº � ";

(3) CRC�1 ¤ R0 in G.

U is called an "0-piece5 if

(10) R D UV U 0V 0 for some U 0; V; V 0;

(20) U 0 D CU˙1D in G for some words C;D in S such that max¹kCk; kDkº � ".

Remark 7.2. In case K D R, a .K; "/-piece is simply called an "-piece, and this defini-
tion coincides with the usual definition found for example in [22, 23].

Definition 7.3 (Small cancellation conditions). Let R and K be symmetrized sets of
words in G. We say that R satisfies the C1."; �; �; c; �;K/-condition for some " � 0,
� > 0, � 2 .0; 1�, c � 0, � > 0, if

(1) kRk � � for any R 2 R;

(2) any word R 2 R is .�; c/-quasigeodesic;

(3) for any .R; "/-piece U of any word R 2 R, max¹kU k; kU 0kº < �kRk;

(4) for any .K; "/-piece U of any word R 2 R, max¹kU k; kU 0kº < �kRk;

(5) for any "0-piece U of any word R 2 R, max¹kU k; kU 0kº < �kRk.

Remark 7.4. (1) An arbitrary set of words is said to satisfy C1."; �; �; c; �;K/ if its
symmetrized closure does.

(2) When K D ;, condition (4) trivially holds, and the C1.";�;�; c; �;K/-conditions
coincide with the usual C1."; �; �; c; �/-conditions found for example in [22, 23].

Instead of keeping track of quantifiers, it would be convenient to use the following.

Definition 7.5. Let G;K be as in the definitions above. Let P be some property. We say
that there exists a set of words R satisfying P in G with arbitrarily small cancellation
and arbitrarily small overlap with K if there exist �; c such that for all ";�; � there exists
a set R satisfying P and the C1."; �; �; c; �;K/-condition.

5For consistency with [19, 22, 23] we follow the standard yet confusing notation “"0-piece” by which
we mean that U is an "0-piece if it satisfies (10) and (20) with respect to the parameter " (and not (1)–(3)
with respect to the parameter "0).
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Similarly, we say that P holds for sets of words R ofG with small enough cancellation
and small enough overlap with K if for each �; c there exist "; �; � such that P holds for
all R satisfying the C1."; �; �; c; �;K/-condition.

Remark 7.6. Suppose G is hyperbolic and K1; : : : ; Kn are quasiconvex in G. Fix some
generating sets S1; : : : ; Sn; S for K1; : : : ; Kn; G, respectively. We assume S contains
S1; : : : ; Sn. By “small overlap withK1; : : : ;Kn” we mean “small overlap with K” where
K DK1 [ � � � [Kn and Ki is the set of all words in Si which are geodesic in Ki .

7.2. Existence of words with arbitrarily small cancellation

The goal of this section is to prove Lemma 3.1 which states that there exist words with
arbitrarily small cancellation and arbitrarily small overlap with a finite union of quasi-
convex subgroups.

Given a word R.X; Y /, we denote by kR.X; Y /kF D kR.X; Y /kF the norm of R
in the free group F.X; Y / with respect to the generating set X;X�1; Y; Y �1. For words
g; h in S we denote by R.g; h/ the word obtained by substituting g; h for X; Y , and by
kR.g; h/k the length of a path labeled by R.g; h/ in G, with respect to the generating
set S .

Given a set of words R � F.X; Y / and words g; h in S , we denote by R.g; h/ the
symmetrized closure of the set ¹R.g; h/ j R 2 Rº.

Lemma 7.7. Let G be a torsion-free hyperbolic group. Let a; b 2 G be non-trivial ele-
ments in G that are non-commensurable. Let �0 2 .0; 1�, c0 � 0, and let K be a sym-
metrized set of .�0; c0/-quasigeodesic words that is closed under taking subwords. Sup-
pose that a is non-commensurable into K . Then there exist � 2 .0; 1� and c � 0 such that
for any " � 0; � > 0; � > 0, there are �0; �0; N with the following property: If a set of
words R � F.X; Y / satisfies C1.0; �0; 1; 0; �0/ in F.X; Y /, then R.aN ; bN / satisfies the
C1."; �; �; c; �;K/-condition in G;

Moreover, for every R 2R.aN ; bN / with small enough cancellation, we have that the
elementary group E.R/ equals hRi.

Lemma 7.7 will not surprise the experts in small-cancellation theory. We omit the
proof of the lemma as it follows similar lines to proofs in the literature, e.g., [22, Lemma
4.2] and [19, Lemma 6.1]. However, a detailed proof of the lemma is found in the arXiv
version of this paper, see [11, Lemma 7.9].

As a corollary we now prove Lemma 3.1.

Proof of Lemma 3.1. Say we are given H;K1; : : : ; Kn as in the statement of the lemma.
Suppose without loss of generality that the generators of each ofK1; : : : ;Kn belong to S .
Since K1; : : : ; Kn are quasiconvex, the set K of all elements in K1 [ � � � [Kn is closed
under taking subwords, and all words in K are .�0; c0/-quasigeodesic with respect to
some uniform �0 2 .0; 1�, c0 � 0.
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Since H is not commensurable into K1; : : : ; Kn, Lemma 3.9 ensures there exists an
element a0 2 H non-commensurable into K . Since H is non-elementary, there exists
b0 2 H such that a0 and b0 are non-commensurable.

The first part of Lemma 3.1 then follows immediately by applying Lemma 7.7 on a0

and b0. Indeed, given parameters .";�;�; c;�/, it is enough to construct an arbitrarily large
set of words satisfying C1.0; �0; 1; 0; �0/ in the free group F.X; Y /. Such a set is easy to
construct. For example, take N > max¹�0; 3

�0
º, and for 1 � i � m set

wi D X
iNYX iNC1YX iNC2Y : : : X iNCNY;

w0i D Y
iNXY iNC1XY iNC2X : : : Y iNCNX:

For the “moreover” part, suppose � is an involution of G exchanging two non-com-
mensurable elements a; b 2 H , and suppose further that K D �.K/. It is enough to find
elements a0; b0 2 H non-commensurable in G, such that � exchanges a0 $ b0 and such
that a0 is non-commensurable into K . Indeed, given such elements, one can then apply
Lemma 7.7 with a0; b0, and take the words w1; : : : ; wm; w01; : : : ; w

0
m as suggested above.

We will now find such elements. By Theorem 3.9, there exists an element h 2H that is
not commensurable into K 0 DK [ hai [ hbi. For large enough integers s; t , the elements
a0 D .ashs/t and b0 D .bs�.h/s/t satisfy the requirements. Indeed, suppose that for some
integer l and g 2 G we had that g�1a0lg D U is either a power of b0 or a word in K .
We may assume that a0l is much longer than g, by replacing l by a large multiple. By
Lemma 6.1 there exists a major part of a0l that is contained in a small neighborhood of U .
In particular, by largeness of t , this major part must contain a subpath labeled by ashs .
However, for s large enough, this is impossible by Lemma 6.2, as a is non-commensurable
with b and �.h/, and h is non-commensurable into K .

7.3. Greendlinger’s lemma

In this subsection we review Ol’shanskii’s version of Greendlinger’s lemma and the rele-
vant definitions, to be used in Section 8.

Let G D hS j Oi be a presentation of G, R a set of words and G0 D hS j O [Ri.
Let � be a van Kampen diagram over G0 D hS j O [Ri and q a subpath of @�. Let …
be an R-cell of �, i.e., a cell whose boundary is labeled by a word in R. Suppose � is
a subdiagram of �, containing no R-cells, and such that @� D s1q1s2q2 where q1 is a
subpath of @…, q2 a subpath of q and max¹js1j; js2jº � " for some " > 0. Then � is called
an "-contiguity subdiagram of … to q, and the ratio kq1k=k@…k is called the contiguity
degree of … to q, denoted by .…; �; q/.

Let †;†0 be subdiagrams of � containing no R-cells and such that @† and @†0 have
the same label. In this case, replacing † by †0 will not affect the label of @� and the
number of R-cells in�. Diagrams over hS j O [Ri that can be obtained from each other
by a sequence of such replacements are called O-equivalent.
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Lemma 7.8 (Greendlinger’s lemma, Ol’shanskii [22, Lemma 6.6]). Let G D hS j Oi be
hyperbolic and torsion-free. Then for any � 2 .0; 1� and c � 0 there exist � > 0, " � 0
and � > 0 with the following property. Let R be a symmetrized set of words satisfying
C1."; �; �; c; �/ and let � be a reduced van-Kampen diagram over hS j O [Ri whose
boundary is .�; c/-quasigeodesic. Assume that � has at least one R-cell. Then there
exist a diagram �0 which is O-equivalent to �, an R-cell … in �0 and an "-contiguity
subdiagram � of … to @�0 such that

.…; �; @�0/ > 1 � 13�:

8. The hexagon property

Let G be a group with an involution �, let X � G be a subgroup. Recall that G has the
hexagon property with respect toX;� if for all �; � 0 2X and z 2G: �z D �..� 0/z/ implies
� 0 D �˙1.

8.1. Hexagon property for small cancellation quotients

Lemma 8.1. LetG be a torsion-free hyperbolic group with an involution �, letX � G be
a quasiconvex subgroup. For all R such that �.R/ D R with small enough cancellation
and small enough overlap with X , if G has the hexagon property with respect to X; �,
then so does G=hhRii.

Proof. Assume for contradiction that there exist �; � 0 2 X , z 2 G such that

�z D �..� 0/z/ 2 G=hhRii

but � 0 ¤ �˙1. Let us assume that �; � 0 are .�; c/-quasigeodesics in G, and that z is a
geodesic in G=hhRii. The word q WD z�1�z�.z/�1�.� 0/�1�.z/ is trivial in G=hhRii but is
not trivial inG sinceG is assumed to satisfy the hexagon property. We would like to apply
Greendlinger’s lemma to the path q. However, even though the path q is a concatenation
of 6 quasigeodesic paths in G, it might not be a quasigeodesic because of “backtracking”.
One can fix this by trimming the backtracking corners as described in Lemma 6.3. There
exist (possibly empty) subwords z1; z2; z3; z4 of z and subwords �;�0 of �; � 0, respectively,
and words v1; : : : ; v6 of length � ı0 such that the path

p WD z�11 v1�v2z2v3�.z3/
�1v4�.�

0/�1v5�.z4/v6

is a conjugate of q in G, and the path p is a .�0; c0/-quasigeodesic, where ı0; �0; c0 depend
only on �;c andG. See Figure 1. Moreover, by symmetry of z�.z/�1 we may assume that
z2 and z3 end at the same place in z (i.e., z D z0z2uD z00z3u as words, for some z0; z00; u).
A similar statement holds for z4; z1. By replacing �; � 0 with large enough powers, we may
assume that � and �0 are arbitrarily long, and in particular non-empty.



Invariable generation does not pass to finite index subgroups 1285

z�1 z

�.z/ �.z/�1

�

� 0

z�11 z2

�.z3/
�1

�.z4/

�

�0

v1 v2

v3

v4v5

v6

z�11
case 1

�
v1

case 2
case 3

�
v2

z2

V

v3

�.V /

�.z3/
�1

r

r 0

p0

v4
�0

v5

�.z4/

v6

Figure 1. The trimmed hexagon, and the 3 cases of the contiguous cell in the proof of Lemma 8.1.

Since p and q are conjugates, we have that p D 1 in G=hhRii while p ¤ 1 in G. By
Greendlinger’s lemma there exists a cell labeled r 2 R with contiguity degree > .1 �

13�/ assuming R satisfies small enough cancellation. Let us denote by � the contiguity
subdiagram, and by r 0;p0 the subwords of r;p, respectively, which label the opposite sides
of � .

Applying Lemma 6.1 to the quasigeodesic rectangle @� , we see that there exist "0 and
subpaths r 00; p00 of r 0; p0, respectively, of length kr 00k > kr 0k � "0, kp00k > kp0k � "0. Let
r 00 D rz1r� : : : rz4, where rz1; r� : : : ; rz4 are the (possibly empty) subwords of r 00 which
correspond to the paths that ı00-fellow-travel with z�11 ; �; : : : ; �.z4/, respectively. Since
kr 00k > kr 0k � "0, we deduce

krz1k C kr�k C � � � C krz4k > .1 � 13�/krk � "
0
DW !:

In particular, it follows that at least one of the summands on the left-hand side must
be relatively large. We therefore consider the three following cases.

Case 1. kr�k > �krk DW !1 or kr�0k > �krk. This is impossible when R has small
enough overlap with X since �; �0 2 X .

Case 2. min¹krz2k;krz3kº>��1.�krkC 2ı00C c/C 2ı00DW!2 and the path p00 contains
v3. In this case, let

p00z2 D p
00
\ z2; p00v3 D p

00
\ v3; p00z3 D p

00
\ �.z3/

�1:

Since krk is a .�; c/-quasigeodesic and z2 and �.z3/�1 are geodesics, we get that

min
®
kp00z2k; kp

00
z3k
¯
> �krk C 2ı00:

Recall that z2 and z3 end at the same place in z, thus there is a subword V of z of length
kV k > �krk C 2ı00 such that V is in p00z2 and �.V /�1 is in p00z3. Let U and U 0 be the
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subwords of r that ı00-fellow-travel with V and �.V /. We have kU k � kV k � 2ı00 >�krk
and similarly kU 0k > �krk. Since �.r/ 2 R, we get that r has a .2ı00/-piece (and hence
an "-piece) with �.r/ of length > �krk which is impossible if R has C1.";�; �; c; �;X/.

Similarly one proves the case

min
®
krz1k; krz4k

¯
> ��1.�krk C 2ı00 C c/

and the path p00 contains v6.

Case 3. krz4k>! �!1 �!2DW!3 (and similarly for rz1, rz2 and rz3). For small enough
� and large enough � we can assume that !3=krk is arbitrarily close to 1, and thus we can
assume

krk � !3 C 2ı
00 < �0!3 � c

0
� 2ı00: (8.1)

We now show that �.z/ can be shortened, contradicting the assumption that z is a
geodesic. Let z004 be the subpath of �.z4/ that ı00-fellow-travels with rz4, and let t1; t2 be
paths of length at most ı00 such that z004 D t1rz4t2. Let rc be the subpath of r which is
complementary to rz4, that is, such that r is a cyclic conjugate of r�1z4 rc . Then z004 D t1rct2
in G. But

kt1rct2k � kt1k C krck C kt2k

� krk � !3 C 2ı
00

< �0!3 � c
0
� 2ı00

< �0krz4k � c
0
� 2ı00

� krz4k � kt1k � kt2k � kz
00
4k;

where the third inequality is by (8.1) and the fifth inequality is by .�0; c0/-quasiconvexity
of rz4. This contradicts the assumption that z is a geodesic in G=hhRii, as t1rct2 is a
shortcut of a subpath of �.z/.

8.2. Hexagon condition for HNN extensions

Lemma 8.2. Let A be a group with an involution �, and X � A a subgroup. Let C � X
and C 0 � A be such that C;C 0;D D �.C /;D0 D �.C 0/ satisfy the conditions of Lemma
3.6. Set G D hA; s; t j C s D C 0; Dt D Di. Extend � to an involution of G by setting
�.s/ D t . If A satisfies the hexagon property with respect to X; �, then so does G.

Proof. Assume �z D �.� 0z/, for some �; � 0 2 X and z 2 G.
Write z in normal form as zD a0x1a1 : : :xnan 2G, where ai 2A, xi 2 ¹s; s�1; t; t�1º.

Without loss of generality, assume that z has the minimal n among all elements in G that
satisfy �z D �.� 0z/.

By the assumption onA, if z D a0 2A, then � 0 D �˙ and we are done. Hence, we may
assume that n � 1. The word z�.z/�1 is reduced in the HNN extension. By Lemma 3.6,
the extension G is 2-acylindrical. It follows that n � 1.
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Write z D axb where a; b 2 A, x 2 ¹s; s�1; t; t�1º. The relation �z D �.� 0z/ becomes

b�1x�1a�1�axb�.b�1x�1a�1� 0
�1
axb/ D 1:

By symmetry, there are two cases to consider.

Case 1. x D s�1. Here the relation becomes

b�1

~‚ …„ ƒ
s a�1�a„ƒ‚…

2A

s�1 b�.b/�1„ ƒ‚ …
2A

~‚ …„ ƒ
t �.a�1� 0

�1
a/„ ƒ‚ …

2A

t�1 �.b/ D 1:

By Britton’s lemma, the word must be non-reduced at both expressions marked with~.
After reducing and rearranging we get cb D d�.b/ where c D sa�1�as�1 2 C and

d D t�.a�1� 0a/t�1 2D D �.C /. Since c 2 C �X and d D �.c0/ for some c0 2 C �X ,
we can apply the hexagon condition of A to deduce that c0 D c˙1. Tracing back the
definition of c; c0, it follows that � 0 D �˙1, as desired.

Case 2. x D s. Applying the same argument, we get .c0/b D .d 0/�.b/ for some c0 2 C 0

and d 0 2 D0. However, this contradicts the assumption that gC 0g�1 \D0 D ¹1º for all
g 2 A.
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