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Monadic second-order logic and the domino problem on
self-similar graphs

Laurent Bartholdi

Abstract. We consider the domino problem on Schreier graphs of self-similar groups, and more
generally their monadic second-order logic. On the one hand, we prove that if the group is bounded,
then the domino problem on the graph is decidable; furthermore, under an ultimate periodicity con-
dition, all its monadic second-order logic is decidable. This covers, for example, the Sierpiński
gasket graphs and the Schreier graphs of the Basilica group. On the other hand, we prove undecid-
ability of the domino problem for a class of self-similar groups, answering a question by Barbieri
and Sablik, and study some examples including one of linear growth.

1. Introduction

The domino problem is (in spite of its connection to monadic second-order logic, see
Section 1.3) a mockingly elementary question to ask of an edge-labelled graph: “given a
collection of labelled dominoes (with colours from a finite set on their ends), can one put
a domino on each edge of the graph in such a manner that edge labels and vertex colours
match?”

This problem is clearly solvable by brute force if the graph is finite, and it is easy to
see that it is solvable if the graph is a line. Remarkably, if the graph is the square grid
(with edges labelled vertical/horizontal), then this problem is unsolvable, as was shown
by Berger [5].

This result should not be considered negative; it rather points to the universal comput-
ing power present in the square grid. It is a fundamental and natural problem to delineate
the frontier between decidability and undecidability, in terms of the structure of the under-
lying graph.

A large source of labelled graphs worth studying arises from group theory: given a
group G with finite generating set A and acting on a space X , consider the graph with
vertex set X , having for all s 2 A, x 2 X an edge labelled s from x to sx. Such graphs
are known as Schreier graphs since their appearance in [19]. In this setting, an instance of
the domino problem is a subset ‚ � B �A �B for some finite set B , and the question is
whether there exists a colouring � WX ! B with .�.x/; s; �.sx// 2‚ for all s 2 A, x 2 X .
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1.1. Decidability results

Our first “positive” result concerns graphs with an abundance of local cut points. These
graphs are intimately connected to finitely ramified fractals, and Schreier graphs of
bounded self-similar groups, see just below for definitions. This result will be extended,
in Section 1.3, to decidability of the graph’s monadic second-order theory.

Theorem A (D Proposition 4.1). The domino problem is decidable on post-critically
finite self-similar graphs.

The model of such graphs is a discrete avatar of the Sierpiński gasket; it is the subgraph
of the square grid N2 induced by ¹.m; n/ 2 N2 W

�
n
m

�
is oddº.

A transducer is a finite rooted graph ˆ with input and output labels in a finite set S
on every edge, and such that at every vertex and for every s 2 S there is a single outgoing
edge with input label s. The transducer produces a transformation � of the space SN

of right-infinite strings over S , as follows: given � 2 SN , there is a unique right-infinite
path, starting at the root, and with input labels �; then �.�/ 2 SN are the output labels
along this path. Fixing one transducer ˆ and varying its root produces a finite collection
of transformations, and if all of them are invertible, then the group of permutations of SN

that they generate is called a self-similar group; its generating set is naturally in bijection
with the vertex set ofˆ. Some very small transducers produce rich and interesting groups,
see Section 4.1 for an example called the “Hanoi tower group” in connection with the
Sierpiński gasket, see Figure 1 (left). The graphs that we are interested in are Schreier
graphs of self-similar groups on the orbit of a ray � 2 SN , henceforth called self-similar
graphs.

The self-similar group associated with a transducerˆ is bounded, a.k.a. post-critically
finite (see Section 3.1), if the exiting arrows along every oriented cycle in ˆ all eventu-
ally lead to a vertex representing the identity transformation. The corresponding Schreier
graphs are closely related to a self-similar compactum known under various names in
the literature: “hierarchical fractal”, “nested fractal”, or “finitely ramified fractal”. Kigami
considers in [14] a compact space K and a family of self-maps .Fs/s2S of K, such that
there exists a “coding map” � W S�N ! K with �.ws/ D Fs.�.w// for all left-infinite
words w 2 S�N and all s 2 S . Tiles of level n are images of cylinders, namely �.S�Nv/

for a word v 2 Sn. A graph is then associated with every such compactum: consider the
graph whose vertices are all depth-n tiles, with an edge between two tiles if they intersect;
and take a limit of such graphs as n!1. For example, the Sierpiński gasket admits three
contractions F1; F2; F3 onto its level-1 tiles, and the associated graph is essentially the
graph mentioned above.

General constructions by Nekrashevych [18] establish a duality between certain (“con-
tracting”) self-similar groups and expanding self-covering maps on a compact set called
limit space. We take in Section 3 the opportunity to clarify the connection between
Kigami’s and Nekrashevych’s definitions: Nekrashevych’s limit space L is a quotient of
Kigami’s space K, and the Fs are branches of the self-covering of L. Kigami’s “ancestor
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Figure 1. The Sierpiński and Basilica finitely ramified fractals.

structure”, a combinatorial gizmo extracted from .K; S/ and powerful enough to allow
reconstruction of .K;S/, may be directly produced from a transducer defining the bounded
self-similar group.

A large family of self-similar groups and associated Schreier graphs arise from “iter-
ated monodromy groups” of complex polynomials whose critical points are all ultimately
periodic. We shall not need the definition of “iterated monodromy groups”; it suffices to
say that they are the algebraic counterpart to the dynamical system afforded by the polyno-
mial acting on its Julia set. The associated graphs are thus limits of simplicial approxim-
ations of the Julia set of the polynomial. One prominent example, whose Schreier graphs
have been extensively studied (see e.g. [9]), is the “Basilica group” associated with the
polynomial z2 � 1, see Figure 1 (right).

1.2. Undecidability results

Our next results are in the “negative” direction. Two examples of Schreier graphs of self-
similar groups appeared to have good chances of being close to the frontier of (un)decid-
ability of the domino problem: the “long range graph” and the “Barbieri–SablikH -graph”.
I am grateful to Ville Salo for discussions on translating the Barbieri–Sablik self-similar
structure into a particularly simple automatic graph. I show that, for each of them, the
domino problem is undecidable. This last graph serves to answer a question by Barbieri
and Sablik, which will be reviewed later.

The “long range graph”, see Section 5.1, is a deterministic model of long range percol-
ation on the integers: nearest neighbours are connected, and for all s > 0 points at distance
2s apart are connected “with probability 2�s”, but in a deterministic manner: precisely if
they belong to 2sZC 2s�1.

The transducer producing the long range graph looks as follows:

tu e

1j0

0j1
0j0

1j1

0j0; 1j1
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This transducer does not generate a bounded group, but rather a “linear growth group”:
the number of paths of length n in the transducer not ending at the identity is not bounded,
but grows linearly in n; see [1, 22].

Theorem B (see Section 5.1). The domino problem is undecidable on the long range
graph.

The second graph, the Barbieri–Sablik H -graph, is a subgraph of the half-plane, in
which some edges are replaced by loops:

The transducer has the following form:

y x e z
00j00

10j10

01j01; 11j11

10j00; 11j01

00j10; 01j11

01j00

11j10

00j01; 10j11

Theorem C (see Section 5.2). The domino problem is undecidable on the Barbieri–Sablik
H -graph.

1.3. Monadic second-order logic

Consider an A-labelled graph � with root x0. Monadic second-order logic is concerned
with formulas built from variables X; Y; : : : representing sets of vertices in � , the con-
stant ¹x0º, for all a 2 A an operation a � X representing all vertices reachable from X

by following an a-labelled edge, the relation �, and usual boolean connectives _;^;:
and quantifiers 8; 9. The monadic second-order theory Mon.�/ consists of all formulas
without free variables that hold in � .

Note that many usual graph-theoretic notions are readily definable in second-order
logic; for example,
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• the empty set is characterized by the formula �.X/ � 8Y ŒX � Y �;

• ‘X D Y ’ is shorthand for ‘X � Y ^ Y � X ’;

• ‘X \ Y ’ is expressed as

�.Z/ � Z � X ^Z � Y ^ 8W ŒW � X ^W � Y ) W � Z�I

• singletons are characterized by �.X/�X ¤;^8Y ŒY �X)Y D;_Y DX�. Ver-
tices of � can be represented by singletons, and we write ‘x 2 X ’ to mean
‘¹xº � X ’.

As an example of the power of this logic, the graph � is connected if and only if

8X
h
X D ; _X D � _

_
a2A

a �X ¤ X
i
:

We refer to [17, §3] for details.
More fundamentally, an instance ‚ � B � A � B of the domino problem is easily

translated to the sentence

9Xb.b 2 B/
h G
b2B

Xb D � ^
^

.b;a;b0/ 62‚

Xb0 \ a �Xb D ;
i
:

For a “seeded” domino problem .‚; b0/, which we will consider in more detail in Sec-
tion 2.1, one adds the clause ‘x0 2 Xb0 ’.

The rooted graph � has decidable monadic second-order theory if there is an algorithm
that, given a sentence � in the logic of A-labelled graphs, decides whether � holds in � .
Thus if � has decidable monadic second-order theory, then the domino problem is decid-
able for � , and the domino problem is contained in the existential fragment of monadic
second-order logic. We extend Theorem A as follows.

Theorem D (D Theorem 4.2). The monadic second-order theory of a post-critically finite
self-similar graph with ultimately periodic root is decidable.

Note that in most cases of a self-similar group G acting on SN all Schreier graphs
.G�; �/ are non-isomorphic. Since there are continuously many � 2 SN but only count-
ably many algorithms, most .G�; �/ have undecidable monadic second-order theory. This
explains the restriction to graphs with ultimately periodic �.

1.4. Barbieri and Sablik’s self-similar structures

Barbieri and Sablik, in [2], consider the domino problem on self-similar structures. Their
definition is tightly connected to the Euclidean grid: they consider a black/white colouring
of the grid defined by iterating a substitution. They then consider domino problems on the
grid, but for which the adjacency of tiles is only enforced on black cubes. For example, in
dimension 2, consider the following substitution:
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s W

It produces essentially the same graph as the one associated with the Sierpiński gasket, by
colouring the plane via a limit of sn and considering the graph with one vertex per black
square and an edge between touching squares.

More formally, fixing a substitution s as above, Barbieri and Sablik consider the fol-
lowing variant of the domino problem on Zd : “Given a set of colours B D ¹ıº t B� and
tileset ‚ � B � ¹�1; 0; 1ºd � B , is it possible for all n 2 N to tile sn. / using ‚ in such
a manner that white boxes are coloured ı and black boxes B�?” (This definition is a slight
variant of theirs, and is equivalent if the black boxes are connected.)

Barbieri and Sablik classify substitutions into “bounded connectivity”, “isthmus”, and
“grid” type, according to the number of black paths crossing s. /, and show that in the
“bounded connectivity” case the domino problem is decidable, while in the “grid” case
the domino problem is undecidable. They leave open the “isthmus case”, for which a
prototypical substitution is

The right half of the corresponding graph is essentially the H -graph mentioned in
Theorem C. Using this, we prove the following.

Theorem 1.1 (see Section 6.3). The domino problem associated with a substitution s is
undecidable if s contains an isthmus: a certain configuration of blocks forming at least
two strips in one direction and one in another.

1.5. Some conjectures and remarks

In fine, all proofs of undecidability of the domino problem, or more generally of the
monadic second-order logic of a graph, seem to rely on “space-time diagrams”: there
are subsets C0; C1; : : : of the graph on which the stateset of a machine (be it a Turing
machine, or one of Kari’s piecewise-affine machines [12]) can be represented; and there
are enough connections in the graph between Ct and CtC1 so that the one-step evolu-
tion of the machine can be logically enforced. If the Ct are actually subgraphs and the
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machine’s state is represented by a bi-infinite tape, then each Ct is a copy of Z and the
space-time diagram is a copy of Z�N. (Note that there are undecidable problems that do
not reduce to undecidability of the halting problem – one speaks of Turing degrees strictly
between 0 and 00, see [16] – but I am not aware of any natural such example, a fortiori as
a tiling problem.)

In terms of Schreier graphs, this means that if a subgroup Z2 � G acts freely on an
orbit G � � , then the domino problem on the corresponding Schreier graph is undecidable;
and much more general statements are true. Following [11], if G contains a direct product
H1 � H2 of two infinite, finitely generated groups, and each Hi with i D 1; 2 has all
orbits infinite in its action on the space H3�i n .G � �/ of orbits of the other factor, then
the domino problem on the Schreier graph of G � � is also undecidable.

In [3], together with Ville Salo, I consider the domino problem on a Cayley graph �
which does not contain any grid, the “lamplighter group” Z=2 o Z, and show that never-
theless its “seeded” domino problem (see Section 2.1) is undecidable. The main, general
idea is that an auxiliary domino problem may be used to mark some vertices and some
sequences of edges to simulate a grid within � . (In fact, it would be equally good to simu-
late any graph with unsolvable domino problem, but somehow we always fall back on the
grid.) This is the argument used in Section 5 to prove Theorems B and C; though we do
not make use of the general results of [3], and rather repeat the argument in each specific
case.

It follows from Seese’s theorem [21] that the monadic second-order theory of a graph
� is undecidable if it has unbounded treewidth (see Section 4.4); equivalently, if � con-
tains arbitrarily large grids as minors. On the other hand, Ville Salo pointed out to me that,
if � contains sufficiently sparse grids, then the domino problem may be decidable. For
concreteness, consider a mutilated grid Z � N in which, at height .j � 1/ŠC 1; : : : ; j Š,
the horizontal edges wrap in cycles of length 2j ; then a tileset tiles this graph if and only
if it tiles the plane periodically. This kind of phenomenon does not seem to be possible for
Schreier graphs of self-similar groups:

Conjecture 1.2. For G a contracting self-similar group, the following are equivalent:

(1) the domino problem is decidable on all Schreier graphs of G;

(2) the monadic second-order theory is decidable on all Schreier graphs of G with a
computable sequence as the root;

(3) the limit space of G is finitely ramified.

(We may take “finitely ramified” to mean that there is a discrete set of local cut points.
For example, if G is conjugate to a bounded transducer group, then this will be the case.
Conversely, I suspect that, if a digit tile is a post-critically finite fractal, then there exists a
bounded group realizing it.)
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2. The domino problem on graphs

A graph � D .V;E/ is a pair of sets called vertices and edges, with a head eC 2 V and a
tail e� 2 V for every e 2 E. An unoriented graph has, furthermore, an involution e 7! e0

on E such that .e0/˙ D e�. For a finite set A of labels, an A-labelled graph is a graph
endowed with a labelling �WE ! A of its edges. A labelling is proper if no two edges
have the same label and tail. By contrast, for a finite set B of colours, a B-colouring of �
is a map V ! B , namely a colouring of the vertices of � .

The basic example of a labelled graph we have in mind is a Schreier graph: for a
finitely generated group G D hAi acting on a set X , consider the graph with vertex set X
and edge set A�X , with .a; x/� D x and .a; x/C D a � x and �.a; x/D a. Note that this
defines a properly labelled graph. By extension, if � is a properly A-labelled graph, we
write a � x for the head of the edge labelled a with tail x, if it exists. The Cayley graph is
the Schreier graph of a group acting on itself by left-translation.

If furthermore A D A�1 is symmetric, then the Schreier graph is unoriented, with
.a; x/0 D .a�1; a � x/. Consider for example the group G D Z2 acting on itself and gen-
erated by ¹.0;˙1/; .˙1; 0/º; then the corresponding Schreier graph is the usual square
grid.

The domino problem for an A-labelled graph � D .V; E; �/ is the following decision
problem: given a finite A-labelled graph �, does there exist a graph morphism � ! �?

Thus an instance of the domino problem is a finite set B (the vertex set of �) and a
subset ‚ of B � A � B (the edges of �, identified by their initial vertex, label and final
vertex). The output should be “yes” if there exists a B-colouring � WV ! B of � such that
for every edge e of � one has .�.e�/; �.e/; �.eC// 2 ‚. We refer to ‚ as a tileset, and to
the valid colouring � WV ! B as a tiling.

The reader may already be familiar with “Wang tiles”; these are squares with colours
written on their four sides, and the classical domino problem in the plane is to determine,
for a given set of Wang tiles, whether they can be used to cover the plane with matching
colours. Let us connect this formalism with the above definition.

Formally, a set of Wang tiles, for a given set of colours C , is a subsetW � C ¹S;E;N;W º

D C 4. We say that W tiles if there exists a map � WZ2 ! W with

�.m; n/N D �.m; nC 1/S and �.m; n/E D �.mC 1; n/W

for all .m; n/ 2 Z2. Consider the Cayley graph � of Z2 generated by ¹.0;˙1/; .˙1; 0/º,
and construct the graph � with vertex set W , an edge labelled .1; 0/ from w to w0 (and
one labelled .�1; 0/ from w0 to w) whenever wE D .w0/W , and an edge labelled .0; 1/
from w to w0 (and one labelled .0;�1/ from w0 to w) whenever wN D .w0/S . Then W
tiles precisely when there exists a graph morphism � ! �.

By a classical argument, an instance of the domino problem may specify legal colour-
ings of larger subgraphs than those given by the ‚ above. Let us, for simplicity, restrict
ourselves to the setting of Schreier graphs: let G D hAi be a group acting on a set X .
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If B is a given set of colours, a pattern is an element of BF for some finite subset F
of G; or, more precisely, for some finite subset F of the free group on A, since this is the
only way in which elements of a general finitely generated group G may be specified. An
instance of the domino problem is then a collection F of “forbidden” patterns for some set
B of colours, and the required output is whether there exists a colouring � WX ! B that
avoids all patterns in F: for every x 2X and every pattern � WF ! B in F, the assignment
F 3 f 7! �.f x/ 2 B is not equal to � .

Lemma 2.1. The pattern formulation of the domino problem is equivalent to the original
one.

Proof. Consider first an instance of the domino problem given by ‚ � B � A � B . Then
‚ is a set of patterns: the element .b; a; b0/ is the pattern supported on ¹1; aº with values
b; b0 at 1; a respectively. Let F be the set of patterns associated with .B � A � B/ n ‚;
then a vertex colouring avoids F if and only if the graph’s edges are coloured by ‚.

Conversely, let F be a finite collection of forbidden patterns. There exists R 2 N such
that all patterns in F are supported on xA WD ¹1º [ A [ � � � [ AR, the ball of radius R in
G; set then

xB WD
®
ˇ 2 B

xA
W for all .� WF ! B/ 2 F we have � ¤ ˇ � F

¯
:

Let‚� xB �A� xB be the set of .ˇ;a;ˇ0/ such that ˇ.g/D ˇ0.ga�1/ for all g 2 xA\ xAa.
Given a vertex colouring x� WX ! xB with edges coloured by‚, we consider the vertex

colouring � WX ! B given by �.x/D x�.x/.1/; then � avoids all patterns in F. Conversely,
given � WX ! B avoiding all patterns in F, define x� WX ! xB by x�.x/.g/ D �.gx/ for all
x 2 X , g 2 xA; then all edges are coloured by ‚: for a 2 A we have

x�.x/.g/ D �.gx/ D �.ga�1ax/ D x�.ax/.ga�1/;

so .x�.x/; a; x�.ax// 2 ‚.
We finally check that the maps � 7! x� and x� 7! � are inverses of each other. Starting

from � , we get .new�/.x/Dx�.x/.1/D �.x/. Consider conversely a valid tiling x� WX! xB;
it suffices to prove x�.x/.g/ D x�.gx/.1/ for all x 2 X , g 2 xA, since then

.new x�/.x/.g/ D .new x�/.gx/.1/ D �.gx/ D x�.x/.g/:

We prove the claim by induction over the minimal r 2 N such that g 2 Ar , the case
r D 0 being trivial. For r > 0, write g D ha with h 2 Ar�1 and a 2 A. Then x�.gx/.1/ D
x�.hax/.1/ D x�.ax/.h/ by induction. Applying the condition ‚ on the edge between x
and ax gives, as required,

x�.x/.g/ D x�.ax/.ga�1/ D x�.ax/.h/ D x�.gx/:

The general formulation involves “patches”: a patch � is a rooted, connected, A-
labelled, B-coloured finite graph, and a patch is said to match a graph colouring � W�! B
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at a vertex v if there exists a graph morphism �! � mapping the root of � to v and
preserving labels and colours. Let us restrict ourselves to graphs in which every label in A
appears at most once on the edges issued from any vertex; that is, subgraphs of Schreier
graphs for the free group FA. In this manner, patches and patterns naturally correspond to
each other: given a patch �, choose for every vertex of � a path from the root to it; let F
denote the words along these paths, viewed as free group elements; and define a pattern by
mapping these free group elements to the colour at the path’s extremity. Thus Lemma 2.1
says that a domino problem may be specified by a collection of forbidden patches.

In this manner, the equivalent formulation of the tiling problem by Wang tiles, for an
undirected Schreier graph X , is as follows. An instance of the problem is a finite set B of
colours and a set W � BA of Wang tiles. A valid colouring is a map � WX ! W such that
�.x/.a/ D �.a � x/.a�1/ for all x 2 X , a 2 A.

It is sometimes interesting to consider the space of tilings of a graph given by a tileset:
it is the space of graph morphisms �!�, with its natural (product, prodiscrete) topology.
Assuming that � D .V;E; �/ is properly labelled, for a tileset ‚ we define

X‚ WD
®
� 2 BV W 8e 2 E W .�.e�/; �.e/; �.eC// 2 ‚

¯
:

It is a closed subspace of BV for the product topology. It is also invariant under the
automorphism group of �; so if Aut.�/ acts simply transitively on V , then it is an Aut.�/-
subshift of finite type.

The following result says that certain local configurations (for example closed paths)
may be marked in labelled graph by means of a tileset, if we accept that sometimes more
vertices than desired will be marked:

Lemma 2.2. For every finite, rooted, labelled graph .�; x0/, there exist a tileset ‚ �
B � A � B and a subset C � B , such that

(1) every B-colouring � matching ‚ satisfies

��1.C / �
®
v 2 V W there exists a graph morphism .�; x0/! .�; v/

¯
I

(2) there exists a B-colouring � matching ‚ and satisfying

��1.C / D
®
v 2 V W there exists a graph morphism .�; x0/! .�; v/

¯
:

Proof. It suffices to consider the case of� being a single, a-labelled loop; the general case
follows from Lemma 2.1 and the considerations following it, relating Schreier graphs and
labelled graphs. Select then B D ¹0; 1; 2; 3º and C D ¹0º, and

‚ D
®
.0; a; 0/

¯
[
®
.i; a; j / W i ¤ j 2 ¹1; 2; 3º

¯
[
®
.i; x; j / W x ¤ a 2 A; i; j 2 ¹0; 1; 2; 3º

¯
:

No condition is imposed on x-labelled edges for x ¤ a; all a-labelled loops must be
coloured 0 while every a-labelled path (closed or not) may be labelled either entirely by
0, or alternating in 1; 2; 3 (we need three colours to cover all the cases of an even-length
cycle, an odd-length cycle, or an open path).
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2.1. Seeded domino problems

We shall also consider a variant of the domino problem in which the graph has a distin-
guished vertex, which has to be given a specific colour. Here is a formulation in terms of
a rooted Schreier graph .X; x0/: an instance of the seeded domino problem is a collection
‚ � B � A � B of dominoes with a chosen b0 2 B; the question is whether there exists
an assignment � WX ! B with �.x0/D b0 and .�.x/; a; �.ax// 2 ‚ for all x 2 X , a 2 A.
If the seeded domino problem is solvable on a graph � , then so is the domino problem (by
querying the seeded domino problem with all possible choices of colour at x0). It could
well be that each time the seeded domino problem is unsolvable, so is the domino prob-
lem; though for graphs such as the square grid Z2, or tessellations of the hyperbolic plane,
it took substantially more effort to prove the latter than the former.

Let � D .V; E; �/ be an A-labelled graph, and let v 2 V be a distinguished vertex.
The sunny-side-up is the subset Sv � ¹0; 1ºV consisting of colourings V ! ¹0; 1º with
a single ‘1’ at an arbitrary position in the Aut.�)-orbit of v; and additionally the all-0
configuration, if the Aut.�/-orbit of v is infinite. In particular, if � is infinite and vertex-
transitive, for instance a Cayley graph, then Sv is naturally in bijection with the one-point
compactification V [ ¹1º of V . We call Sv sofic if there exists a tileset ‚ � B � A � B
and a map � WB ! ¹0; 1º such that Sv D � ıX‚, namely Sv is obtained by projecting all
valid ‚-tilings through � .

Lemma 2.3. Let � be an A-labelled graph, with v a vertex as above, and assume that v
has a finite Aut.�/-orbit. If the sunny-side-up Sv is sofic, then the seeded and unseeded
domino problems are reducible to each other.

Proof. The unseeded tiling problem can always be solved by querying finitely many times
the seeded tiling problem, with all choices of colours. Conversely, given an instance of
the seeded tiling problem ‚0 � B0 � A � B0 and distinguished colour b 2 B , let ‚1 �
B1 � A � B1, let � WB1 ! ¹0; 1º be an encoding of Sv , and consider the tileset

‚ WD
®
..b0; b1/; a; .b

0
0; b
0
1// W .b0; a; b

0
0/ 2 ‚0; .b1; a; b

0
1/ 2 ‚1; �.b1/D 1) b0 D b

¯
:

Any valid tiling by‚ consists of a valid tiling of‚0 which furthermore has b at a position
marked by Sv , so ‚ tiles if and only if ‚0 tiles with colour b at v.

3. Self-similar graphs and spaces

Let us first recall how graphs appear in connection with self-similar fractals. Following
Kigami [14], consider a compact setK with a collection ¹Fs W s 2 Sº of injective continu-
ous self-maps, and assume that there is a surjective continuous map � W S�N ! K with
�.ws/DFs.�.w// for all s 2 S ,w 2 S�N . (The reason we write sequences as left-infinite
will soon become clear.) The map � , if it exists, is unique, and the data .K; S/ are called
a self-similar structure. We denote by � the shift map on S�N , defined by �.ws/ D w.
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For a word v 2 S� we setKv D �.S�Nv/; these are tiles coveringK. The critical set
C � S�N is

C D ��1
� [
s¤t2S

Ks \Kt

�
;

and the post-critical set is
P D

[
n�1

�n.C /:

A self-similar structure is post-critically finite ifP is finite. A simple example that is worth
keeping track of is the following:K D Œ0; 1� and S D ¹0;1ºwith Fi .x/D .xC i/=2. Then
C D ¹101;110º and P D ¹10;11º, with tiles the intervals

Kw1:::wn D Œw1=2C � � � C wn=2
n; w1=2C � � � C wn=2

n
C 1=2n�:

Self-similar structures naturally yield graphs as follows: for n 2N, consider the graph
�n with vertex set Sn, and an edge between v and w whenever Kv \Kw ¤ ;. Moreover,
it is possible to consider “limits” as n!1 of these graphs, by “centering” them for all
n 2 N at the basepoint �1 : : : �n given as prefix of an infinite word � 2 SN . (Note here
that � is a right-infinite word!). This can be seen more formally as follows: for � 2 SN ,
consider the ascending union

yK.�/ D .K �N/=
�
.x; n/ D .F�n.x/; nC 1/8n 2 N

�
:

It is naturally tiled by the tiles of the form Kv � ¹jvjº for all words v 2 S�, and we may
again form a graph �.�/ with the collection of all tiles as vertex set, if one remembers that
Kv � ¹nº and Kv�nC1 � ¹nC 1º are identified for all v 2 Sn.

Still in our example, yK.�/ is the union of the intervals Œ0; 1�� ¹nº, each identified with
the left or right half of the previous one Œ0; 1� � ¹n � 1º depending on �n; it is natural to
view Œ0; 1� � ¹nº as an interval of size 2n, so the identifications are isometric inclusions,
so yK.�/ D R, unless � eventually ends in 01 when yK.�/ D RC, or � eventually ends in
11 when yK.�/ D R�. The corresponding graphs are respectively Z, N and �N.

In case .K; S/ is post-critically finite, Kigami shows in [14, Appendix A] that it may
be reconstructed from a small amount of combinatorial data: an ancestor structure is
.V; U; ¹Gsº/ for two finite sets V � U and a collection of injective maps Gs WU ! V ,
such that V D

S
s2S Gs.U /, and if U ¤ ;, then Gs.U / n U ¤ ; for all s 2 S . Start-

ing from a post-critically finite self-similar structure, U D �.P / and V D �.PS/ and
Gs D Fs � U define an ancestor structure. Conversely, an ancestor structure determines a
compact set K and a self-similar structure as follows: for x 2 V , define

Ax D
®
w D .wn/ 2 S

�N
W 9.xn/ 2 U

�N with Gw�1.x�1/ D x and

wn.xn/ D xnC1 8n � �2
¯
:

Set then
K D S�N=

�
vu � wu if v D w or 9x 2 V W v;w 2 Ax

�
;
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and for all s 2 S let Fs WK ! K be the map induced by w 7! ws on S�N . It is easy to
check that this construction recovers the original .K;S/. Again in our example,U D ¹0;1º
and V D ¹0; 1

2
; 1º with A1=2 D ¹101;110º.

3.1. Bounded transducers

An algebraic formalism described by Bondarenko and Nekrashevych in [7] is closely
related to the ancestor structures above.

We recall that a self-similar group is a group G endowed with a map ˆWG � S !
S �G for some finite set S , satisfying for all g; h 2 G and s 2 S the condition

ˆ.gh; s/ D .s00; g0h0/ whenever ˆ.h; s/ D .s0; h0/ and ˆ.g; s0/ D .s00; g0/:

This is equivalent to requiring that S �G admits the structure of a G-G-biset: it has two
commuting G-actions, given by g � .s; h/ � k D .s0; g0hk/ if ˆ.g; s/ D .s0; g0/.

From the self-similarity mapˆ one constructs an action of G on SN as follows: given
a word � D �1�2 � � � 2 SN and an element g 2 G, to define g.�/ set g0 D g and for every
n� 1 set .� 0n;gn/ WDˆ.gn�1; �n/; then g.�/D � 01�

0
2 : : : In other words, we have a recursive

formula g.�1�2 : : : / D � 01 g1.�2 : : : / with ˆ.g; �1/ D .� 01; g1/. The same formulas may
be used to define an action of G on the set Sn of words of length n. In fact, the map ˆ
may be extended to a map ˆWG � S� ! S� � G by ˆ.g; uv/ D .u0v0; g00/ whenever
ˆ.g; u/ D .u0; g0/ and ˆ.g0; v/ D .v0; g00/, and ˆ.g; �/ D .�; g/ for � 2 S� the empty
word; then the action g.v/ is the first coördinate of ˆ.g; v/.

A fundamental example is afforded by the infinite cyclic groupGDhti and S D¹0;1º,
with

ˆ.t2n; 0/ D .0; tn/; ˆ.t2n; 1/ D .1; tn/;

ˆ.t2nC1; 0/ D .tn; 1/; ˆ.t2nC1; 1/ D .tnC1; 0/:

We shall return regularly to this example, called the Kakutani–von Neumann odometer.
The self-similarity map ˆ may conveniently be viewed as a graph, with vertex set G

and an edge from g 2G to h 2G labelled ‘sjt ’ wheneverˆ.g; s/D .t; h/. Then the action
of G on SN is understood as follows: for g 2 G and � 2 SN , find the unique right-infinite
path in the graph that starts at g and has � as the left components of its labels. Then g.�/
is the word read on the right components of the labels along that same path. This graph is
called the full transducer of the self-similar group.

A self-similar group is called recurrent if the map ˆWG � S ! S � G is onto. This
implies, in particular, that the action of G is transitive on Sn for all n 2 N. A self-similar
group is contracting if there exists a finite subtransducer N of the full transducer such
that every path is eventually contained in N . We indifferently use N for the subtrans-
ducer or the corresponding subset of G. The minimal such N is called the nucleus of
the action. Note that the identity necessarily belongs to N , since ˆ.1; s/ D .s; 1/ for all
s 2 S . Following Bondarenko and Nekrashevych [7, Definition 5.1], a contracting self-
similar group is post-critically finite, a.k.a. bounded, if its nucleus contains only a finite
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number of left-infinite paths not ending at the identity. The post-critical set of G is the set
P of left-infinite words read as inputs along these paths. In the example of the odometer,
the nucleus is

t t�111j0
0j1

0j0

1j1

0j1
1j0

and the post-critical set is P D ¹10;11º.

Proposition 3.1 ([18, Proposition 2.11.3]). Let G be a self-similar, contracting, finitely
generated, recurrent group. Then G is generated by its nucleus.

Let G be a contracting self-similar group with alphabet S and nucleus N , and recall
the following fundamental construction by Nekrashevych: define

L.G/ D S�N=
�
w � w0, 9.gn/ 2 N

�N with ˆ.gn; wn/ D .w0n; gnC1/ 8n < 0
�
:

Then L.G/ is a topological space called the limit space of G, and the dynamical system
on L.G/ induced by the shift map on S�N lies in a duality relation with G. Note that
L.G/ in fact admits an orbispace structure, with finite isotropy groups (the isotropy group
of w 2 S�N consists of all .gn/ 2 N�N such thatˆ.gn;wn/D .wn; gnC1/ for all n < 0),
and that the duality between self-similar groups and expanding dynamical systems holds
only when this orbispace structure is taken into account. We choose to ignore it here, and
again refer to [18] for details and extra information; in particular, the limit space L.G/ is
compact, metrizable, has finite topological dimension, and is connected as soon as G is
recurrent. Define next

T .G/ D S�N=
�
w � w0, 9.gn/ 2 N

�N with ˆ.gn; wn/ D .w0n; gnC1/ 8n < 0

and g0 D 1
�
:

Following [18, §3.3], we call T .G/ the digit tile, noting that L.G/ is naturally a quo-
tient of T .G/. Note that T .G/ is a topological space, i.e., it has no singular orbispace
points. There are natural maps Fs WT .G/! T .G/ induced by the maps w 7! ws on S�N .
More generally, for a word v 2 S� we let Tv.G/ be the image of S�Nv in T .G/. Still
in the example of the odometer, the limit space L.G/ D Œ0; 1�=.0 � 1/ is the circle, with
expanding self-covering induced by f .x/ D 2x mod 1; and the digit tile T .G/ D Œ0; 1� is
the interval, with contractions Fi .x/ D .x C i/=2.

We connect the definitions of Kigami and Nekrashevych as follows. Let G be a post-
critically finite self-similar group, with post-critical set P � S�N . Set U D P and

V D .PS/=
�
u � v, there is a path in the nucleus N , ending at 1, with labels ujv

�
I

note that we have U � V and maps Gs WU ! V given by p 7! Œps�� for all s 2 S .
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Proposition 3.2. If G is a post-critically finite self-similar group, then .V; U; ¹Gsºs2S /
is an ancestor structure, and the corresponding self-similar structure .K; S/ is homeo-
morphic to the digit tile of G.

Proof. It is easy to check the axioms V D
S
s2S Gs.U / and Gs.U / n U ¤ ; for all

s 2 S if U ¤ ;. It then suffices to note that the construction of .K; S/ from an ancestor
structure coincides with the construction of T .G/. Following the definitions, the non-
trivial equivalence classes Ax are, for x 2 V ,

Ax D
®
.wn/ 2 S

�N
W 9.xn/ 2 U

�N
W Gwn.xn/ D xnC1 8n � �2 and Gw�1.x�1/ D x

¯
D
®
w 2 S�N

W Œw�� D x
¯
:

Thus the equivalence relation constructing K from .V; U; S/ identifies two left-infinite
words w; w0 precisely when there exists a left-infinite path in the nucleus N with label
wjw0 and ending at 1, and this is the equivalence relation constructing the digit tile.

Proposition 3.3. Let G be a critically finite self-similar group, and let .K;S/ be its asso-
ciated self-similar structure. Consider a ray � 2 SN and the Schreier graph of the orbit
G � � with the nucleus of G as generating set. Then the tile adjacency graph �.w/ is
the simple graph associated with the Schreier graph: the graph obtained by removing all
loops and combining multiple edges.

Proof. Since both the Schreier graph and the tile adjacency graph are inductive limits, it
suffices to check the statement for the following two graphs: the tile adjacency graph �n
describing intersections of tilesKv with v 2 Sn, and the graph obtained from the Schreier
graph of the action ofG on Sn, in which loops are removed, multiple edges are combined,
and edges labelled g 2 N from u 2 Sn to v 2 Sn are removed if ˆ.g; u/ D .v; h/ with
h ¤ 1.

Now, in the latter graph, the remaining edges are edges labelled g 2N from u 2 Sn to
v 2 Sn with ˆ.g; u/ D .v; 1/, so there is a path in the nucleus N starting at g and ending
at 1 with label ujv; so u; v are respectively of the form u0w and v0w with u0; v0 suffixes of
critical left-infinite words and some word w. Therefore the tiles Ku and Kv intersect.

Conversely, if u; v 2 Sn are such that the tiles Ku; Kv intersect, then u D u0w and
v D v0w for some word w and suffixes u0; v0 of critical left-infinite words. There is then
a left-infinite path in the nucleus whose label ends in u0jv0, so there exists g 2 N with
ˆ.g; u0/ D .v0; 1/; thus g � u D v and there is an edge in the Schreier graph from u to v.
This completes the proof.

4. Decidability results

The main result of this section is that Schreier graphs of post-critically finite self-similar
groups acting on orbits of rays have decidable domino problem and, if the ray is ultimately
periodic, decidable monadic second-order theory. Note that there is one Schreier graph
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per ray � 2 SN , and all these graphs are non-isomorphic as rooted graphs – so there are
continuously many different graphs. However, they all have the same collection of balls,
and therefore the same answers to a given tiling problem, except in case � is ultimately
periodic with same period as a post-critical ray. The monadic second-order theories of
different Schreier graphs typically differ, so all but countably many may have decidable
theory. Presumably the monadic second-order logic of the Schreier graph G� is decidable
whenever the ray � is computable.

4.1. The Sierpiński gasket

We start by a paradigmatic post-critically finite self-similar group and its associated
Schreier graphs. The Sierpiński gasket is ubiquitous in discussions on fractals and graphs,
and this text shall not be an exception. A remarkably simple transducer produces the gas-
ket as its digit tile, and the associated graphs as Schreier graphs, see [10]:

a

b

c

e
2j2

1j1

0j0

0j1; 1j0

0j2; 2j0

1j2; 2j1

The group ha; b; ci is known as the “3-peg Hanoi tower group”, since its Schreier
graph is well-known to be related to solutions to the Hanoi towers puzzle: if one encodes
by a string s1 : : : sn 2 ¹0; 1; 2ºn a configuration in which disk number i (numbered from
smallest to largest) is on peg si , then generators a; b; c correspond to moving the top disk
respectively between pegs 0 and 1, 0 and 2, or 1 and 2.

4.2. The domino problem

We begin with the domino problem, for which a direct argument is possible:

Proposition 4.1. Let G be a post-critically finite self-similar group acting on SN , let
� 2 SN be a ray, and let � be the Schreier graph of the orbit G� with respect to the
nucleus of G. Then the domino problem on � is decidable.

Proof. We shall give an algorithm that decides the domino problem. To fix notation, let
N denote the nucleus of G, and let P � S�N denote the post-critical set of G.

Let ‚ � B �N � B be an instance of the domino problem for � .
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Consider for all n 2 N the “tile Schreier graph” �n obtained from the action of G
on Sn: the vertex set is Sn, and there is an edge from v to w labelled g 2 N whenever
ˆ.g;v/D .w;1/. It is a subgraph of the usual Schreier graph of the action ofG on Sn. Let
Pn denote the collection of length-n suffixes of post-critical words. Note that the vertices
in �n that have fewer than #N neighbours are precisely those in Pn.

Let ƒn denote the set of restrictions to Pn of valid colourings of �n; more precisely,
ƒn is the subset of BPn consisting of all �WPn ! B such that the colouring via � of Pn
can be extended to a valid colouring of �n. Clearly P0 D ¹�º and ƒ0 D BP0 .

Let us consider now how to compute ƒnC1 from ƒn. Start with a collection of #S
colourings .�s/s2S of �n, and use �s to colour Pns � �nC1. Keep only those colourings
that match on their inner edges: for all p 2 Pn, consider all g 2N withˆ.g;p/ … S � ¹1º,
and then for all s 2 S write ˆ.g; ps/ D .qt; h/; if h D 1, require .�s.p/; g; �t .q// 2 ‚,
while if h ¤ 1, then ps 2 PnC1, and set �.ps/ D �s.p/. We have in this manner defined
a function �WPnC1 ! B . Let ƒnC1 be the collection of all the functions � that can be
obtained in this manner.

Note that all post-critical points p D � � �p�2p�1 2 P are pre-periodic. Therefore, for
n large enough, we have #Pn D #P and there is a canonical bijection between Pn and P .
Furthermore, for all g 2N we haveˆ.g;p�n : : :p�1/D .q�n : : : q�1;h/ for a post-critical
point � � � q�2q�1, and h depends only on the value of n modulo ` for some least common
period ` of all post-critical points. Therefore, for n large enough, the spaces of maps BPn

and BPnC` are canonically in bijection, and the map ƒn 7! ƒnC1 7! � � � 7! ƒnC` only
depends on n mod `; the “n large enough”, modulus ` and map � Wƒn` 7! ƒ.nC1/` may
all be computed from the nucleus. Since B and N are finite, � is an ultimately periodic
map on the family of subsets of B �N � B .

There are now two possibilities. Either � eventually reaches the empty set, in which
case there is no valid tiling of �; or � eventually cycles along non-empty sets, in which
case there exist valid tilings of �n for all n.

This last case is subdivided into two. Either the ray � is regular, and then � is an
ascending union of copies of �n, so it is tileable; or the ray � is singular, namely is ulti-
mately periodic with same period p as a post-critical point 1p 2 P . Then without loss of
generality � D p1, and the tiling of � is obtained from a limit of tilings of �n by checking
that, for n large enough so that the cycle of � is attained, at least one colouring � 2 ƒn
is valid at �; assuming without loss of generality that n is divisible by jpj, this will hold
precisely when .�.pn=jpj/; g; �.g.pn=jpj/// 2 ‚ for all g 2 N with cycle p, namely with
ˆ.g; p/ D .q; g/. Again this requires a finite amount of checking.

4.3. Monadic second-order logic

Consider the elementary spaces of tilings X‚ and X‚;b0 on a rooted graph .�; x0/, the
latter being the solution set of a seeded domino problem with colour b0 at the root x0. The
�-regular languages are those spaces of colourings of � obtainable from elementary ones
by boolean operations (intersection, complement) and projections from a set of colours
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to another; and Mon.�/ is decidable if and only if the emptiness problem for �-regular
languages is decidable [17, Theorem 3.1]. It might be possible to prove decidability of
Mon.�/ by extending the proof above to boolean expressions and projections; but this
seems difficult. We shall prove the following theorem by an entirely different method.

Theorem 4.2. LetG be a post-critically finite self-similar group acting on SN , let � 2 SN

be an ultimately periodic ray, and let � be the Schreier graph of the orbit G� with respect
to the nucleus of G. Then the monadic second-order theory of the rooted graph .�; �/ is
decidable.

In fact, we shall prove something stronger, namely G need only be a post-critically
finite inverse semigroup of partially-defined bijections of SN .

Proof. We begin by straightforward reductions: up to replacing S by a power of itself, we
may assume without changing � that � is ultimately constant. By enlarging G, we may
assume that a constant ray .s0/1 is in the orbitG� . A monadic second-order formula then
expresses .s0/1 in terms of � and vice versa, so we may assume that � is the constant
ray .s0/1. By the same token, we may also assume that the generators of G have a very
specific form, which we will make explicit later.

The first step is to encode the vertices of � . We shall view them as leaves of a tree,
whose level-n vertices are �n.G�/. More precisely, the vertex set of the tree T isG

n�0

�n.G�/ � ¹nº;

and there is an edge labelled s from .s�; n/ to .�; nC 1/ for all s� 2 �n.G�/. Thus T is
an S -labelled tree, rooted at s10 .

I claim that Mon.T / is decidable. Indeed consider first the tree T0 of prefixes of the set
of words ¹anbcn�1 W n� 1º [ ¹�º. This is the set of total states of a push-down automaton,
so Mon.T0/ is decidable by the main result of [17]. We then apply the finite, regular
mapping a 7! s0, b 7! .S n ¹s0º/

�1, c 7! S�1 to obtain an S -labelled graph (with some
of the labels written in reverse as s�1) isomorphic to T . Since regular mappings preserve
decidability [8], the claim is proven.

We next show how the Schreier graph � may be interpreted in T . First, it will be
convenient to define successors, independently of the S -labelling:

succ.v; w/ �
_
s2S

s � v D w:

Vertices of � are leaves of T , and are thus characterized by the formula

leaf.v/ � :9wŒsucc.w; v/�:

Given a monadic predicate � satisfied by a set X , one may consider a predicate char-
acterizing the minimal such X , namely

�min.X/ � �.X/ ^ 8Y Œ�.Y /) X � Y �:

If � takes the form ‘9X : : : ’, we simply write �min as ‘9minX : : : ’.
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Every leaf (or even vertex) of T has a unique ray, obtained by following edges in S :
the ray R of v is characterized by

ray.v; R/ �
�
v2R ^ .8w2RŒ9x2RŒsucc.w; x/��/

�min
;

namely it is a minimal set containing v and in which every element has a successor. In
particular, the order in the tree may be defined by

.v � w/ � 8Q;RŒray.v;Q/ ^ ray.w;R/ ^R � Q�:

The first symbol of the word coding a vertex v is given by predicates

heads.v/ � 9wŒs � v D w� for all s 2 S:

Finally, we consider predicates stating that a ray, or portion of ray, has a given constant
label:

constq.R/ � 8x2RŒheadq.x/� for all q 2 S:

Up to replacing S by a power of itself, as we did in the very first step, we may assume
that every generator ofG is a disjoint union (as a relation) of elementary partial bijections,
obtained as follows:

(1) The identity is elementary.

(2) If g is elementary and s; t 2 S , then the partial bijection h supported on sSN and
defined by ˆ.h; s/ D .t; g/ is elementary.

(3) If g is elementary and q; r; s; t 2 S with q ¤ s and r ¤ t , then the partial bijection
h defined by ˆ.h; s/ D .t; g/ and ˆ.h; q/ D .r; h/ is elementary.

Indeed the transducer of a bounded transformation of SN consists of a finite collection of
cycles, reached by finite paths, and leading to the identity. The cycles can be assumed to
be loops, and each transition to the identity is considered separately.

We prove, by induction, that every elementary partial bijection may be encoded by a
monadic second-order formula. This is obvious for the identity transformation, which is
coded as

id.v; w/ � .v D w/:

Assume that g is elementary, so there is a formula for g, and consider h with ˆ.h; s/ D
.t; g/. Then a formula for h is

h.v;w/ � heads.v/ ^ headt .w/ ^ succ.v; v0/ ^ succ.w;w0/ ^ g.v0; w0/:

All these operations only require first-order logic. For the last case, assume that there is a
formula for g, and that h is defined by ˆ.h; s/ D .t; g/ and ˆ.h; q/ D .r; h/. Then h may
be defined by the following formula:
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h.v;w/ � 9P;Q;R
h
ray.v;Q/ ^ ray.w;R/ ^ P D Q \R

^

��
P D ; ^ constq.Q/ ^ constr .R/

�
_

�
9x2P

�
:9y2P Œsucc.y; x/� ^ 9v02Q;w02R�

s � v0 D x D t � w0 ^ constq.Q n P n ¹v0º/ ^ constr .R n P n ¹w0º/
����i

:

The meaning is the following: P is the common suffix of the words encoding v;w. If these
words have empty common suffix, then they must respectively be q1 and r1. Otherwise,
they must respectively have the form q�sP and r�tP .

Since we can interpret the action of the generators ofG in Mon.T /, which is decidable,
it follows that Mon.�/ is decidable as well.

4.4. Treewidth

Let � be a graph. A tree decomposition of � is a tree � with, for each vertex v 2 V.�/, a
subset Xv � V.�/ called a bag, subject to two axioms:

(1) For every v 2 V.�/ the set of bags containing v spans a non-empty subtree of �.

(2) For every e 2 E.�/ there is a bag containing ¹eC; e�º.

The width of a tree decomposition is one less than the supremum of the bag sizes, and
the treewidth of � is the minimal width of a tree decomposition. (The “one less” is purely
aesthetic, and implies that trees have treewidth 1.)

Decidability of the monadic second-order theory of graph implies that its treewidth is
bounded [21]; but this can be proven directly:

Proposition 4.3. Let � be the Schreier graph of a post-critically finite group acting on
the orbit of a ray. Then the treewidth of � is finite.

We shall actually give a computable bound on the treewidth: let G� be the vertex set
of � , let P be the post-critical set ofG, let S be its alphabet, and in the transducer defining
G let p; q be respectively the maximal length of a path leading from a generator to a cycle
and from a cycle to the identity. Then the treewidth is at most #P � #SpCq .

Proof. As in the proof of Theorem 4.2, let � be the following tree: its vertex set isF
n�0 �

n.G�/ � ¹nº, and there is an edge between .�; n/ and .�.�/; n C 1/. The bag
at .�; n/ is

X.�;n/ D
®
uvw�pCq.�/ W juj D p and v is the length-n suffix of a

post-critical ray 2 P and jwj D q
¯
\G�:

The cardinality estimate is obviously satisfied, and the bags containing any given � 2 G�
form a #S -regular rooted subtree of �. Furthermore, every edge of � , say with label
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g 2 G, connects uvw� to u0v0w0� where v is the suffix of a post-critical ray: ˆ.g; u/ D
.u0; h/ where h lies on a cycle or is already finitary, ˆ.h; v/ D .v0; k/ with k finitary, and
ˆ.k;w/ D .w0; 1/.

5. Undecidability results

We now prove that the domino problem is undecidable on some examples of self-similar
graphs. The method of proof is uniform: simulate a grid within the graph; then, since
machines may be simulated on grids, we see that the graph in question is capable of
universal computation, and therefore has undecidable domino problem.

Let � be an A-labelled graph. By “simulating a grid in �” we mean the following:
there is a grid �, and a domino problem ‚simul for � that marks some vertices in � as
representing vertices of �, and some sequences of edges in � as representing edges of �.

More precisely, assume � is B-labelled. Every colouring of � given by ‚simul must
have the following feature: it distinguishes some of the vertices of � as being “�-vertices”,
and assigns to each edge of � a set of signals in ¹0; 1º � B � ¹0; 1º. It is required that �
be isomorphic to the graph with the collection of �-vertices as vertex set and having an
edge labelled b for every path in � coloured .0; b; 1/ � � � .1; b; 1/ � � � .1; b; 0/ that joins
�-vertices. For details see [3, §2].

If � has unsolvable domino problem, then so does �: indeed given any instance of
a domino problem on �, it may be combined with the domino problem ‚simul so as to
produce a domino problem for �; if that last problem were solvable, so would be the
original one.

If � is the subgraph of � consisting of all A0-labelled edges, for some subset A0 � A,
then� is simulated by � . This was exploited for example in [11] to prove that every group
containing a direct product of two infinite, finitely generated subgroups has unsolvable
domino problem. However, the examples we consider here are graphs that do not contain
any grid as a subgraph.

Conversely, if � simulates �, then � is (up to duplicating the vertices and edges of
� by a finite amount) a minor of � . However, our definition of simulation requires some
amount of regularity (in the sense of regular languages) in the extraction of the minor
from � .

In more detail: we first reduce the seeded domino problem on � to that of a grid,
by constructing a tileset that, when properly seeded, exhibits a grid as a minor of � . It
seems impossible to avoid the seed, since the grid will necessarily be quite sparse in � ,
and in particular will ignore arbitrarily large balls. We then show, using a sunny-side-up
tileset, that the seed may be distinguished by an (unseeded) tileset. The (unseeded) domino
problem is then equivalent to the seeded one, by Lemma 2.3.

The precise implementation of this plan depends on the graph, and I will carry it out for
two examples of self-similar graphs that seem at the border of decidability/undecidability.
The second one is essentially equivalent to the subgraph of Z2 considered in [2, Fig. 1,
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middle]. In each case, a simulation has to be defined ad hoc, and I will not attempt to make
any general claim.

5.1. The long range graph

Consider the graph with vertex set Z, and two kinds of edges: for all n 2 Z an edge
between n and n C 1; and for all m 2 Z, s 2 N an edge between 2s.2m � 1/ and
2s.2mC 1/ with additionally a loop at 0. It is known as the “long range graph”, a deter-
ministic avatar of long-range percolation [20]. It is one of the simplest examples of
“!-periodic graphs” considered in [4], see also [6].

This graph � is the Schreier graph G � 01 of a self-similar group given by the follow-
ing transducer:

tu e

1j0

0j1
0j0

1j1
0j0; 1j1

Indeed identify Z with all infinite words in ¹0; 1º1 ending in 01 or 11, via the
binary expansion of integers. Then the edges given by generator t connect n to n C 1,
while generator u connects 2s.2m � 1/ to 2s.2mC 1/. Set A D ¹t; uº.

Proposition 5.1. There are a tileset ‚0 � B0 � ¹t; uº � B0 and a colour b0 2 B0, such
that X‚0 contains a unique tiling � with �.0/ D b0; and this tiling simulates a grid.

Proof. We use dominoes to impose successively more colourings on �; the colours com-
bine, so that each vertex will have many different colours at the end of the process. We are
in fact imposing a sequence of domino colourings on � , with each one making use of the
previous colours.

(1) We first mark 0 with a special colour 0 (this is specified by the seed colour b0).

(2) We mark all positive integers by C, and all negative ones by �. This is done by
choosing B1 D ¹0;C;�º and ‚1 D ¹.�; t;�/; .�; t; 0/; .0; t;C/; .C; t;C/º [
.B1 � ¹uº � B1/.

(3) We mark all powers of 2 by p. This is done by selecting all vertices markedC and
whose u�1-neighbour is marked �: choose B2 D B1 � ¹p; º and

‚2 D
®
..b; c/; a; .b0; c0// W ..b; a; b0/ D .�; u;C//, .c0 D p/

¯
:
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(4) Mark all strips of integers between powers of 2 as e (even) or o (odd), starting
with �N marked as e. This is done by setting B3 D B2 � ¹e; o; pe; poº, forcing 0
to be marked e, copying the p marks from B2 as pe or po, and forbidding patterns
.e; t; o/, .o; t; e/, .e; t; po/, .o; t; pe/, .pe; t; e/ and .po; t; o/ in the new layer.

(5) Mark all integers of the form 2n C 2m, for n > m, as q. This is done by setting
B4 D B3 � ¹q; º, and (just as we marked before the powers of 2) marking by q
all integers having a different parity (e=o) than their u�1-neighbour.

The construction above clearly comes from a finite collection ‚0 � B0 � ¹t; uº � B0
of dominoes, which produces the specified marks as unique colouring.

The vertices marked by a q form a grid, more precisely an octant ¹.n; m/ W n > mº,
with .n;m/ represented as 2nC 2m. It remains to show how the neighbourhood relation in
this octant can be realized. The edge between .n;m/ and .n˙ 1;m/ is realized by: starting
from a q-marked vertex, follow u˙1 to the next q-marked vertex. The edge between .n;m/
and .n;m˙ 1/ is realized by: starting from a q-marked vertex, follow t˙1 to the next q-
marked vertex.

The reduction of the tiling problem on the octant to the seeded tiling problem on �
may be seen quite explicitly as follows: given an instance ‚ � B � ¹S;E;N;W º � B of
the domino problem on the octant, construct a multi-layered domino problem on �: each
vertex has one colour in B0 and two colours in B , one for the vertical direction and one
for the horizontal one. The domino rules impose that the colour in B0 marks q-vertices
as above; that non-marked vertices propagate their horizontal colour along u-edges and
their vertical colour along t -edges; and that q-marked vertices check that the propagated
vertical and horizontal colours match ‚.

Note that the octant does not have vertices .n; n/, so there is no vertical edge from
.n; n� 1/ to .n; n/. The domino tiling on the octant ignores the N direction at .n� 1; n/,
as likewise the domino rules propagating colours vertically may be required to ignore their
constraint as they cross through a vertex marked p.

The graph � is highly intransitive: the origin 0 is the unique vertex having a loop
labelled u. We use this feature to distinguish it among all other vertices:

Proposition 5.2. The sunny-side-up S0 is sofic on � .

Proof. Choose as colours B D ¹0;�0;�1;C0;C1º, and consider the tileset

‚ D
®
.�� ; t; 0/; .0; u; 0/; .0; t;C� /; .ı� ; t; ı� /; .ı� ; u; "1�� / W ı; " 2 ¹˙º; �; � 2 ¹0; 1º

¯
:

Then at most one vertex of � may be coloured 0: all its neighbours in the t direction are
coloured ¹C0;C1º, and all its neighbours in the t�1 direction are coloured ¹�0;�1º. This
vertex coloured 0, if it exists, must be the origin because its u-neighbour is also coloured 0.
On the other hand, the origin has to be coloured 0, since all u-edges have distinct colours
at their extremities if they are not 0.

It remains to see that X‚ is not empty. The colouring in which 0 is coloured 0 and
2s.2mC 1/ is coloured sign.m � 1

2
/m mod 2 is legal.
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We are ready to put the pieces together:

Proof of Theorem B. We invoke the classical fact that the domino tiling is undecidable on
the octant [23]. By Proposition 5.1 the seeded domino problem is undecidable on � . By
Proposition 5.2 and Lemma 2.3 the domino problem is equivalent to the seeded domino
problem on � .

If the reader got the impression that the domino problem was deduced from the seeded
domino problem using a cheap trick, it’s because it’s the truth: the orbit G � 01 is special
in that its position 01 is marked by a u-loop. A more sophisticated argument would be
required to study the domino problem on other orbits.

5.2. The Barbieri–Sablik H -graph

Our second example is a variant of a graph considered by Barbieri and Sablik [2] in their
investigation of domino problems on self-similar structures, see Section 6. Consider the
graph with vertex set N � Z, and two kinds of edges: connecting .m; n/ with .m; n˙ 1/;
and connecting .2sm � 1; 2sn/ and .2sm; 2sn/ for all s � 0, m � 1, n 2 Z.

0

8

0 8 16

This graph is also the Schreier graph of a transducer group. In the transducer below,
the alphabet S is ¹00; 01; 10; 11º and " takes all values in ¹0; 1º:

y x e z00j00
10j10

"1j"1

1"j0"; 0"j1"
"1j"0

"0j"1

There is a natural bijection between N �Z and infinite words in SN ending in .00/1

or .01/1: firstly, S D ¹0; 1º � ¹0; 1º, so every sequence w 2 SN corresponds to a pair of
sequences .u;v/ 2 ¹0;1ºN . Now, given .m;n/ 2N �Z, the pair of sequences representing
it is .u; v/ with u the Gray encoding of m, and v the binary encoding of n. Recall that
the binary encoding of n D

P
i�0 vi2

i , with almost all vi D 0 or almost all vi D 1, is
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v0v1 : : : ; and that the Gray encoding of m D
P
i�0 ui2

i is .u0 ˚ u1/.u1 ˚ u2/ : : : with
˚ the exclusive-or of bits 2 ¹0; 1º. It is then clear that generator z connects

.u; 1s0vsC1 : : : / to .u; 0s1vsC1 : : : /

and therefore .m; n/ to .m; nC 1/; that generator x has order 2 and connects

.0u1 : : : ; v/ with .1u1 : : : ; v/

and therefore .2m;n/with .2mC 1;n/; and that generator y also has order 2 and connects

.0s10usC2 : : : ; 0
sC1vsC2 : : : / with .0s11usC2 : : : ; 0

sC1vsC2 : : : /

and therefore .2s.2m C 1/ � 1; 2sC1n/ with .2s.2m C 1/; 2sC1n/. This concludes the
proof that the graph � is indeed the Schreier graph of the group hx;y;zi. SetN D¹x;y;zº,
the nucleus of the group generated by ¹x; y; zº.

We shall first show that � simulates the “hyperbolic horoball”. This is the graph�with
vertex set ¹.2sC1 � 1; 2sn/ W s � 0; n 2 Zº, and with edges between .2sC1 � 1; 2s.2n//
and .2sC2 � 1; 2sC1n/ and between .2sC1 � 1; 2sn/ and .2sC1 � 1; 2s.nC 1//. It corres-
ponds (after 90ı rotation) to a tiling of the horoball ¹=.z/ � 1º in the hyperbolic plane by
pentagons with Euclidean-straight sides and angles .90ı; 90ı; 90ı; 90ı; 180ı/.

Proposition 5.3. The graph � , when rooted at .0; 0/, simulates the hyperbolic horoball.

The hyperbolic horoball is drawn below in thick lines, on top of � (for which the
generators x; y; z are drawn respectively in red, green, blue):

0

8

0 8 16

Proof. The representation of� as a subset of N �Z matches the representation of � , and
we shall construct a domino problem whose unique solution is a marking that singles out
the vertices of � along with its edges. Consider the set of colours

B0 D
®
a0; a1; b0; : : : ; b4; c0; c1; c2; d0; d1; d2

¯
;
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the generating set S D ¹x; y; zº and the tileset

‚0 D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

.a0; x; b0/ .b0; x; c0/ .c0; x; d0/ .a1; x; b1/ .a1; x; b2/

.b1; x; c1/ .b2; x; c1/ .c1; x; d1/ .b3; x; c2/ .b4; x; c2/

.c2; x; d2/

.a0; y; a0/ .b0; y; c0/ .c0; y; d0/ .a1; y; a1/ .b1; y; c1/

.b2; y; b2/ .c1; y; d1/ .b3; y; b3/ .b4; y; b4/ .c2; y; c2/

.c2; y; d2/ .d2; y; d2/

.a0; z; a1/ .a1; z; a0/ .a1; z; a1/ .b0; z; b2/ .b0; z; b3/

.b1; z; b2/ .b1; z; b3/ .b2; z; b0/ .b2; z; b1/ .b2; z; b4/

.b3; z; b2/ .b3; z; b3/ .b4; z; b0/ .b4; z; b1/ .b4; z; b4/

.c0; z; c2/ .c1; z; c2/ .c2; z; c0/ .c2; z; c1/ .c2; z; c2/

.d0; z; d2/ .d1; z; d2/ .d2; z; d0/ .d2; z; d1/ .d2; z; d2/

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

;

more conveniently given as the edges in the following graph:

a0 b0 c0 d0

a1

b1

b2
c1 d1

b3

b4
c2 d2
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y
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y
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z

z
z
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z

z

z

z

z

z

z

z

I claim that, if the origin .0; 0/ is coloured a0 in a colouring respecting ‚0, then
the nodes coloured b0; b1; b2 constitute the vertices of the hyperbolic horoball �; that
horizontal edges are marked by following an arbitrary power of xy over vertices coloured
¹c1;d1º till the next vertex of� is reached; and that vertical edges are marked by following
an arbitrary power of z over vertices coloured ¹b3; b4º till the next vertex of� is reached.

These claims follow from a series of “Sudoku” deductions. The rules first imply that
the horizontal axis is coloured a0..b0jd0/c0/1, and that all the colours on a vertical line
share the same letter .a; b; c; d/. If any vertex along the vertical axis is coloured a0, then
the corresponding row must also be coloured a0..b0jd0/c0/1, so in particular it cannot
contain any y loop. However, all rows at height¤ 0 contain such a y loop, so the vertical
axis must be entirely coloured a1, except for the origin.

Now, if some vertex on the vertical axis is coloured a1, then the corresponding row
is coloured a1..b1jd1/c1/�b2c2..d2c2/�.b3jb4//1 with a b2 at the position of the first
y loop. Since this first loop appears at abscissa 2sC1 � 1 for some s � 0, the columns
¹2sC1 � 1º � Z are all coloured using ¹b0; : : : ; b4º. In the upwards direction, they are
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coloured b0.b�3b2b
�
4b1/

1, and symmetrically downwards. Combining the conditions on
the rows and columns, the colour of vertex .2sC1 � 1; 2sn/ is b0 if n D 0, is b1 if n is
even, and is b2 if n is odd.

If furthermore s > 0, then along that column ¹2sC1 � 1º �Z there are vertices coloured
b3 and b4, at .2sC1 � 1; 2s�1n/ with n odd. These are connected by a sequence of x
and y to .2s; 2s�1n/, along a horizontal segment coloured using ¹c2; d2º; so all columns
¹2m � 1º � Z with m > 0 not a power of 2 are coloured using ¹d0; d1; d2º.

The colouring is thus entirely specified by the dominoes, and the hyperbolic horoball
appears exactly at the claimed position. Its vertices are connected, vertically, by sequences
of b3 or b4, and horizontally by sequences of c1d1:

0

8

0 8 16

a0

a1

a1

a1

a1

a1

a1

a1

a1

b0

b2

b1

b2

b1

b2

b1

b2

b1

c0

c2

c1

c2

c1

c2

c1

c2

c1

b0

b3

b2

b4

b1

b3

b2

b4

b1

c0

c2

c2

c2

c1

c2

c2

c2

c1

d0

d2

d2

d2

d1

d2

d2

d2

d1

c0

c2

c2

c2

c1

c2

c2

c2

c1

b0

b3

b3

b3

b2

b4

b4

b4

b1

c0

c2

c2

c2

c2

c2

c2

c2

c1

d0

d2

d2

d2

d2

d2

d2

d2

d1

c0

c2

c2

c2

c2

c2

c2

c2

c1

d0

d2

d2

d2

d2

d2

d2

d2

d1

c0

c2

c2

c2

c2

c2

c2

c2

c1

d0

d2

d2

d2

d2

d2

d2

d2

d1

c0

c2

c2

c2

c2

c2

c2

c2

c1

b0

b3

b3

b3

b3

b3

b3

b3

b2

c0

c2

c2

c2

c2

c2

c2

c2

c2

The proof of Proposition 5.3 is complete.

Since the hyperbolic grid has undecidable domino problem [13], so does the hyper-
bolic horoball; thus the seeded tiling problem is undecidable on � . In fact, we shall not
need this, and rather reduce to the tiling problem on arbitrarily large strips.

Indeed the hyperbolic horoball separates strips of width 2s between 2s�1 and 2sC1�1.
These are the vertices coloured b0; : : : ; b4; c0; c1;d0;d1 in the colouring by‚0. Movement
in this grid is defined exactly as in the hyperbolic horoball: follow either of x; y; z till a
new marked vertex is reached.

Given an instance of the tiling problem for the plane, namely a set of Wang tiles‚1 �
C ¹S;E;N;W º, we construct an instance of the seeded tiling problem on � as follows. The
colours areB0 �‚1; the legal edge colourings enforce the rules‚0 on the first coördinate;
propagate the second coördinate in the z direction till a marked vertex is reached, at which
point the N=S matching rules of ‚1 are imposed; and impose the E=W matching rules
of ‚1 along x- and y-coloured edges:
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‚ D
®
..p; �/; g; .p0; � 0// W .p; g; p0/ 2 ‚0;

g D z ^ p0 2 ¹c2; d2; b3; b4º ) � 0 D �;

g D z ^ p0 2 ¹c0; c1; b0; b1; b2º ) .� 0/S D �N ;

g D x ^ p0 2 ¹c0; c1º ) .� 0/E D �W ;

g D y ^ p0 2 ¹d0; d1º ) .� 0/E D �W
¯
:

It is then clear that there is a valid colouring of � by ‚ with first coördinate b0 at the
origin if and only if arbitrarily long strips of the right Euclidean half-plane can be coloured
by ‚1.

Our next step would be to consider the sunny-side-up on � . Unfortunately:

Lemma 5.4. The sunny-side-up on � is not sofic.

Proof. Assume for contradiction that S.0;0/ is sofic, and let X‚ ! S.0;0/ be the factor
map. Consider � 2 X‚, and define �s as the map N � Z! B given by

�s.m; n/ D �.mC 2
s; nC 2s�1/:

By compactness, the �s have an accumulation point �1. Since the pointed labelled graphs
.�; .2s; 2s�1// converge to the pointed graph .�; .0; 0//, we have �1 2 X‚, yet
�.�1.0; 0// ¤ 1 since it is a pointwise limit of .0; 0; : : : /.

We follow a slightly different strategy to prove that the domino problem is undecidable
on � , which amounts to simulating the hyperbolic horoball without marking a root on � .
We shall construct, in steps, a tileset that admits as single tiling a specific configuration of
edge and vertex decorations in � , whose edges form a graph quasi-isometric to the tiling
of the hyperbolic horoball by right-angled pentagons. We shall not directly write down
the tileset ‚, but rather use more general patterns. This is of course equivalent thanks to
Lemma 2.1.

Marking some segments. Vertices of � will be coloured using ¹ ; 1; 2; 3; 4; 40º; the
colours 1; 2; 3; 4; 40 will mark all vertices with 4 neighbours, and will mark the vertices
with 3 neighbours.

(1) We force every vertex marked by an integer (1; 2; 3; 4; 40) to have 4 neighbours.
(This follows from Lemma 2.2, and is easily done by forcing each integer-marked
vertex to have a different colour at its y-neighbour.)

(2) By forbidding all patterns ¹1;z;xz; z�1xzº! ¹b;cº4, we force every ¹v;zv;xzv;
z�1xzvº to contain at least one integer mark.

(3) We restrict the allowed integer combinations on endpoints of x- and y-edges:

.1; y; 1/; .2; y; 4/; .3; y; 3/; .4; y; 40/; .3; x; 4/; .4; x; 40/:

We force every column to be coloured Z or .1 .2j4j40/ /Z or .3 C.4j40/ C/Z,
where (as usual for regular expressions) C denotes a sequence of at least one ,
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and .4j40/ denotes either 4 or 40. (This is easily enforced with dominoes by giving
a different secondary colour to all ’s in the expressions above.)

By the second rule, every vertex in ¹2m; 2m C 1º � ¹4n C 1; 4n C 2º contains an
integer; and the only vertices with 4 neighbours among these are .4mC 1; 4nC 2/ and
.4mC 2; 4nC 2/. Furthermore, the x-neighbour of these vertices has 3 neighbours; so
.4mC 1; 4nC 2/ and .4mC 2; 4nC 2/ must be coloured 1.

The vertices .1; 4n/ also have an x-neighbour with 3 neighbours, so they must be
coloured 2 because of the alternation .1; 2/ on column 1.

The odd rows are then coloured N ; those at height 4nC 2 are coloured . 11/N ;
those at height 2sC1.2nC1/ for some s�1 are coloured . 2.440/2

s�24334.404/2
s�22 /N;

and the horizontal axis is coloured .440/N . This again easily follows from Sudoku deduc-
tions: because of the y-loop at .2sC2 � 1; 2sC1.2n C 1//, the colours must start by an
expression of the form 2.440/�42 with an odd number of 334 inserted in it, and because
of the vertical alternation .3; 4j40/ the 33 may only occur at position 2sC1 � 1 and 2sC1:
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We now add orientations to some edges in � , to express flow of information; distin-
guish certain vertices; and define some edges between them.

Selecting vertices and edges. Vertices marked 1 or 3 always admit a y-neighbour with
the same mark. The “distinguished vertices” we are interested in are the pairs of neigh-
bours with identical odd mark. We call them clusters, and more precisely 1-clusters and
3-clusters.

We then add orientations to some edges. Every 1-cluster has a single outgoing arrow
(among its 6 neighbours). This arrow must start an oriented path of length 4, labelled
z˙2yx along its edges, and going through vertices marked 1; ; 2; 4; 3. After the z˙2 it
must run parallel with another path (coming from the 1 at position z˙4 from the vertex at
which the oriented path started).
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Every 3-cluster has two incoming double-arrows, along x-labelled edges, and a single
outgoing arrow. As above, this arrow must start an oriented path labelled .z˙1/�.yx/�

along its edges, and going through vertices marked 3; ; : : : ; ; 40; 4; : : : ; 40; 4; 3. After the
.z˙1/� it must run parallel with another path (coming from the 3 at position .z˙1/� from
the vertex at which the oriented path started).

These sequences of arrows define “imaginary” paths between clusters. Additionally,
the vertex from each cluster that does not have an outgoing arrow is connected by a “real”
path labelled .z˙1/� along its edges, and going through vertices marked ¹1;3º; ; : : : ; ; 4;
; : : : ; ; ¹1; 3º. (The terminology “real/imaginary” comes from directions in the upper

half-plane ¹=.z/ > 0º, that we shall use later.)
We first claim that the above rules can be enforced by dominoes. To check this, it

suffices to note that every edge gets up to two arrows, and that local rules determine the
claimed tiling.

We next claim that the rules enforce a unique configuration of arrows. Indeed out of
every four 1-clusters at distance 4 from each other, at least one can reach a unique 3-
cluster along z˙2yx; and this forces the three other 1-clusters to be connected to the same
3-cluster. The same argument applies to each of these 3-clusters that were just connected
to 1-clusters: for every quadruple of such 3-clusters, at least one of them will be connected
to a unique 3-cluster along .z˙1/�.yx/�, and the other three in the quadruple will have
to be connected to the same higher-level 3-cluster. This process can be carried on forever,
resulting in a valid decoration of � with arrows:

0

8

0 8 16

We are ready to put the pieces together:

Proof of Theorem C. Consider the graph with the collection of clusters as vertex set, con-
nected by “real” edges (dashed above) and “imaginary” edges (following arrows). Con-
sider furthermore domino problems on that graph, on which we impose the additional
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constraint that, at every 3-cluster, the left incoming double arrow carries the same pair of
dominoes as the right incoming double arrow. This is of course the same as considering
the domino problem on the quotient graph in which the left and right incoming double
arrows are identified, and so are the subgraphs they originate from; thus in the image
above columns 0 : : : 2 and 7 : : : 5 are identified, columns 0 : : : 6 and 15 : : : 9 are identified,
etc. The resulting graph is a tiling of the hyperbolic horoball by triangles and squares:

We invoke the classical fact that the domino tiling is undecidable on the hyperbolic
plane [12] (see also [15]). These sources typically consider the tiling of the hyperbolic
plane by pentagons, but the problems are equivalent, since every pair of triangle and neigh-
bouring square may be converted to a pentagon by ignoring their common edge.

6. Barbieri–Sablik’s self-similar structures

In [2], Barbieri and Sablik consider substitutional colourings of the Euclidean space, as
means of defining domino problems on self-similar sets. They consider a black/white col-
ouring s of a k1 � � � � � kd box in Zd , for definiteness ¹0; : : : ; k1 � 1º � � � � �
¹0; : : : ; kd � 1º; they define �0 as a black box at the origin, and �n for n � 1 as the
colouring of the kn1 � � � � � k

n
d

box obtained by replacing, in �n�1, every black box by s
and every white box by an all-white box of size k1 � � � � � kd . Let then ƒs denote the
generated Zd -subshift: it consists of all maps � WZd ! ¹ı; �º such that, for every finite
subset P � Zd , the restriction of � to P coincides, up to translation, with the restriction
of some �n to some subset P C x contained in the box �n.

Barbieri and Sablik then consider the following modification of the domino problem
on Zd , called “s-domino problem”: an instance is a set of colours B D ¹ıº t B� and
tileset ‚ � B � ¹�1; 0; 1ºd � B , assumed to contain .ı; "; ı/ for all "; there is a natural
map � WB ! ¹ı; �º given by B� ! ¹�º. Then the answer should be “yes” if and only if
there exists a non-trivial valid colouring of Zd that projects to ƒs , namely a colouring
� WZd ! B with � ı � 2 ƒs and � 62 ¹ıºZ

d
and .�.x/; "; �.x C "// 2 ‚ for all x 2 Zd ,
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" 2 ¹�1; 0; 1ºd . (Their formulation uses more general patterns than dominoes, but this is
equivalent by Lemma 2.1.)

Here are three examples of substitutions, all on the plane, taken from their article:

(6.1)

Iteration of the first rule produces a discrete approximation of the Sierpiński gasket,
for which Barbieri and Sablik prove that the domino problem is decidable (as we saw in
Section 4.1). The third rule produces a discrete approximation of the Sierpiński carpet, for
which they prove that the domino problem is undecidable. They list the second example
as an interesting border case between decidability and undecidability.

In terms of shift spaces, an instance of the s-domino problem is a set F of forbidden
patterns on an alphabet B D ¹ıº t B�, leading to a natural map � WBZd ! ¹ı; �ºZ

d
, and

the question is whether there is an F -avoiding configuration in ��1.ƒs n ¹ıºZ
d
/, namely

if
��1

�
ƒs n ¹ıº

Zd
�
\XF ¤ ;:

A variety of related questions may be asked, for example “does one have �.XF / � ƒs?”
The substitution s induces a self-map Ns of ¹ı; �ºZ

d
, replacing each � by the grid s while

preserving the origin. Define

ƒ0s D
\
n�0

Nsn.¹ı; �ºZ
d

/;

the set of configurations that admit infinitely many preimages under Ns. Then ƒ0s con-
tains ƒs and possibly some extra “limit” configurations, such as the combination of
different elements of ƒs on different orthants. The above questions “�.XF / � ƒ

0
s?” and

“�.XF / \ƒ
0
s ¤ ¹ıº

Zd ?” can also be asked for ƒ0s .
Although in some cases these questions can have different answers, it is possible, at

least in all cases I considered, to reduce decidability of one question to the other, so I will
not devote too much attention to these distinctions. For example, unless the substitution
s is constant, the subshift ƒs is almost minimal (it has a unique closed invariant subset
¹ıºZ

d
), in which case �.XF / \ƒs is either ¹ıºZ

d
or ƒs itself.

My point is, rather, that a wealth of interesting tiling problems arises within the lan-
guage of Schreier graphs, and that domino problems defined via substitutions in Euclidean
space can be reformulated in a natural way by ridding them of an ambient space in which
they embed. In the case of contracting groups, the Schreier graphs can in principle be
quasi-isometrically imbedded in Rd for some d , and therefore could, in principle, be cast
into a language of substitutions. This does not even seem approachable for other examples
such as the long range graph.

6.1. Self-similar structures

Let us see how graphs naturally arise from the substitution s. Let M denote the diagonal
matrix with entries k1; : : : ; kd along the diagonal. We first associate with s a self-similar
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structure in the sense of Kigami. Let S denote the set of coördinates 2 Zd at which s. /
has a black box, and for each v 2 S consider the affine map Fv.x/ DM�1.x C v/. Start
byK0D Œ0; 1�d , and for each n� 0 setKnC1D

S
v2S Fv.Kn/. Set finallyK D

T
n�0Kn.

Then .K; ¹Fvºv2S / is a self-similar structure: the maps Fv are contractions, so the coding
map � WS�N ! K maps .vi /i�0 to the limit of Fv0.Fv�1.Fv�2.� � � ///.

The recipe of Section 3 then produces graphs �� for all � 2 SN ; however we shall need
labelled graphs for the domino problem, so we rather turn s into a self-similar group.

In fact, the most natural algebraic structure to associate with a substitution s is a
pseudo-group, namely a collection of partially-defined bijections of SN , closed under
composition. These bijections will be given by partially-defined maps ˆW A � SÜ
S � A. I will remark later how to obtain bona fide group actions.

The transducer ˆ associated with the substitution s has alphabet S and stateset A D
¹�1; 0; 1ºd . For each v 2 S , a 2 A: if v C a D v0 CM.a0/ for some v0 2 S , a0 2 A, then
ˆ.a; v/ D .v0; a0/, and otherwise ˆ.a; v/ is not defined. Note that the v0; a0 above are
unique if they exist, sinceM has full rank and no two elements of S are congruent modulo
M.Zd /. In particular, state 0d is the identity. For example, the transducer associated with
the Sierpiński gasket, with alphabet ¹0 D .0; 0/; 1 D .1; 0/; 2 D .1; 1/º, has the following
form:

- " %

 � !

. # &

2j0

0j2

2j1

1j2

2j0

0j2

0j1
1j0

1j0
0j1

0j2

2j0

1j2

2j1

0j2

2j0

Note that the transducer ˆ is contracting, and that its nucleus is a subset of A. How-
ever, it need not be recurrent, for example the state& above is not.

To obtain a genuine, everywhere-defined action, we can now replace every generator
a by a product b � c of two involutions, and force b or c to have fixed points where a is not
defined. In effect, we replace the orbits of a, which are lines or line segments, by orbits
of (finite or infinite) dihedral groups hb; ci. This adds notational complications without
changing much about the Schreier graphs. There is, however, the important effect that we
are adding loops to the Schreier graph, which can then be detected by dominoes.

To relate the domino problems on s and the Schreier graphs of ˆ, fix a sequence � D
.�n/ 2 S

N of distinguished black boxes. There is then a well-defined associated colouring
of the plane: start by the partial colouring �1 of Zd with �1 at the origin; note that it
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extends to the partial colouring �2 with �1�2 (namely, the box �1 inside the box �2) at the
origin; and so on, with box �1 : : : �n of �n at the origin. If the limit does not colour all
Zd , it means that almost all �i lie on some boundary facet of the box s. Extend then the
colouring to Zd by ı on all not-yet-coloured vertices.

On the other hand, consider the Schreier graph of the partial action of hAi on �, and
call this graph �� . The following is an immediate translation:

Proposition 6.1. Assume that the collection of black squares in s is connected, and con-
sider � 2 SN . Then the domino problem “does there exist a colouring � WZd ! B pro-
jecting to ��?” is equivalent to the domino problem on �� .

Proof. Since the black squares in s are connected, the Schreier graph of the partial action
of hAi on Sn is connected for all n; so the orbit hAi � � is naturally in bijection with the
black boxes in �� .

The edges of �� are also naturally in bijection with the edges of the adjacency graph
of black boxes in �� . In considering the domino problem above �� , there are also edges
between white and black boxes: the tile at a black box can “sense” whether its neighbour
is white, while the graph �� has no such edges. This is however easy to remedy by adding
extra layers to the tiling: for example, to detect whether the left neighbour is white, add a
colour ` with no domino .�;!; `/, and force by local rules the colour ` to appear as often
as s requires it.

If almost all � happen to lie on the same facet of s, then the Schreier graph �� is
exceptional, and its vertices correspond to only an orthant of Zd . The tiling �� , likewise,
was extended by ı on the complement of the orthant.

Even though there is a continuum of different Schreier graphs, varying �, there are
only finitely many different domino problems: the collection of finite balls in the �� only
depends on which sides of the box s contain all but finitely many of the �n’s. It follows that
the “substitutional domino problems” of Barbieri–Sablik and the graph domino problems
�� are essentially equivalent.

6.2. The H -graph

In Section 5.2, we studied in detail the substitution defined by the middle example of (6.1),
here called the H -graph because of the shape of its black boxes. Zooming at the central
square produces a symmetric figure, and the graph given in Section 1.2 is just half of the
picture. The domino problems are equivalent on the graph and its half, and I chose to work
with the half-graph because the transducer producing it is simpler.

The recipe producing a transducer from a substitution, outlined above, would have
produced a partial action of h¹�1; 0; 1º2i on ¹1; : : : ; 7ºN . Firstly, by simplifying the res-
ulting graph, I could put it more nicely in the plane, and use only 4 symbols instead of 7.
One of the generators, the vertical translation .0; 1/, can be defined everywhere, and re-
written z; while the other one, .1; 0/, is replaced by two involutions x; y whose orbits
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generate dihedral groups of order 2sC2 on the row at height 2s.2nC 1/, and an infinite
dihedral group on the horizontal axis.

It would also have been possible to extend the partial action into a genuine group
action, by letting, in the recursive formulas above, ˆ.a; v/ D .v0; a"/ with v0 the first
black box following v cyclically in direction a; and " D 1 if v0 is reached by wrapping
around and " D 0 if not. We are then adding edges to the graph �� . Applying this recipe
to the simplification of the H -graph produces the following transducer:

w e z10j00

11j01

00j10; 01j11

01j00

11j1010j11

00j01

In it, the edge ‘11j01’ from w to e should be removed to define a partial action of w;
the Schreier graph then has vertices naturally in bijection with Z2, via binary encoding,
and is made of two copies of the graph given in Section 1.2, joined by an edge. This
changes nothing to the fundamental nature of the domino problem.

6.3. Substitutions with unbounded connectivity

In the next-to-last section of [2], Barbieri and Sablik propose a partition of substitutions
into different classes, by means of which they conjecturally settle the decidability of the
domino problem. Firstly, even if this is not explicit, they assume that the collection S of
black squares in s is connected. They distinguish a set W � ¹�1; 0; 1ºd of directions,
which correspond to the recurrent states of the transducer ˆ above. Assuming that the
substitution maps the unit cube to a box of size .k1; : : : ; kd /, they define then flexible lines
in direction t as sequences x0; x1; : : : ; xn D x0C .0; : : : ; kt ; : : : ; 0/ in S with xj � xj�1 2
W for all j D 1; : : : ; n; and say s has bounded connectivity if there is at most one flexible
line in each direction, while s has an isthmus if there is one flexible line in one direction,
and at least two disjoint flexible lines in another.

Barbieri and Sablik claim that if substitution s has bounded connectivity, then the
s-domino problem is decidable; and that this follows from an adaptation of their main
theorem. Their definition of bounded connectivity seems a bit too wide for this to hold;
for example, the substitution

may also simulate the hyperbolic grid, yet follows their definition of “bounded connectiv-
ity”. What is true, and follows from their Theorem 1 and our Theorem A, is that if the
transducer ˆ is bounded, then the associated domino problem is decidable.

Moreover, it could well be that ˆ is not bounded, but a conjugate of ˆ is bounded.
Algebraically, this is just a conjugate of the (pseudo)group by a transformation of SN ,
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itself given by an initial transducer. This may be phrased in the following manner: a sub-
stitution is conjugate to bounded if for every direction t 2 ¹1; : : : ; dº there is a partition
of S t .S C .0; : : : ; kt ; : : : ; 0// into two pieces S0 t S1 such that there is a single edge in
direction t connecting S0 to S1. (The case of bounded transducers corresponds to S0 D S
and S1 D S C .0; : : : ; kt ; : : : ; 0/.)

Proposition 6.2. If s is conjugate to bounded, then the s-domino problem is decidable.

Proof. As the name hints, we shall show that the transducer ˆ may be conjugated to a
bounded transducer. We do this one direction at a time. In direction a 2 A, let the partition
be S0 t S1. Define then the initial transducer ‰, with alphabet S , stateset ¹ ; a º and
initial state  , by ‰. ; v/ D .v; a" / if v C a 2 S". Then the conjugate of ˆ by  is
bounded in direction a.

Now, minimality of the dynamical system ƒs implies that, if s contains an isthmus,
then its associated colourings contain densely a (possibly deformed) copy of the H -sub-
stitution; or, equivalently, the H -graph. Furthermore, local rules (purely based on what
appears inside s) allow thisH -graph to be distinguished as a quasi-isometrically imbedded
subgraph. From this we deduce:

Proposition 6.3. If s contains an isthmus, then the s-domino problem is undecidable.

Acknowledgements. I am grateful to Bruno Courcelle and Ville Salo for helpful com-
ments and generous replies to my (sometimes obscure or naive) questions.
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