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Train track maps on graphs of groups

Rylee Alanza Lyman

Abstract. In this paper we develop the theory of train track maps on graphs of groups. Expand-
ing a definition of Bass, we define a notion of a map of a graph of groups, and of a homotopy
equivalence. We prove that under one of two technical hypotheses, any homotopy equivalence of a
graph of groups may be represented by a relative train track map. The first applies in particular to
graphs of groups with finite edge groups, while the second applies in particular to certain generalized
Baumslag–Solitar groups.

1. Introduction

A homotopy equivalence f WG ! G of a connected graph G is a train track map when f
maps vertices to vertices and the restriction of any iterate of f to an edge of G yields an
immersion. (Relative) train track maps were introduced in [2]; they are perhaps the main
tool for studying outer automorphisms of free groups.

A train track map f WG ! G induces a well-defined outer automorphism of �1.G/,
a free group. The train track condition simplifies the analysis of the action of f on paths
and loops in G. Choosing a basepoint ? in G and a path from ? to f .?/ determines an
automorphism f]W�1.G; ?/! �1.G; ?/ and a lift of f to the universal covering tree �
of G.

The map Qf W� ! � is f]-twisted equivariant in the sense that for g 2 �1.G; ?/ and
x 2 � , we have

Qf .g:x/ D f].g/: Qf .x/:

The lift Qf W � ! � also satisfies the definition of a train track map. This formulation of
train track maps as twisted equivariant maps of trees can be adapted in a straightforward
way to automorphisms of groups acting on trees.

Theorem A (Tree version). Suppose a group F acts cocompactly on a simplicial tree
T , that ˆWF ! F is an automorphism, and that Qf W T ! T is a ˆ-twisted equivariant
map. Suppose that one of the following conditions holds. Then there exists a ˆ0-twisted
equivariant relative train track map Qf 0W T 0 ! T 0, where ˆ and ˆ0 represent the same
outer automorphism ' and where T and T 0 belong to the same deformation space D in
the sense of Forester [7, 10].
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(1) Let T 00 be a reduced tree in D. Assume that edge stabilizers of T 00 are finitely
generated and that no iterate of ˆ maps a generalized edge group of T 00 properly
into a conjugate of itself.

(2) Assume that F is finitely generated, T is locally finite, and that the subgroup
Mod.D/ of Out.F / leaving D invariant acts with finitely many orbits of cells on
the deformation retract PG of D considered in [10, Theorem 7.6] and [3].

If ' is irreducible, then the relative train track map constructed is a train track map.

Two F -trees T and T 0 belong to the same deformation space if and only if there exist
F -equivariant maps T ! T 0 and T 0 ! T (see [10, Theorem 3.8]). A tree T is reduced
if collapsing any orbit of edges of T yields a tree not in the same deformation space. A
generalized edge stabilizer is a subgroup H � F with the property that H contains the
stabilizer of some edge Qe of T and is contained in the stabilizer of another edge Qe0 of T .
Each relative train track map Qf WT ! T is a morphism: after F -equivariantly subdividing
edges in the domain tree into finitely many edges, the map Qf becomes simplicial, in
the sense that it maps edges to edges. Twisted equivariant morphisms of trees map edge
stabilizers to generalized edge stabilizers.

Relative train track maps are defined in Section 4. This is not the first construction
of relative train track maps on graphs of groups, see [4, 9, 15], but it is the most gen-
eral, allowing in particular for infinite edge groups (but see [12] in the irreducible case).
The proof of Theorem A relies on an algorithm of Bestvina–Handel [2], which requires a
bound on the number of edges of G, the underlying graph of G . Without further assump-
tions on G , it appears at least possible that certain problematic valence-two vertices could
proliferate in G, destroying any guarantee that the algorithm will terminate. It would be
very interesting to have an example where this proliferation actually occurs. Perhaps an
example could be found in considering the group

ha; s; t W tat�1 D sas�1 D a2i:

Since one is primarily interested in using train track maps to study outer automor-
phisms, the choice of automorphism ˆ in the statement of Theorem A is inconvenient. It
would be more convenient to be able to work directly in the quotient graph of groups. This
is the purpose of this paper.

Bass [1] defines a notion of a morphism of a graph of groups and proves that his mor-
phisms of graphs of groups induce twisted equivariant simplicial maps of trees and vice
versa. In Section 2, we offer an expanded definition of a map of a graph of groups and
prove that our maps induce twisted equivariant maps of trees sending vertices to vertices
and vice versa. We define homotopy of maps and when a map is a homotopy equivalence.
The Bass–Serre trees of homotopy equivalent graphs of groups belong to the same defor-
mation space and conversely.



Train track maps on graphs of groups 1391

Theorem A (Graph of groups version). Let G be a finite, connected graph of groups, '
be an outer automorphism of �1.G /, and suppose that ' is induced by a map f WG ! G

satisfying one of the following conditions. Then there exists a relative train track map
f 0WG 0 ! G 0 representing ' on a graph of groups G 0 homotopy equivalent to G .

(1) Let G 00 be a reduced graph of groups homotopy equivalent to G . Assume that edge
groups of G 00 are finitely generated and for some and hence every ˆ represent-
ing ', no iterate of the map ˆ induces a proper inclusion of a generalized edge
group of G into itself.

(2) Assume that vertex groups of G are finitely generated and edge groups of G have
finite index in their incident vertex groups. Assume further that there are only
finitely many isomorphism types of graphs of groups G 0 homotopy equivalent to
G with the property that each edge e of G 0 is surviving, in the sense that there is
some reduced collapse of G 0 in which the edge e is not collapsed.

If ' is irreducible, then the relative train track map constructed is a train track map.

Item (1) of Theorem A applies in particular whenever edge groups are finite (or more
generally when generalized edge groups are co-Hopfian), and thus to all accessible groups
with infinitely many ends. Item (2) applies in particular to certain generalized Baumslag–
Solitar groups.

The strategy of the proofs in this paper is to find the correct equivariant perspective so
that the original arguments in [2] and [6] can be adapted without too much extra effort.

Here is the organization of the paper. We build up the aforementioned equivariant
perspective in Section 2. The proof of Theorem A follows the outline in [2]; it occupies
Sections 3 and 4.

2. Maps of graphs of groups

The purpose of this section is to define maps of graphs of groups and discuss their rela-
tionship with twisted equivariant maps of trees. Morphisms of graphs of groups were
originally defined by Bass [1]. Our definition differs from his in two main respects: first,
while his morphisms send edges to edges, our maps may send edges to edge paths (which
may contain no edges), and second, we require our maps to respect basepoints. Assum-
ing a map does not collapse edges to vertices, we call it a morphism, and it becomes a
morphism in the sense of Bass after subdividing edges in the domain graph of groups into
finitely many edges.

Let us take up the discussion from the introduction. Let F and F 0 be groups acting
on simplicial trees � and � 0, let ˆWF ! F 0 be a homomorphism, and suppose there is a
(continuous) map Qf W�! � 0 which isˆ-twisted equivariant in the sense that for all Qx 2 �
and all g 2 F , we have

Qf .g: Qx/ D ˆ.g/: Qf . Qx/:
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An equivariant homotopy between two ˆ-twisted equivariant maps Qf and Qf 0 is a homo-
topy Qf t W� ! � 0 with Qf 0 D Qf and Qf 1 D Qf 0 such that each map Qf t is ˆ-twisted equiv-
ariant. A ˆ-twisted equivariant map Qf W � ! � 0 is a homotopy equivalence if ˆ is an
isomorphism and there exists aˆ�1-twisted equivariant map QgW� 0! � such that Qf Qg and
Qg Qf are equivariantly homotopic to the identity. If we use ˆ to identify F with F 0, this
says that � and � 0 belong to the same deformation space in the sense of [7, 10].

Each ˆ-twisted equivariant map Qf W � ! � 0 is equivariantly homotopic to a map
Qf 0W � ! � 0 which sends vertices to vertices and which has the property that for each

edge Qe of � , either Qf . Qe/ is a vertex or after subdividing Qe into finitely many edges, the
map Qf restricted to the newly created edges is simplicial. We will work exclusively with
such maps. We say the image of Qf . Qe/ is an edge path Qe01 : : : Qe

0
k

in � 0. In other words, if Qf
does not collapse edges, it is a ˆ-twisted equivariant morphism of trees.

Quotient graph of groups. A graph of groups G is a graph G (i.e. a 1-dimensional CW
complex), which we usually assume to be connected, together with, for each edge e and
vertex v ofG, an assignment of groups Ge and Gv . For an oriented edge e with initial vertex
v and terminal vertexw, there are injective homomorphisms � NeWGe! Gv and �eWGe! Gw ,
respectively. (We have G Ne D Ge .) The reader is referred to [1, 11, 13, 14] for additional
background on graphs of groups, although we give a reasonably self-contained exposition
of the aspects of the theory we will use.

Suppose F is a group acting on a simplicial tree � by simplicial automorphisms,
and suppose that the action is without inversions in edges, i.e. that no group element
sends an edge Qe to itself reversing orientation. This can always be arranged by passing
to the barycentric subdivision of � . There is a quotient graph of groups G , which we now
describe.

Since the action of F on � is without inversions in edges, the quotient F n� naturally
inherits the structure of a graph from � , call this graph G. The graph of groups structure
on G depends on a choice of fundamental domain for the action of F on �; we now
describe how to choose the fundamental domain. Choose a spanning tree S � G and lift
S to zS � � . For each edge e … S , choose a lift Qe in � such that one vertex of Qe belongs
to zS . Write T for the union of zS with the (closed) edges Qe for e … S . For v a vertex
of G, set Gv to be the stabilizer of the unique preimage Qv of v in zS . For e an edge of G,
set Ge to be the stabilizer of the unique preimage Qe of e in T . Let e be an oriented edge
with terminal vertex v and write Qx for the terminal vertex of Qe. By definition, there is
some group element ge 2 F such that ge: Qx D Qv. If Qx D Qv, choose ge D 1 2 F . If h 2 F
stabilizes Qe, then gehg�1e stabilizes Qv, so define �eWGe ! Gv to be the map h 7! gehg

�1
e .

This defines the graph of groups structure G on the quotient graph G.

Graphs of spaces. Associated to a graph of groups G with underlying graph G, we
can build a graph of spaces XG . See [13] for more details. For a vertex v of G, take a
connected CW complex Xv with one vertex ?v which is a K.Gv; 1/ and fix an identifi-
cation �1.Xv; ?v/ D Gv . Do the same for each edge e of G, producing a CW complex
Xe with one vertex ?e and �1.Xe; ?e/ D Ge . Suppose the oriented edge e has initial
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vertex v and terminal vertex w. Associated to the homomorphisms �eW Ge ! Gw and
� NeWGe ! Gv , there are continuous, skeleta-preserving maps ieW .Xe; ?e/! .Xw ; ?w/ and
i NeW .Xe; ?e/! .Xv; ?v/ such that the induced maps on fundamental groups satisfy .ie/] D
�e and .i Ne/] D � Ne . If V is the set of vertices of G and E is the set of oriented edges, the
graph of spaces XG is the quotient of the disjoint uniona

v2V

Xv q
a
e2E

.Xe � Œ0; 1�/

by the equivalence relation identifying .x; 1/ 2 Xe � Œ0; 1� with ie.x/ 2 Xw , where w
is the terminal vertex of the oriented edge e, and identifying .x; t/ 2 Xe � Œ0; 1� with
.x; 1� t / 2X Ne � Œ0; 1�. ThusXG is a CW complex. Note that after identifying each (open)
edge of G with .0; 1/, there is a surjection XG ! G whose fibers are naturally identified
with the spaces Xv and Xe . By identifying G with the subspace of XG comprising the
points ?v and .?e; t / for t 2 .0; 1/, we can view the map XG ! G as a retraction.

The fundamental group of a graph of groups. The fundamental group of the graph
of groups �1.G / is the fundamental group of the graph of spaces XG . For convenience,
choose a basepoint p 2XG in the image of the retractionXG !G. Each loop in �1.XG ;p/

is homotopic into the 1-skeleton of XG , and thus may be represented as an edge path 
 of
the form


 D e01g1e2g2 : : : ekgke
0
kC1

where e2; : : : ; ek are edges ofG, e01 and e0
kC1

terminal and initial segments of edges e1 and
ekC1 of G respectively, where the gi for 1 � i � k are elements of �1.Xvi ; ?vi / D Gvi ,
and where vi D �.ei / D �. NeiC1/. We allow the case where e01 and e0

kC1
are empty, in

which case they will be dropped from the notation. A path is nontrivial if it contains (a
segment of) an edge.

Notice that under our identifications of �1.Xv; ?v/ with Gv , the notion of an edge path
in G makes sense without reference to XG . Homotopy rel endpoints of paths in XG yields
a corresponding notion of homotopy rel endpoints for edge paths in G . It is generated by
replacing a segment of the form e�e.h/ with � Ne.h/e, where e is an edge and h 2 Ge is
an element of the edge group, and by adding or removing segments of the form e Ne for
an edge e. An edge path 
 is tight if the number of edges in 
 cannot be lessened by a
homotopy.

Maps of graphs of groups. A map of graphs of groups is a pair of maps f WG ! G0 and
fX WXG ! XG 0 such that the diagram

XG XG 0

G G0

fX

r r 0

f

commutes, where r and r 0 are the retractions. A homotopy of maps is a pair of homo-
topies fX;t WXG ! XG and ft WG ! G such that for each t , the diagram of the form
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above commutes. A map f W G ! G 0 is a homotopy equivalence if there exists a map
gW G 0 ! G such that fg and gf are each homotopic to the respective identity maps. If
f is a homotopy equivalence, then the map fX induces an isomorphism of fundamental
groups �1.XG /! �1.XG 0/, but this is not a sufficient condition for f to be a homotopy
equivalence in general. By the cellular approximation theorem, every map f W G ! G 0

of graphs of groups is homotopic to a map f 0W G ! G 0 with the property that the map
f 0WG ! G0 sends vertices to vertices and either collapses edges to vertices or expands
edges over edge paths and with the property that the map f 0X WXG !XG 0 sends the vertices
?v of XG to vertices of XG 0 . We will only consider such maps.

For such a map of graphs of groups, we turn now to collecting information that will let
us describe maps of graphs of groups without reference to XG and XG 0 . For each vertex
v of G, the map f 0X induces a homomorphism f 0v W Gv ! G 0

f .v/
, and sends the oriented

edge e of G (thought of as the subspace ¹?eº � Œ0; 1� of XG ) to an edge path f 0.e/ D
g0e
0
1g1 : : : e

0
k
gk in G 0. Notice that the edge path e01 : : : e

0
k

in G0 is (homotopic to) the
image of the edge e under the map of graphs f 0WG ! G0.

Suppose the edge e has initial vertex v and terminal vertex w and that the edge path
f 0.e/ is trivial, i.e. f 0.e/D g0. Then f 0.v/D f 0.w/, and the images inXG 0 of the 2-cells
of XG recording the relations � Ne.h/e�e.h�1/ Ne for each h 2 Ge imply that the diagram

Ge Gw

Gv G 0
f 0.v/

D G 0
f 0.w/

�e

� Ne ad.g0/f 0w
f 0v

commutes, where ad.g0/ is the inner automorphism x 7! g0xg
�1
0 . If the edge path

f 0.e/ D g0e
0
1g1 : : : e

0
k
gk is nontrivial, then there are homomorphisms f 0

e;e0i
WGe ! G 0

e0i
for each i satisfying 1 � i � k, and similarly we have the commutative diagram

Gv Ge Gw

G 0
f 0.v/

� � �G 0
e0i

G 0
v0i

G 0
e0iC1
� � � G 0

f 0.w/
;

f 0v

� Ne �e

f 0
e;e0
i

f 0
e;e0
iC1

ad.gk/f 0w

ad.g0/� Ne01
�e0
i

ad.gi /� Ne0
iC1

�e0
k

where vi is the terminal vertex of e0i and the initial vertex of e0iC1. This diagram, coupled
with the rule that � Ne0i .h/e

0
i D e

0
i �e0i .h/ for h 2 Ge0i implies that we have

f 0v � Ne.h/f
0.e/ D f 0v � Ne.h/g0e

0
1g1 : : : e

0
kgk D g0� Ne01f

0

e;e01
.h/e01g1 : : : e

0
kgk

D � � � D g0e
0
1g1 : : : e

0
kgkf

0
w �e.h/ D f

0.e/f 0w �e.h/:

Notice as well that because each homomorphism on the bottom row is injective, the images
of the maps f 0

e;e0i
are all abstractly isomorphic. We will understand a map of graphs of
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groups f 0WG ! G 0 to be the data of a map of graphs f 0WG ! G0 which either collapses
edges to vertices or maps edges to edge paths, edge paths f 0.e/ D g0e01g2 : : : e

0
k
gk 2 G 0,

and the homomorphisms f 0v WGv ! G 0
f .v/

and f 0
e;e0i
WGe ! Ge0i subject to the compatibility

conditions given by the above commutative diagrams. A map of graphs of groups is a
collapse map if the map of graphs f WG ! G0 either sends edges to edges or collapses
edges to vertices. It is a morphism if the map of graphs f WG ! G0 does not collapse
edges. If f WG ! G is a homotopy equivalence, a morphism, and for each edge e ofG, the
edge path f .e/ D g0e1g1 : : : ekgk is tight, then we say f is a topological representative
of the induced outer automorphism ' 2 Out.�1.G //.

Given a map of graphs of groups f WG ! G 0, the rule

g 2 Gv 7! fv.g/ 2 G 0f .v/ and e 7! f .e/ D g0e
0
1g1 : : : e

0
kgk

defines the action of f on paths in G and a well-defined homomorphism f]W�1.XG ; ?w/

! �1.XG 0 ; ?f .w//. Since XG is a K.�1.XG /; 1/, the homomorphism f] is induced by
a map fX WXG ! XG 0 . We claim that we can choose fX and f within their homotopy
classes so that the pair .fX ; f / defines a map of graphs of groups. Since we have little
further need of XG , we leave the details to the interested reader.

The following operations preserve the homomorphism f]W�1.G ;w/! �1.G
0; f .w//,

and we claim that it follows that the resulting maps of graphs of groups are homotopic,
but again we leave the demonstration to the reader.

(1) Replace the edge path f .e/ 2 G 0 with a path which is homotopic to it rel end-
points and replace the homomorphisms fe;e0i with new homomorphisms so that
the compatibility conditions above are still satisfied. Note that since fv and fw
are unchanged under this operation, the images of the new edge group homo-
morphisms must be abstractly isomorphic to the original fe;e0i . This restricts the
possible homotopies we can perform, but does not prevent us from tightening f .e/
if it is not already tight.

(2) Suppose that v ¤ w is a vertex of G and that g 2 G 0
f .v/

. Replace fv with ad.g/fv
and for each oriented edge e of G with initial vertex v, replace the edge path f .e/
with gf .e/.

(3) Suppose that v ¤ w is a vertex of G, that e0 is an edge of G0 with terminal vertex
f .v/ and initial vertex v0 such that �e0.G 0e0/ contains the image of fv . Change the
map f of graphs by a homotopy supported in a neighborhood of v by pulling
the image of v across Ne0 so that the new map called f 0 satisfies f 0.v/ D v0. The
new map f 0v is � Ne0 ��1e0 fv . That is to say, the map f 0v is accomplished by viewing
fv.Gv/ as a subgroup of G 0e0 then mapping it to G 0v0 . For each oriented edge e
of G with initial vertex v, we have the new edge path f 0.e/ D e0f .e/. Add the
homomorphism f 0e;e0 W Ge ! G 0e0 defined as f 0e;e0.h/ D ��1e0 fv� Ne.h/. Observe that
the compatibility conditions are satisfied.
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If, ignoring the stipulations around the basepoint w, the map f W G ! G 0 can be trans-
formed to a map f 0WG ! G 0 by a finite number of the above operations, we will say that
f and f 0WG ! G 0 are homotopic.

The Bass–Serre tree. Let G be a graph of groups and let p 2 G be a basepoint. For v a
vertex of G, write Œp; v� for the set of homotopy classes of paths in G from p to v. The
group Gv acts on Œp; v� on the right: an element g sends the homotopy class Œ
� of the path

 to the homotopy class of the composite path Œ
g�. Let V denote the set of vertices of G.
The set a

v2V

Œp; v�=Gv

forms the vertex set of a graph, where two elements Œ
�Gv and Œ
 0�Gw are adjacent if
the path N

 0 is homotopic to a path of length one. The fundamental group �1.G ; p/ acts
naturally on this graph; for example the homotopy class of a loop Œ�� sends the vertex
Œ
�Gv to the vertex Œ�
�Gv . The fundamental theorem of Bass–Serre theory asserts that
this graph is a tree (see [1, Theorem 1.17]) and that the quotient graph of groups of the
action of �1.G ; p/ on this tree may be identified with G (see [1, Corollary 3.7] and [14,
Chapter I, Theorem 13]). (Let us remark that non-vertex points of the Bass–Serre tree may
be identified with homotopy classes of paths in G that do not end at vertices.)

Indeed, suppose we began with a group F acting on a tree � with quotient graph of
groups G defined relative to the choice of spanning tree S containing p, of fundamental
domain T and of group elements ge in F . For v a vertex of G, let 
v denote the unique
tight path in S as an ordinary graph from p to v. Then for e an edge of G and g 2 Gv an
element of a vertex group, thought of as the stabilizer of Qv in F , the map

Œ
�. Ne/e N
�.e/� 7! ge and Œ
vg N
v� 7! g

defines an isomorphism ˆW�1.G ; p/! F . For v a vertex of G , let Qv be the unique pre-
image of v in zS . For Qe an edge of T n zS , orient Qe so that its initial vertex zw is in zS and
its terminal vertex zw0 is not. The smallest subtree of the Bass–Serre tree containing the
vertices

Œ
v�Gv and Œ
we�Gw 0

is a fundamental domain for the action of �1.G ; p/ on its Bass–Serre tree, and the map

Œ
v�Gv 7! Qv and Œ
we�Gw 0 7! zw
0

extends to aˆ-twisted equivariant simplicial isomorphism between the Bass–Serre tree of
G and � taking this fundamental domain to T .

We will use ˆ to identify �1.G ; p/ with F and this ˆ-twisted equivariant simplicial
isomorphism to identify � with the Bass–Serre tree of G . Write � W� ! G for the natural
projection.
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Normal forms, projecting and lifting paths. Suppose 
 is a tight path in G from a point
x in the interior of an edge to a point y, and that Qx D Œ�� is a lift of x to � . Then the
unique tight path Q
 from Qx D Œ�� to Œ�
� (or Œ�
�Gy if y is a vertex) is a tight path in �
which lifts 
 in the sense that �. Q
/ has the same underlying edge path in G as 
 . If x is a
vertex, then for each g 2 Gx , there is a unique tight path Q
 from Qx D Œ��Gx to Œ�g
� (or
Œ�g
�Gy if y is a vertex) which lifts 
 . If 
 is not a tight path, we may decompose it into
a concatenation of tight paths and successively lift those paths to obtain a lift of 
 . We
would like to define a notion of projecting paths from � to G so that lifting and projecting
are (nearly) inverse operations.

Recall [1, §1.12] that given a choice, for each oriented edge e with terminal vertex v,
of a set Se of left coset representatives for Gv=�e.Ge/ containing 1 2 Gv , there is a normal
form for edge paths in G , where an edge path


 D e01g1e2 : : : gk�1ekgke
0
kC1

is in normal form if it is tight and each gi for 1 � i � k � 1 belongs to S NeiC1 . A path can
be inductively put in normal form by performing homotopies from “left to right.”

Suppose Qx is a point Œ�� (or Œ��Gx if Qx is a vertex) of � and that Qy is a point Œ�� (or
Œ��Gy if Qy is a vertex) of � , and let Q
 be the unique tight path from Qx to Qy. If Qy is a vertex,
choose � in its Gy-orbit so that its final vertex group element is 1. Let 
 D �. Q
/ be the
unique path in normal form homotopic to N��, thus 
 has the form


 D e01g1e2 : : : gk�1ek1

where each gi for 1� i � k � 1 belongs to S NeiC1 . One checks that if Qx is not a vertex, then
the lift of 
 defined above is Q
 . If Qx D Œ��Gx is a vertex and we chose � in its Gx-orbit so
that its final vertex group element is 1, then the lift of 
 defined above corresponding to
the choice of 1 2 Gx is Q
 .

Conversely, if we first lift the normal-form path 
 to Q
 and then project to �. Q
/ as in
the previous paragraph, then �. Q
/ and 
 agree except for the final vertex group element if
y is a vertex.

Proposition 2.1 (Lifting maps, cf. [1, Proposition 2.4]). Suppose that f W .G ; v/! .G 0; v0/

is a map of graphs of groups and that .�; Qv/ and .� 0; Qv0/ are the Bass–Serre trees of G

and G 0 respectively. There exists an f]-twisted equivariant map Qf W .�; Qv/! .� 0; Qv0/ such
that the following diagram commutes as maps of underlying graphs:

.�; Qv/ .� 0; Qv0/

.G ; v/ .G 0; v0/;

Qf

� � 0

f

where � and � 0 are the natural projections. Furthermore, the normal form of the path
f�. Q
/ agrees with the path � 0f . Q
/ except for the final vertex group element if Q
 ends at
a vertex. If the maps f and f 0 are homotopic fixing v, then the lifted maps Qf and Qf 0 are
equivariantly homotopic.
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It follows from the final claim that if f is a homotopy equivalence, then Qf is too.

Proof. A point Qp 2 � corresponds to a homotopy class Œ
� of paths from v to p D �. Qp/
(or to Œ
�Gp if p is a vertex). Define Qf . Qp/D Œf .
/� (or Œf .
/�G 0

f .p/
if f .p/ is a vertex). A

simple calculation shows that Qf is f]-twisted equivariant and that the claimed properties
hold.

Proposition 2.2 (Projecting maps, cf. [1, §§4.1–4.5]). Suppose F and F 0 are groups act-
ing on trees � and � 0 respectively with quotient graphs of groups G and G 0. LetˆWF !F 0

be a homomorphism and let Qf W .�; Qv/! .� 0; Qv0/ be a ˆ-twisted equivariant map of trees.
There is a map f W .G ; v/! .G 0; v0/ of graphs of groups such that the following diagram
commutes as maps of underlying graphs:

.�; Qv/ .� 0; Qv0/

.G ; v/ .G 0; v0/;

Qf

� � 0

f

where � and � 0 are the natural projections. Furthermore, the normal form of the path
f�. Q
/ agrees with the path � 0 Qf . Q
/ except for the final vertex group element if Q
 ends at
a vertex. If two maps Qf and Qf 0 areˆ-twisted equivariantly homotopic, then f and f 0 are
homotopic.

Proof. By ˆ-twisted equivariance, the map � 0 Qf yields a well-defined map on �1.G ; v/-
orbits; this is the map f WG ! G0 as a map of graphs.

Let T � � and T 0 � � 0 be fundamental domains containing Qv and Qv0 respectively and
let G and G 0 be the quotient graphs of groups associated to T and T 0 respectively. Each
edge e 2 G and e0 2 G0 has a single preimage Qe 2 T and Qe0 2 T 0 respectively. The groups
Ge and G 0e0 are the stabilizers of Qe and Qe0 respectively. Each vertex v 2 G and v0 2 G0

has a preferred preimage Qv 2 T and Qv0 2 T 0 respectively. The groups Gv and G 0v0 are the
stabilizers of Qv and Qv0 respectively. For each oriented edge e of G and e0 of G0 there are
elements ge 2 F and g0e0 2 F

0 such that the monomorphisms �e and �e0 are the restrictions
of the maps

h 7! gehg
�1
e and h0 7! g0e0h

0g0�1e0

to Ge and G 0e0 respectively.
Let v be a vertex of G and write w D f .v/. To define fvW Gv ! G 0w , note that the

stabilizers of Qf . Qv/ and zw are conjugate in F 0 by some element tw such that tw : Qf . Qv/D zw.
The restriction of

h 7! twˆ.h/t
�1
w

to Gv defines a homomorphism fvWGv ! G 0w .



Train track maps on graphs of groups 1399

Let e be an oriented edge ofG with initial vertex v and terminal vertex w and suppose
first that f .e/ is a vertex. Then for h 2 Ge , we have

fv� Ne.h/ D tf .v/ˆ.g Nehg
�1
Ne /t�1f .v/;

fw �e.h/ D tf .w/ˆ.gehg
�1
e /t�1f .w/:

Therefore the compatibility conditions force us to define f .e/ D g0, where

g0 D tf .v/ˆ.g Neg
�1
e /t�1f .w/:

One checks that g0 belongs to Gf .v/ D Gf .w/.
Now suppose that

Qf . Qe/ D zE 01 : : :
zE 0k :

ˆ-twisted equivariance implies that if h 2 Ge , then ˆ.h/ stabilizes zE 0i for 1 � i � k.
Suppose � 0. zE 0i / D e

0
i in G0. These stabilizers are conjugate to G 0

e0i
by elements te0i 2 F

0

such that te0i :
zE 0i D Qe

0
i . The restriction of

h 7! te0iˆ.h/t
�1
e0i

to Ge defines a homomorphism fe;e0i WGe ! G 0
e0i

. Given h 2 Ge , we have

fv� Ne.h/ D tf .v/ˆ.g Nehg
�1
Ne /t�1f .v/:

On the other hand, we have

� Ne01fe;e
0
1
.h/ D g0

Ne01
te01ˆ.h/t

�1
e01
g�1
Ne01
:

The compatibility conditions force us to define

g0 D tf .v/ˆ.g Ne/t
�1
e01
g0�1
Ne01
:

One checks that we have g0 2 Gf .v/. The derivations of the other vertex group elements are
similar. The additional claims are straightforward to check; we leave them to the reader.
This completes the proof.

Given a vertex v 2 G, let st.v/ denote the set of oriented edges e of G with initial
vertex v. Recall that for each lift Qv 2 ��1.v/ there is a Gv-equivariant bijection

st. Qv/ D
a
e2st.v/

Gv=�e.Ge/ � ¹eº:

Suppose f W G ! G is a homotopy equivalence. It defines an outer automorphism of
�1.G /. Choosing a basepoint p in G and an edge path � in G from p to q D f .p/ defines
an automorphism f]W�1.G ; p/! �1.G ; p/ defined as

f].Œ
�/ D Œ�f .
/ N��:

Let .�; Qp/ be the Bass–Serre tree covering .G ; p/, and let Qq be the endpoint of the lift
of � to � beginning at Qp. By Proposition 2.1, there is an f]-twisted equivariant map
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Qf W .�; Qp/! .�; Qq/ taking the point Qx D Œ
� (or Qx D Œ
�Gx if x is a vertex) to the point
Qf . Qx/ D Œ�f .
/� (or Qf . Qx/ D Œ�f . Q
/�Gf .x/ if f .x/ is a vertex).

Conversely, we saw earlier in the definition of a map of graphs of groups and Propo-
sition 2.2 that any ˆ-twisted equivariant map Qf W� ! � 0 is equivariantly homotopic to a
map which projects to a map of graphs of groups. It is not quite true that if ˆ is an auto-
morphism, then Qf projects to a homotopy equivalence: for that one needs the existence of
a ˆ-twisted equivariant homotopy inverse for Qf .

Topological representatives. Recall that we defined a topological representative to be a
homotopy equivalence f W G ! G which is a morphism and which sends edges to non-
trivial tight edge paths. In the following sections, we prove Theorem A by performing a
number of operations on topological representatives.

Given a graph of groups G , the collection of outer automorphisms of F D �1.G / that
admit a topological representative f WG ! G forms a subgroup of Out.F /. It is precisely
the subgroup of Out.F / leaving invariant the deformation space D to which the Bass–
Serre tree of G belongs. We suggest the name modular group or mapping class group
of G for this group, and in this paper we will write it as Mod.D/ or Mod.G /. An outer
automorphism ' 2 Out.F / belongs to the “modular group” of G if for any conjugacy
class Œg� in F , the conjugacy class '.Œg�/ is elliptic in the Bass–Serre tree for G if and
only if Œg� is elliptic. In some cases this subgroup is all of Out.F /. One case where this
happens is when F is virtually free and vertex groups of G are finite. Another is when
F is a generalized Baumslag–Solitar group and vertex and edge groups of G are infinite
cyclic.

Another case where this “modular group” is all of Out.F / is when F D A1 � � � � �

An � Fk is the Grushko decomposition of a finitely generated group. That is, the Ai are
freely indecomposable and not infinite cyclic and Fk is a free group of rank k. The graph
of groups G can be any graph of groups with trivial edge groups, vertex groups the Ai
and ordinary fundamental group free of rank k. For example, G may be the thistle with n
prickles and k petals. This is a graph of groups with one vertex ?with trivial vertex group,
n vertices with vertex group each of the Ai , and nC k edges. The first n edges connect
vertices with nontrivial vertex group to ?, and the remaining k edges form loops based
at ?.

Example 2.3. Consider

F D C2 � C2 � C2 � C2 D ha; b; c; d j a
2
D b2 D c2 D d2 D 1i;

the free product of four copies of the cyclic group of order two. Let ˆW F ! F be the
automorphism

ˆ

8̂̂̂̂
<̂
ˆ̂̂:
a 7! b

b 7! c

c 7! d

d 7! cbdadbc:
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hai
e1

hbi

e2

hci
e3

hd i

e4
f

8̂̂̂̂
<̂
ˆ̂̂:
e1 7! e2

e2 7! e3

e3 7! e4

e4 7! e1 Ne4de4 Ne2be2 Ne3ce3

Figure 1. The topological representative f WG ! G .

(Notice that, e.g., c�1 D c.) A topological representative f W G ! G of ˆ on the thistle
with four prickles is depicted in Figure 1. The maps on vertex groups are the unique
isomorphisms.

3. Train track maps

The purpose of this section is to prove the irreducible case of Theorem A. The strategy
is a straightforward adaptation of the arguments of [2, Section 1] to graphs of groups.
At the end of the section we prove a proposition characterizing irreducibility for outer
automorphisms of free products.

Fix once and for all a graph of groups G. A marked graph of groups is a graph of
groups G together with a homotopy equivalence � WG ! G . In the language of [10], the
marking keeps track not only of the fundamental group of G , but constrains the defor-
mation space to which it belongs. We will assume that G is reduced in the sense of [7],
i.e. there is no homotopy equivalence that collapses an edge of G.

Given a topological representative f WG ! G and an ordering e1; : : : ; em of the edges
of G, there is an associated m � m transition matrix M with ij th entry counting the
number of times the f -image of the j th edge crosses the i th edge in either direction. The
map f is irreducible if the matrixM is irreducible. Recall that a matrix is irreducible if for
1 � i; j �m, there is an integer ` such that the ij th entry ofM ` is positive. Associated to
every irreducible matrix is its Perron–Frobenius eigenvalue � � 1. An irreducible matrix
with Perron–Frobenius eigenvalue �D 1 is a transitive permutation matrix. The transition
matrix of Example 2.3 is 0BB@

0 0 0 1

1 0 0 2

0 1 0 2

0 0 1 2

1CCA ;
which is irreducible and for which the Perron–Frobenius eigenvalue is the largest real root
of the polynomial x4 � 2x3 � 2x2 � 2x � 1 and satisfies � � 2:948.

Call a vertex v of G inessential if for some oriented edge e with terminal vertex v the
homomorphism �eWGe ! Gv is surjective.
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A subgraphG0 ofG is invariant with respect to a map f WG ! G if f .G0/� G0. It is
a forest if each component C of G0 is a tree and in the induced graph of groups structure
we have that �1.G jC / acts with global fixed point on its Bass–Serre tree. In C , this means
there is a choice of vertex v in C and an orientation of each edge e of C toward this
vertex such that each homomorphism � Ne away from v is surjective. A forest is nontrivial
if it contains at least one edge. An outer automorphism ' 2 Out.�1.G // is irreducible
if it admits a topological representative f W G ! G (i.e. we have ' 2 Mod.G /) and if
whenever G has no inessential valence-one vertices and no nontrivial invariant forests,
then the topological representative f is irreducible.

A homotopy equivalence f W G ! G (taking vertices to vertices) is tight if for each
edge e, either f .e/ is a tight edge path, or f .e/ is a vertex. A homotopy equivalence may
be tightened to a tight homotopy equivalence by a homotopy relative to the vertices of G.
In the language of the previous section, the homotopy only involves the first operation in
the definition of homotopy of maps of graphs of groups.

Suppose f WG ! G is a tight homotopy equivalence. A forest G0 � G is pretrivial if
each edge in the forest is eventually mapped to a point. Maximal (with respect to inclusion)
pretrivial forests are in particular invariant.

Lemma 3.1 ([2, p. 7]). If f W G ! G is a tight homotopy equivalence, collapsing a max-
imal pretrivial forest in G produces a topological representative f 0W G 0 ! G 0. If instead
f W G ! G is a topological representative of an irreducible outer automorphism and G
has no inessential valence-one vertices, collapsing a maximal invariant forest yields an
irreducible topological representative f 0WG 0 ! G 0.

Proof. We describe how to collapse invariant forests.
If f WG ! G is a tight homotopy equivalence andG0 �G is an invariant forest, define

G1 D G=G0 to be the quotient graph of groups obtained by collapsing each component
C of G0 to a vertex. The vertex group of the vertex determined by C is the fundamental
group �1.G jC ; pC / with respect to some basepoint pC 2 C . Since G0 is a forest, this
fundamental group is equal to some vertex group in C . Choose pC equal to that vertex;
choose arbitrarily if there are multiple choices. Given a vertex v of C , let 
v be the unique
tight path without vertex group elements from v to pC . If v does not belong to any com-
ponent of G0, let 
v be the trivial path (without vertex group elements). Let � W G ! G1
be the quotient map. It is a collapse map of graphs of groups.

Each edge e of G1 has a unique preimage in G; abusing notation, call it e as well.
Define f1.e/ D �f . N
�. Ne/e
�.e//. If v in G1 is a vertex, then v either corresponds to a
unique vertex of G, call it v as well, or to a component C of G0. In the former case define
.f1/v D fv . Suppose in the latter case that f maps the component C to C 0. Let 
p0C be the
unique tight path in C 0 without vertex group elements from f .pC / to p0C ; this determines
a map f]W�1.G jC ; pC /! �1.G jC 0 ; pC 0/; this is the map .f1/v in this case.

If e � G is an edge not in G0, then the edge path for f1.e/ is obtained from f .e/ by
deleting all occurrences of edges in G0 and possibly adding vertex group elements at the
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ends. Since f was tight, if e� Ne is a subpath of the f -image of some edge e0 not in G0,
where � is a nontrivial path in G0, then � must be homotopic to a path of the form � 0g N� 0

for some path � 0 in G0 without vertex group elements and g an element of some vertex
group. In f1.e0/, the path e� Ne is replaced by eg Ne. This implies that f1WG1 ! G1 is tight.
Moreover, if G0 was a maximal pretrivial forest, then f1 is a topological representative.

If instead f was a topological representative of an irreducible outer automorphism,
then the transition matrix for f1W G1 ! G1 is obtained from the transition matrix for
f W G ! G by deleting the rows and columns associated to the edges of G0. If in this
latter case G had no inessential valence-one vertices, then neither does G1, and since G0
was a maximal invariant forest, G1 has no invariant forests; therefore f W G1 ! G1 must
be irreducible.

Recall we write st.v/ for the set of oriented edges e with initial vertex v. A direction
at v is an element of the set a

e2st.v/

Gv=�e.Ge/ � ¹eº:

A turn at v is a pair of directions at v. If f WG ! G is a topological representative, then f
determines a map Df on directions sending a direction based at v to a direction based at
f .v/ via the rule

.Œg�; e/ 7! .Œfv.g/g0�; e1/;

where the edge path f .e/ begins with g0e1. The compatibility condition ensures that this
map is well-defined; we have

fv.g�e.h//g0 D fv.g/fv.�e.h//g0 D fv.g/g0� Ne1.fe;e1.h//:

The map Df induces a map on turns, which we also denote by Df . In Example 2.3,
the vertex ? is mapped to itself by f ; the restriction of Df to ? is determined by the
dynamical system Ne1 7! Ne2 7! Ne3 $ Ne4.

A turn is degenerate if it consists of a pair of identical elements and is nondegenerate
otherwise. A turn is illegal with respect to a topological representative f W G ! G if its
image under some iterate of Df is degenerate and is legal otherwise. In Example 2.3, a
turn ¹ Nei ; Nej º based at ? is illegal if i and j are equal mod 2, and is legal otherwise.

Consider the edge path


 D g1e1g2e2 : : : ekgkC1:

We say 
 takes the turns ¹.Œ1�; Nei /; .ŒgiC1�; eiC1/º. The path 
 is legal if it takes only legal
turns.

A topological representative f WG ! G is a train track map if f .e/ is a legal path for
each edge e of � . Equivalently, f is a train track map if for each k � 1 and each edge e
of � , we have that f k.e/ is a tight edge path. In Example 2.3, f is not a train track map
because the image of e4 takes the illegal turn ¹ Ne4; Ne2º.
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Example 2.3 continued. Let us fold f at the illegal turn ¹ Ne2; Ne4º. To do this, first subdi-
vide e4 at the preimage of the vertex with vertex group hci so e4 becomes the edge path
e04e
00
4 and identify e004 with e2. The action of the resulting map f 0W G1 ! G1 is obtained

from f by replacing instances of e4 with e04e2. Thus we have

f 0.e4/ D e1 Ne2 Ne
0
4de
0
4e2 Ne2be2 Ne3c:

Tighten f 0 by a homotopy with support on e04 to remove e2 Ne2, yielding an irreducible
topological representative f1WG1 ! G1. See Figure 2.

hai

e1

hbi

e2

hci

e3

hd i

e04
f1

8̂̂̂̂
<̂
ˆ̂̂:
e1 7! e2

e2 7! e3

e3 7! e04e2

e04 7! e1 Ne2 Ne
0
4de
0
4be2 Ne3c

Figure 2. The topological representative f1WG1 ! G1.

The Perron–Frobenius eigenvalue �1 for f1W G1 ! G1 is the largest real root of the
polynomial x4 � 2x3 � 2x2 C x � 1 and satisfies �1 � 2:663; thus �1 < �. However,
f1 is still not a train track map: Df1 sends the turn ¹.1; Ne04/; .b; e2/º, which is crossed
by f1.e04/, to ¹.c; e3/; .c; e3/º; thus this turn is illegal. We cannot quite fold e2 and the
end of Ne04 because the f1-image of the latter ends with Ne3c. Lifting to the Bass–Serre tree
Qf 1W �1 ! �1, it is not the edge Qe04 which is folded with Qe2 but b: Qe04. We may remedy

the situation by changing the fundamental domain in �1, or equivalently by changing the
marking on G1 by twisting the edge e04 by b�1 D b. This replaces hd iwith hbdbi, replaces
f1.e3/with e04be2 and replaces f1.e04/with e1 Ne2b Ne04de

0
4e2 Ne3. Then we fold e04 and Ne2. The

resulting graph of groups G2 is abstractly isomorphic to our original graph of groups G ,
but the marking differs. The action of the resulting map f 00WG2! G2 on edges is obtained
by replacing instances of e04 with e004 Ne2. Thus we have

f 00.e004/ D e1 Ne2be2e
00
4bdbe

00
4 Ne2e2;

and we may tighten to produce an irreducible topological representative f2WG2! G2. See
Figure 3. The Perron–Frobenius eigenvalue �2 is the largest real root of x4 � 2x3 � 2x2C
2x � 1 and satisfies �2 � 2:539; thus �2 < �1. The restriction of Df2 to turns incident to
? is determined by the dynamical system Ne1 7! Ne2 $ Ne3, Ne4 7! Ne4. The only illegal turn
in G2 is ¹ Ne1; Ne3º, which is not crossed by the f2-image of any edge, so f2W G2 ! G2 is a
train track map.

A subgroup H of �1.G; p/ is a generalized edge group if there exist edges e and e0

of G with terminal vertices v and v0 and paths � from p to v and � 0 from p to v0 such
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hai
e1

hbi

e2

hci

e3

hbdbi
e004

f2

8̂̂̂̂
<̂
ˆ̂̂:
e1 7! e2

e2 7! e3

e3 7! e004 Ne2be2

e4 7! e1 Ne2be2 Ne
00
4bdbe

00
4

Figure 3. The topological representative f2WG2 ! G2.

that each element of H may be represented by a loop of the form ��e.h/ N� for h 2 Ge

and if H contains all elements of the form � 0�e0.h
0/ N� 0 for h0 2 Ge0 . In the language of the

action of �1.G; p/ on the Bass–Serre tree � , the first condition says that there is some
edge Qe lifting e such that H is contained in the stabilizer of Qe, while the second says
that there is some edge Qe0 lifting e0 such that H contains the stabilizer of Qe0. All reduced
graphs of groups homotopy equivalent to G have the same generalized edge groups by
[10, Proposition 4.6], and by its proof, we have that any element ' 2 Mod.G/ permutes
the conjugacy classes of generalized edge groups in �1.G/.

An edge e of a graph of groups G is surviving if there is a collapse map G ! G 0

with G 0 reduced such that e is not collapsed. Suppose the Bass–Serre tree of G belongs
to a deformation space D. Guirardel–Levitt consider a space PG of trees all of whose
edges are surviving and prove that if D is what is called non-ascending, then PG is a
finite-dimensional deformation retract of the projectivized deformation space PD (see
[10, Theorem 7.6]). Clay proves that if we work in the weak topology and G is irre-
ducible, then there is still a deformation retraction from PD to the spine of PG (see the
discussion after [3, Lemma 1.11]). Mod.D/ D Mod.G / acts on PG and its spine. There
are finitely many isomorphism types of graphs of groups G 0 homotopy equivalent to G all
of whose edges are surviving precisely when this action has finitely many orbits of cells.
For generalized Baumslag–Solitar groups where all vertex and edge groups are infinite
cyclic, Forester proved in [8, Theorem 8.2] that this happens when there is no nontrivial
integer modulus.

The main result of this section is the following theorem.

Theorem 3.2. Suppose ' 2 Mod.G/ is irreducible and that one of the following condi-
tions holds.

(1) No generalized edge group of G is mapped properly into a conjugate of itself by
some and hence any automorphism ˆ representing '.

(2) Edge groups of G have finite index in their incident vertex groups, i.e. the Bass–
Serre tree � is locally finite and there are only finitely many isomorphism types of
graphs of groups G 0 homotopy equivalent to G all of whose edges are surviving.

Then there exists a train track map f W G ! G representing ' on a G-marked graph of
groups G with the appropriate property above.
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(The finite generation assumption is unnecessary in this section.)
The broad-strokes outline of the proof of Theorem 3.2 is much the same as the pre-

vious example. By folding at illegal turns, we often produce nontrivial tightening, which
decreases the Perron–Frobenius eigenvalue. By controlling the presence of valence-one
and valence-two vertices, we may argue that the transition matrix lies in a finite set of
matrices, thus the Perron–Frobenius eigenvalue may only be decreased finitely many
times. In the remainder of this section, we make this precise by recalling Bestvina and
Handel’s original analysis. The proofs are largely identical to the original, so we omit
them.

Subdivision. Given a topological representative f WG ! G , if p is a point in the interior
of an edge e such that f .p/ is a vertex, we may give G a new graph of groups structure by
declaring p to be a vertex with vertex group equal to Ge . If f .e/D 
1g
2 is the subdivision
of the graph of groups edge path f .e/ at the image of the point p, where g 2 Gf .p/, and the
new edges incident to p are e1 and Ne2, define for definiteness f .e1/D 
1g and f .e2/D 
2.
The map fpWGp ! Gf .p/ is given by the commutative diagram

Ge

Ge0 Gf .p/ Ge00 ;

fe0 fe00

�e0 ad.g/� Ne00

where e0 and e00 are the last edge of 
1 and first edge of 
2, respectively. (Note that up
to homotopy, we may factor g 2 Gf .p/ arbitrarily as g0g00 and define f .e1/ D 
1g0 and
f .e2/ D g

00
2.)

Lemma 3.3 ([2, Lemma 1.10]). If f WG ! G is a topological representative and f1WG1!
G1 is obtained by subdivision, then f1 is a topological representative. If f is irreducible,
then f1 is too, and the associated Perron–Frobenius eigenvalues are equal.

Valence-one homotopy. Recall that a valence-one vertex v with incident edge e is
inessential if the monomorphism �eWGe ! Gv is an isomorphism.

If v is an inessential valence-one vertex with incident edge e, let G1 denote the sub-
graph of groups determined byG n ¹e; vº, and let � WG ! G1 be the map collapsing e. Let
f1WG1! G1 be the topological representative obtained from �f jG1 by tightening and col-
lapsing a maximal pretrivial forest. We say that f1WG1 ! G1 is obtained from f WG ! G

by a valence-one homotopy.

Lemma 3.4 ([2, Lemma 1.11]). If f WG ! G is an irreducible topological representative
with Perron–Frobenius eigenvalue � and f1W G1 ! G1 is obtained from f W G ! G by
performing valence-one homotopies on all inessential valence-one vertices of G followed
by the collapse of a maximal invariant forest, then f1W G1 ! G1 is irreducible, and the
associated Perron–Frobenius eigenvalue �1 satisfies �1 < �.
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Valence-two homotopy. We likewise distinguish two kinds of valence-two vertices. A
valence-two vertex v with incident edges ei and ej is inessential if at least one of the
monomorphisms �ei WGei ! Gv and �ej WGej ! Gv is an isomorphism, say �ej WGej ! Gv . Let
� be the map that collapses ej to a point and expands ei over ej . Define a map f 0WG ! G

by tightening �f . Observe that no vertex of G is mapped to v. Thus we may define a new
graph of groups structure G 0 by removing v from the set of vertices. Thus the edge path
ei Nej is now an edge, which we will call ei with edge group Gei . Let f 00W G 0 ! G 0 be the
map obtained by tightening f 00.ei /D f 0.ei Nej /. Finally, let f1WG1! G1 be the topological
realization obtained by collapsing a maximal pretrivial forest. We say that f1WG1! G1 is
obtained by a valence-two homotopy of v across ej .

Lemma 3.5 ([2, Lemma 1.13]). Let f WG ! G be an irreducible topological representa-
tive, and suppose G has no inessential valence-one vertices. Suppose f2WG2 ! G2 is the
irreducible topological representative obtained by performing a valence-two homotopy of
v across ej followed by the collapse of a maximal invariant forest. Let M be the transi-
tion matrix of f and choose a positive eigenvector Ew with M Ew D � Ew. If wi � wj , then
�2 � �; if wi < wj , then �2 < �.

Remark 3.6. The statement of the lemma hides a problem: if we cannot freely choose
which edge incident to an inessential valence-two vertex to collapse via a valence-two
homotopy, we may be forced to increase �. Since we aim always to decrease �, we cannot
perform such valence-two homotopies. These are the problematic valence-two vertices
mentioned in the introduction. Our assumptions are designed to limit their proliferation.

Folding. Suppose some pair of edges e1, e2 in G sharing a common initial vertex has
the same f -image (as graph-of-groups edge paths). Define a new graph of groups G1 by
identifying e1 and e2 to a single edge e. The map f W G ! G descends to a well-defined
homotopy equivalence f1WG1 ! G1. This is an elementary fold. More generally if e01 and
e02 are maximal initial segments of e1 and e2 with equal f -images and endpoints sent to a
vertex by f , we first subdivide at the endpoints of e01 and e02 if they are not already vertices
and then perform an elementary fold on the resulting edges.

Let us remark that when lifting the map f to the Bass–Serre tree, it is possible that
the lifted map may identify a pair of edges Qe and g: Qe in the same orbit e and sharing
a common initial vertex. Suppose �.e/ D v and that e0 is the last edge in the edge path
f .e/. This happens when Gv contains an element g such that g is not in the image �e.Ge/
but fv.g/ is in the image of �e0.Ge0/. To perform the fold, we may need to subdivide
at the preimage of �. Ne0/. In G , the “fold” merely changes the edge group, increasing it
to f �1v .fv.Gv/ \ �e0.Ge0//. This fold has no effect on the transition matrix for f unless
nontrivial tightening occurs, in which case the Perron–Frobenius eigenvalue decreases.
(See [2, Remark 1.6].) It is these folds which may introduce problematic valence-two
vertices, so we shall have to be careful about when to perform them.
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Lemma 3.7 ([2, Lemma 1.15]). Suppose f W G ! G is an irreducible topological repre-
sentative and that f1WG1! G1 is obtained by folding a pair of edges. If f1 is a topological
representative, then it is irreducible, and the associated Perron–Frobenius eigenvalues
satisfy �1 D �. Otherwise, let f2W G2 ! G2 be the irreducible topological representative
obtained by tightening, collapsing a maximal pretrivial forest, and collapsing a maximal
invariant forest. Then the associated Perron–Frobenius eigenvalues satisfy �2 < �.

Lemma 3.8. Suppose f WG ! G is an irreducible topological representative of the outer
automorphism ' 2 Out.�1.G // and no generalized edge group of G is mapped properly
into a conjugate of itself by some and hence any automorphism ˆ representing '. Then
the edge groups of G are all isomorphic, and the injective maps fe;ei are isomorphisms.
If f .e/ D f .e0/ and e and e0 share a common vertex so that we may fold e and e0, then
�e.Ge/ D �e0.Ge0/ as subgroups of G�.e/, and the resulting map f 0WG 0 ! G 0 again has the
property above.

Proof. It is clear that for each edge e and each edge ei of the edge path f .e/, the map
fe;ei is injective, for if it were not, then the map on the fundamental group f] would fail
to be injective. Since f is irreducible, there exists a sequence e D e0; e1; : : : ; ek D e such
that ei appears in the edge path f .ei�1/ in either orientation for i satisfying 1 � i � k.
Thus we have a sequence of injective homomorphisms

Ge D Ge0 � � � Gek D Ge:
fe0;e1 f

ek�1;ek

The composition of these maps is an isomorphism, for otherwise the generalized edge
group corresponding to Ge would be mapped properly into a conjugate of itself, from
which we conclude that each composing map is an isomorphism. By irreducibility of f ,
we may choose e1 to be any edge of the edge path f .e/, so we see that each map fe;ei is
an isomorphism.

Suppose that f .e/ D f .e0/ D g0e1g1 : : : ekgk . We have the following pair of
commutative diagrams:

Ge Gv Ge0 Gv

Gek Gf .v/; Gek Gf .v/:

�e

fe;ek ad.gk/fv

�e0

fe0;ek ad.gk/fv
�ek �ek

Since fe;ek and fe0;ek are isomorphisms, we conclude that

ad.gk/fv�e.Ge/ D �ek .Gek / D ad.gk/fv�e0.Ge0/

and since ad.gk/fv is injective, it follows that �e.Ge/ D �e0.Ge0/. Observe that if � is the
original Bass–Serre tree and � 0 is the new Bass–Serre tree after folding, then every edge
stabilizer in � is an edge stabilizer in � 0 and conversely every edge stabilizer in � 0 comes
from an edge stabilizer in � . It follows that G and G 0 have the same generalized edge
groups, so the resulting map f 0WG 0 ! G 0 has the desired property.
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From Lemma 3.8, we deduce that in fact, if G satisfies our first standing assumption,
then all folding takes place between distinct edges of G , and that the edge group of the
newly folded edge is isomorphic to Ge and Ge0 .

Lemma 3.9. The number of edges of a graph of groups homotopy equivalent to G without
inessential valence-one or valence-two vertices is bounded.

If the Bass–Serre tree of G is locally finite and there are finitely many isomorphism
types of graphs of groups homotopy equivalent to G all of whose edges are surviving,
then there is a bound to the number of edges of a graph of groups homotopy equivalent
to G without inessential valence-one vertices and for which every inessential valence-two
vertex is problematic.

Here we call an inessential valence-two vertex of a graph of groups problematic if
exactly one of its edge-to-vertex group inclusions is surjective.

Proof. Call a vertex of a graph of groups G essential if for all oriented edges e 2 st.v/, the
monomorphism � NeWGe ! Gv is not surjective. Because the graph of groups G is assumed
to be reduced, every vertex of G is either essential or incident to an edge e which forms
a loop and for which one of the monomorphisms �e or � Ne is surjective. Let �.G/ be the
number of essential vertices of G and let ˇ.G/ be the first Betti number of G.

We claim that any graph of groups G homotopy equivalent to G has at most �.G/
essential vertices, but it may have fewer. Each essential vertex of G corresponds to the
conjugacy class of a maximal elliptic subgroup H ; here elliptic means H stabilizes some
vertex of the relevant Bass–Serre tree and maximal means that H is not conjugate to a
proper subgroup of an elliptic subgroup. Let T be the Bass–Serre tree of G. We claim that
each maximal elliptic subgroup H of F with the additional property that the fixed-point
set of H is bounded is represented by the vertex group of some essential vertex of G.
Indeed, if H is maximal elliptic, then it is contained in and hence equal to some vertex
stabilizer in T . The corresponding vertex v of G must be essential: by maximality, if v is
incident to an edge which forms a loop and for which one of the monomorphisms �e or � Ne
is surjective, then both are surjective, which would contradict boundedness of the fixed-
point set of H . The properties of being maximal elliptic and having bounded fixed-point
set are invariant under homotopy equivalence by [10, Theorem 3.8], from which it follows
that G has at most �.G/ essential vertices.

Now, G has at most 2�.G/ C 3ˇ.G/ � 3 edges. To see this, form a new graph G0

from G by cyclically ordering the essential vertices of G and attaching an edge from each
essential vertex to its neighbors in the cyclic ordering. The graphG0 has no valence-one or
valence-two vertices and first Betti number at most �.G/C ˇ.G/. An Euler characteristic
argument reveals that G0 has at most 3.�.G/C ˇ.G// � 3 edges, from which the stated
bound for G follows.

Now suppose that the Bass–Serre tree of G is locally finite and that there are finitely
many isomorphism types of graphs of groups homotopy equivalent to G all of whose
edges are surviving. The Bass–Serre tree of each of these graphs of groups is locally
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finite with finitely many orbits of vertices, so there is a maximum valence M of any
vertex in any such Bass–Serre tree. Let G be a graph of groups homotopy equivalent to
G without inessential valence-one vertices and for which every inessential valence-two
vertex is problematic. It is not quite true that the graph of groups obtained from G by
performing a maximal collapse of edges incident to inessential valence-two vertices has
the property that every edge is surviving, so we further collapse all non-surviving edges to
obtain a graph of groups G 0 without inessential valence-one or valence-two vertices, every
edge of which is surviving. Let � and � 0 be the Bass–Serre trees of G and G 0. The collapse
map pW� ! � 0 has compact fibers, so each vertex Qv of � 0 corresponds to a finite subtree
TQv of � . The valence of Qv is the sum of the edges incident to TQv but not contained in it and
is bounded by M . Since each valence-two vertex of G is problematic, each vertex of �
has valence at least three, and it follows that the size of each tree TQv is bounded depending
only on M , from which we conclude that there is a bound on the number of problematic
valence-two vertices of G and thus a bound on the number of edges of G .

Proof of Theorem 3.2. Let f WG ! G be an irreducible topological representative of ',
where we recall that G is reduced in the sense of [7] and satisfies one of our assumptions.

Suppose the Perron–Frobenius eigenvalue � satisfies � D 1. Then f transitively per-
mutes the edges of G and is thus a train track map. So assume � > 1. Recall our standing
assumptions:

(1) No generalized edge group of G is mapped properly into a conjugate of itself by
some and hence any automorphism ˆ representing '.

(2) Edge groups of G have finite index in the incident vertex groups.

If G satisfies the first assumption, we will show that Lemma 3.8 implies that any graph of
groups G 0 obtained from G has no problematic valence-two vertices and by Lemma 3.9
we conclude that there is a uniform bound L to the number of edges of G 0. If G satisfies
the second assumption, then we cannot prevent G 0 from having problematic valence-two
vertices, but again by Lemma 3.9 there is a uniform bound L to the number of edges.

We will show that if f WG ! G is not a train track map, then there is an irreducible
topological representative f1WG1 ! G1 without inessential valence-one vertices such that
the associated Perron–Frobenius eigenvalues satisfy �1 <�. If G satisfies the first assump-
tion, we show that G1 has no inessential valence-two vertices. If instead G satisfies the
second assumption, we show that inessential valence-two vertices of G1 are problematic.
It follows that the size of the transition matrix of f1 is uniformly bounded.

Furthermore, if M is an irreducible matrix, its Perron–Frobenius eigenvalue � is
bounded below by the minimum sum of the entries of a row of M . To see this, let Ew
be a positive eigenvector. If wj is the smallest entry of Ew, then �wj D .M Ew/j is greater
than wj times the sum of the entries of the j th row of M .

Thus if we iterate this argument reducing the Perron–Frobenius eigenvalue, there are
only finitely many irreducible transition matrices that can occur, so at some finite stage the
Perron–Frobenius eigenvalue will reach a minimum. At this point, we must have a train
track map.
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To complete the proof, we turn to the question of decreasing �. Suppose f WG! G is
not a train track map. Then there exists a point p in the interior of an edge such that f .p/
is a vertex, and f k is not locally injective (as a map of graphs of groups) at p for some
k > 1. We assume that topological representatives act linearly on edges with respect to
some metric on G. Since � > 1, this means the set of points of G eventually mapped to a
vertex is dense. Thus we can choose a neighborhood U of p so small that it satisfies the
following conditions.

(1) The boundary @U is a two-point set ¹s; tº, where f `.s/ and f `.t/ are vertices for
some ` � 1.

(2) f i jU is injective (as a map of graphs of groups) for 1 � i � k � 1.

(3) f k is two-to-one on U n ¹pº, and f k.U / is contained within a single edge.

(4) p … f i .U / for 1 � i � k.

Note that a priori the map f i jU could fail to be injective as a map of graphs sooner than
it fails to be injective as a map of graphs of groups. Suppose that there exists 1 � j � k
such that f i jU is injective as a map of graphs for 1 � i � j � 1, and f j jU is two-to-one
on U n ¹pº as a map of graphs. We will show that Lemma 3.8 implies that in fact j D k. If
instead edge groups of G merely have finite index in the incident vertex groups, we allow
the same-orbit edge fold, in view of our bound on the number of problematic valence-two
vertices that can arise.

First we subdivide at p. Then we subdivide at f i .s/ and f i .t/ for 0 � i � ` � 1 (in
reverse order so that subdivision is allowed). The vertex p has valence two; denote the
incident edges by e and e0. Observe that in the Bass–Serre tree � , there are lifts Qe and
Qe0 such that Qf k�1. Qe/ and Qf k�1. Qe0/ are single edges sharing a common initial vertex that
are identified by Qf . Thus we may fold. Suppose that j < k. Then this fold increases the
edge group Gf k�1.e/ D Gf k�1.e0/, so the map of edge groups Gf k�1.e/! Gf k.e/ is injective
(for otherwise f] could not be injective) and not surjective. This contradicts Lemma 3.8.
Therefore j D k if G satisfies the first assumption, and in fact f k�1.e/ and f k�1.e0/ are
distinct single edges that are identified by f .

The resulting map f 0WG 0! G 0 may be a topological representative, in which case the
Perron–Frobenius eigenvalue �0 satisfies �0 D �. In this case Qf 0k�2. Qe/ and Qf 0k�2. Qe0/ are
single edges that are identified by f . In the contrary case, nontrivial tightening occurs.
After collapsing a maximal pretrivial forest and a maximal invariant forest, the resulting
irreducible topological representative f 00WG 00 ! G 00 has Perron–Frobenius eigenvalue �00

satisfying �00 < �.
Repeating this dichotomy k times if necessary, we have either decreased �, or we

have folded e and e0 (which are distinct edges in the graph of groups) so that p is now an
inessential valence-one vertex.

We remove inessential valence-one and non-problematic valence-two vertices by the
appropriate homotopies. Note that if G and ' satisfy the first assumption, all valence-two
vertices present were created by subdivision, not same-orbit folding, and thus are not prob-
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lematic. Since valence-one homotopy always decreases the Perron–Frobenius eigenvalue,
the resulting irreducible topological representative f1W G1 ! G1 has Perron–Frobenius
eigenvalue �1 satisfying �1 < �.

Remark 3.10. As in the original, the proof of Theorem 3.2 provides in outline an algo-
rithm that takes as input a topological representative of an irreducible outer automorphism
and returns a train track map. To make it a true algorithm in general, one needs an “oracle”
that can compute images of the various homomorphisms fe and fv , compute products of
elements in the vertex groups Gv and tell when two vertex group elements are equal.

A reduction for an outer automorphism ' 2Out.�1.G // is a topological representative
f WG ! G which has no inessential valence-one vertices and no invariant forests but has a
nontrivial invariant subgraph. If ' has a reduction, then it is reducible, i.e. not irreducible.
Let F D A1 � � � � � An � Fk be a free product, represented as the fundamental group of a
graph of groups G with trivial edge groups, vertex groups theAi and ordinary fundamental
group free of rank k. Define the complexity ofF relative to G to be the quantity nC2k�1.
If F 0 is a free factor of F relative to G, we may define the complexity of F 0 relative to G
analogously. The final result of this section is the following characterization of reducibility
for outer automorphisms ' represented on G-marked graphs of groups with trivial edge
groups.

Proposition 3.11. Let F be a free product. An outer automorphism ' represented on a
G-marked graph of groups with trivial edge groups is reducible relative to G if and only if
there are free factors F 1; : : : ; Fm of F with positive complexity such that F 1 � � � � � Fm

is a free factor of F and ' cyclically permutes the conjugacy classes of the F i .

Proof. Suppose first that ' is reducible relative to A; let f WG ! G be a reduction and let
Gi D f

i .G1/, 0� i �m� 1 denote distinct noncontractible components of an f -invariant
subgraph. Then each �1.G jGi / determines a free factor F i with positive complexity such
that F 1 � � � � � Fm is a free factor of F and such that ' cyclically permutes the conjugacy
classes of the F i .

Conversely, suppose F 1; : : : ; Fm are free factors with positive complexity as in the
statement of the proposition. Take FmC1 a free factor so that F D F 1 � � � � �Fm �FmC1.
Suppose that ni and ki are the data determining the complexity of F i for 1 � i � mC 1.
Let Gi be the thistle with ni prickles and ki petals (if nmC1 D kmC1 D 0, then GmC1 is a
vertex) and distinguished vertex ?i . For each i satisfying 1� i �m choose automorphisms
ˆi WF ! F representing ' such that ˆi .F i / D F iC1, with indices taken mod m, and let
fi WGi !GiC1 be the corresponding topological representatives taking ?i to ?iC1. Define
G to be the union of the Gi for 1 � i � mC 1 together with, for 1 � i � m, an oriented
edge Ei connecting ?i to ?mC1.

Collapsing the Ei to a point yields a homotopy equivalence G ! G, where G is the
thistle with n prickles and k petals. Identifying the image of �1.Gi ; ?i / with F i will serve
as (the inverse of) a marking. We will useˆ1 to create a topological representative f WG !
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G for '. Define f .Gi / D fi .Gi / for 1 � i � m. By assumption there exist ci 2 F such
thatˆ1.x/D ciˆi .x/c�1i . Choose 
i a closed tight edge path based at ?mC1 representing
ci (so 
1 is the trivial path) and define f .Ei /D 
iEiC1 with indices taken modm. Finally,
define f .GmC1/ by ˆ1 and the marking on GmC1.

The topological representative f WG ! G is a reduction for ' unless G has an invariant
contractible forest. Since thistles have contractible subgraphs, there are a few possibilities.
If there is a family of non-loop edges e1; : : : ; em with ei 2 Gi and f .ei / D eiC1 with
indices mod m, we may collapse each of these edges. (Note that up to equivalence, if
f .ei / D eiC1 as a map of graphs, then f .ei / D eiC1 as a map of graphs of groups.)
Likewise if some non-loop edge of GmC1 is sent to itself, we may collapse it. If each
ci D 1 2 F , then the Ei also form an invariant forest that is contractible if the subgraph
they span contains at most one vertex with vertex group some Ai . After all these forest
collapsings, the only worry is that FmC1 has nonpositive complexity and the Ei would be
collapsed, leaving G as the only f -invariant subgraph. In this case, choose A an edge of
G1 sharing an initial vertex with E1, and change f via a homotopy with support in E1 so
that f .E1/D f .A/f . NA/E2, then fold the initial segment of E1 mapping to f .A/ with all
of A. The resulting graph is combinatorially identical to G but the markings differ. Now
f .E1/ D f . NA/E2 and f .Ek/ D NAE1, so the Ei no longer form an invariant forest.

4. Relative train track maps

The purpose of this section is to prove the general case of Theorem A. The strategy is to
adapt arguments in [2, Section 5] and [6, Section 2].

Filtrations. A filtration on a marked graph of groups G with respect to a topological
representative f W G ! G is an increasing sequence ¿ D G0 � G1 � � � � � Gm D G of
f -invariant subgraphs. The subgraphs are not required to be connected.

Strata. The r th stratum of G is the subgraph Hr containing those edges of Gr not con-
tained in Gr�1. An edge path has height r if it is contained in Gr and meets the interior
of Hr . If both edges of a turn T are contained in a stratum Hr , then T is a turn in Hr . If
a path has height r and contains no illegal turns in Hr , then it is r-legal.

When we think of a stratum Hr or a filtration element Gr as a graph of groups in its
own right, the vertex and edge groups of Hr and Gr are equal to what they are in G . In
the language of Bass [1], we work with subgraphs of groups, not subgraphs of subgroups.

Transition submatrices. Relabeling the edges of G and thus permuting the rows and
columns of the transition matrix M so that the edges of Hi precede those of HiC1, M
becomes block upper-triangular, with the i th block Mi equal to the square submatrix of
M containing those rows and columns corresponding to edges in Hi .

A filtration is maximal when each Mi is either irreducible or the zero matrix. If Mi

is irreducible, call Hi an irreducible stratum and a zero stratum otherwise. If Hi is irre-
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ducible, Mi has an associated Perron–Frobenius eigenvalue �i � 1. If �i > 1, then Hi
is an exponentially growing stratum. Otherwise �i D 1, we say Hi is non-exponentially
growing and Mi is a transitive permutation matrix.

Associated to a topological representative f WG ! G there is a maximal filtration ¿D
G0 � � � � �GmDG defined as follows [2, p. 33]. Order the edges ofG, and letM D .mij /
be the resulting transition matrix for f . Construct a graphE with a vertex vi for each edge
ei of G, and mij oriented edges from vj to vi . Two edges e1 and e2 belong to the same
irreducible stratum if there exist an oriented path from v1 to v2 and an oriented path from
v2 to v1. An edge e1 does not belong to an irreducible stratum if there is no oriented edge
path from v1 to itself. A collection of such edges may determine a zero stratum if for each
pair of edges e1 and e2 in the collection, there is no oriented edge path from v1 to v2 nor
from v2 to v1. (Perhaps it is easiest to therefore just let each zero stratum be a single edge.)
LetH andH 0 be two resulting strata; we define a partial order on strata. PutH beforeH 0

if there are edges e1 2 H and e2 2 H 0 such that there is an oriented path from v2 to v1.
Complete this partial order to a total order arbitrarily. Thus a maximal filtration associated
to f is not unique, although the irreducible strata are. We will think of a maximal filtration
as part of the data of a topological representative f WG ! G .

The following lemma is an observation we made in the proof of Lemma 3.8.

Lemma 4.1. Let f W G ! G be a topological representative of an outer automorphism
' 2 Out.�1.G // with irreducible stratum Hr and the property that no iterate of ˆ maps
a generalized edge group of G properly into a conjugate of itself for some and hence any
automorphismˆ representing '. All edge groups inHr are isomorphic, and in fact if ei is
an edge of Hr in the f -image of the edge e of Hr , then the map fe;ei is an isomorphism.

Proof. Let e1 and e2 be edges of Hr . By irreducibility, there are some k1 � 1 and k2 � 1
such that the edge path f k1.e1/ contains e2 and similarly f k2.e2/ contains e1. This
implies that there are injective homomorphisms Ge1 ! Ge2 and Ge2 ! Ge1 . The dou-
ble composition Ge1 ! Ge2 ! Ge1 must be an isomorphism, so we conclude that each
composing homomorphism is an isomorphism. In fact, by irreducibility, we can arrange
so that fe1;ei is a composing homomorphism of the map Ge1 ! Ge2 for ei any edge ofHr
contained in the f -image of the edge e1.

Eigenvalues. Let Hr1 ; : : : ; Hrk be the exponentially growing strata for f W G ! G . We
define PF.f / to be the sequence of associated Perron–Frobenius eigenvalues �r1 ; : : : ; �rk
in nonincreasing order. We order the set®

PF.f / j f WG ! G is a topological representative of '
¯

lexicographically; thus if PF.f / D �1; : : : ; �k and PF.f 0/ D �01; : : : ; �
0
`
, then PF.f / <

PF.f 0/ if there is some j with �j < �0j and �i D �0i for i satisfying 1 � i < j , or if k < `
and �i D �0i for i satisfying 1 � i � k.
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Relative train track maps. Throughout the paper, we will assume our filtrations are
maximal unless otherwise specified. Given � a path in G , let f].�/ denote a tight path
homotopic rel endpoints to f .�/. (If one wants f].�/ to be unique, one could insist that
f].�/ be in normal form.) We will denote a maximal filtration preserved by f W G ! G

as ¿ D G0 � � � � � Gm D G. The map f is a relative train track map if for every expo-
nentially growing stratum Hr , we have:

(EG-i) Directions in Hr are mapped to directions in Hr by Df ; it follows that
every turn with one edge in Hr and the other in Gr�1 is legal.

(EG-ii) If � � Gr�1 is a homotopically nontrivial path with endpoints in Hr \
Gr�1, then some (and hence every) f].�/ is nontrivial as well.

(EG-iii) If � � Gr is a tight r-legal path, then f .�/ is an r-legal path.

The following theorem is the main result of this section.

Theorem 4.2. Assuming an oracle that can compute products of elements in vertex groups,
can compute images of injective homomorphisms between edge groups and vertex groups
of G and can tell when two vertex group elements are equal, and that one of the following
conditions holds, there is an algorithm that takes as input a topological representative
f WG ! G of ' 2 Out.�1.G // and improves it to a relative train track map f 0WG 0 ! G 0.
The conditions are as follows.

(1) Edge groups of G are finitely generated and for some and hence every ˆ repre-
senting ', no generalized edge group of G is mapped properly into a conjugate of
itself by some iterate of ˆ.

(2) Vertex groups of G are finitely generated and edge groups have finite index in the
incident vertex groups. Additionally there are finitely many isomorphism types of
graphs of groups G 0 homotopy equivalent to G with the property that every edge
of G 0 is surviving.

We sketch the outline of the proof: we begin with a topological representative that is
bounded, a term which will be defined below. We use two new operations, described in
Lemma 4.5 and Lemma 4.6 so that the resulting topological representative satisfies (EG-i)
and (EG-ii). If (EG-iii) is not satisfied, as in [2] and [6], we modify the algorithm in the
proof of Theorem 3.2 to reduce PF.f /, the set of Perron–Frobenius eigenvalues for the
exponentially growing strata of f W G ! G , while remaining bounded. The boundedness
assumption ensures that we will hit a minimum value after a finite number of moves, at
which point (EG-iii) will be satisfied.

Let us say a few words about the input of the algorithm: a finite, connected graph of
groups is a graph together with groups and homomorphisms between them (for which we
assume we have an oracle). The data of a topological representative is the finite connected
graph of groups G together with the filtration, a finite list of subgraphs ofG, a list of finite
edge paths f .e/ 2 G for each edge e of G, and a finite list of injective homomorphisms
between vertex and edge groups of G ; one for each fv and each fei . The oracle guarantees
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that we can, for instance, tell when two edge paths f .E/ and f .E 0/ share a common initial
segment (perhaps after passing to a homotopic topological representative or changing the
marking).

Bounded representatives. As we observed in Lemma 3.9, there exists L such that if G

is a marked graph of groups without inessential valence-one vertices and either

(1) without inessential valence-two vertices, or

(2) which satisfies our second assumption and for which every inessential valence-two
vertex is problematic,

then G has at most L edges. Our first assumption coupled with the assumption that ' was
irreducible allowed us to remove all inessential valence-two vertices that appeared, but
in the general case certain inessential valence-two vertices are useful: one needs to intro-
duce them so that (EG-i) is satisfied, for instance. As it happens, our method for showing
that (EG-ii) is satisfied may in general even introduce problematic valence-two vertices.
Instead, call a topological representative f WG ! G bounded if there are at most L expo-
nentially growing strata, and if, for each exponentially growing stratumHr , the associated
Perron–Frobenius eigenvalue �r is also the Perron–Frobenius eigenvalue of a matrix with
at most L rows and columns. As in the proof of Theorem 3.2, if f WG ! G is bounded, the
set of PF.f 0/ for f 0WG 0! G 0 a bounded representative of ' satisfying PF.f 0/� PF.f / is
finite, so operations decreasing PF.f / will eventually reach a minimum among bounded
representatives, which we will denote PFmin. Notice as well that the property of being
bounded is a property of the sequence of numbers PF.f /.

Elementary moves revisited. In [2, Lemmas 5.1–5.4], Bestvina and Handel revisit the
four elementary moves subdivision, valence-one homotopy, valence-two homotopy and
folding to analyze their impact on PF.f /. All of these moves except valence-two homo-
topy produce a topological representative f 0W G 0 ! G 0 such that the associated Perron–
Frobenius eigenvalues satisfy PF.f 0/ � PF.f /.

Let us discuss valence-two homotopy. Following [2, p. 35], suppose ei 2 Hi and ej 2
Hj are the edges incident to a valence-two vertex v. We assume i � j . If i D j andHi is
exponentially growing, choose i and j so that the eigenvector coefficient of ei is greater
than or equal to that of ej . Here is the key point: in all cases we perform the valence-two
homotopy across ei . Call such a valence-two homotopy performable if after making these
choices, we have that the inclusion �ei WGei ! Gv is an isomorphism.

Lemma 4.3. Suppose we are in the situation of the first assumption. All valence-two
homotopies are performable, perhaps after rearranging strata.

Proof. We continue to use the notation above. Suppose at first that Hi is a zero stratum.
Then the restriction of f to Gi is a homotopy equivalence of Gi with Gi�1. In particular,
since v is a valence-one vertex of Gi , we must have that �ei WGei ! Gv is an isomorphism.
Therefore a valence-two homotopy of ej across ei is performable.
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So assume that Hi is irreducible. Recall the partial order on strata, where Hi � Hk if
some edge in Hk is eventually mapped over some edge in Hi (and hence any edge in Hi ,
since Hi is irreducible). If Hj is a zero stratum, we may after dividing it into two zero
strata, assume thatHj D ¹ej º. This done, if we haveHi �Hj in this partial order, and we
have that v is an inessential valence-two vertex but �ei WGei ! Gv is not an isomorphism,
we have a contradiction: by assumption the edge ej is eventually mapped over the edge ei ,
so there is an injective homomorphism Gv Š Gej ! Gei , which therefore must map �ei .Gei /
properly into itself, contradicting the first assumption.

Finally, if we do not have Hi � Hj in this partial order, then we may freely move Hj
belowHi when we complete the partial order to a total order, and thus may swap the roles
of i and j if need be.

The proof of [2, Lemma 5.4] shows that if i < j and Hi is exponentially growing,
then PF.f 0/ < PF.f /. In the case where i D j and Hi is exponentially growing, it may
happen that �i is replaced by some number of eigenvalues �0 that all satisfy �0 � �i , so
it is possible that PF.f 0/ > PF.f /. Nonetheless, we have the following result. Call an
elementary move safe if performing it on a topological representative f WG ! G yields a
new topological representative f 0W G 0 ! G 0 with PF.f 0/ � PF.f /. Thus all elementary
moves with the exception of valence-two homotopy are always safe.

Lemma 4.4 ([2, Lemma 5.5]). If f WG ! G is a bounded topological representative and
f 0WG 0 ! G 0 is obtained from f by a sequence of safe moves with PF.f 0/ < PF.f /, then
there is a bounded topological representative f 00WG 00 ! G 00 with PF.f 00/ < PF.f /.

Proof. The proof is essentially identical to [2, Lemma 5.5]. Suppose first that our topo-
logical representatives satisfy the first assumption. By performing valence-one and safe
valence-two homotopies, we may assume that f 0W G 0 ! G 0 has the property that G 0 has
no inessential valence-one vertices and that each inessential valence-two vertex v has the
property that the two edges incident to v belong to the same exponentially growing stra-
tum. Thus f 0WG 0 ! G 0 has at most L strata, exponentially growing or no, and PF.f 0/ is
obtained from PF.f / by replacing some of the Perron–Frobenius eigenvalues with strictly
smaller eigenvalues �0i . For the eigenvalues that are not replaced, the fact that f was
bounded implies that these eigenvalues are the Perron–Frobenius eigenvalues for matrices
with at most L rows and columns. Thus we only need to show that the �0i are also the
Perron–Frobenius eigenvalues for matrices with at most L rows and columns. We do this
by performing dangerous valence-two homotopies, replacing each �0i with some collection
of �00ij satisfying �00ij � �

0
i until each resulting stratum has at most L edges. We still have

that f WG 00 ! G 00 has at most L strata, so this topological representative f 00WG 00 ! G 00 is
bounded.

In the situation of the second assumption, the argument is essentially the same. By
Lemma 3.9, there is a uniform bound to the number of problematic valence-two vertices,
so we need only focus on the inessential valence-two vertices which are not problematic.
We then proceed exactly as above.
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Invariant core subdivision. We recall the construction of the invariant core subdivision
of an exponentially growing stratumHr . Assume that a topological representative f WG !
G linearly expands edges over edge paths with respect to some metric on G. If f .Hr / is
not entirely contained in Hr , then the set

Ir WD
®
x 2 Hr j f

k.x/ 2 Hr for all k > 0
¯

is an f -invariant Cantor set. The invariant core of an edge e in Hr is the smallest closed
subinterval of e containing the intersection of Ir with the interior of e. The endpoints
of invariant cores of edges in Hr form a finite set which f sends into itself. Declaring
elements of this finite set to be vertices is called invariant core subdivision. The stratum
Hr determines a new exponentially growing stratum H 0r whose edges are the invariant
cores of edges in Hr .

The following lemma says that invariant core subdivision can be used to create topo-
logical representatives whose exponentially growing strata satisfy (EG-i).

Lemma 4.5 ([2, Lemma 5.13]). If f 0WG 0! G 0 is obtained from f WG ! G by an invariant
core subdivision of an exponentially growing stratum Hr , then PF.f 0/ D PF.f /, and the
map Df 0 maps directions in the resulting exponentially growing stratum H 0r to itself,
so H 0r satisfies (EG-i). If Hj is another exponentially growing stratum for f W G ! G

that satisfies (EG-i) or (EG-ii), then the resulting exponentially growing stratum H 0j for
f 0WG 0 ! G 0 still satisfies those properties.

In fact, invariant core subdivision affects only edges inHr . If new vertices are created,
then one or more non-exponentially growing strata are added to the filtration below Hr .

Collapsing inessential connecting paths. The following lemma says that an application
of operations already defined may be used to construct topological representatives whose
exponentially growing strata satisfy (EG-ii).

Lemma 4.6 ([2, Lemma 5.14]). Let f W G ! G be a bounded topological representa-
tive with exponentially growing stratum Hr . If ˛ � Gr�1 is a path with endpoints in
Hr \ Gr�1 such that f].˛/ is trivial, we construct a new bounded topological represen-
tative f 0W G 0 ! G 0 such that if H 0r is the stratum of G 0 determined by Hr , then either (if
the endpoints of ˛ are distinct) H 0r \ G

0
r�1 has fewer points than Hr \ Gr�1 or (if the

endpoints of ˛ are equal) a vertex group of H 0r \G
0
r�1 has increased.

If k > r and Hk satisfies (EG-ii), then H 0
k

, the stratum determined by Hk , satisfies
(EG-ii). If k � r and Hk satisfies (EG-i), then H 0

k
satisfies (EG-i).

Proof. We follow the outline of the proof of [2, Lemma 5.14]. Let V be the vertex set ofG.
Subdivide at each point of ˛ \ f �1.V /, obtaining a topological representative f1WG .1/!
G .1/ and an identifying homotopy equivalence p1W G ! G .1/ whose map of underlying
graphs is a homeomorphism but not a cellular map. Define ˛1 D p1.˛/, and write ˛1 D
g0e1 : : : ekgk . There is a map of graphs of groups h1W G .1/! G such that p1h1 D f1.



Train track maps on graphs of groups 1419

We may write

W1 D h1.˛1/ D .h1/v0.g0/g Ne1h1.e1/ge1 : : : g Nekh1.ek/g
�1
ek
.h1/vk .gk/:

(Here each h1.ei / should be understood as the edge determined by the map of underlying
graphs.) Since ŒW1� is trivial, there is some backtracking, i.e. there exists ` such that the
edges h1.e`/ and h1. Ne`C1/ are equal and ge`.h1/v`.g`/g Ne`C1 belongs to �e`.Ge`/. The
same statement is true of f1, so we may (possibly after twisting the marking or changing
the fundamental domain as in Example 2.3) fold e` and Ne`C1. Note that it is possible
that e` D Ne`C1, in which case the fold increases the edge group Ge` . We get a resulting
homotopy equivalence f2W G .2/! G .2/ and the resulting quotient map (which may be
a homeomorphism of underlying graphs) p2W G .1/! G .2/. As before, there is a map of
graphs of groups h2W G .2/! G such that now p2p1h2 D f2. If the edges e and e0 were
folded to create an edge e00, then (thinking of these edges as segments of edges of G ) we
have f .e/ D f .e0/ as length-one edge paths – this is why we twisted the marking – and
we define h2.e00/ D f .e/ D f .e0/. Define ˛2 D .p2p1/].˛/, and define W2 D h2.˛2/ as
above. We have that W2 is obtained from W1 by canceling some backtracking, so ˛2 has
fewer edges than ˛1. We have that ŒW2� is trivial, so we may repeat the above argument at
most k times to produce fk WG .k/! G .k/ such that ˛k D .pkpk�1 � � �p2p1/].˛/ is the
trivial path. Finally, let f 00WG 00 ! G 00 be the topological representative obtained from fk
by tightening and collapsing the maximal pretrivial forest.

Since folding decreases PF.f / or leaves it the same, we have PF.f 00/ � PF.f /. If
PF.f 00/ D PF.f /, then f 00 is bounded since f was, so we let f 0 D f 00. If not, then we
apply Lemma 4.4 to produce a bounded topological representative f 0WG 0 ! G 0 such that
PF.f 00/ � PF.f 0/ < PF.f /.

The argument now finishes as in [2, Lemma 5.14]. If the endpoints of ˛ were distinct,
then the exponentially growing stratum H 0r determined by Hr satisfies

jH 0r \G
0
r�1j < jHr \Gr�1j:

If the endpoints were not distinct, the vertex group of H 0r determined by the endpoint of
˛ is now larger than it was in Hr , in the sense that there is a natural injective but not
surjective identifying homomorphism.

As in [2, Lemma 5.14], if k > r and Hk satisfies (EG-ii), then the corresponding
stratum H 0

k
of f 0W G 0 ! G 0 still satisfies (EG-ii). Likewise, if k � r and Hk satisfies

(EG-i), then the corresponding stratum H 0
k

satisfies (EG-i).

If G is a finite graph, has finitely generated edge groups, and has no inessential valence-
one vertices, then the map f W G ! G satisfies the assumptions of [5, Theorem 2.1], and
thus can be written as a (finite) product of folds and what Dunwoody calls “vertex mor-
phisms.” In fact, the vertex morphisms are unnecessary, because f] is an isomorphism.
Since each of the folds performed in Lemma 4.6 is a fold factor of f , after performing
finitely many such folds, we must have that the exponentially growing stratum of interest
Hr satisfies (EG-ii).
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Lemma 4.7 ([6, Lemma 2.4]). Assuming an oracle that can compute products of elements
in vertex groups, can compute images of injective homomorphisms between edge groups
and vertex groups of G and can tell when two vertex group elements are equal, there is an
algorithm that checks whether a topological representative f W G ! G is a relative train
track map.

Proof. Since (EG-i) is a finite property (whether the image of a direction belongs toHr is
a property of the underlying edge, and Hr has finitely many edges), we may assume that
each exponentially growing stratum satisfies (EG-i).

Suppose Hr is an exponentially growing stratum. A connecting path for Hr is a tight
path ˛ in Gr�1 with endpoints in Hr \Gr�1. Since (EG-i) holds, vertices in Hr \Gr�1
are sent to vertices in Hr \ Gr�1. For paths with distinct endpoints, we claim that for
each component C of Gr�1, (EG-ii) for paths with distinct endpoints is equivalent to
the condition that distinct vertices of Hr \ C are sent to distinct vertices of Hr \ Gr�1.
Indeed, if this holds, then tight paths with distinct endpoints are sent to tight paths with
distinct endpoints which are thus homotopically nontrivial. If not, then there is a pair of
distinct vertices v and w inHr \C identified by f . In this case there is a connecting path
˛ with endpoints v and w whose f]-image is trivial (consider what a homotopy inverse
does to f .v0/ D f .w0/).

Finally, we consider connecting paths with the same endpoint. Let v be a vertex in
Hr \ C . If the map fvW Gv ! Gf .v/ is an isomorphism, there is nothing to check. The
map f induces an isomorphism f]W �1.G ; v/ ! �1.G ; f .v//, so we may consider the
subgroup f �1

]
.Gf .v//. It is elliptic, and in fact fixes a vertex of the Bass–Serre tree �

(consider again what a homotopy inverse to f does to the vertex f .v/). There is a tight
path � such that each element of f �1

]
.Gf .v// may be represented by a path of the form

�g N� . (This path may not be tight, but may be tightened by a homotopy.) Each of these
paths is inessential, in the sense that their f]-image is trivial, and they are connecting
paths for Hr if they are contained in Gr�1. Thus a necessary condition for (EG-ii) is that
for each such g 2 Gf .v/ n fv.Gv/, some and hence any tight path homotopic to �g N� is not
contained in Gr�1. In fact, this condition is sufficient. This is a finite property, since for
each vertex v we need only consider the path � . Therefore we may assume (EG-ii) holds.

Finally, (EG-iii) for Hr is equivalent to checking that f .e/ is r-legal for each edge
e 2 Hr . Since we assume Hr satisfies (EG-i), in the situation of the first assumption,
Lemma 4.1 implies that any nondegenerate turn in Hr whose directions determine the
same underlying oriented edge ofG is legal. Thus if a turn is illegal, it becomes degenerate
as soon as the underlying oriented edges of G are identified. This implies that checking
(EG-iii) is a finite property: for each of the finitely many turns in Hr crossed by f .e/,
we need only check that either the underlying edges of the turn are periodic, so the turn
never degenerates, or the underlying edges are eventually identified, in which case we only
need check whether the actual turn degenerates at that stage. In the case of the second
assumption, there are only finitely many directions at a given vertex, so it is clear that
(EG-iii) is a finite property.
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Proof of Theorem 4.2. As in the proof of Theorem 3.2, we begin with a topological rep-
resentative f W G ! G on a graph of groups satisfying one of our standing assumptions.
Assume further that G is reduced. By assumption, f is bounded. Consider the highest
exponentially growing stratumHr of G . We check whetherHr satisfies (EG-i) and (EG-ii)
using Lemma 4.7. If not, apply Lemma 4.5 and Lemma 4.6 to create a new topological
representative, still called f W G ! G such that the resulting exponentially growing stra-
tum Hr satisfies (EG-i) and (EG-ii). Repeat with the next highest exponentially growing
stratum until all exponentially growing strata satisfy these properties. Check whether the
resulting topological representative, which we still call f WG ! G , satisfies (EG-iii). If it
does, we are done.

If not, then there is some edge e in an exponentially growing stratumHr such that f .e/
is not r-legal. We apply the algorithm in the proof of Theorem 3.2: there is a point P in
Hr where f k is not injective at P for some k > 1. We subdivide and then repeatedly fold.
As in the proof of Theorem 3.2, no edge-group-increasing folds are necessary in this step
in the case of the first assumption. In the contrary case, we have a bound on the number of
edge-group-increasing folds. Either we have reduced the eigenvalue for Hr or produced
a valence-one vertex. We remove all valence-one vertices via homotopies and perform
all possible valence-two homotopies which do not increase PF.f /. At this point we have
created a new topological representative f 0WG 0 ! G 0 with PF.f 0/ < PF.f /, but f 0 may
not be bounded. Apply Lemma 4.4 to produce a new bounded topological representative
f 00W G 00 ! G 00 with PF.f 00/ < PF.f /. If (EG-i) and (EG-ii) are not satisfied by f 00, we
may restore these properties by applying Lemma 4.5 and Lemma 4.6. We saw that these
lemmas preserve boundedness and do not increase PF.f 00/. Because PF.f / can only be
decreased finitely many times before reaching PFmin, eventually this process terminates,
yielding a relative train track map.

Corollary 4.8. If f W G ! G is a topological representative satisfying (EG-i) and with
PF.f / D PFmin, then f is bounded and the exponentially growing strata of f satisfy
(EG-iii).
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