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Asymptotic representations of Hamiltonian
diffeomorphisms and quantization

Laurent Charles and Leonid Polterovich

Abstract. We show that for a special class of geometric quantizations with “small” quantum errors,
the quantum classical correspondence gives rise to an asymptotic projective unitary representation of
the group of Hamiltonian diffeomorphisms. As an application, we get an obstruction to Hamiltonian
actions of finitely presented groups.

1. Introduction and main results

Geometric quantization is a mathematical theory modeling the quantum classical corre-
spondence. The latter is a fundamental physical principle stating that the quantum mechan-
ics contains the classical mechanics in the limit when the Planck constant goes to zero. In
the present paper we focus on the correspondence between Hamiltonian diffeomorphisms
modeling motions of classical mechanics, and their quantum counterparts, unitary opera-
tors coming from the Schrödinger evolution. We show that for a special class of geometric
quantizations with “small” quantum errors, which exist on a certain class of phase spaces
(see Theorem 1.4), this correspondence gives rise to an asymptotic unitary representa-
tion of the universal cover of the group of Hamiltonian diffeomorphisms (Theorem 1.5).
Interestingly enough, together with recent results from group theory [11, 17], this yields
an obstruction to Hamiltonian actions of finitely presented groups (Theorem 1.10). Let us
pass to precise definitions.

1.1. Hamiltonian diffeomorphisms

Let .M 2n; !/ be a closed symplectic manifold. Here ! is a closed differential 2-form,
whose n-th power does not vanish at any point and, thus, gives rise to a volume form onM .
For a function f 2 C1.M/ introduce its Hamiltonian vector field sgradf as the unique
solution of the equation isgradf ! D �df . Given a smooth function f WM � Œ0; 1�!M ,
denote ft .x/ WD f .x; t/, and consider the time-dependent vector field sgradft . Its
evolution defines a path of diffeomorphisms �t on M with �0 D 1. This path is called a
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Hamiltonian path, and the diffeomorphisms ft are called Hamiltonian diffeomorphisms.
The latter form a group denoted by Ham.M;!/ (see [20, Section 1.4] for further details).

Denote by eHam.M;!/ the universal cover of Ham.M;!/. Its elements z� are Hamilto-
nian paths ¹�tº, t 2 Œ0; 1� with �0 D 1, considered up to a homotopy with fixed end points.
We write � D �1 for the projection of z� to Ham.M;!/. Every path ¹�tº is uniquely deter-
mined by a time-dependent generating Hamiltonian ft 2 C1.M/, where the functions ft
are assumed to have zero mean:

R
M
ft !

n D 0 for all t .1 We shall say that z� 2 eHam.M;!/
is generated by a Hamiltonian f 2 C1.M � Œ0; 1�/.

Let us mention that the fundamental group �1.Ham.M; !// is an abelian group, and
we have a central extension

1! �1.Ham.M;!//! eHam.M;!/
�
�! Ham.M;!/! 1:

1.2. Fine quantizations

Define a fundamental operation on functions on a symplectic manifold called the Poisson
bracket: ¹f;gºDLsgradf g, whereL stands for the Lie derivative. We write kf kDmax jf j
for the uniform norm of a function f .

In what follows we denote by L.H / the space of Hermitian operators acting on a
finite-dimensional complex Hilbert space H , and write U.H / for the unitary group of H .

Definition 1.1. A fine quantization of .M; !/ consists of a sequence of positive numbers
„k with limk!1 k„k D 1, a family of finite-dimensional complex Hilbert spaces Hk such
that

dim Hk D

� k
2�

�n
Vol.M;!/CO.kn�1/; (1)

and a family of R-linear maps Qk W C1.M/! L.Hk/ with Qk.1/ D 1, satisfying the
following properties:

(P1) (norm correspondence) kQk.f /kop D kf k CO.k�1/;

(P2) (bracket correspondence) ŒQk.f /;Qk.g/� D
„k
i
Qk.¹f; gº/CO.k�3/,

where the remainder is understood in the operator norm k � kop.

The wording “fine” is chosen in order to emphasize that the remainder in (P2) is
O.k�3/, as opposed to O.k�2/, as it happens for a wide class of geometric quantiza-
tions. For Kähler quantizations (see Section 2 below), the order of the remainder cannot
be improved to O.k�4/, see [6, p. 470]. It is unknown whether the same holds true for
“abstract” quantizations defined by axioms (P1) and (P2).

Recall that .M; !/ is quantizable if the cohomology class Œ!�=.2�/ is integral. The
following conditions on the first Chern class c1.TM/ and the cohomology class of sym-
plectic form Œ!� of a quantizable symplectic manifold are equivalent:

1The Hamiltonian dynamics does not change if one adds to the Hamiltonian any function which does
not depend on the space variable x 2 M , but possibly depends on the time t . Given any Hamiltonian, we
subtract its (in general, time-dependent) mean value to get the generating Hamiltonian having zero mean.
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(C1) the line 1
2
c1.TM/ �RŒ!� in H 2.M;R/ intersects the lattice of integral classes

H 2.M;Z/=torsion;

(C2) c1 takes even values on Ker.Œ!�/, where both c1 and Œ!� are considered as mor-
phisms H2.M;Z/=torsion! R.

Indeed, (C1) yields (C2) immediately. In the opposite direction, choose a basis in Ker.Œ!�/,
say e1; : : : ; em�1, and extend it to a basis inH2.M;Z/=torsion by e0. Then !.e0/D 2�N ,
where the numberN 2Z is defined as an integer such that Œ!�=.2�N/ is a primitive vector.
To get (C1) from (C2), we choose � D .c1.e0/C 2p/=.2N /, with any integer p.

Definition 1.2. We say that .M;!/ satisfies condition (C) if it satisfies one of the equiva-
lent conditions (C1) or (C2).

Condition (C) may be viewed as a generalization of the existence of metaplectic struc-
ture. It is more general: all complex projective spaces satisfy condition (C) because their
second cohomology groups are one-dimensional. However, only the projective spaces with
an odd complex dimension have a metaplectic structure.

Example 1.3. Take M to be CP 2 blown up at one point. Let L; E be the basis in
H2.M; Z/ with L being the class of a general line and E of the exceptional divisor.
There exists a symplectic form on M with !.L/ D 2�m, !.E/ D 2�n, for any integral
m > n > 0. We have c1.nL �mE/ D 3n �m, and hence (C2) is satisfied if and only if
m D n mod 2.

Theorem 1.4. Every quantizable closed symplectic manifold M satisfying condition (C)
admits a fine quantization.

The proof is given in Section 2.

1.3. Asymptotic unitary representation

LetQk be a fine quantization. For a Hamiltonian ft as above consider the unitary quantum
evolution Uk.t/ W Hk ! Hk described by the Schrödinger equation

PUk.t/ D �
i

„k
Qk.ft /Uk.t/; Uk.0/ D 1: (2)

One can view the time-one mapUk DUk.1/ as a quantization of the element z� represented
by ft ; see [15, Remark II.2.7].

Define a family of maps � WD ¹�kº, k 2 N,

�k W eHam.M;!/! U.Hk/;

as follows. For every z� 2 eHam.M;!/ pick any Hamiltonian path joining the identity with
� generated by a Hamiltonian ft , and set �.z�/ D Uk , where Uk is determined by (2) as
above. Let us emphasize that �k.z�/ depends on the specific choice of a Hamiltonian path
in the class of paths homotopic with fixed endpoints.
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Theorem 1.5. (i) The unitaries �k.z�/ and �0
k
.z�/ defined via two different choices

of paths homotopic with fixed endpoints representing � 2 eHam.M;!/ satisfy�k.z�/ � �0k.z�/op D O.k�1/:

(ii) For every z�; z 2 eHam.M;!/�k.z�/�k. z / � �k.z� z /op D O.k�1/:

(iii) If � ¤ 1, �k.z�/ � 1


op � 1=2CO.k�1/:

The proof is given in Section 3.2.

1.4. Constraints on subgroups of AHam

The collection of maps �k gives rise to an interesting algebraic object. In order to describe
it, we need some preliminaries from [11,17]. For p � 1 and an operatorA WH !H acting
on a d -dimensional Hilbert space H denote by kAkp its p-th Schatten norm given by

kAkp D
�
tr
��p

A�A
�p��1=p

:

Recall that
kAkop � kAkp � d

1=p
kAkop: (3)

Definition 1.6 ([17]). A group � is called p-norm approximated if there exists a family
of maps

�k W � ! U.Hk/;

where Hk is a sequence of Hilbert spaces of growing dimension, such that

lim k�k.x/�k.y/ � �k.xy/kp D 0; 8x; y 2 �; (4)

and
lim inf k�k.x/ � 1kp > 0; 8x 2 �; x ¤ 1:

We call any sequence of maps �k satisfying (4) an asymptotic representation of � in the
sequence of unitary groups equipped with the p-norms.

Theorem 1.5 combined with estimate (3) and formula (1) immediately yields the fol-
lowing result.

Corollary 1.7. Assume that a 2n-dimensional closed symplectic manifold M admits a
fine quantization. Let � � eHam.M;!/ be a finitely presented subgroup with

� \ �1.Ham.M;!// D ¹1º: (5)

Then � is p-norm approximated for every p > n.
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Existence of groups which are not p-norm approximated, p > 1, was established by
Lubotzky and Oppenheim in [17]. For instance, certain finite central extensions of lattices
in simple `-adic Lie groups belong to this class.

Denote by Kp � �1.Ham.M;!// the subgroup formed by elements z� 2 eHam.M;!/
with limk!1 k�k.z�/ � 1kp D 0. Assumption (5) in Corollary 1.7 can be replaced to

� \Kp D ¹1º:

It would be interesting to explore the subgroup Kp .

1.5. Asymptotic projective representations and constraints on Hamiltonian actions

What can we say about the restriction of the approximate representation �k to the funda-
mental group �1.Ham.M; !// � eHam.M; !/? The following enhancement of Theorem
1.4 sheds light on this question.

Theorem 1.8. Every quantizable Kähler closed symplectic manifold M satisfying condi-
tion (C) admits a fine quantization which satisfies

�k./ D e
irk./1CO.k�1/;

where rk W �1.Ham.M;!//! R=.2�Z/ is a sequence of homomorphisms.

The proof is given in Section 4. The homomorphisms rk will be explicitly described
in terms of action and Maslov invariants. The result follows from [10], which is developed
in the Kähler setting. But there is no serious reason to think that the Kähler assumption is
essential here.

Denote by PU.Hk/ D U.Hk/=S
1 the projectivization of the unitary group of the

Hilbert space Hk . We equip this group with the quotient metric

ıp.ŒA�; ŒB�/ D inf
�
kA � ei�Bkp:

Let us state an analogue of Definition 1.6 for projective representations.

Definition 1.9. A group � is called p-norm projectively approximated if there exists a
family of maps

�k W � ! PU.Hk/;

where Hk is a sequence of Hilbert spaces of growing dimension, such that

lim ıp
�
�k.x/�k.y/; �k.xy/

�
D 0; 8x; y 2 �; (6)

and
lim inf ıp.�k.x/; 1/ > 0; 8x 2 �; x ¤ 1:

We call any sequence of maps �k satisfying (6) an asymptotic projective representation of
� in the sequence of unitary groups equipped with the p-norms.
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With this language, the asymptotic unitary representation �k from Theorem 1.8 de-
scends to an asymptotic projective representation

�k W Ham.M;!/! PU.Hk/; � 7! Œ�k.z�/�;

where z� is any lift of �. Furthermore, every finitely presented subgroup of Ham.M; !/
is p-norm projectively approximated. The proof is analogous to the one of Theorem 1.5,
with the only extra ingredient being explained in Remark 3.2 below.

Write PLOp for the class of finitely presented groups which are not p-norm projec-
tively approximated. We sum up the previous discussion in the following theorem, which
is the main application of our quantization-based technique to group actions on symplectic
manifolds.

Theorem 1.10. Let .M; !/ be a closed Kähler manifold of dimension 2n with Œ!�=.2�/
being an integral class and c1.TM/ taking even values on KerŒ!�. Then every finitely
presented subgroup of the group of Hamiltonian diffeomorphisms Ham.M; !/ is p-norm
projectively approximated with any p > n. In other words, groups from the class PLOp ,
p > n do not admit a faithful Hamiltonian action on .M;!/.

Example 1.11. This result is applicable, for instance, to quantizable closed Kähler mani-
folds M which are monotone: c1.TM/ D �Œ!� with some � 2 R. Specific examples with
� > 0 include complex projective spaces of arbitrary dimension as well as their blow-ups
with specially chosen symplectic forms (cf. Example 1.3 above). If � � 0 (e.g., when M
is a higher genus closed surface equipped with an area form), then the group Ham.M; !/
has no torsion [1]. At the same time all currently known groups from the class PLOp
are finite central extensions of certain cocompact lattices and hence possess torsion. Thus,
the novelty of Theorem 1.10 in the case � � 0 depends on whether the class PLOp con-
tains groups without torsion, a problem which is still open (thanks to the referee for this
comment).

It is also unclear to us whether Theorem 1.10 can be extended to the volume-preserving
category.

Question 1.12. Can groups from the class PLOp act faithfully by volume-preserving
diffeomorphisms on a closed connected manifold?

An affirmative answer would highlight the symplectic nature of Theorem 1.10, while
the negative one would require completely different tools.

1.6. How to construct groups from PLOp (following [11, 17])

De Chiffre, Glebsky, Lubotzky, and Thom [11] and Lubotzky and Oppenheim [17] came
up with a technique leading to examples of groups which are not p-norm approximated
for p > 1. It was explained to us by Lubotzky that the same method shows that these
groups are not p-norm projectively approximated, i.e., lie in PLOp . The argument from
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[11, 17] extends verbatim. For the convenience of the reader we provide a brief outline of
this argument adjusted to the projective case.

Fix a non-principal ultrafilter U, and consider the ultraproduct

Vp WD
Y
j!U

.Mat.C; kj /; k�kp/:

Every asymptotic projective representation of � yields a genuine isometric representation
�p of � on Vp by conjugation. The crux of the matter is that the action by conjugation is
well defined since for U1 D ei�U2, we have U1AU �1 D U2AU

�
2 .

Given a class of groups P , we say that a group � is residually P if for every element
x 2� n ¹1º there exists a homomorphism from � to a group from P whose kernel does not
contain x. Interesting classes of groups include linear groups (those, admitting a faithful
finite-dimensional representations) and finite groups.

Proposition 1.13 ([11]). Let � be a finitely presented group with the following properties:

(a) H 2.�; �p/ D 0;

(b) � is not residually linear.

Then � 2 PLOp .

Indeed, assumption (a) enables one to apply a Newton-type process which yields a
genuine representation of � on Mat.C; kj / for almost all j with respect to the ultrafilter.
Moreover, every x ¤ 1 does not lie in its kernel for almost all j . But this contradicts
assumption (b).

The group � is constructed in two steps:

(i) Take a cocompact lattice �0 in a simple Lie group G of rank � 3 over `-adic
numbers with ` sufficiently large.

(ii) Take a special finite central extension � of �0 which is not residually finite
(Deligne).

The paper [11] proposes a specific example of the lattice �0,

�0 D U.2m/ \ Sp
�
2m;ZŒ

p
�1; 1=`�

�
considered as a cocompact lattice in Sp.2m;Q`/.

The central extension � ! �0, based on a technique of Deligne, is quite complicated,
and we refer to [11] for details.

In order to verify assumption (a) of Proposition 1.13, the following features are used:
first, the Lie group G acts on a special simplicial complex (a Bruhat–Tits building); here
one uses the `-adic nature of the situation. Second, the representation �p is a particu-
lar case of an isometric representation on Banach spaces from a special class: they are
obtained from Pisier’s � -Hilbertian spaces (where � depends on p) by using quotients,
l2-sums and ultraproducts.
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For verifying assumption (b) of Proposition 1.13, one uses (an immediate consequence
of) the Malcev theorem: any residually linear group is residually finite. This completes our
outline of the argument from [11, 17].

1.7. Stability

Another application of Theorem 1.5 deals with the following stability question: given a
subgroup � � eHam.M; !/, is its quantization �kj� W � ! U.Hk/ close to a genuine
representation? It follows that the answer is affirmative for the class of p-norm stable
groups defined as follows [11, 17]. Here we include the case p D 1, i.e. of the operator
norm. Let � be a finitely presented group defined by finite collections of generators S
and relations R, considered as subsets of the free group FS generated by S . The p-norm
stability means that for every " > 0 there exists ı > 0 such that for every finite-dimensional
Hilbert space H and every homomorphism t W FS ! U.H / with

max
r2R
kt .r/ � 1kp � ı;

there exists a homomorphism � W � ! U.H / whose lift x� W FS ! U.H / satisfies

max
s2S
kt .s/ � x�.s/kp < ":

Let us mention that all finite groups are operator norm stable by [12, 14].

Corollary 1.14. Assume that a 2n-dimensional closed symplectic manifold M admits a
fine quantization. Let � D hS jRi � eHam.M; !/ be a finitely presented p-norm stable
subgroup, where p > n. There exists a family of homomorphisms �k W � ! U.Hk/ such
that

max
s2S
k�k.s/ � �k.s/kp ! 0; k !1:

Remark 1.15. Some examples of finite subgroups of eHam.M;!/ come from the follow-
ing construction. Let F � Ham.M;!/ be a finite group acting in a Hamiltonian way on a
closed quantizable symplectic manifold .M; !/. For instance, any unitary representation
of F on a finite-dimensional complex Hilbert space V yields an action of F on the pro-
jectivization P .V /. Denote by zF � eHam.M; !/ the full lift of F . If F is perfect, there
exists a finite abelian extension G of F , called the universal extension [21], such that the
following diagram commutes:

G

��

// F

1

��
zF

� // F:

This provides a monomorphism of G into eHam.M;!/.

Let us note also that for any finite subgroup F � Ham.M; !/, the restriction �kjF of
the asymptotic projective representation �k , which we constructed for quantizable Kähler



Asymptotic representations of Hamiltonian diffeomorphisms and quantization 1377

manifolds satisfying condition (C), is close to a genuine projective representation, see
[12].

1.8. Bibliographical and historical remarks

A few bibliographical remarks are in order. For Kähler quantization with metaplectic cor-
rection an asymptotic representation of the quantomorphisms group of a prequantum circle
bundle over a closed symplectic manifold is constructed by Charles in [6]. In the present
paper we generalize this result in two directions: first, we prove it for arbitrary fine quan-
tizations, and second, for Kähler quantization, we impose condition (C) instead of the
assumption that the canonical bundle admits a square root.

Charles showed in [9] that quantization enables one to reconstruct Shelukhin’s quasi-
morphism on eHam.M; !/. Ioos, Kazhdan, and Polterovich [13] explored a link between
quantization and almost representations of Lie algebras.

Constraints on smooth actions of finitely presented groups on closed manifolds is
a classical and still rapidly developing subject. Its highlight is Zimmer’s famous con-
jecture [22] which, roughly speaking, states that higher rank lattices in semisimple Lie
groups cannot act on manifolds of sufficiently small dimension. This conjecture was
recently resolved in a breakthrough work by Brown, Fisher, and Hurtado [4]. Some results
on Hamiltonian actions were obtained by Polterovich, Franks, and Handel. We refer to
Fisher’s survey in [22] for a more detailed discussion. It would be interesting to explore
potential actions of the group constructed in [11,17] and described above, which is a finite
extension of a higher rank `-adic lattice with sufficiently high `, along the lines of [4].
As we have learned from David Fisher, this problem is at the moment open. Furthermore,
Fisher conjectured existence of constraints on actions of such groups.

Let us mention also that one of the assumptions of our Theorem 1.10 providing con-
straints on Hamiltonian actions of groups from the class PLOp is dimC M < p. Further-
more, for every positive integer n < p there exist manifolds of complex dimension n to
which the theorem is applicable (e.g., the complex projective spaces, see Example 1.11
above). This “smallness of dimension” assumption is very different from the one appear-
ing in the Zimmer conjecture (thanks to the referee for pointing this out).

2. Constructing fine quantizations

In this section we prove Theorem 1.4 by constructing a fine quantization, which will be
denoted by Opk .

In the usual Toeplitz–Kähler quantization, we consider a compact Kähler manifold
.M; !/ equipped with a holomorphic Hermitian line bundle L whose Chern connection
has curvature 1

i
!. The quantum space is defined as the space Hk of holomorphic sections

ofLk ˝L0, whereL0 is an auxiliary Hermitian holomorphic line bundle. Here, the param-
eter k is a positive integer. In this context, a standard way to define a quantum observable
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from a classical one is the Berezin–Toeplitz quantization: for any f 2 C1.M;R/, we let
Tk.f / be the endomorphism of Hk such that

hTk.f / ; 
0
i D hf  ; 0i (7)

for any  ;  0 2 Hk . In other words, Tk.f / is the orthogonal projection of f  to Hk

with respect to the natural scalar product on the space of smooth sections of Lk ˝ L0.
Here the scalar product of C1.M;Lk ˝ L0/ is given by integrating the pointwise scalar
product against the Liouville volume form.

The basic properties of these operators are the following equalities which hold for any
f; g 2 C1.M/:

Tk.fg/ D Tk.f /Tk.g/CO.k�1/;

ŒTk.f /; Tk.g/� D .ik/
�1Tk.¹f; gº/CO.k�2/;

tr.Tk.f // D
� k
2�

�n Z
M

f�CO.kn�1/;

(8)

initially proved in [2] by using the generalized Toeplitz operators of [3]. We refer to [16,
Chapter 5] for a recent detailed exposition.

These asymptotic properties of operators Tk provide a rigorous mathematical model
of the correspondence principle from physics stating that “quantum mechanics contains
classical mechanics in the semiclassical limit k ! 1”. Here the symplectic manifold
.M;!/ is considered as the phase space of classical mechanics.

Furthermore, kTk.f /kop D kf k C O.k�1/. Observe that in the bracket correspon-
dence (second line of (8)), the remainder is an O.k�2/, so we miss the fine quantization
condition given in Definition 1.1.

The first-order correction to (8) has been computed in [5, 6]. Introduce for any f 2
C1.M/, the operator

Opk.f / WD Tk.f � .2k/
�1�f / (9)

where� is the holomorphic Laplacian ofM (in complex coordinates�f D
P
Gij @zi @xzj

with .Gij / the inverse of .Gij / given by ! D i
P
Gijdzi ^ dzj ). Since Opk.f / D

Tk.f /C O.k�1/, the operators Opk.f / satisfy (8) as well. The novelty is that we have
now some explicit formulas for the first corrections:

Opk.f /Opk.g/ D Opk.fg/C
i

2k
Opk.¹f; gº/CO.k�2/;

ŒOpk.f /;Opk.g/� D .ik/
�1 Opk

�
¹f; gº � k�1!1.Xf ; Xg/

�
CO.k�3/;

tr.Opk.f // D
� k
2�

�n Z
M

f
.! C k�1!1/

n

nŠ
CO.k�2/;

(10)

see [6, Theorem 3.4] and [5, Section 2.2]. Here !1 D i.‚0 � 1
2
‚K/, where ‚0 and ‚K

are the Chern curvature of L0 and the canonical bundle K, respectively. In the complex
coordinates as above, ‚K D @x@ ln det.Gij /.
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In the case whereM has a metaplectic structure, one can choose forL0 a square root of
the canonical bundle, so that !1 D 0, and we get our fine quantization. More generally, to
prove the existence of fine quantizations under assumption (C), we construct a convenient
auxiliary bundle L0.

Lemma 2.1. Assume that a quantizable closed Kähler manifold .M;!/ satisfies condition
(C). Then there exists a holomorphic Hermitian line bundle L0 such that !1 D �! with
� 2 Q.

Proof. The basic observation we need is that for any line bundle D and integer m such
thatDm is equipped with Hermitian and holomorphic structures,D has natural Hermitian
and holomorphic structures inducing the ones of Dm. Furthermore, the Chern curvature
of D is 1=m times the Chern curvature of Dm.

Now, the assumption that 1
2
cR
1 .K/ C RŒ!� intersects the lattice of integral classes

means that there exists a line bundle L0 such that cR
1 .L

0/ D 1
2
cR
1 .K/ C �c

R
1 .L/. Since

cR
1 .L/ ¤ 0, we have that � D p=q is rational. So .L0/2q D Kq ˝ L2p ˝ T where T is

a torsion line bundle, i.e. Tm D 1 for some m 2 N. We endow T with the Hermitian and
holomorphic structures such that Tm becomes the trivial Hermitian and holomorphic line
bundle, so that the Chern curvature of T is zero. Then we endow L0 with the Hermitian
and holomorphic structure compatible with the isomorphism .L0/2q D Kq ˝ L2p ˝ T .
So the Chern curvatures ‚0, ‚ and ‚K of L0, L and K satisfy ‚0 D 1

2
‚K C �‚. So

!1 D i�‚ D �!.

In the case where !1 D �!, the second and third equations of (10) read

ŒOpk.f /;Opk.g/� D .i.k C �//
�1 Opk.¹f; gº/CO.k�3/;

tr.Opk.f // D
�k C �
2�

�n Z
M

f�CO.kn�2/;
(11)

which proves Theorem 1.4 for a Kähler manifold with „k D .k C �/�1.
Let us generalize this to symplectic manifolds. So we start with a symplectic compact

manifold .M;!/ such that 1
2�
Œ!� is integral. We introduce a Hermitian line bundle L with

Chern class 1
2�
Œ!� and a second Hermitian line bundle L0. We denote by�1 2H 2.M;R/

the cohomology class

�1 D
1

2�

�
cR
1 .L

0/ �
1

2
cR
1 .K/

�
:

Here, the canonical bundleK is defined through any almost complex structure compatible
with !. It is well known that the Chern class of K only depends on !. If Hk is a finite-
dimensional subspace of C1.M;Lk ˝L0/, we can define as before the Toeplitz operators
Tk.f / by (7). Then we have the following results:

(1) By [7], cf. also [3,18], one can choose the family .Hk/ so that the operators Tk.f /
satisfy (8).

(2) By [8], there exists a real differential operator P W C1.M/! C1.M/ such that
Opk.f / D Tk.f / C k

�1Tk.Pf / satisfies (10) with !1 a representative of �1.
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Furthermore, by adding to P a vector field, one modifies !1 by an exact form.
Choosing conveniently this vector field, we can obtain any representative of �1.

If condition (C) holds, we can choose L0 so that�1 D �Œ!� for some � 2Q. Choosing P
so that !1 D �!, we obtain equations (11).

3. Quantum dynamics

3.1. The Egorov theorem for fine quantizations

We start with the Egorov theorem for fine quantizations. Let ft be a classical Hamilto-
nian generating the Hamiltonian flow �t , and let Uk.t/ be the corresponding quantum
evolution.

Theorem 3.1. For every function g 2 C1.M/

kQk.g ı �
�1/ � UkQk.g/U

�1
k kop D O.k�2/; (12)

where the remainder depends on f and g.

This formula readily follows from [15, Proposition 2.7.1]. Let us emphasize that the
quantum map Uk depends on the Hamiltonian f generating the diffeomorphism �. This
dependence will be analyzed later.

Proof. Recall that if �t is the Hamiltonian flow generated by a time-dependent Hamilto-
nian ft .x/, the flow ��1t is generated by xft WD �ft ı �t . It follows that for any function
g 2 C1.M/

d

dt
g ı ��t D .��t /�.Lsgrad xft

g/ D .��t /�¹ xft ; gº D �¹ft ; g ı �
�t
º: (13)

Next, turn to the analysis of the Schrödinger equation P� D � i
„k
Qk.ft /� . Introduce

the family of unitary operators

U.s; t/ W Hk ! Hk ; �.s/ 7! �.t/

which sends the solution at time s to the solution at time t . Observe that U.0; t/ D
Uk.t/ is the Schrödinger evolution, U.t; t/ D 1 and U.s; t/ D U.t; s/�1 D U.t; s/�. The
Schrödinger equation yields

@

@s
U.t; s/ D �

i

„k
Qk.fs/U.t; s/;

@

@s
U.s; t/ D �

i

„k
U.s; t/Qk.fs/: (14)

Put now B.s/ WD U.s; 1/Qk.g ı �
�1
s /U.1; s/, so that B.0/ D UkQk.g/Uk D �1 and

B.1/ D Qk.g ı �
�1
1 /. From (13) and (14) we get that

dB

ds
D U.s; 1/

� i
„k
ŒQk.fs/;Qk.g ı �

�1
s /� �Qk.¹fs; g ı �

�s
º/
�
U.1; s/:
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Observe that the functions fs and g ı ��1s , s 2 Œ0; 1� form a compact family with respect
to C1-topology, and hence by bracket correspondence (P2) maxs kdB=dskop D O.k�2/.
Thus

kQk.g ı �
�1/ � UkQk.g/U

�1
k kop D

Z 1

0

dB=ds.s/ ds


op
D O.k�2/;

as required.

3.2. Proof of Theorem 1.5

Proof of Theorem 1.5. Suppose that we have two Hamiltonian paths 0 D �t;0 and
1 D �t;1, t 2 Œ0; 1� with �0;0 D �0;1 D 1 and �1;0 D �1;1 D �, which are homotopic
with fixed end points through a family �t;s , s 2 Œ0; 1�. Denote by Uk.�1;j / the time one
map of the Schrödinger evolution obtained by the quantization of j . We claim that

kUk.�1;1/ � Uk.�1;0/kop D O.k�1/: (15)

To see this, look at the family �t;s and denote by pt;s the generating Hamiltonian when s is
fixed, t varies, and by qt;s the Hamiltonian when t is fixed, s varies. All the Hamiltonians
are assumed to have zero mean (cf. the footnote in Section 1.1). Then

@sp D @tq C ¹p; qº: (16)

Put A D „�1
k
Qk.p/ and C D „�1

k
Qk.q/. Let U.t; s/ be the unitary evolution of

@tU D �iAU

with U.0; s/ D 1. Note that

Uk.�1;1/ D U.1; 1/; Uk.�1;0/ D U.1; 0/:

Define B by
@sU D �iBU: (17)

Then

@s@tU D �iA@sU � i@sAU D �iABU � i@sAU;

@t@sU D �iB@tU � i@tBU D �iBAU � i@tBU:

Subtracting and rearranging, we get

@tB D @sA � i ŒA; B�:

Further, by (16)

@tC D „
�1
k Qk.@tq/ D „

�1
k Qk.@sp/C „

�1
k Qk.¹p; qº/ D @sAC „

�1
k Qk.¹p; qº/:

Thus
@t .B � C/ D „

�2
k

�
�i ŒQk.p/Qk.q/� � „kQk.¹p; qº/

�
D O.k�1/;
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by bracket correspondence (P2). Observe that @sU.0; s/ D 0, so B.0; s/ D 0. Further,
q.0; s/ D 0, so C.0; s/ D 0. Thus

kB.1; s/ � C.1; s/kop D O.k�1/:

But C.1; s/ D 0 since q.1; s/ D 0. Thus kB.1; s/kop D O.k�1/ and hence by (17)

kU.1; 1/ � U.1; 0/kop D O.k�1/;

and (15) follows. This proves item (i) of the theorem.

Let us analyze the quantization of the product of two Hamiltonian paths. Let �t and
 t be two paths generated by normalized Hamiltonians ft and gt respectively, and denote
�t D �t t . Consider the corresponding Schrödinger evolutions

PUk D �i„
�1
k Qk.ft /Uk ; Uk.0/ D 1;

PVk D �i„
�1
k Qk.gt /Vk ; Vk.0/ D 1:

Put
S.t/ D Qk.ft /C Uk.t/Qk.gt /Uk.t/

�1; Wk.t/ D Uk.t/Vk.t/:

Observe that
PWk D �i„

�1
k S.t/W: (18)

Since �t is generated by ht WD ft C gt ı ��1t , the Egorov theorem (Theorem 3.1) yields

Qk.ht / D S.t/CO.k�2/:

Denote by Zk.t/ the Schrödinger evolution of �t , that is,

PZk D �i„
�1
k Qk.ht /Zk D

�
�i„�1k S.t/CO.k�1/

�
Zk ; Zk.0/ D 1:

Comparing this equation with (18), we conclude that

kUk.1/Vk.1/ �Zk.1/kop D O.k�1/:

Thus �k is an almost-representation, which proves item (ii) of the theorem.

Finally, assume that a Hamiltonian ft generates a Hamiltonian path �t with �1 ¤ 1.
Thus �1 displaces an open set Y �M : �1.Y /\ Y D ;. Take a non-vanishing function g
supported in �1.Y /. Observe that

kg ı ��1 � gk D kgk: (19)

Put Ak WD Qk.g/. Let Uk be the unitary operator quantizing �1. By the Egorov theorem,

Qk.g ı �
�1/ D UkAkU

�1
k CO.k�2/:
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It follows from (19) and (P1) that kUkAkU�1k � Akop D kAkop CO.k�1/. Estimating

kAkop CO.k�1/ D kUkAkU
�
k � Akop

D kUkAU
�
k � UkAC UkA � Akop

� 2kAkop � k1 � Ukkop;

we get that k1 � Ukkop � 1=2CO.k�1/, which proves item (iii) of the theorem.

Remark 3.2. Replacing Uk by ei�Uk in the proof of (iii), we get that

kUk � e
i�1kop � 1=2CO.k�1/

for every phase � . This implies that the approximate projective representation �k appear-
ing right after Theorem 1.8 satisfies, for every � 2 Ham.M;!/,

ıp.�k.�/; 1/ � const > 0; 8k 2 N;

provided � ¤ 1.

4. Loop quantization

In this section we prove Theorem 1.8 from the introduction. A more detailed formulation
of this result appears in Theorem 4.1 below.

4.1. Action and Maslov index

Let .M;!/ be a compact symplectic manifold equipped with a prequantum line bundle L
and an auxiliary line bundle L0 such that

cR
1 .L

0/ D �cR
1 .L/C

1

2
cR
1 .K/

where K is the canonical line bundle.
Since 1

i
! is the curvature of L, the periods of ! are multiples of 2� , so the action of

any contractible periodic trajectory .t/, t 2 Œ0; T � of a Hamiltonian .Ht / is well defined
modulo 2�Z and given by the usual formula

A./ D

Z
D

! �

Z T

0

Ht ..t//dt

where D is a disc with boundary  . We can even define the action modulo 2� of any
periodic trajectory, by using parallel transport in L instead of the integral of !.

If .Ht / generates a loop L D .�t ; t 2 Œ0; 1�/ of Hamiltonian diffeomorphisms, then
our assumption on L0 allows to define a mixed action-Maslov invariant as follows [19].
By Floer theory, any trajectory �t .x/, t 2 Œ0; 1� is the boundary of a disc D. We set

I.L/ D �
� Z

D

! �

Z 1

0

Ht .�t .x// dt
�
C �m. / (20)
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where  is the loop of Sp.2n/ obtained by trivializing the symplectic bundle TM over
D and defining  .t/ WD Tx�t and m. / D 0 or 1 depending on whether the class of  
in �1.Sp.2n// D Z is even or odd. One readily checks that I.L/ is well defined modulo
2�Z.

4.2. Quantization of a Hamiltonian loop

Assume now that .M;!/ is Kähler, that L and L0 are holomorphic hermitian line bundles
with Chern curvatures ‚ and ‚0 satisfying ‚ D 1

i
! and ‚0 D �‚C 1

2
‚K . Consider the

space Hk of holomorphic sections of Lk ˝ L0. For any f 2 C1.M;R/, we define the
operator Opk.f / as in (9)

Let .Ht / be a Hamiltonian ofM generating a loop L D .�t ; t 2 Œ0; 1�/. Introduce the
quantum propagator Ut;k ,

1

i.k C �/
@tUk;t C Opk.Ht /Uk;t D 0; Uk;0 D 1:

We assume from now on thatM is connected, so the periodic trajectories .�t .x/; t 2 Œ0;1�/
have all the same action, denoted by A.L/.

Theorem 4.1. We have Uk;1 D eikA.L/CiI.L/ CO.k�1/.

Proof. We can rewrite the Schrödinger equation as

1

ik
@tUk;t C

�
1C

�

k

�
Opk.Ht /Uk;t D 0:

Then, by [10, Theorem 4.2] the Schwartz kernel of Uk;t is a Lagrangian state associated
with the graph of �t . We refer to [10] for the precise definitions. What is important to us
here is that since �1 is the identity, we have

Uk;1 D e
ik�Tk.�/CO.k�1/ (21)

where � is a real number, � 2 C1.M/ and Tk.�/ is the Berezin–Toeplitz operator with
multiplicator � defined as in Section 2.

Furthermore, we can compute � and � by introducing a half-form bundle (i.e., the
square root of the canonical bundle) denoted by ı. It is possible that such a bundle does
not exist on M but we only need it on the trajectory  of a given point x. In this case we
take a disc D with boundary  and choose the square root ı which extends to D.

Then by [10, Theorem 1.1]

Uk;t .�t .x/; x/ �
� k
2�

�n
e
1
i

R t
0 H

sub
r .�r .x// dr Œ�Lt .x/�

˝k
˝ T L1

t .x/˝ ŒDt .x/�
1=2:

Here �Lt is the prequantum lift of �t to L, and H sub
r D �Ht is the subprincipal symbol of

.1C �
k
/Opk.Ht /. The second term T L1

t .x/ W L1jx ! L1j�t .x/ is the parallel transport in
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the line bundleL1 DL0˝ ı�1. It is the multiplication by exp.i�
R
D
!/ because the curva-

ture of L1 is ‚0 � 1
2
‚K D �‚ D

�
i
!. The last term is the square root of an isomorphism

Dt .x/ W Kx ! K�t .x/ defined by

Dt .x/.˛/..Tx�t /
1;0u/ D ˛.u/; 8˛ 2 Kx ; u 2 detT 1;0x M:

Here the square root is chosen so as to be continuous and equal to 1 at t D 0.
On the other hand, by (21),

Uk;1.x; x/ D
� k
2�

�n
eik� .�.x/CO.k�1//:

Now �L1 .x/ D e
iA.L/ implies that � D A.L/ and it remains to prove that

e
1
i

R 1
0 H

sub
r .�r .x// drT L1

1 .x/˝ ŒD1.x/�
1=2
D eiI.L/: (22)

Since Tx�1 is the identity of TxM , D1.x/ is the identity of Kx so

.Dt .x//
1=2
D ˙1ıx :

To determine the sign, we trivialize TM along  with a symplectic frame, so that .Tx�t /
becomes a loop ˛ of symplectic matrices based at the identity and in the corresponding
trivialization of K, Dt .x/ is the multiplication by a complex number. The sign we search
depends only on the homotopy class of ˛. Since Sp.2n/ deformation retracts to its sub-
group U.n/, we can assume that ˛ is a loop of U.n/, in which case Dt .x/ is the complex
determinant of ˛.t/. Thus, our sign is positive or negative depending on whether the class
of ˛ in �1.Sp.2n// D Z is even or odd. We conclude that each factor in (22) corresponds
to a summand in (20), which completes the proof.
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