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Ergodicity of the mapping class group action on
Deroin–Tholozan representations

Arnaud Maret

Abstract. This note investigates the dynamics of the mapping class group action on compact con-
nected components of relative character varieties of surface group representations into PSL.2;R/,
discovered by Deroin and Tholozan. We apply symplectic methods developed by Goldman and Xia
to prove that the action is ergodic.

1. Introduction

A character variety consists of conjugacy classes of representations of the fundamental
group of a surface † into a Lie group G. (A surface is a two-dimensional manifold. A
surface may have punctures. Unless otherwise stated, surfaces are orientable and have
negative Euler characteristic.) Character varieties, or part of them, enjoy a natural sym-
plectic structure provided that G is, for instance, compact or semisimple. In this case,
the mapping class group of † acts by symplectomorphisms on the character variety (see
Section 1.2). The action is known to be ergodic if G is compact, whereas its dynamical
nature remains widely unknown if G is not compact, as for instance G D PSL.2;R/.
It is nevertheless proven to be proper and discontinuous on the Teichmüller components
of the PSL.2;R/-character variety of a closed surface and conjectured to be ergodic on
the remaining components (see Section 1.3). This paper investigates the mapping class
group action on some particularly nice components of the PSL.2;R/-character variety of
a punctured sphere.

1.1. The result

Let n � 3 be an integer and ˛ D .˛1; : : : ; ˛n/ 2 .0; 2�/n be an n-tuple of real numbers.
We fix a collection ¹c1; : : : ; cnº of generators of the fundamental group �1.†0;n/ of the
n-punctured sphere †0;n that satisfy the sole relation c1 � : : : � cn D 1.

Let Rep˛.†0;n; PSL.2;R// denote the relative character variety of conjugacy classes
of representations �W �1.†0;n/ ! PSL.2;R/ for which �.ci / is an elliptic rotation of
angle ˛i for every i . Deroin–Tholozan proved in [5] the existence of a nonempty compact
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connected component of Rep˛.†0;n; PSL.2;R// whenever ˛1 C � � � C ˛n > 2�.n � 1/.
We refer to these components as character variety of Deroin–Tholozan representations1

and denote them by

RepDT
˛ .†0;n;PSL.2;R// � Rep˛.†0;n;PSL.2;R//:

Let Mod.†0;n/ denote the group of isotopy classes of orientation-preserving homeomor-
phisms †0;n ! †0;n that fix each puncture individually. Our main result is:

Theorem A. The action of Mod.†0;n/ on RepDT
˛ .†0;n;PSL.2;R// is ergodic with respect

to the Goldman symplectic measure.

We prove Theorem A by applying methods developed in [16] and [23]. The argument
has a strong symplectic geometry flavor. The cornerstone of the proof relates the action
of a Dehn twist in Mod.†0;n/ to a certain Hamiltonian flow on RepDT

˛ .†0;n; PSL.2;R//,
see Proposition 2.10 for a precise statement. A coarse sketch of the proof consists of the
following steps.

(1) Identify sufficiently many Dehn twists in Mod.†0;n/ such that the associated
Hamiltonian flows locally act transitively on RepDT

˛ .†0;n;PSL.2;R//.

(2) Prove that this implies that any integrable Mod.†0;n/-invariant function
RepDT

˛ .†0;n;PSL.2;R//! R must be constant almost everywhere.

Theorem A can be refined to a stronger statement. Namely, we also prove:

Theorem B. For n � 5, there exists a proper subgroup H of Mod.†0;n/ whose action
on RepDT

˛ .†0;n; PSL.2;R// is ergodic with respect to the Goldman symplectic measure.
Moreover, H can be chosen to be finitely generated by 2.n � 3/ Dehn twists.

A complete parametrization of RepDT
˛ .†0;n; PSL.2;R// is detailed in the companion

paper [24]. It consists of action-angle coordinates which are Darboux coordinates for the
Goldman symplectic form on an open and dense subspace of RepDT

˛ .†0;n; PSL.2;R//.
Among the 2.n � 3/ Hamiltonian flows relevant for the proof of Theorem B, half can be
chosen to be the flows of the action coordinates of RepDT

˛ .†0;n;PSL.2;R//.

1.2. A brief note on character varieties

Let †g;n denote a connected oriented topological surface of genus g � 0 and with n � 0
labelled punctures. Let G denote a connected Lie group. The character variety associated
to the pair .†g;n; G/ is the Hausdorffization of the topological quotient of the space of
group homomorphisms �1.†g;n/! G by the conjugacy action of G:

Rep.†g;n; G/ WD Hom.�1.†g;n/; G/=G:

1Deroin and Tholozan originally called these representations supra-maximal. We prefer to call them
Deroin–Tholozan representations for the reasons explained in Remark 2.6.
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Group homomorphisms �1.†g;n/! G are also called representations of (the fundamen-
tal group of) †g;n into G.

If n > 0, the character variety is typically partitioned into relative character varieties.
Consider all the n-tuples C D .C1; : : : ; Cn/ of conjugacy classes in G. We denote by
RepC .†g;n; G/ the subset of Rep.†g;n; G/ consisting of conjugacy classes of represen-
tations that map a designated positively oriented loop enclosing the i th puncture of †g;n
to an element inside Ci , for every i D 1; : : : ; n.

To uniformize notation, we denote the character variety Rep.†g;0; G/ of the closed
surface†g;0 as a relative character variety by RepC .†g;0;G/where C D;. For a detailed
introduction to (relative) character varieties and their topology we refer the reader to [25].

The mapping class group of †g;n is the group of isotopy classes of orientation-pre-
serving homeomorphisms †g;n ! †g;n that fix each puncture (if any) individually. It is
denoted2 by Mod.†g;n/. Standard facts about Mod.†g;n/ include the following, see, e.g.,
[7, §§4, 8] for details.

• The mapping class group is finitely presented. Generators can be chosen to be Dehn
twists along simple closed curves on †g;n.

• The Dehn–Nielsen–Baer theorem identifies Mod.†g;n/ with a subgroup of the group
of outer automorphisms of �1.†g;n/.

The latter stresses a natural Mod.†g;n/-action on Rep.†g;n; G/ by precomposition. Any
homeomorphism considered in Mod.†g;n/ fixes each puncture individually, by definition.
Thus, the Mod.†g;n/-action preserves every relative character variety RepC .†g;n; G/ �
Rep.†g;n; G/.

If the Lie algebra of G admits a non-degenerate symmetric Ad-invariant bilinear
form B , then the smooth locus of RepC .†g;n; G/ enjoys a natural symplectic structure
[11, 18]. It is denoted by !G and referred to as the Goldman symplectic form. Despite the
notation, the symplectic form !G depends on the bilinear form B . It easily follows from
the definition of !G that Mod.†g;n/ acts by symplectomorphisms on the symplectic man-
ifold .RepC .†g;n; G/; !G /, see, e.g., [14]. So, if �G denotes the symplectic measure on
RepC .†g;n; G/ associated to !G , then the Mod.†g;n/-action preserves �G :

Mod.†g;n/ ý.RepC .†g;n; G/; �G /: (1.1)

As a matter of fact, if G is compact, then RepC .†g;n; G/ has finite symplectic volume
[19, Thm. 7.2].

1.3. Historical remarks

Theorem A is the contribution of the author to a series of results about the mapping class
group dynamics on character varieties. We briefly provide the reader with an overview of

2In the terminology of [7], it is called the pure mapping class group of †g;n and is denoted by
PMod.†g;n/. It contrasts with the mapping class group of †g;n where homeomorphisms are allowed to
permute punctures.



A. Maret 4

this field which has been studied extensively in the past decades. The list below is certainly
non-exhaustive and reflects the taste of the author.

Goldman proved in [13] that the mapping class group action is ergodic whenever
†g;n has negative Euler characteristic and G is a Lie group whose simple factors are
isomorphic to SU.2/. In [16] Goldman–Xia provided a new proof of the ergodicity for
SU.2/-character varieties relying on the symplectic geometry of the character variety.
Goldman conjectured in [13, Conj. 1.3] that the mapping class group action is ergodic
for any compact Lie group. The conjecture was proven by Pickrell–Xia in [27, 28] for all
†g;n with negative Euler characteristic except †1;1. Goldman–Lawton–Xia established
ergodicity for †1;1 and G D SU.3/ in [15].

IfG is not compact, the dynamics of the mapping class group action exhibit a different
behavior. It is, for instance, long known that the mapping class group acts properly and
discontinuously on Teichmüller space which can be realized as a connected component of
Rep.†g;0;PSL.2;R//. Ergodic actions contrast with proper actions by producing chaotic
dynamics. Goldman promotes the following dichotomy in [14]. Assume that G is non-
compact and semisimple. The action is expected to be “nice” on connected components
of the character variety that have a “strong” geometrical meaning (such as Teichmüller
space). On the other hand, it is expected to give rise to more “complicated” dynamics on
the remaining components. Goldman conjectured, for instance, that the action is ergodic
on the non-Teichmüller components of Rep.†g;0; PSL.2;R// [14, Conj. 3.1]. Marché–
Wolff proved in [22, 23] that the conjecture holds for †2;0 on the connected components
of Euler class ˙1 and disproved the conjecture for the component of Euler class zero.
They also introduce the subspace N Hk

g of Rep.†g;0; PSL.2;R// that consists of rep-
resentations with Euler class k which map a simple closed curve to a non-hyperbolic
element of PSL.2;R/ and prove that the action is ergodic on N Hk

g for .g; k/ ¤ .2; 0/,
see [22, Thm. 1.6]. This shows that Goldman’s conjecture is equivalent to N Hk

g having
full measure in the corresponding connected component.

The counterpart of Goldman’s conjecture for non-closed surfaces was formulated
more recently by Yang. He investigated in [29] the mapping class group action on
RepC .†g;n; PSL.2;R//, where C is any collection of parabolic conjugacy classes. In
the case of a 4-punctured sphere, he proved that the action is ergodic on every connected
component of non-extremal Euler class, generalizing a result of Maloni–Palesi–Tan for the
components of Euler class ˙1 [20]. Yang further conjectured that the analogue statement
holds for every punctured surfaces [29, Conj. 1.4].

Several authors have refined the results above by showing that remarkable subgroups
of Mod.†g;n/ act ergodically on character varieties. For instance, the Johnson group is
the subgroup of Mod.†g;n/ generated by Dehn twists along simple closed curves which
are null-homologous in H1.†g;nIZ/. Goldman–Xia proved in [17] that the action of the
Johnson group on RepC .†1;2; SU.2// is ergodic for generic C . This result was extended
to all closed surfaces †g;0 with g � 2 by Funar–Marché in [8]. Another remarkable sub-
group of Mod.†g;n/ is the Torelli group. If n � 1, then the Torelli group is the subgroup
of Mod.†g;n/ acting trivially on H1.†g;nIZ/. The Johnson group is a subgroup of the
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Torelli group, see, e.g., [7, §6] for more details. Bouilly recently proved in [2] that the
action of the Torelli group on each connected component of Rep.†g;0; G/ is ergodic for
any g � 2 and for any compact connected semisimple Lie group G.

The mapping class group action remains of interest on character varieties on which the
Goldman symplectic form cannot be defined, for there are ways to define an alternative
natural invariant measure, see, e.g., [26] and references therein. The first kind of examples
are character varieties of non-orientable surfaces. Palesi proved in [26] that the mapping
class group action is ergodic for every non-orientable surfaces with Euler characteristic at
most �2, including punctured surfaces, and G D SU.2/. Maloni–Palesi–Yang studied in
[21] the mapping class group action on certain representations of the 3-punctured projec-
tive plane into PGL.2;R/ that map peripheral loops to parabolic isometries. They proved
that the action is ergodic on most of the connected components of non-maximal Euler
characteristic. They expect ergodicity to hold on the remaining components as well.

The existence of an invariant symplectic structure may also fail for certain Lie groups.
An example is the group Aff.C/ of affine transformations of the complex plane. Gha-
zouani showed in [10] that the mapping class group action on Rep.†g;0;Aff.C// does not
preserve any symplectic form. There exists however an invariant measure for which the
mapping class group is ergodic [10].

1.4. Organization of the paper

Section 2 provides an introduction to Deroin–Tholozan representations, recalling the
notion of volume of a representation and the main results of [5]. Further in Section 2
we introduce the mapping class group action in details and explain how it connects to the
symplectic geometry of the character variety, before ending with a short introduction to
ergodic actions.

We explain in Section 3 how the proof of Theorem A reduces to two technical lemmata
that we state in Section 3.2. Their proofs are postponed to Sections 4 and 5. In Remark 3.9,
at the end of Section 3, we explain how the proof of Theorem A also implies the stronger
statement of Theorem B.

2. Preliminaries

2.1. Deroin–Tholozan representations

Deroin–Tholozan representations of the fundamental group of a punctured sphere into
PSL.2;R/ were introduced in [5]. These representations had already been studied in the
case of a 4-punctured sphere by Benedetto–Goldman [1]. The illustrations in [1] of the
various topological types of relative character varieties of representations of a 4-punctured
sphere into PSL.2;R/ are particularly enlightening.

Recall that PSL.2;R/ is the Lie group defined as the quotient of the group SL.2;R/
of 2 � 2 real matrices with determinant one by its center ¹˙I º. Deroin–Tholozan rep-
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resentations form compact connected components of certain relative character varieties
where simple loops are mapped to elliptic elements of PSL.2;R/. They are holonomies of
hyperbolic metrics on a punctured sphere with prescribed conical singularities. We refer
the reader to [5] for more details about the geometrization of Deroin–Tholozan representa-
tions. In this section we recall the definition and some key properties of Deroin–Tholozan
representations.

Let H denote the upper half-plane with its standard hyperbolic metric. Recall that
PSL.2;R/ can be identified via Möbius transformations with the group of orientation-
preserving isometries of H. Elliptic elements of PSL.2;R/ are those that have a unique
fixed point inside H. The subspace of elliptic elements in PSL.2;R/ is diffeomorphic to
H � .0; 2�/. The diffeomorphism identifies an elliptic element A 2 PSL.2;R/ with the
pair consisting of its unique fixed point fix.A/ 2 H and the unique angle # D #.A/ 2

.0; 2�/ such that A is conjugate to

rot# WD ˙
�

cos.#=2/ sin.#=2/
� sin.#=2/ cos.#=2/

�
2 PSL.2;R/:

The angle #.A/ is called the rotation angle of A. The assignment A 7! #.A/ is a smooth
function of the subspace of elliptic elements of PSL.2;R/. One can extend the function #
to an upper semi-continuous function # WPSL.2;R/! Œ0; 2�� by setting

#.A/ WD

8̂̂<̂
:̂
#.A/ if A is elliptic,

0 if A is hyperbolic or positively parabolic,

2� if A is the identity or negatively parabolic.

The notions of positively and negatively parabolic elements in PSL.2;R/ are not relevant
in the context of Deroin–Tholozan representations.

We abbreviate the n-punctured sphere by †n WD †0;n. The number n of punctures is
always assumed to be at least 3. We fix generators ¹c1; : : : ; cnº of �1.†n/ such that

�1.†n/ D hc1; : : : ; cn j c1 � : : : � cn D 1i:

Each ci is the homotopy class of a positively oriented simple closed curve that encloses
the i th puncture of †n. If ˛ D .˛1; : : : ; ˛n/ 2 .0; 2�/n denotes an n-tuple of angles, then
we write Rep˛.†n;PSL.2;R// for the relative character variety that consists of conjugacy
classes Œ�� of homomorphisms �W �1.†n/! PSL.2;R/ such that �.ci / is conjugate to
rot˛i for every i D 1; : : : ; n.

A powerful tool to study the topology of relative character varieties is the notion of
volume of a representation (or Toledo number) introduced by Burger–Iozzi–Wienhard in
[3]. They proved:

Theorem 2.1 ([3]). There exists a continuous and bounded function

volWRep.†n;PSL.2;R//! R

that satisfies the following properties:
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(1) vol is locally constant on each relative character variety,

(2) vol is additive, i.e. if †n D S1 t S2 is the disjoint union of two surfaces S1; S2
glued along a separating curve  , then

vol.Œ��/ D vol.Œ���1.S1/�/C vol.Œ���1.S2/�/;

(3) for every Œ�� 2 Rep.†n;PSL.2;R//, there exists an integer k.Œ��/ such that

vol.Œ��/ D 2�k.Œ��/ �
nX
iD1

#.�.ci //:

Deroin–Tholozan proved in [5] that

k.Œ��/ � max
²
n � 2;

1

2�

nX
iD1

#.�.ci //

³
: (2.1)

Remark 2.2. The integer k.Œ��/ is called the relative Euler class of Œ��. It is a general-
ization of the notion of Euler class associated to representations of closed surfaces. In that
respect, inequality (2.1) can be thought of as a generalization of the celebrated Milnor–
Wood inequality.

For Œ�� 2 Rep˛.†n;PSL.2;R//, the last property of Theorem 2.1 reads

vol.Œ��/ D 2�k.Œ��/ �
nX
iD1

˛i : (2.2)

Since k.Œ��/ is an integer and ˛i 2 .0; 2�/ for all i , inequality (2.1) implies k.Œ��/� n� 1
for every Œ�� 2 Rep˛.†n;PSL.2;R//. Moreover, k.Œ��/ D n � 1 is possible only if

˛1 C � � � C ˛n > 2�.n � 1/: (2.3)

Definition 2.3. An n-tuple ˛ D .˛1; : : : ; ˛n/ 2 .0; 2�/n that fulfils (2.3) is said to satisfy
the angles condition. Let

� WD ˛1 C � � � C ˛n � 2�.n � 1/:

The number � 2 .0; 2�/ is called the scaling parameter.

Because of (2.2), the inequality k.Œ��/ � n � 1 is equivalent to vol.Œ��/ � ��. As
above, vol.Œ��/D �� is possible only if Œ�� 2 Rep˛.†n;PSL.2;R// where ˛ satisfies the
angles condition.

Convention 2.4. Unless otherwise stated, any n-tuple ˛ D .˛1; : : : ; ˛n/ 2 .0; 2�/n below
is assumed to satisfy the angles condition (2.3).
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Definition 2.5. The character variety of Deroin–Tholozan representations is defined to
be the subspace of Rep˛.†n;PSL.2;R// that maximizes the volume:

RepDT
˛ .†n;PSL.2;R// WD Rep˛.†n;PSL.2;R// \ vol�1.¹��º/:

We abbreviate RepDT
˛ .†n;PSL.2;R// by RepDT

˛ .

Remark 2.6. Deroin and Tholozan originally called these representations supra-maximal
because their relative Euler class exceeds ��.†n/ D n � 2. However, these representa-
tions do not have maximal volume and are thus not maximal in the sense of Burger–Iozzi–
Wienhard. They even tend to minimize the volume in absolute value. Indeed, by definition,
the volume of a Deroin–Tholozan representation is �� 2 .�2�; 0/. The range of the vol-
ume over the whole character variety is Œ�2�.n � 2/; 2�.n � 2/�, see [3]. To avoid any
further confusion we prefer the terminology of Deroin–Tholozan representations instead
of that of supra-maximal representations.

Theorem 2.7 ([5]). The character variety of Deroin–Tholozan representations RepDT
˛ is

nonempty and forms a compact connected component of the relative character variety
Rep˛.†n;PSL.2;R//. It is moreover a smooth symplectic manifold of dimension 2.n� 3/.

The Goldman symplectic structure !G on RepDT
˛ is the one associated to the bilinear

form
trW sl2R � sl2R! R; .A;B/ 7! tr.AB/:

Here, we identified the Lie algebra of PSL.2;R/ with the Lie algebra sl2R of 2 � 2
traceless real matrices.

The proof of Theorem 2.7 by Deroin–Tholozan is built around a beautiful applica-
tion of Delzant’s classification of symplectic toric manifolds. A symplectic toric manifold
is a symplectic manifold equipped with a maximal effective Hamiltonian torus action,
see, e.g., [4, §XI] for more details. Deroin–Tholozan first constructed such an action on
.RepDT

˛ ; !G /. They observed then that the associated moment polytope is a rescaling by �
of the standard .n� 3/-simplex. The standard .n� 3/-simplex is known to be the moment
polytope for the standard torus action on CPn�3 equipped with the Fubini–Study sym-
plectic form !F� of total volume �n�3=.n � 3/Š. Delzant’s classification thus implies the
existence of an equivariant symplectomorphism

.RepDT
˛ ; 1=� � !G / Š .CPn�3; !F� /: (2.4)

The isomorphism (2.4) implies that RepDT
˛ has finite symplectic volume. Let �G denote the

multiple of the symplectic measure on RepDT
˛ associated to!G such that �G .RepDT

˛ /D 1. It
follows from the definition of the volume of a representation in [3] that RepDT

˛ is invariant
under the mapping class group action (1.1). Therefore, there is a well-defined measure-
preserving action

Mod.†n/ ý.RepDT
˛ ; �G /:
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We end this short introduction by stating a crucial property of Deroin–Tholozan rep-
resentations: namely, Deroin–Tholozan representations are totally elliptic. It is meant to
be understood as follows.

Proposition 2.8. Let Œ�� 2 RepDT
˛ . Then the image under the representation �W�1.†n/!

PSL.2;R/ of any non-trivial homotopy class of loops freely homotopic to a simple closed
curve is elliptic.

Proposition 2.8 is a slight generalization of [5, Lemma 3.2]. Even if, technically speak-
ing, Deroin–Tholozan only consider specific curves, Proposition 2.8 is essentially proven
in [5].

Proof of Proposition 2.8. Let a 2 �1.†n/ be a non-trivial homotopy class of loops freely
homotopic to a simple closed curve. This simple closed curve is uniquely determined up
to free homotopy. In a slight abuse of notation we denote by a both the homotopy class
and the associated simple closed curve.

If a is homotopic to a puncture, then �.a/ is elliptic by definition of the relative char-
acter variety. Otherwise, a separates †n into two surfaces S1 ta S2 D †n of negative
Euler characteristic. Let �1 and �2 denote the restrictions of � to �1.S1/ and �1.S2/. The
curve a also determines a partition of the set ¹1; : : : ; nº into two subsets J1 and J2 of
respective cardinality m1 and m2. Theorem 2.1 implies

vol.Œ�i �/ D 2�k.Œ�i �/ �
X
j2Ji

j̨ � #.�i .a//; i D 1; 2:

Since Œ�� is Deroin–Tholozan,

vol.Œ��/ D 2�.n � 1/ �
nX
iD1

˛i :

By additivity of the volume (Theorem 2.1), vol.Œ��/ D vol.Œ�1�/C vol.Œ�2�/ and thus

2�.n � 1/C #.�1.a//C #.�2.a// D 2�
�
k.Œ�1�/C k.Œ�2�/

�
: (2.5)

Because of inequality (2.1), it holds k.Œ�i �/ � mi for i D 1; 2. So, recalling that m1 C
m2 D n, we deduce from (2.5) that

#.�1.a//C #.�2.a// � 2�:

By construction �1.a/ D �2.a/
�1. Thus, the sum #.�1.a// C #.�2.a//, being at most

2� , is either 0 or 2� .
Assume first that #.�1.a//C #.�2.a// D 0. Then both #.�1.a// and #.�2.a// van-

ish. With this extra information, our application of inequality (2.1) to Œ�i � can be refined
and now gives k.Œ�i �/ � mi � 1 for i D 1; 2. This contradicts (2.5).

Assume now that #.�1.a//C #.�2.a// D 2� . Then (2.5), together with the inequal-
ities k.Œ�i �/ � mi for i D 1; 2, imply that k.Œ�i �/ D mi for i D 1; 2. For inequality (2.1)
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to hold for Œ�1� and Œ�2�, one must necessarily have #.�1.a// > 0 and #.�2.a// > 0.
Therefore, #.�i .a// 2 .0; 2�/ for i D 1; 2 and we conclude that �.a/ is elliptic.

Remark 2.9. If n D 3 or n D 4, then the converse of Proposition 2.8 holds. Namely, if
Œ�� 2 Rep˛.†n; PSL.2;R// is totally elliptic and ˛ satisfies the angles condition (2.3),
then Œ�� is Deroin–Tholozan. This relies on the following dichotomy for the case n D 3
[5, §1.2]. If n D 3 and Œ�� 2 Rep˛.†n;PSL.2;R//, then one of the following holds:

• ˛1 C ˛2 C ˛3 2 .0; 2�� and k.Œ��/ D 1, or

• ˛1 C ˛2 C ˛3 2 Œ4�; 6�/ and k.Œ��/ D 2.

In particular, ˛1 C ˛2 C ˛3 > 4� implies k.Œ��/ D 2 and hence Œ�� is Deroin–Tholozan.
If n D 4, consider the pants decomposition †4 D S1 tb1 S2, where b1 is a simple closed
curve in the free homotopy class of c�12 c�11 (see Figure 2 in Section 3.1). Let Œ�� 2
Rep˛.†n; PSL.2;R// and denote by Œ�i � the restriction of Œ�� to �1.Si /. Assume that
˛ satisfies the angles condition. Because of the above dichotomy, it must hold k.Œ�i �/D 2
for i D 1; 2, otherwise ˛1 C ˛2 C ˛3 C ˛4 < 6� , contradicting the angles conditions.
Hence Œ�� is Deroin–Tholozan. The same argument does not apply if n � 5 and the ques-
tion whether totally elliptic representations are Deroin–Tholozan remains open.

2.2. Relation to symplectic geometry

To prove that the Mod.†n/-action on RepDT
˛ is ergodic we follow a method developed

by Goldman–Xia in [16] and used by Marché–Wolff in [23]. It relies essentially on the
observation that a Dehn twist �a along a non-trivial simple closed curve a on†n is closely
related to some Hamiltonian flow. This crucial observation is explained in this section.

Recall that we introduced a function # that maps smoothly elliptic elements in
PSL.2;R/ to their rotation angle in .0; 2�/. Proposition 2.8 says that for any non-trivial
homotopy class a 2 �1.†n/ freely homotopic to a simple closed curve and any Deroin–
Tholozan representation �W�1.†n/! PSL.2;R/, the image �.a/ is elliptic. Consider the
smooth function

#aWRepDT
˛ ! .0; 2�/; Œ�� 7! #.�.a//: (2.6)

Let ˆtaWRepDT
˛ ! RepDT

˛ denote the Hamiltonian flow of #a at time t 2 R. The flow ˆta
is called the twist flow of .#; a/. Twists flows were introduced by Goldman in [12].

Recall that a 2 �1.†n/ determines a unique (up to free homotopy) simple closed curve
which we also denote by a. Cutting †n along a determines two surfaces S1 ta S2 D †n.
The computations conducted in [5, Prop. 3.3] from the original definition of twist flows
by Goldman show that

ˆ#a.Œ��/=2a .Œ��/W ci 7!

´
�.ci / if ci 2 �1.S1/;

�.a/�.ci /�.a/
�1 if ci 2 �1.S2/:

(2.7)

Goldman–Xia observed in [16] that the representation (2.7) corresponds precisely to the
representation obtained by letting the Dehn twist �a 2 Mod.†n/ along the curve a act
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on Œ��. This is the crucial observation mentioned in the introduction that connects the
symplectic geometry of RepDT

˛ to the action of Mod.†n/. Formally, the following holds.

Proposition 2.10. Let a 2 �1.†n/ be a non-trivial homotopy class of loops freely homo-
topic to a simple closed curve on †n. Then

�aŒ�� D ˆ
#a.Œ��/=2
a .Œ��/; 8Œ�� 2 RepDT

˛ :

Proposition 2.10 is used as such in [23, Prop. 6.5]. The analogue of Proposition 2.10
for SU.2/-character varieties can be found in [16, Prop. 5.1].

2.3. Ergodic actions

A measure preserving action of a groupG on a probability measure space .X;�/ is ergodic
if for all measurable sets U � X

gU D U; 8g 2 G H) �.U / 2 ¹0; 1º:

Ergodicity means that the dynamical system induced by the G-action on X admits no
non-trivial subsystems. Ergodic systems exhibit a certain level of chaos through their
dynamics: mixing systems are ergodic and ergodic systems have almost only dense orbits
(provided that the measure is Borel). The standard example of ergodic actions are irra-
tional rotations of the circle, see, e.g., [6, Prop. 2.16].

Ergodicity can be characterized in terms of invariant functions. The regularity class
of those functions can be restricted as long as it contains the indicator functions of all
measurable sets. For the purpose of this note, and in view of Lemma 3.5, we choose to
characterize ergodicity in terms of integrable functions.

Lemma 2.11. A measure preserving action of a group G on a probability measure space
.X;�/ is ergodic if and only if everyG-invariant integrable function f WX!R is constant
almost everywhere.

We refer the reader to [6] for the proof of Lemma 2.11 and for further consideration
on ergodic actions.

Checking that a function is constant almost everywhere can be done locally. This strat-
egy was employed by Marché–Wolff in [23]. The statement is the following. Assume that
X is a topological space and � is a strictly positive Borel measure on X , i.e. �.U / > 0
for every nonempty open set U � X .

Lemma 2.12. Let f WX ! R be an integrable function. Assume that there exists an open
set E � X such that

(1) E is connected,

(2) �.E/ D 1,

(3) for all x 2 E , there exists an open set Ux � E containing x such that f is constant
almost everywhere on Ux .

Then f is constant almost everywhere.
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Proof. Define the function F WE ! R by

F.x/ WD
1

�.Ux/

Z
Ux

f d�:

Informally, F.x/ is the constant value reached by f almost everywhere on Ux . For every
y 2 Ux , the set Ux \Uy is nonempty and thus has positive measure by assumption. More-
over,

1

�.Ux/

Z
Ux

f d� D
1

�.Ux \ Uy/

Z
Ux\Uy

f d� D
1

�.Uy/

Z
Uy

f d�:

So, F.x/D F.y/. This means that F is locally constant on E (and not only almost every-
where). For E is connected, F is thus constant on E .

Now, because F�Ux is constant, f and F coincide almost everywhere on Ux for every
x 2 E . Hence f D F almost everywhere on E . Since F is constant on E and �.E/ D 1,
we conclude that f is constant almost everywhere.

3. The skeleton of the proof

According to Lemma 2.11, it is sufficient to show that every Mod.†n/-invariant integrable
function f WRepDT

˛ ! R is constant almost everywhere in order to prove Theorem A. The
tool for this is Lemma 2.12. We apply the latter by constructing an open set E that satisfies
the required hypotheses for any Mod.†n/-invariant integrable function f WRepDT

˛ ! R.
In this section, we first define the open set E . We then state two technical lemmata,

namely Lemma 3.3 and Lemma 3.5. Their proofs are postponed to Sections 4 and 5. In a
third and last part, we prove that E satisfies all three conditions of Lemma 2.12, assuming
that the two lemmata mentioned above hold.

3.1. The set E

Recall that we fixed generators ¹c1; : : : ; cnº of �1.†n/ such that c1 � : : : � cn D 1. We
introduce the following 2.n � 3/ elements of �1.†n/: for every i D 1; : : : ; n � 3, let

bi WD c
�1
iC1c

�1
i � : : : � c

�1
1 ; di WD c

�1
iC2c

�1
iC1:

The free homotopy classes of loops corresponding to ci ; bi ; di can be represented by
oriented simple closed curves, also denoted ci ; bi ; di , as illustrated on Figure 1.

Deroin–Tholozan proved in [5, Prop. 3.3] that the Hamiltonian flows of #b1 ; : : : ; #bn�3
are �-periodic and define a symplectic toric manifold structure on .RepDT

˛ ;!G /. The asso-
ciated moment map � WD .#b1 ; : : : ; #bn�3/ maps RepDT

˛ to a convex polytope � inside
Rn�3. We denote by V� the interior of �. The subspace ��1. V�/ � RepDT

˛ is open and
dense. The fibres of � over V� are Lagrangian tori.



Ergodicity and Deroin–Tholozan representations 13

c1

c2 c3 c4

b1 b2 b3

d1 d2 d3

†n

Figure 1. The simple closed curves b1; : : : ; bn�3 and d1; : : : ; dn�3, and the peripheral curves
c1; : : : ; cn. This illustration is modelled on [5, Fig. 2].

Because of the symplectic toric structure on RepDT
˛ , for any i D 1; : : : ; n � 3, the

Hamiltonian flow ˆbi has the following orbit structure. Its orbits are either fixed points or
circles of length � . Since any of the curves d1; : : : ; dn�3 can be mapped to b1 by a cyclic
permutation of the punctures, the Hamiltonian flows ˆd1 ; : : : ; ˆdn�3 have the same orbit
structure as ˆb1 .

Definition 3.1. We call the orbit of Œ�� 2 RepDT
˛ under the combined Hamiltonian flows

ˆb1 ; : : : ;ˆbn�3 regular if it is homeomorphic to an .n� 3/-torus, equivalently if �.Œ��/ 2
V�. It is called irrational if it is regular and #bi .Œ��/ 2 RX �Q for every i D 1; : : : ; n� 3,
equivalently �.Œ��/ 2 V� \ .R X �Q/n�3.

As for any symplectic manifold, there is a Poisson bracket on RepDT
˛ associated to !G :

¹�; �ºWC1.RepDT
˛ / � C

1.RepDT
˛ /! C1.RepDT

˛ /:

It is defined as follows: for two smooth functions �1; �2WRepDT
˛ ! R with Hamiltonian

vector fields X�1 ; X�2 , let

¹�1; �2º WD !G .X�1 ; X�2/ D d�2.X�1/: (3.1)

We denote by .�bi /
midi the simple closed curve obtained from di by applying mi itera-

tions of the Dehn twist �bi . Inspired by the work of Marché–Wolff [22], we introduce

E WD
®
Œ�� 2 ��1. V�/ W 8i D 1; : : : ; n � 3; 9mi 2 Z; ¹#bi ; #.�bi /

mi di º.Œ��/ ¤ 0
¯
:

Note that E � RepDT
˛ is open and measurable since

E D ��1. V�/ \

n�3\
iD1

[
mi2Z

¹#bi ; #.�bi /
mi di º

�1.R X ¹0º/:

We claim that E satisfies all the hypotheses of Lemma 2.12. This follows from Lemma
3.7 and Lemma 3.8 below.

Remark 3.2. It is worth pointing out that the definition of the set E does not depend
on the function f WRepDT

˛ ! R that we fixed previously. One may wonder if E is actually
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c1

c2 c3

c4b1

d1

†4

˛3 C ˛4 � 2�

�

4� � ˛1 � ˛2

#b1

ˆb1

ˆd1

Œ�1�

Œ�2�

CP 1

here: ˛1 D ˛2 D ˛3 D ˛4

Figure 2. On top: the 4-punctured sphere and the curves b1; d1. On the bottom: the flows of ˆb1
andˆd1 seen as rotations around two perpendicular axes of the 2-sphere when ˛1 D ˛2 D ˛3 D ˛4.

distinct from ��1. V�/. The answer in general remains unknown to the author; however
there exist special symmetric cases where the answer is yes.

Assume for simplicity that nD 4. Recall that for nD 4 the character variety of Deroin–
Tholozan representations is symplectomorphic to the 2-sphere. Assume further that ˛1 D
˛2 D ˛3 D ˛4. In this case, the Hamiltonian flows ˆb1 and ˆd1 are rotations around two
perpendicular axes of the 2-sphere. We can think of the two fixed points ofˆb1 as the poles
of the sphere and the two fixed points of ˆd1 as two diametrically opposite points on the
equator (see Figure 2). Denote the fixed points of ˆd1 by Œ�1� and Œ�2�. The equator is the
ˆb1 -orbit characterized by .#b1/

�1.�/. Hence it holds �b1 Œ�1� D Œ�2� and �b1 Œ�2� D Œ�1�
by Proposition 2.10. In particular, because the Hamiltonian vector field of #d1 vanishes at
Œ�1� and Œ�2�, it holds

¹#b1 ; #d1º
�
.�b1/

mŒ�1�
�
D 0; 8m 2 Z:

Anticipating Lemma 3.6, we deduce that

¹#b1 ; #.�b1 /
md1º.Œ�1�/ D ¹#b1 ; #.�b1 /

md1º.Œ�2�/ D 0; 8m 2 Z:

Therefore Œ�1�; Œ�2� 2 ��1. V�/ X E .
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3.2. Two technical lemmata

The proof that E is connected and has full measure relies on the following key lemma and
its corollary. The proof of the key lemma is postponed to Section 5 and that of its corollary
to Section 3.3 below.

Lemma 3.3 (Key lemma). For every i D 1; : : : ; n� 3, every orbit of the Hamiltonian flow
ˆbi contained inside ��1. V�/ contains at most two points at which ¹#bi ; #di º vanishes.

Moreover, if two such points exist, then they are diametrically opposite, i.e. they are
images of each other under ˆt0

bi
where t0 is half the minimal period of the corresponding

orbit (here t0 D �=2).

A particular case where two diametrically opposite points as in the conclusion of
Lemma 3.3 exist is described in Remark 3.2 and illustrated on Figure 2. Lemma 3.3 has
the following implication on the structure of E .

Corollary 3.4. The set E contains all irrational orbits of the Hamiltonian flows
ˆb1 ; : : : ; ˆbn�3 .

The third hypothesis of Lemma 2.12, namely that f is locally constant almost every-
where on E , is a consequence of the ergodicity of irrational circle rotations and of the
following result. Consider the unit hypercube Œ0; 1�n � Rn. For i D 1; : : : ; n, denote by
�i W Œ0; 1�

n ! Œ0; 1�n�1 the projection map defined by forgetting the i th component.

Lemma 3.5 (Rectangle trick). Let ' 2 L1.Œ0; 1�n/. Assume that there exist full-measure
sets E1; : : : ; En � Œ0; 1�n�1 such that for all i D 1; : : : ; n and for all x 2 Ei , '���1i .x/ is
constant almost everywhere. Then ' is constant almost everywhere.

The case n D 2 of Lemma 3.5 reads as follows: any integrable function which is
constant almost everywhere on almost every vertical and horizontal line in a rectangle is
constant almost everywhere on the rectangle. Lemma 3.5 is certainly known to experts.
However, there is a lack of concrete references in the existing literature and therefore
we provide a proof of Lemma 3.5 in Section 4. We now prove that E satisfies the three
hypotheses of Lemma 2.12.

3.3. First and second hypotheses

We start with a useful formula.

Lemma 3.6. Let a, b be two simple closed curves on†n. Then, for any integerm, it holds

¹#a; #.�a/mbº.Œ��/ D ¹#a; #bº
�
.�a/

mŒ��
�
; 8Œ�� 2 RepDT

˛ :

Proof. Let Œ�� 2 RepDT
˛ . It suffices to check that

¹#a; #�abº.Œ��/ D ¹#a; #bº
�
�aŒ��

�
:
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The general formula follows by induction. We compute

#�ab.Œ��/ D #
�
�.�ab/

�
D #

�
.�a�/.b/

�
D #b.�aŒ��/:

The first and third equalities are an application of the definition of the functions #�ab and
#b (see (2.6)). For the second equality, recall that Mod.†n/ acts on RepDT

˛ by precompo-
sition. Using Proposition 2.10, we conclude that

#�ab.Œ��/ D #b ıˆ
#a.Œ��/=2
a .Œ��/: (3.2)

Let Xa denote the Hamiltonian vector field of #a. For every time t it holds

Xa
�
ˆta.Œ��/

�
D .dˆta/Œ��

�
Xa.Œ��/

�
:

In particular, for t D #a.Œ��/=2 we get

Xa.�aŒ��/ D Xa
�
ˆ#a.Œ��/=2a .Œ��/

�
D
�
dˆ#a.Œ��/=2a

�
Œ��

�
Xa.Œ��/

�
: (3.3)

Thus

¹#a; #bº.�aŒ��/
(3.1)
D .d#b/�aŒ��

�
Xa.�aŒ��/

�
(3.3)
D .d#b/�aŒ�� ı

�
dˆ#a.Œ��/=2a

�
Œ��

�
Xa.Œ��/

�
D d

�
#b ıˆ

#a.Œ��/=2
a

�
Œ��

�
Xa.Œ��/

�
(3.2)
D .d#�ab/Œ��

�
Xa.Œ��/

�
(3.1)
D ¹#a; #�abº.Œ��/:

The middle equality is an application of the chain rule. This concludes the proof of the
lemma.

We now proceed with the proof of Corollary 3.4 assuming that Key Lemma 3.3 holds.

Proof of Corollary 3.4. Let Œ�� 2 RepDT
˛ be a point on some irrational orbit of the Hamil-

tonian flows ˆb1 ; : : : ; ˆbn�3 . We want to prove that Œ�� 2 E .
Assume ab absurdo that Œ�� … E , i.e. there exists i 2 ¹1; : : : ; n � 3º such that

¹#bi ; #.�bi /
mdi º.Œ��/ D 0; 8m 2 Z:

Proposition 2.10 implies that #bi .�bi Œ��/ D #bi .Œ��/ and hence

.�bi /
mŒ�� D ˆ

m#bi .Œ��/=2

bi
.Œ��/; 8m 2 Z:

So, by Lemma 3.6 we obtain

¹#bi ; #di º
�
ˆ
m#bi .Œ��/=2

bi
.Œ��/

�
D 0; 8m 2 Z:
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Since by assumption #bi .Œ��/ 2RX �Q, all the pointsˆ
m#bi .Œ��/=2

bi
.Œ��/ form 2Z form a

dense subset of theˆbi -orbit of Œ��. Hence, by continuity, the function ¹#bi ; #di º vanishes
on the whole ˆbi -orbit of Œ��. This is a contradiction to Key Lemma 3.3. So, we conclude
as expected that Œ�� 2 E .

Lemma 3.7. The set E is connected and satisfies �G .E/ D 1.

Proof. The toric manifold structure on RepDT
˛ implies that ��1. V�/ � RepDT

˛ is sym-
plectomorphic to the product of V� with the standard .n � 3/-torus. So, Corollary 3.4
immediately implies that �G .E/ D 1 because V� \ .R X �Q/n�3 has full measure in V�
and �G .�

�1. V�// D 1.
We now prove that E is connected. The proof essentially uses that V� is connected.

Assume that E D A [ B where A; B � E are open and disjoint. We prove that under
these assumptions either A or B is empty.

By construction �.E/ � V�. Corollary 3.4 says that any irrational orbit is entirely
contained in E . Moreover, Key Lemma 3.3 also implies that any orbit ��1.x/ for x 2
V� X .R X �Q/n�3 must intersect E . So,

�.A/ [ �.B/ D V�:

Tori being connected, each irrational orbit is contained either in A or in B . Because V� X
.R X �Q/n�3 is dense in V� and both A and B are open, ��1.x/ \ E must be contained
either in A or in B for every x 2 V� X .R X �Q/n�3. Hence,

�.A/ \ �.B/ D ;:

Recall that moment maps are open maps. So, both �.A/ and �.B/ are open subsets of V�.
Because V� is connected, it follows that either �.A/ or �.B/ is empty, and consequently
that either A or B is empty. This concludes the proof of the lemma.

3.4. The third hypothesis

We use the rectangle trick (Lemma 3.5) to prove the following result.

Lemma 3.8. For every Œ�� 2 E , there exists an open neighbourhood UŒ�� � E of Œ�� such
that f is constant almost everywhere on UŒ��.

Proof. Let Œ�� 2 E . By definition of E there exists for every i D 1; : : : ; n � 3 an integer
mi such that

¹#bi ; #.�bi /
mi di º.Œ��/ ¤ 0:

This means that the tangent spaces to RepDT
˛ in a neighbourhood of Œ�� are generated by

the 2.n � 3/ Hamiltonian vector fields

Xbi ; X.�bi /
mi di ; i D 1; : : : ; n � 3:
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Therefore, Œ�� admits a rectangular neighbourhood denoted R such that R is isometric
to Œ0; 1�2.n�3/ and R is fibred perpendicularly to its faces by the flow lines of ˆbi and
ˆ.�bi /

mi di . Since E is open, we can assume R � E .
On almost all circle orbits of the Hamiltonian flows ˆbi and ˆ.�bi /mi di crossing R,

the corresponding 2.n � 3/ Dehn twists

�bi ; �.�bi /
mi di ; i D 1; : : : ; n � 3:

act by irrational rotation. Indeed, this follows from Proposition 2.10 and from full-mea-
sureness of irrational numbers. Since irrational rotations are ergodic and f is by assump-
tion Mod.†n/-invariant, it is a consequence of Lemma 2.11 that f is constant almost
everywhere on almost every orbit of the flows crossing R. Lemma 3.5 (the rectangle
trick) implies that f is constant almost everywhere on R. This concludes the proof of the
lemma.

Remark 3.9. For any i D 1; : : : ; n � 3, it holds

�.�bi /
mi di D .�bi /

mi �di .�bi /
�mi 2 Mod.†n/:

This is a general fact about Dehn twists, see, e.g., [7, §3]. Therefore, we actually proved
that the action of the subgroup H of Mod.†n/ generated by the Dehn twists �b1 ; : : : ; �bn�3 ;
�d1 ; : : : ; �dn�3 on RepDT

˛ is ergodic. Now, note the following. Lemma 4.1 in [9] (see also
[7, §9.3]) implies that the minimum number of (Dehn twist) generators of Mod.†n/ is�
n�1
2

�
� 1 for n � 3 (recall that Mod.†n/ is trivial for n D 0; 1; 2). Hence, for n � 5, H

is a proper subgroup of Mod.†n/ because
�
n�1
2

�
� 1 > 2.n� 3/. This proves Theorem B.

4. Proof of the rectangle trick

This section is dedicated to the proof of Lemma 3.5. For clarity, we only give a proof for
the case n D 2. The proof immediately generalizes to higher-dimensional rectangles by
induction.

The proof uses the following density result. Let C10 .Œ0; 1�/ denote the space of smooth
functions of the interval with zero integral and let L10.Œ0; 1�/ denote the space of integrable
functions of the interval with zero integral.

Lemma 4.1. The space C10 .Œ0; 1�/ is dense inside L10.Œ0; 1�/.

Proof. It is a well-known fact that C1.Œ0; 1�/ is dense insideL1.Œ0; 1�/. Let ' 2L10.Œ0;1�/
� L1.Œ0; 1�/. We want to approximate ' with a sequence of smooth functions with zero
integral.

Because of the density of C1.Œ0; 1�/ in L1.Œ0; 1�/, we can approximate ' with a
sequence of smooth functions 'i 2C1.Œ0;1�/. Consider the sequence of smooth functions

z'i WD 'i �

Z
'i :
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By construction z'i 2 C10 .Œ0; 1�/. Since ' is assumed to be integrable, the sequence of
integrals

R
'i converges to

R
' D 0. So, the sequence z'i 2 C10 .Œ0; 1�/ converges to ' 2

L10.Œ0; 1�/.

Proof of Lemma 3.5. Let 'W Œ0; 1� � Œ0; 1�! R be an integrable function. We assume that
' is constant almost everywhere on almost every vertical and horizontal segment. In other
words, we assume that there exist Lebesgue measurable sets Eh; Ev � Œ0; 1� such that

• Eh and Ev have measure 1,

• '�¹xº�Œ0;1� is constant almost everywhere for every x 2 Eh,

• '�Œ0;1��¹yº is constant almost everywhere for every y 2 Ev .

We prove that under these assumptions ' is constant almost everywhere.
Consider the functions cvWEh ! R and chWEv ! R defined by

cv.x/ WD

Z 1

0

'.x; y/ dy; ch.y/ WD

Z 1

0

'.x; y/ dx:

In other words, cv.x/ is the value of the constant reached almost everywhere by the func-
tion ' on the vertical segment ¹xº � Œ0; 1�, i.e. '.x; y/ D cv.x/ for every x 2 Eh and for
almost every y 2 Œ0; 1�. The analogue statement holds for the function ch. Fubini’s theo-
rem implies that both functions ch and cv are measurable and of classL1. It is sufficient to
prove that chWEv! R is constant almost everywhere to deduce that 'W Œ0; 1�� Œ0; 1�! R
is constant almost everywhere.

For the purpose of showing that ch is constant almost everywhere, we introduce a test
function � 2 C10 .Œ0; 1�/. Using Fubini’s theorem, we computeZ 1

0

Z 1

0

'.x; y/�.y/ dx dy D

Z 1

0

�.y/

Z 1

0

'.x; y/ dx dy

D

Z
Ev

�.y/ch.y/ dy

Fubini’s theorem also givesZ 1

0

Z 1

0

'.x; y/�.y/ dx dy D

Z
Eh

Z
Ev

'.x; y/�.y/ dy dx

D

Z
Ev

�.y/ dy

Z
Eh

cv.x/ dx:

The last expression vanishes because � was chosen to have zero integral. HenceZ
Ev

�.y/ch.y/ dy D 0 (4.1)

for every test function � 2 C10 .Œ0; 1�/.
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By Lemma 4.1 we can approximate the function ch�
R
ch2L10.Œ0;1�/with a sequence

of functions �i 2 C10 .Œ0; 1�/. Because of (4.1) we haveZ
Ev

�i .y/
�
ch.y/ �

Z
ch
�
dy D 0

for every i . Therefore ch �
R
ch is the zero function in L1.Œ0; 1�/. This means that ch is

constant almost everywhere and thus that ' is constant almost everywhere.

5. Proof of the key lemma

This section is dedicated to the proof of Lemma 3.3. The proof is technical and requires
to make explicit computations of the Hamiltonian vector fields Xb1 ; : : : ; Xbn�3 and of the
exterior derivatives of #d1 ; : : : ; #dn�3 . To that end we start with a short recap of the local
structure of relative character varieties.

5.1. Tangent spaces to relative character varieties

A representation �W�1.†n/! PSL.2;R/ equips the Lie algebra sl2R of PSL.2;R/ with
the structure of a �1.†n/-module via

�1.†n/
�
�! PSL.2;R/

Ad
�! Aut.sl2R/:

The �1.†n/-module obtained in this way is denoted .sl2R/� . A first-order deformations
argument (see, e.g., [11, 18]) shows that the tangent space to Rep˛.†n; PSL.2;R// at Œ��
is given by the first parabolic group cohomology of �1.†n/ with coefficients in .sl2R/� :

TŒ�� Rep˛.†n;PSL.2;R// Š H 1
par

�
�1.†n/I .sl2R/�

�
: (5.1)

The identification (5.1) depends on the choice of a preferred representative � of the class
Œ�� (namely, the one that gives sl2R the structure of a �1.†n/-module).

Recall that the first parabolic group cohomology of �1.†n/ can be defined as the
quotient

H 1
par

�
�1.†n/I .sl2R/�

�
D
Z1par

�
�1.†n/I .sl2R/�

�
B1
�
�1.†n/I .sl2R/�

� ; (5.2)

where

• Z1par.�1.†n/I .sl2R/�/ is the set of maps vW�1.†n/! .sl2R/� satisfying the cocycle
condition

v.xy/ D v.x/C Ad.�.x//v.y/; 8x; y 2 �1.†n/; (5.3)

and the coboundary conditions

9 �i 2 .sl2R/� ; v.ci / D �i � Ad.�.ci //�i ; 8i D 1; : : : ; n;
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• B1.�1.†n/I .sl2R/�/ is the set of maps vW�1.†n/! .sl2R/� satisfying the cobound-
ary condition

9 � 2 .sl2R/� ; v.x/ D � � Ad.�.x//�; 8x 2 �1.†n/:

Since RepDT
˛ is a full-dimensional connected component of the relative character vari-

ety Rep˛.†n;PSL.2;R//, the tangent space of RepDT
˛ at Œ�� is also identified with the first

parabolic group cohomology of �1.†n/:

TŒ��RepDT
˛ Š H

1
par

�
�1.†n/I .sl2R/�

�
:

We consequently denote an arbitrary element of TŒ��RepDT
˛ by the equivalence class Œv� of

a cocycle v 2 Z1par.�1.†n/I .sl2R/�/, accordingly to the quotient (5.2).

Remark 5.1. To clarify the notion of parabolic group cohomology we point out the fol-
lowing isomorphism. Let y†n denote the surface with boundary obtained from †n by
performing a real blow-up at each puncture. The boundary @y†n of y†n consists of the
disjoint union of n circles. The long exact sequence in cohomology for the pair .y†n; @y†n/
contains the morphism

j WH 1.y†n; @y†nIR/! H 1.y†nIR/:

The first parabolic group cohomology H 1
par.�1.†n/IR/ (with coefficients in the trivial

�1.†n/-module R) is isomorphic to the image of the morphism j inside H 1.y†nIR/.
The analogue statement remains true for a different coefficients module. In other words,
parabolic cocycles are cocycles that are exact on the boundary (without the choice of a
primitive).

5.2. Some preliminary computations

Our first computations concern the zeros of the exterior derivatives of the functions
#d1 ; : : : ; #dn�3 . Similar computations were already conducted in [5]; we include them
here for the sake of completeness.

Lemma 5.2. Let a 2 �1.†n/ be a non-trivial homotopy class of loops freely homo-
topic to a simple closed curve. Let Œ�� 2 RepDT

˛ with preferred representative � and
Œv� 2 H 1

par.�1.†n/I .sl2R/�/ a tangent vector at Œ��. Then

.d#a/Œ��.Œv�/ D 0 ” tr.�.a/v.a// D 0:

Proof. Consider a smooth path Œ�t � inside RepDT
˛ with Œ�0�D Œ�� and whose tangent vector

at t D 0 is Œv�. Let #a.t/ WD #a.Œ�t �/. By definition of the exterior derivative:

.d#a/Œ��.Œv�/ D #
0
a.0/:

We choose smooth lifts in SL.2;R/ of �t .a/ 2 PSL.2;R/ which we also denote by
�t .a/. Since the trace is conjugacy invariant and �t .a/ is conjugate to rot#a.t/, by defini-
tion of the function #a (see (2.6)), it follows that

2 cos.#a.t/=2/ D ˙ tr.�t .a//:
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Applying a derivative at t D 0, we get

�2# 0a.0/ sin.#a.0/=2/ D ˙ tr.v.a/�.a//:

Since #a.0/ 2 .0; 2�/ by definition of #a, it follows that sin.#a.0/=2/ ¤ 0 and thus

# 0a.0/ D 0 ” tr.�.a/v.a// D 0:

The next computation concerns the Hamiltonian vector fields Xb1 ; : : : ; Xbn�3 . It is
convenient to introduce the following convention. Let us first fix an index i 2 ¹1; : : : ;
n � 3º with the understanding that we are working towards the proof of Lemma 3.3.

Convention 5.3. Anytime we write Œ�� 2 RepDT
˛ below, we assume that � is a representa-

tive of Œ�� such that the unique fixed point of �.bi / in the upper half-plane is the complex
unit. Such a representative always exists because PSL.2;R/ acts transitively on the upper
half-plane.

For convenience, we introduce the notation

„ WD

�
0 1

�1 0

�
2 sl2R:

Note that „ also belongs to SL.2;R/ and projects to rot� inside PSL.2;R/. Recall more-
over that

rott D ˙
�

cos.t=2/ sin.t=2/
� sin.t=2/ cos.t=2/

�
D ˙ exp.t=2„/:

Lemma 5.4. The Hamiltonian vector field Xbi at Œ�� 2 RepDT
˛ is represented by the

parabolic cocycle

Xbi .Œ��/W cj 7!

´
0 for j D 1; : : : ; i C 1;

„ � Ad.�.cj //„ for j D i C 2; : : : ; n:

Proof. The action of twist flow ˆbi on Œ�� was computed in [5, Prop. 3.3]:

ˆtbi .Œ��/W cj 7!

´
�.cj / for j D 1; : : : ; i C 1;

rot2t �.cj / rot�12t for j D i C 2; : : : ; n:
(5.4)

Observe that (5.4) is a generalization of (2.7) which is the special case t D #bi .Œ��/=2.
The Hamiltonian flow ˆbi and the vector field Xbi are related by

ˆtbi .Œ��/.cj / D exp
�
tXbi .Œ��/.cj /

�
�.cj /:

So, Xbi .Œ��/.cj / D 0 for j D 1; : : : ; i C 1, and for j D i C 2; : : : ; n we compute

Xbi .Œ��/.cj / D
d

dt

ˇ̌̌
tD0
ˆtbi .Œ��/.cj / � �.cj /

�1
D „ � Ad.�.cj //„:

For the last equality we used (5.4) and d
dt

ˇ̌
tD0

rot2t D „.
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We combine Lemma 5.4 and the cocycle formula (5.3) to evaluate the parabolic cocy-
cle Xbi .Œ��/ at di D c�1iC2c

�1
iC1:

Xbi .Œ��/.di / D Xbi .Œ��/.c
�1
iC2/C Ad.�.c�1iC2//Xbi .Œ��/.c

�1
iC1/„ ƒ‚ …

D0
D „ � Ad.�.c�1iC2//„: (5.5)

5.3. A reformulation of the key lemma

We make use of the previous computations to reformulate what it means for the Poisson
bracket of #bi and #di to vanish.

Lemma 5.5. The Poisson bracket ¹#bi ; #di º vanishes at Œ�� 2 RepDT
˛ if and only if

tr
�
„ � �.c�1iC2/�.c

�1
iC1/

�
D tr

�
„ � �.c�1iC1/�.c

�1
iC2/

�
:

Proof. Combining Lemma 5.2 and (5.5), it follows that ¹#bi ; #di º.Œ��/ D 0 if and only if

tr
�
�.di /

�
„ � Ad.�.c�1iC2//„

��
D 0:

Because the trace is invariant under conjugation, and since

Ad.�.ciC2//�.di / D �.c�1iC1/�.c
�1
iC2/;

the latter is equivalent to

tr
�
„ � �.di /

�
D tr

�
„ � �.c�1iC1/�.c

�1
iC2/

�
which proves the lemma.

Consider an arbitrary point Œ�t � WD ˆtbi .Œ��/ on the ˆbi -orbit of Œ�� 2 RepDT
˛ . Thanks

to (5.4), Lemma 5.5 implies that ¹#bi ; #di º.Œ�t �/ D 0 if and only if

tr
�
„ � rot2t �.c�1iC2/ rot�12t �.c

�1
iC1/

�
D tr

�
„ � �.c�1iC1/ rot2t �.c�1iC2/ rot�12t

�
: (5.6)

What Lemma 3.3 claims is that (5.6) is satisfied for at most two different values of t 2
Œ0; �/, provided that Œ�� belongs to ��1. V�/.

We now intend to compute (5.6) further in terms of the representation �. Let us intro-
duce the notation

�.c�1iC2/ DW ˙

�
a b

c d

�
; �.c�1iC1/ DW ˙

�
x y

z w

�
:

Lemma 5.6. Relation (5.6) holds if and only if

cos.2t/
�
.a � d/.y C z/ � .b C c/.x � w/

�
D sin.2t/

�
.x � w/.d � a/ � .b C c/.y C z/

�
: (5.7)
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The proof of Lemma 5.6 is a foolish computation and is postponed to the end of this
section. For now, we prove Lemma 3.3 under the assumption that Lemma 5.6 holds.

Proof of Lemma 3.3. The function tan.2t/ is two-to-one for t 2 Œ0; �/. So, if (5.7) holds
for at least three different values of t in Œ0; �/, then one must have´

.a � d/.y C z/ D .b C c/.x � w/; and

.x � w/.d � a/ D .b C c/.y C z/:
(5.8)

We claim that the system (5.8) only has trivial solutions over the real numbers, namely´
a D d and b D �c; or

x D w and y D �z:

Indeed, if a D d , then b D �c, or x D w and y D �z. Similarly, if x D w, then y D �z,
or aD d and b D�c. The case y D�z leads to the analogue conclusion. If a¤ d , x ¤w
and y ¤ �z, then

y C z

x � w
D
b C c

a � d
D �

x � w

y C z

and so .x � w/2 C .y C z/2 D 0. This is a contradiction.
In the first case, when a D d and b D �c, we observe that �.c�1iC2/ commutes with„,

and thus it commutes with rot� for all � . Hence, if i ¤ n � 3, then (5.4) implies

ˆ�bi .Œ��/ D ˆ
�
biC1

.Œ��/ for every �;

and if i D n � 3, then (5.4) implies

ˆ�bn�3.Œ��/ D Œ�� for every �:

Both conclusions are in contradiction with the assumption that Œ�� 2 ��1. V�/.
In the second case, when x D w and y D �z, we observe that �.c�1iC1/ commutes

with „. An analogue argument to the previous case leads to a contradiction.
Therefore, there are at most two different t1; t2 2 Œ0; �/ that satisfy (5.7). Moreover, if

they exist, then jt2 � t1j D �=2 and the corresponding points on the ˆbi -orbit are diamet-
rically opposite. This concludes the proof of Lemma 3.3.

5.4. A last computation

It remains to prove Lemma 5.6 to conclude the proof of Theorem A.

Proof of Lemma 5.6. To simplify the notation we will abbreviate c D cos.t/ and s D

sin.t/. We first compute the left-hand side of (5.6), namely

tr
��

0 1

�1 0

��
c s

�s c

��
a b

c d

��
c �s

s c

��
x y

z w

��
: (5.9)
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First, note that �
c s

�s c

��
a b

c d

�
D

�
acC cs bcC ds

�asC cc �bsC dc

�
and �

c �s

s c

��
x y

z w

�
D

�
xc � zs yc � ws

xsC zc ysC wc

�
:

Hence we have �
c s

�s c

��
a b

c d

��
c �s

s c

��
x y

z w

�
D

�
? l1
l2 ?

�
;

where

l1 D ayc2 � awcsC cycs � cws2 C bycsC bwc2 C dys2 C dwcs;

l2 D �axcsC azs2 C cxc2 � czcs � bxs2 � bzcsC dxcsC dzc2:

So, (5.9) is equal to l2 � l1. We now compute the right-hand side of (5.6), namely

tr
��

0 1

�1 0

��
x y

z w

��
c s

�s c

��
a b

c d

��
c �s

s c

��
: (5.10)

Because the trace is conjugacy invariant, (5.10) is equal to

tr
��

c �s

s c

��
0 1

�1 0

��
x y

z w

��
c s

�s c

��
a b

c d

��
:

Since „ and rot2t commute, (5.10) is further equal to

tr
��

0 1

�1 0

��
c �s

s c

��
x y

z w

��
c s

�s c

��
a b

c d

��
:

Now, we can use the previous computations to get�
c �s

s c

��
x y

z w

��
c s

�s c

��
a b

c d

�
D

�
? r1
r2 ?

�
;

where

r1 D bxc2 C dxcs � bzcs � dzs2 � bycsC dyc2 C bws2 � dwcs;

r2 D axcsC cxs2 C azc2 C czcs � ays2 C cycs � awcsC cwc2:

So, (5.10) is equal to r2 � r1.
Therefore, (5.6) holds if and only if l2 � l1 D r2 � r1. It holds l2 � l1 D r2 � r1 if and

only if

�axcsC azs2 C cxc2 � czcs � bxs2 � bzcsC dxcsC dzc2

�ayc2 C awcs � cycsC cws2 � bycs � bwc2 � dys2 � dwcs

D axcsC cxs2 C azc2 C czcs � ays2 C cycs � awcsC cwc2

�bxc2 � dxcsC bzcsC dzs2 C bycs � dyc2 � bws2 C dwcs:
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We group all the terms containing cs on the left-hand side and all the terms containing c2

and s2 on the other side:

2cs.�ax � cz � bz C dx C aw � cy � by � dw/

D .c2 � s2/.�cx C az C ay C cw � bx � dz � dy C bw/:

We factorize and use that c2 � s2 D cos.2t/ and 2cs D sin.2t/:

sin.2t/
�
.x � w/.d � a/ � .b C c/.y C z/

�
D cos.2t/

�
.a � d/.y C z/ � .b C c/.x � w/

�
:

This finishes the proof of Lemma 5.6.
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