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Simulations and the lamplighter group

Laurent Bartholdi and Ville Salo

Abstract. We introduce a notion of “simulation” for labelled graphs, in which edges of the simu-
lated graph are realized by regular expressions in the simulating graph, and we prove that the tiling
problem (a.k.a. the “domino problem”) for the simulating graph is at least as difficult as that for
the simulated graph. We apply this to the Cayley graph of the “lamplighter group” L D Z=2 o Z,
and more generally to “Diestel–Leader graphs”. We prove that these graphs simulate the plane, and
thus deduce that the seeded tiling problem is unsolvable on the group L. We note that L does not
contain any plane in its Cayley graph, so our undecidability criterion by simulation covers cases not
addressed by Jeandel’s criterion based on translation-like action of a product of finitely generated
infinite groups. Our approach to tiling problems is strongly based on categorical constructions in
graph theory.

1. Introduction

Let G be a finitely generated group, with finite generating set S D S�1. For a given finite
set A and a subset … � A � S � A called tileset, a tiling of G is the choice, for every
g 2 G, of a colour �g 2 A such that neighbouring group elements have matching colours:
for every g 2 G, s 2 S we have .�g ; s; �gs/ 2 ….

The tiling problem forG asks for an algorithm that, given…, determines whether there
exists such a tiling. A useful variant, the seeded tiling problem, asks for an algorithm that,
given… and a seed colour a0 2 A, determines whether there exists a tiling with colour a0
at the origin.

These problems have attracted much attention since Wang’s [21] and Berger’s [6]
results that the seeded tiling problem, respectively tiling problem are unsolvable for G D
Z2.

More generally, groups that contain sufficiently regular planes also have unsolvable
tiling problems; see the next section for more precise statements. It is also easy to see that
groups with unsolvable word problem have unsolvable tiling problem. To the best of our
knowledge, all groups known up to now to have unsolvable tiling problem fall in one of
these two classes.
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On the other hand, straightforward considerations show that both tiling problems are
solvable for free groups, and more generally virtually free groups (namely groups with a
free subgroup of finite index).

The main contribution of this article is a proof of undecidability for a group not
covered by these classes, the lamplighter group. This is the wreath product L D Z=2 oZ,
and also the group generated by the affine transformations a.f /D tf and b.f /D tf C 1
of the ring F2Œt; t�1�; it admits as presentation

L D
˝
a; b j .anb�n/2 for all n � 1

˛
:

This group is of course finitely generated, is not virtually free, does not contain geomet-
rically any plane or hyperbolic plane, and has decidable word problem. We prove:

Theorem A. The seeded tiling problem for the lamplighter group L is unsolvable.

We view the tiling problem as a question about marked graphs; in our setting, the
Cayley graph of the group L, namely the graph with vertex set L and an edge between g
and gs for all s 2 ¹a˙1; b˙1º.

We prove Theorem A by introducing a notion of “simulation”: even though Z2 is not
contained geometrically in L, it is contained “automatically”, in that there is a function
Z2 ! L which is not Lipschitz but maps edges of the Cayley graph of Z2 to regular
expressions in edges of the Cayley graph of L; these regular expressions are driven by an
auxiliary labelling provided to the Cayley graph of L by a subshift of finite type. This is
sufficient to reduce the seeded tiling problem of Z2 to that of L, and therefore conclude
with the latter’s undecidability.

Our construction is fundamentally graph-theoretical. It applies in particular, with
trivial modifications, to all Diestel–Leader graphs DL.p; q/; see Section 7. Up to subtleties
regarding edge labellings, DL.2; 2/ is just the Cayley graph of L. We prove in fact:

Theorem B. On every Diestel–Leader graph DL.p; q/ the seeded tiling problem is
unsolvable.

We leave the following conjecture as an interesting open problem.

Conjecture 1.1. The tiling problems of the lamplighter group and Diestel–Leader graphs
are undecidable.

Added in print: this will be answered positively in a forthcoming paper of ours.

1.1. Groups with unsolvable (seeded) tiling problem

As we mentioned in the introduction, the tiling problem on G is solvable if G is virtually
free [18]. In fact, if a tileset … tiles at all, then it admits a “rational” tiling, namely there
are regular languages .Ra � S�/a2A such that g 2 G is coloured a if g is in the image
of Ra under the natural evaluation map S�� G. A tiling algorithm therefore lists in
parallel tilings of larger and larger balls in G, and tests A-tuples of regular languages in
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S� for valid tilings, and we are guaranteed that one of the processes will stop. See [1,
Theorem 9.3.37]. No other groups are known to have solvable tiling problem:

Conjecture 1.2 (Ballier–Stein [4]). A finitely generated group has solvable domino prob-
lem if and only if it is virtually free.

There has been, since 2013 (when [4] appeared as a preprint), continuous progress
towards Conjecture 1.2; here is a brief list of elementary results, in which all groups are
assumed to be finitely generated.1

• If G has unsolvable word problem (namely there is no algorithm determining, with
input a word w in the generators of G, whether w D 1 holds in G), then there is
a fortiori no algorithm determining whether a tileset tiles; see [1, Theorem 9.3.28].

• The fundamental results of Wang and Berger show that Z2 has unsolvable tiling prob-
lem.

• If G;H are commensurable (meaning they have finite-index isomorphic subgroups),
then G has solvable tiling problem if and only if H does.

• If H is a finitely generated subgroup of G with unsolvable tiling problem, then the
tiling problem of G is also unsolvable; see [1, Proposition 9.3.30].

• If N is a normal finitely generated subgroup of G, and G=N has unsolvable tiling
problem, then so does G; see [1, Proposition 9.3.32].

Recall that two finitely generated groups G;H are quasi-isometric if there are Lip-
schitz maps G ! H and H ! G whose compositions are at bounded sup-distance from
the identity. Cohen proves that the tiling problem is geometric in the following sense:

Theorem 1.3 ([7]). If G;H are finitely presented and quasi-isometric, then G has solv-
able tiling problem if and only if H does.

Recall next that a finitely generated group H acts translation-like on G if the action
is free and by self-maps of G at bounded sup-distance from the identity. This notion was
introduced by Whyte [22]; Seward [20] proved that a finitely generated group is infinite if
and only if it admits a translation-like action of Z.

Theorem 1.4 ([13, Theorem 3]). IfH is finitely presented, has unsolvable tiling problem,
and acts translation-like on G, then G has unsolvable tiling problem.

Thus every group containing a subgroup of the formH1 �H2 withH1;H2 infinite and
finitely generated has unsolvable tiling problem. This applies in particular to “branched
groups” such as the first Grigorchuk group. The current “state of the art” also includes the
following groups as having unsolvable tiling problem:

1The case of infinitely generated G to some extent reduces to the finitely generated case, in the sense
that given a tileset…, a tiling ofG exists if and only if a tiling exists on the subgroup generated by elements
mentioned in the description of ….
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• Non-virtually-cyclic virtually nilpotent [4] and more generally virtually polycyclic
groups [12]; see [1, Theorem 9.3.43].

• Baumslag–Solitar groups [3]; see [1, Theorem 9.3.47].

• Fundamental groups of closed surfaces [2].

Note that all the above examples geometrically contain a plane, either Euclidean or
hyperbolic, in their Cayley graph. In fact, Ballier and Stein prove more generally that if
G is not virtually cyclic but contains an infinite cyclic central subgroup, then its tiling
problem is unsolvable.

We have not yet addressed an important, related question: given a group G, does there
exist a finite tileset that admits tilings, but only aperiodic ones? There are several variants
to this question, in particular a weakly aperiodic tileset is such that all tilings have infinite
orbits (equivalently: infinite-index stabilizer) under translation by G, a strongly aperiodic
tileset is such that all tilings have trivial stabilizer.

These notions are equivalent for Z2, but differ in general: On Z3, one can build
weakly-but-not-strongly aperiodic tilesets easily from strongly aperiodic tilesets of Z2,
they exist on all Baumslag–Solitar groups which are not virtually abelian [3, 11], and
Cohen constructs one for the lamplighter group in [8]. On Z3 and (at least) amenable
Baumslag–Solitar groups, also strongly aperiodic tilesets exist, while on L none are
known.

1.2. The general tiling problem of the lamplighter group

It remains open whether the (unseeded) tiling problem of the lamplighter group is solvable.
All the standard methods used to prove the undecidability of the tiling problem on the
plane and other finitely generated groups seem plausible on the lamplighter group: the
lamplighter group is residually finite and one can imagine tiling it by “macro-tiles” that
form another copy of the lamplighter (or related) group, and one could try a Robinson-like
construction or the fixed-point methods for this. However, the group is too disconnected to
make a direct implementation possible. To implement this method, we suspect the obstacle
to overcome is to find a strongly aperiodic tileset.

Another approach is the transducer method, which applies to groups equipped with
a homomorphism onto Z (“indicable groups”). On each fibre, we write numbers from a
finite set, their average density represents a real number, and a transducer verifies that con-
secutive fibres have a density related by a piecewise-affine map without periodic points.
This strategy succeeds on Baumslag–Solitar groups [3]; on the lamplighter group, it can-
not work directly because the fibres are disconnected as graphs (no matter what the gener-
ating set is). It would be interesting to understand which Z-subshifts have a sofic pullback
to the lamplighter group along the natural homomorphism. We show in Proposition 6.7
that the sunny-side-up on Z has a sofic lift, while for the transducer method it seems one
would need to lift a full shift (though it is not clear this is sufficient).
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1.3. Simulations

We consider the (seeded) tiling problem in the context of edge- and vertex-labelled graphs
G; when applied to a group G D hSi, the graph we consider is the Cayley graph of G,
which has one vertex per group element and an edge labelled s from g to gs for all g 2 G
and all s 2 S . In the case of a seeded tiling problem, the vertex 1 2 G furthermore has a
special marking. A tileset is then a collection of allowable colourings of vertices and their
abutting edges and neighbours.

Our strategy to prove that a graph G has unsolvable tiling problem can be summarized
as follows: define a preorder relation “simulate” on a class of graphs containing G, and
then

(1) show that if a graph A simulates B, and B has unsolvable tiling problem, then so
does A;

(2) choose a graph H with unsolvable tiling problem;

(3) show that G simulates H.

This is uninteresting if “simulate” is the equality relation; the coarser “simulate” is,
the harder (1) becomes and the easier (3) becomes. Taking “simulate” to mean “admits a
translation-like action by” interprets Theorem 1.4 in this context.

We propose a more general notion of “simulation”, in which the edges of the simulated
graph are not paths of bounded length in the simulating graph (as would be the case in a
translation-like action) but rather are given by regular expressions, or more appropriately
by graph-walking finite state automata. These automata simulate edges by following edge
and vertex labellings on the simulating graph, which typically is drawn by a legal tiling
over an auxiliary fixed tile set. An appropriate image, back to the context of groups, is that
when G simulatesH , there is for every generator t of H an ant that reacts to pheromones
deposited on the Cayley graph of G; when started at a vertex representing an element
h 2H , it will move according to its finite state table and pheromone inputs until it reaches
a stop state, which will then represent ht 2 H .

The “automaton” or “ant” picture is useful to describe actual simulations, but is better
expressed in the more formal setting of a “bigraph”, namely a graph equipped with two
graph morphisms towards finite graphs. These should be thought of as generalizations of
graph morphisms (in case one of the morphisms is the identity).

We realize our plan, towards the proof of Theorem A, as follows:

(1) is proven as Theorem 3.4 and Theorem 3.7;

(2) we use the quadrant N2 or the plane Z2;

(3) is proven in two different manners: using a “comb”, in Proposition 5.2, or a “sea
level”, in Proposition 6.10.

Both of the simulations require a marking of L by tiles from given “pheromone” tileset
(whose size we could bring down to 6 tiles in the case of the “comb”). We have proven,
therefore, that the Cayley graph of L, when decorated by this tileset, has unsolvable tiling
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problem. However, this immediately implies thatL itself also has unsolvable seeded tiling
problem, since the “pheromone” tileset can be combined to the instance to be solved. We
need a seed tile so as to ensure that there is a non-trivial decoration from the “pheromone”
tileset; indeed we have not been able to find a tile set on L all of whose configurations
simulate a quadrant or Z2.

Summary of the proof of Theorem A. Let … be an instance of a tiling problem for the
quadrant. The “sea level” is a tiling problem …e for L, which (after specifying a seed
tile) has a unique solution. The grid may be simulated using the labels on L coming from
this tiling, leading to a tiling problem …0 for L. If the seeded tiling problem of L were
solvable, it would in particular be solvable for the product of …e and …0, and therefore
lead to a solution of the tiling problem … on the quadrant, a contradiction.

We could, alternatively, use the “comb” tiling problem instead of the “sea level”. Then
the induced labelling on L is not unique, and forms a family of tilings, some of which
simulate grids. The proof would then proceed identically.

The reason we exhibit two different constructions is that each has its own additional
benefits. The comb gives a better proof in terms of conciseness: the proof is shorter, and
indeed Section 5 (skipping Proposition 5.2 and Corollary 5.3) gives a self-contained proof
of the main theorem using the comb subshift of finite type (SFT).

On the other hand, the sea level SFT admits a unique seeded configuration which
simplifies the application of our simulation theorem to it, and is more efficient (an n � n
grid requires roughly log.n/n2 vertices in the lamplighter graph). In the process, we shall
learn more about the “SFT-accessible geometry” of the lamplighter group: recalling that
the lamplighter group is a split extension F2Œa; a�1� Ì hai, we show that the one-point
compactified actions on the coset spaces of the subgroups F2Œa; a�1� and hai are sofic
shifts, and the sea level SFT is obtained by combining their covering SFTs with a simple
rule. The sea level construction also does not require the rigidity of a vertex-transitive
graph, and with minor modifications applies to the Diestel–Leader graphs DL.p; q/. We
feel these ideas are more likely to be useful in further work on the group than the ad hoc
tricks used for the comb.

2. Graphs and their simulations

We begin by some general notions on graphs. They rely heavily on categorical ideas, but
we have taken care to explain them in direct terms, only hinting at their abstract origin. The
reader who is uncomfortable with categorical language is strongly encouraged to ignore
every sentence that matches ‘.*[Cc]ategor[iy].*’. These areas are marked by ".
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2.1. Graphs

Definition 2.1. A graph is a set G D V tE partitioned into vertices and edges, with two
maps e 7! e˙WE ! V ; we call eC the head of e and call e� its tail. We write V.G/ and
E.G/ for the vertices and edges of a graph G.

Graphs are born oriented. An unoriented graph is a graph endowed with an involution
e 7! e0WE ! E on its edges called the reversal, satisfying .e0/C D e� for all e 2 E.

The closure of an edge e 2 E is the subgraph xe D ¹e; eC; e�º in the oriented case and
xe D ¹e; e0; eC; e�º in the unoriented case, and the closure of a vertex v 2 V is xv D ¹vº.

A morphism of graphs is a pair of maps between their vertices and edges respectively,
which intertwine the head, tail and (in the unoriented case) reversal operations. We use
the same symbol for the map on vertices and on edges, and in formulas the conditions for
a map �WG! H to be a morphism are �.e˙/ D �.e/˙, �.e0/ D �.e/0.

A morphism �W G ! H is étale if it is locally injective: if two edges e; f 2 E.G/
satisfy �.e/D �.f / and (e� D f � or eC D f C), then e D f . A graph is weakly étale if
all edges which have the same label and share an endpoint actually share both endpoints.

" Graphs, with graph morphisms, form a category Graph. In the next sections, we
shall display important properties of this category. We write Graph.G;H/ for the set of
morphisms G! H, or just Hom.G;H/ if we do not want to precise the subcategory of
Graph under consideration.

2.2. Labelled graphs

Consider a graph G, with labels on its vertices and edges. We thus have maps ˛WV.G/!A

and ˛WE.G/! C to label sets A and C . Without loss of generality, we may assume that
every label c 2 C “knows” the label of its extremities, so we have maps c 7! c˙WC ! A.
Indeed at worst replace C by A � C � A and extend the edge labelling to a map E.G/!
A � C � A by e 7! .˛.e�/; ˛.e/; ˛.eC//.

Thus a labelling of G is nothing but a graph morphism ˛WG! A t C . From now on
we shall write ˛WG! A for a labelling on G, with A D A t C .

Again, in the unoriented case, we assume that there is an involution on C compatible
with the edge involution on G.

Example 2.2. Let G be a group with generating set S . An example we shall return to
in much more detail is the Cayley graph of G: it is the graph C D G t .G � S/ with
.g; s/� D g and .g; s/C D gs. In case S D S�1, we also have an edge reversal given by
.g; s/0 D .gs; s�1/.

The Cayley graph is naturally an edge labelled graph, in which the edge .g; s/ has
label s. We express this as a map C.G; S/! 1 t S , where 1 t S is the graph with one
vertex and S loops at it.

Example 2.3. A bipartite graph is a graph given with a partition of its vertices into two
parts V0 t V1, and such that all edges cross between V0 and V1.
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A bipartite graph is then naturally a graph equipped with a labelling to the segment,
namely to the graph with vertex set ¹0; 1º and two edges e; e0 with eC D .e0/� D 1 and
e� D .e0/C D 0.

Example 2.4. Let G be a monoid with generating set S . The element 1 2 G may be
distinguished, leading to a rooted Cayley graph, or sunny-side-up; this last terminology
because one vertex is marked as vitellus (yolk) and all the others as albumen (white). Thus
the rooted Cayley graph is expressed by a map

C.G; S/! ¹vitellus; albumenº t .¹vitellus; albumenº � S � ¹vitellus; albumenº/;

with .x; s;y/�D x and .x; s;y/CD y; namely the map defined on vertices by 1 7! vitellus
and g ¤ 1 7! albumen, and likewise on edges.

" In categorical language, the A-labelled graphs, namely the graphs with labelling
by a graph A, form the slice category Graph=A; this is the category whose objects are
morphisms ˛WG! A and whose morphisms between ˛WG! A and ˇWH! A are usual
graph morphisms 
 WG! H satisfying ˛ D ˇ ı 
 .

The simplification of a labelled graph G is the graph where all edges e with the same
endpoints and label are merged into a single edge, and the full simplification is obtained
from the simplification by also removing all self-loops. Note that a graph is weakly étale
if and only if its simplification is étale.

2.3. Pullbacks and exponentials

Consider two A-labelled graphs G1 and G2, namely graphs equipped with labellings
˛i WGi ! A. Their pullback is the graph

G1 �A G2 D
®
.u1; u2/ 2 G1 � G2 W ˛1.u1/ D ˛2.u2/

¯
;

labelled by ˛.u1; u2/ D ˛1.u1/. The graph structure is given by .e1; e2/˙ D .e˙1 ; e
˙
2 /,

and similarly for the reversal.
" Category theory points us to natural constructions, such as the above, that pervade

throughout mathematics; and has a way of expressing their important properties. This will
be even more so for the pullbacks and exponentials in the next section.

In categorical terms, G1 �A G2 is universal: it is the “best” way to construct an A-
labelled graph equipped with morphisms to G1 and G2 (which of course are given by
projections to the first and second factor). The universal property says that, for every graph
H also equipped with morphisms �i WH! Gi , there is a unique map �WH! G1 �A G2
with �i D �i ı �.

Example 2.5. Consider G2 DAtA, namely two disjoint copies of the vertices and edges
of A. Then G1 �A G2 Š G1 t G1.

Consider next G2 a subgraph of A, for example the subgraph spanned by a subset A0

of the vertices of A. Then G1 �A G2 is the subgraph of G1 whose labelling belongs to G2,
for example the subgraph of G1 spanned by vertices whose label is in A0.
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Example 2.6. Let G1; G2 be two groups with respective generating sets S1; S2. Then the
Cayley graph C.G1 �G2; S1 � S2/ is the usual direct product of the graphs C.G1; S1/ and
C.G2; S2/; it is a connected graph precisely when S1 � S2 generates G1 �G2. This direct
product is the pullback C.G1; S1/ �1t1 C.G2; S2/ over the trivial graph with one vertex
and one edge. More generally, let there be maps f1W S1 ! S and f2W S2 ! S ; then the
Cayley graph of C.G1 � G2; S1 �S S2/ is C.G1; S1/ �1tS C.G2; S2/, naturally viewing
C.Gi ; Si / 2 Graph=1tS via fi .

Consider two B-labelled graphs G1; G2, and let ˛W G2 ! A be an A-labelling on G2.
The exponential2 of these graphs is the graph

G
G2
1 D

®
.f; a/ W a 2 A; f 2 Graph=B.˛

�1.xa/;G1/
¯
:

There is a natural A-labelling on G
G2
1 by projection to the second coordinate. The graph

structure on G
G2
1 is given by .f; a/˙ D .f �˛�1.a˙/; a˙/, with � denoting restriction. In

the unoriented case, we have .f; a/0 D .f 0; a0/ with f 0.e/D f .e0/ and f 0.e˙/D f .e�/.
In words, an edge in G

G2
1 with label c 2E.A/ is a function defined on the ˛-preimages

of c and its endpoints, with values in G1, which preserves the graph structure and the B-
labelling.

Example 2.7. Consider the graph B with vertex set ¹0; 1º and no edge. Thus Graph=B is
the category of sets S partitioned into two parts S0 t S1. Choose ADB and let ˛ coincide
with the B-labelling. Unwrapping the definition, we see .S0 t S1/T0tT1 D S

T0
0 t S

T1
1 ,

where in the last expression STii is as usual the set of maps Ti ! Si .

" The classical bijectionAB�C D .AC /B is a particular case of adjunction: there are
functors on the category of sets, respectively the cartesian product A 7! F.A/ D A � C

and the exponential A 7! G.A/ D ¹f WC ! Aº; and a natural bijection Set.F.B/;A/$
Set.B;G.A//. One says that F and G are adjoint. It is a valuable reflex, when thinking
categorically, to recognize important functors and enquire whether they have adjoints, and
if so what they are. This instinct led us in the right direction in defining G

G2
1 .

Lemma 2.8. For any labelled graphs G1 ! A and A G2 ! B and G3 ! B we have
a natural bijection

Graph=B.G1 �A G2;G3/ Š Graph=A.G1;G
G2
3 /:

The proof is essentially “currying”: a morphism �W G1 �A G2 ! G3 gives rise to a
family of morphisms �x WG2 ! G3, indexed by x 2 G1, by the formula �x.y/ D �.x; y/;
and conversely.

2This is not actually an exponential object in a category Graph=B because of the different categories
Graph=A, Graph=B involved. It does however produce exponential objects, in the sense of adjoints to fibre
products, when A D B and the A- and B-labellings coincide; see Lemma 2.8.
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Proof with the painful details. Write the labellings ˛i WGi!A for i D 1;2 and ˇi WGi!B

for i D 2; 3. We give maps in both directions, and then show that they are inverses of each
other.

.9 !/ Let �W G1 �A G2 ! G3 be a graph morphism. Define the map �W G1 ! G
G2
3

by �.u1/ D .fu1 ; ˛1.u1// with fu1.u2/ D �.u1; u2/ for all u2 2 ˛�12 ˛1.u1/. Note that
fu1 2 Graph=B since it is a restriction of � 2 Graph=B. Clearly �.u1/˙ D �.u˙1 / and �
preserves the A-labelling, so � 2 Graph=A.

.9  / Let �W G1 ! G
G2
3 be a graph morphism. Define the map �W G1 �A G2 ! G3

by �.u1; u2/ D fu1.u2/ where �.u1/ D .fu1 ; ˛1.u1//. Note, since fu1 2 Graph=B, that
�.u1; u2/

˙ D �.u˙1 ; u
˙
2 / and that � preserves the B-labelling; so � 2 Graph=B.

. ı !/ We next show that the constructions are inverses of each other. Let y� 2
Graph=A.G1;G

G2
3 / be constructed from � 2 Graph=B.G1 �A G2;G3/, which in turn is con-

structed from � 2 Graph=A.G1;G
G2
3 /. We show y� D �: for u1 2 G1 we have

y�.u1/ D .bfu1 ; ˛1.u1// and �.u1/ D .fu1 ; ˛1.u1//;

with bfu1.u2/ D �.u1; u2/ D fu1.u2/ directly from the defining formulas, so bfu1 D fu1 .
.! ı  / Conversely, let y� 2 Graph=A.G1 �A G2;G3/ be the graph constructed from

� 2 Graph=B.G1;G
G2
3 /, which in turn is constructed from � 2 Graph=A.G1 �A G2; G3/.

Writing �.u1/ D .fu1 ; ˛1.u1//, we have

y�.u1; u2/ D fu1.u2/ D �.u1; u2/:

Example 2.9. Continuing on Example 2.7, with G1 D S0 t S1 and G2 D T0 t T1 and
G3 D U0 t U1, we get

Hom.G1 �A G2;G3/ D Hom.S0 � T0 t S1 � T1; U0 t U1/

D U
S0�T0
0 � U

S1�T1
1

D .U
T0
0 /S0 � .U

T1
1 /S1

D Hom.S0 t S1; U
T0
0 t U

T1
1 /

D Hom.G1;G
G2
3 /;

in accordance with the previous lemma.

2.4. Path subdivisions

We introduce a geometric operation, that of subdividing edges by replacing them by
unbounded paths:

Definition 2.10. Let B be a graph. Its path subdivision is the graph B� with vertex set
B D V.B/ tE.B/ and edge set ¹0; 1º �E.B/ � ¹0; 1º, with extremities

.0; e; 0/˙ D e˙; .0; e; 1/� D e�; .0; e; 1/C D e;

.1; e; 1/˙ D e; .1; e; 0/� D e; .1; e; 0/C D eC:

In the unoriented case the vertex set is B=¹e0De 8e 2 E.B/º, and .i; e; j /0 D .j; e0; i/.



Simulations and the lamplighter group 1471

In pictures, we are replacing every edge e, from v to w, by a small graph:

v

w

 
v

we

.0; e; 0/

.0; e; 1/

.1; e; 1/
.1; e; 0/

(2.1)

There is a natural map from paths in B� to paths in B; namely, replace each path
going through an E.B/-vertex by the straight edge going directly from v to w in (2.1).
There is a natural map between the geometric realization of B� to that of B, and a natural
embedding of B in B� by mapping every edge e to .0; e; 0/. There is no natural graph
morphism B� ! B. The operation is evidently functorial, i.e. there is a natural way to
associate to a graph homomorphism (or labelled graph) ˛WG!B a graph homomorphism
(or labelled graph) ˇWG� ! B�.

Consider a labelled graph ˛WG!B�. We construct a labelled graph ˇWG[!B as fol-
lows: its vertex set is ˛�1.V .B//, with u 2 V.G[/ labelled ˛.u/. For each path .e1; : : : ; en/
in G, say from u to v, such that ˛.u/; ˛.v/ 2 V.B/ and the labels along .e1; : : : ; en/ are
.0; c; 1/; .1; c; 1/; : : : ; .1; c; 1/; .1; c; 0/ for some c 2 E.B/, there is an edge from u to v
labelled c. We call paths .e1; : : : ; en/ as above coherent paths. The terminology “[” is
justified by deFLATion of paths into edges.

It may sometimes be necessary to add some extra “sink” vertices to G�: anticipating
Section 2.5, the new vertices in G� represent intermediate steps in a calculation; and we
want to allow the possibility of calculations that start but do not terminate – no results
are produced, but computational resources are consumed. For a labelled graph ˛WG! B,
define the labelled graph ˇWG] ! B� as follows: its vertex set is

V.G]/ D V.G�/ t ¹˙1º �E.B/:

Its edge set is the union of E.G�/ and, for each edge e labelled c D ˛.e/ of G, an edge
labelled .0; c; 1/ from e� 2 V.G/ to .�; c/, an edge labelled .1; c; 0/ from .C; c/ to eC,
and edges labelled .1; c; 1/ from .C; c/ to .C; c/, .�; c/ and e, and edges from e and
.�; c/ to .�; c/. In pictures, where all omitted labels are .1; c; 1/:

v

w

e with ˛.e
/ D c  

v

.�; c/ .C; c/

.0
; c
; 1
/

.1; c; 1/

w
e

.1; c; 0/

.0; e;
0/

.0;
e; 1
/

.1; e; 1/

.1; e; 0/

The operations G 7! G[ and G 7! G] are close to being adjoint to each other:
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Lemma 2.11. Consider G 2 Graph=B� and H 2 GraphB. Then there is a map

Hom.G;H]/! Hom.G[;H/:

If furthermore G[ is weakly étale, then there is also a map

Hom.G;H]/ Hom.G[;H/;

so Hom.G[;H/ is empty if and only if Hom.G;H]/ is empty.

Proof. Consider first f W G! H], and define f [W G[ ! H as follows. Vertices of G[ are
in particular vertices of G, so we define f [ on V.G[/ as the restriction of f . For an edge
.e1; : : : ; en/ of G[, the path .f .e1/; : : : ; f .en// is of the form ..1i¤1; e; 1i¤n//1�i�n,
and we set f [.e1; : : : ; en/ D e. Note that in fact f [ only depends on the restriction of
the image of f to H�, since there is no coherent path in H[ going through the vertices
¹˙1º �E.B/ and starting and ending at vertices of H.

Consider next gW G[ ! H. As a preprocessing step, we may assume without loss of
generality that g has the property that for all p; q 2 E.G[/ with p� D q� and pC D qC

and ˛.p/D ˛.q/ we have g.p/D g.q/: simply choose one preferred path pu;c;v between
any two u; v 2 V.G[/ and for each c 2 E.B/ with ˛.u/ D c�, ˛.v/ D cC, and redefine
g.q/ D g.pq�;˛.q/;qC/ for all q 2 E.G[/.

Now define g]WG!H] as follows. On vertices of G with label in V.B/, called “vertex
vertices”, let g] coincide with g. Consider now a vertex p of G with label in V.B�/ nV.B/,
an “edge vertex”. If p lies on a coherent path .e1; : : : ; en/ in G, set g].p/ D g.e1; : : : ; en/
for an arbitrary such path. Since G[ is weakly étale, all coherent paths have the same
end points and ˛-label ˛.p/, and by our preprocessing of g all such paths have the same
image, so the definition of g].p/ is unambiguous.

Consider next an edge vertex p that does not lie on a coherent path. If it admits a path
labelled .1; c;1/; : : : ; .1; c; 1/; .1; c;0/ towards a vertex vertex, map it by g] to .C; c/; if on
the other hand there is path from a vertex vertex to p labelled .0;c;1/; .1;c;1/; : : : ; .1;c;1/,
then map it by g] to .�; c/; if neither path exists, map it (by will) to .C; ˛.p//.

There is a unique way of extending g] to edges: edges in G between vertex vertices,
namely with label .0;c;0/, are edges e 2E.G[/, so one may set g].e/D .0;g.e/;0/. Edges
along coherent paths are mapped by g] to the unique possible edges .0; e; 1/; .1; e; 1/; : : : ;
.1; e; 1/; .1; e; 0/ in H� � H]. Finally, if an edge of G starts or ends at a vertex that we
already decided to map to w 2 ¹C;�º � E.B/ � V.H]/, then map this edge by g] to a
loop at w, except if it respectively ends or starts at a vertex vertex or an edge vertex on a
coherent path.

Note that if G[ is actually étale, meaning that in G there is a unique coherent path with
a given label between any two vertices, then the preprocessing step is not needed.

Note also that, in the proof above, the compositions of f 7! f [ and g 7! g] are not
quite the identity: .g]/[ is the identity on vertices, but when G[ is not étale, the composition
[ ı ] identifies images of edges corresponding to coherent paths with the same endpoints
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and labels. On the other hand, .f [/] projects components without initial or final vertex
to “sinks”. Nevertheless, when restricting to an appropriate subclass of graphs in which
all edge vertices lie on coherent paths, one obtains an adjunction between G 7! G[ and
H 7! H].

2.5. Simulations

We now introduce a more general notion of morphism, in the same way that bimodules
generalise algebra morphisms:

Definition 2.12. Let A;B be two graphs, which we think of as labellings. A simulator is a
graph S equipped with two labellings ˛WS!A and ˇWS!B�. We call S, more precisely,
an .A;B/-simulator.

Let G be an A-labelled graph. Its image under the simulation S is the graph obtained
from G �A S by replacing each subgraph as on the right of (2.1) by the corresponding
edge; namely, the graph G �A S is B�-labelled via the labelling ˇ, and we define G Ì S as
the B-labelled graph .G �A S/[. We say that G simulates H if H Š G Ì S for some finite
simulator S. We say G simulates H up to simplification if G simulates a graph K whose
simplification is H.

Example 2.13. The plane is the Cayley graph of Z2 D h!; ; "; #i, and will still be
written Z2. The quadrant is the full subgraph of Z2 with vertex set N2; its vertices have
degree 4, 3 or 2 depending on how many of their coordinates are 0.

The quadrant is naturally vertex-labelled, according to the available directions: , ,
, ; thus the origin is labelled in the quadrant, and the line ¹x D 0º is labelled .

(For exhaustivity, the plane is also vertex-labelled, with everywhere). The quadrant’s
labelling is a bit finer than the sunny-side-up labelling from Example 2.4 in that it remem-
bers the axes too.

The plane and quadrant are A-labelled graphs, for A the graph with one vertex (writ-
ten �) and four edges!; ;";#.

Example 2.14. We claim that the quadrant simulates the plane. For this, it suffices to
exhibit a finite simulator, for example the one shown in Figure 1.

In this graph, edges are labelled as ‘ajb’ to represent their labels under the left and
right map, respectively, towards A. We have only drawn edges corresponding to directions
";! for the map to A; the other edges are obtained by flipping the arrows. Since all edges
under the right map are of the form .0; e; 0/, we have simply written e instead; and since
there are no vertex labels in Z2, we have only indicated the vertex labels from N2 next to
the nodes.

In particular, the root .0; 0/ in the quadrant (mapped to the central node of the simu-
lator) corresponds to the root .0; 0/ in the plane; the axes in the quadrant are each covered
by two half-axes; and the remainder of the quadrant is covered by the four quadrants of the
plane. Thus the plane is simulated, within the quadrant, by folding it like a handkerchief.
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!j!!j 
!j!!j 

!j!!j 
!j!!j 

!j!!j 
!j!!j 

"j"

"j#

"j"

"j#

"j"

"j#

"j"

"j#

"j"

"j#

"j"

"j#

Figure 1. A simulator for the quadrant. The edge label .a; b/ indicates that a move by a on the
quadrant simulates a move by b on the simulated plane.

Example 2.15. The previous example does not use paths of length > 1 under the right
map. It is, in a sense, possible to simulate the plane within the quadrant while never putting
two simulated vertices at the same place, at the cost of simulating edges in the plane by
paths of length 2 in the quadrant.

For simplicity, we will simulate Z in N; naturally simulators for Z2 in N2 may be
obtained by taking products. The simulation from Example 2.14, when restricted to Z,
was (now depicted folded, with v. and a. for vitellus and albumen)

v.
a.

a.

!j!

!j 

!j!

!j 

The idea of the following simulator is that n 2 Z is simulated by 2n 2 N and �n 2 Z
by 2n � 1 2 N, for all n � 0. This is impossible to achieve exactly with our definition,
so we produce Z tN t �N instead. The vertices of the simulator are now of two kinds:
split nodes indicate an actual vertex of the simulated graph (their label in the simulated
graph being furthermore indicated by the lower symbol – in this case, �; �;C giving the
sign3 in Z), and unsplit nodes indicate intermediate nodes from B� nB:

v.
�

a.
a.
C

a.
�

a.
!j.0;!; 1/!j.0; ; 0/ !j.1;!; 0/

!j.0;!; 1/!j.0; ; 1/

!j.1; ; 0/

3The Cayley graph of Z does not have these markings, but having them makes the automaton easier to
read, and identifying � withC yields a valid simulation of seeded-Z.
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Indeed following .!/2n in N, starting from the origin, is the same thing as fol-
lowing ..0;!; 1/.1;!; 0//n in the pullback, which amounts to following .!/n in Z,
and following .!/2nC1 in N, starting from the origin, is the same thing as following
.0; ; 0/..0; ; 1/.1; ; 0//n in the pullback, which amounts to following . /nC1 in Z.

The fibre product N Ì S also contains vertices�
2n;

v.

�

�
and

�
2nC 1;

v.

C

�
producing a copy of �N and a copy of N. If we add vertex labels for odd and even pos-
itions in N, then it is possible to eliminate these additional copies of N. Such a labelling
can be introduced by an SFT marking (which is always a possibility in our applications,
as our simulators run on graphs decorated by SFT configurations). See also Section 6.5,
where we give another interpretation.

We adapt the definition of exponential objects for simulators. Let H be a B-labelled
graph, labelled by �WH ! B. We define HS as the A-labelled graph .H]/S, with the
morphisms in the exponential belonging to Graph=B� .

Lemma 2.16. Let G be an A-labelled graph, let H be a B-labelled graph, and let S be an
.A;B/-simulator. Then

Graph=B.G Ì S;H/ ¤ ; whenever Graph=A.G;H
S/ ¤ ;:

If additionally G Ì S is weakly étale, then

Graph=B.G Ì S;H/ ¤ ; if and only if Graph=A.G;H
S/ ¤ ;:

Proof. This follows immediately from Lemma 2.8 and Lemma 2.11. For the second claim,

Graph=B.G Ì S;H/ D Graph=B..G �A S/[;H/

is empty if and only if

Graph=B�.G �A S;H]/ Š Graph=A.G;H
S/

is empty.

As could be expected, simulation is transitive:

Lemma 2.17. If G simulates a graph H, and H simulates a graph K, then G simulates K.

Proof. The idea of the proof is straightforward: run the simulation of K as a subroutine
within the simulation of H. Here are the details.

Let S be an .A;B/-simulator expressing the simulation H Š G Ì S, and let T be a
.B;C/-simulator expressing the simulation HÌ TŠK. Then T] is a B�- and C��-labelled
graph; its labels in C�� take the form .i; .i 0; c; j 0/; j /. Only for this proof, let \ be the
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operation that replaces every such label by .max.i; i 0/; c;max.j; j 0//, changing the C��-
labelling into a C�-labelling. Set U D .S �B� T]/\, and note that it is an .A;C/-simulator.
We have, noting that the operations . /] and . /\ commute with products,

G Ì U D .G �A U/[ D .G �A .S �B� T
]/\/[

Š .G �A S �B� T
]/\[ Š ..G �A S/[] �B� T

]/\[

D .H]
�B� T

]/\[ Š .H �B T/]\[

Š .H �B T/[ D H Ì T Š K:

Note that the [-operation removes the sinks introduced by T 7! T ], so without chan-
ging the previous proof, one can shave off a small number of vertices by using S � T� as
the simulator.

Robinson’s tileset [19] may be used to prove the undecidability of the tiling problem
for Z2. In Example 3.10 in the next section we show that one can interpret this in terms
of the simulation notion, essentially as showing that we can simulate seeded Z2-tilings by
unseeded ones.

There are some subtleties to this, which are explained in the next section, but the main
component is the observation that if a set-theoretic rectangle is explicitly marked inside an
actual rectangle, then, using simulation, we can interpret the set-theoretic rectangle as an
actual rectangle, by deflating the paths consisting of unmarked nodes. We give the details
in the following example.

Example 2.18. Let S D ¹.1; 0/; .0; 1/; .�1; 0/; .0;�1/º be the standard generating set
for Z2 and let B D 1 t S be the graph used for the Cayley graph labelling. Consider the
induced subgraph R with vertex set ¹0; 1; : : : ; n � 1º2 � Z2. Consider a labelled graph
˛WR! A, for the product graph

A D .1 t S/ �
�
¹good; badº t ¹good; badº2

�
:

Suppose that the label in .1 t S/ is just the induced Cayley graph labelling from Z2, and
suppose that the subset S 0 � V.S/ of good vertices is a set-theoretic rectangle:

9A;B � ¹0; 1; : : : ; n � 1ºW ˛�1.¹.1; good/º/ D A � B:

Then consider the following .A;B/-simulator on S . The vertex labelled “good” has
A-label .1; good/ and B�-label 1 2 V.B/, while the split node labelled “bad/s” has A-
label .1; bad/ and B�-label s 2 S D E.B/; s ranges over S , so the figure is short for a
5-vertex graph.

good
bad

s

sj.0; s; 1/

sj.1; s; 0/

sj.0; s; 0/ sj.1; s; 1/
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In words, this simulator compresses runs over bad nodes into an edge, and thus com-
presses the set-theoretic rectangle A � B into an actual rectangle. The B-labelling is the
one induced from ¹0; 1; : : : ; jAj � 1º � ¹0; 1; : : : ; jBj � 1º � Z2. In terms of the graph-
walking automata introduced in the following section, the automaton “skips over” the bad
nodes.

2.6. Graph-walking automata

Simulators can be seen as a compact way of expressing two things at once: vertex duplic-
ation (when we want to simulate multiple nodes in one actual node), and coalescence of
paths into single edges based on the labels of connecting paths.

In this section, we re-express simulators explicitly in terms of vertex blow-ups, graph-
walking automata, and formal languages. We show that these points of view are equivalent
to the simulators introduced in the previous section; while simulators tend to be convenient
in proofs, graph-walking automata are preferable for describing concrete simulations.

Definition 2.19 (Vertex blow-up). Let A be a graph, and let kW v.A/! N be a function.
The vertex blow-up of A by k is the graph with vertices and edges

V.Ak/ D
®
.u; i/ 2 V.A/ �N W i < k.u/

¯
;

E.Ak/ D
®
.i; e; j / 2 N �E.A/ �N W i < k.e�/; j < k.eC/

¯
with .i; e; j /� D .e�; i/ and .i; e; j /C D .eC; j /.

We extend this to labelled graphs by blowing-up the graph used for the labels:

Definition 2.20. Let ˛WG!A be an A-labelled graph, and let kWV.A/!N be a function.
The vertex blow-up of G by k is defined as the graph with vertices and edges

V.Gk/ D
®
.u; i/ 2 V.G/ �N W i < k.˛.u//

¯
;

E.Gk/ D
®
.i; e; j / 2 N �E.G/ �N W i < k.e�/; j < k.eC/

¯
with .i; e; j /� D .e�; j / and .i; e; j /C D .eC; j / and labels in Ak defined by ˛..u; i//D
.˛.u/; i/.

It is sometimes convenient to blow up vertices and give them more memorable names
than numbers, and use a function kWV.A/! ¹finite subsets of U º instead, for some uni-
verse U . To interpret this, fix bijections between k.v/ and ¹0; : : : ; jk.v/j � 1º for all
v 2 V.A/ and conjugate all arguments through this bijection.

Definition 2.21 (Graph-walking automata). Let ˛W G ! A be an A-labelled graph. A
graph-walking automaton (short: GWA) on G is a tuple M D .Q; S; F; �/ with Q a
finite set of states, S � Q a set of initial states, F � Q a set of final states, and � �
Q �E.A/ �Q a transition relation. We require I \ F D ;. For u; v 2 V.G/, an M -run
from u to v is a sequence .q0; e0; q1; : : : ; ek�1; qk/ with, for all i < k,

q0 2 I; qk 2 F; qi 2 Q; ei 2 E.G/; e
�
0 D u; e

C

k�1
D v; .qi ; ˛.ei /; qiC1/ 2 �:
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For u 2 V.G/, the M -successors of u are the nodes v 2 V.G/ such that there exists an
M -run from u to v.

The basic idea is that runs will be replaced by edges, just as paths are replaced by
edges in the definition of simulators. Note that I \ F D ; implies that all runs are of
length at least one.

Definition 2.22 (GWA simulator). For an A-labelled graph G and a finite graph B, a
B-labelled GWA simulator S consists of the following data:

(1) a function �WV.A/! V.B/ [ ¹?º;

(2) for each e 2 E.B/, a GWA Me .

The GWA Me is required to have the property that if u 2 V.G/ and �.˛.u// ¤ e�, then
u has no Me-successors, and all Me-successors v of u satisfy �.˛.v// D eC. The GWA
simulator S simulates the B-labelled graph H with vertices and edges

V.H/ D
®
v 2 V.G/ W �.v/ ¤ ?

¯
;

E.H/ D
®
.u; e; v/ 2 V.G/ �E.B/ � V.G/ W there is an Me-run from u to v

¯
with .u; e; v/� D u; .u; e; v/C D v and B-labelling ˇ.v/ D �.˛.v//, ˇ..u; e; v// D e.

Observe that the extra requirement on the GWA Me is for convenience only: we can
easily modify any GWA so that it satisfies this property.

Definition 2.23. Let G be an A-labelled graph. We say G GWA-simulates a B-labelled
graph H if there exists a B-labelled GWA simulator that simulates H.

Definition 2.24 (Regular subdivision). Let G be an A-labelled graph and let B be a finite
graph. Suppose that we are given

(1) a function �WV.A/! V.B/ [ ¹?º, and

(2) for each e 2 E.B/, a regular language Le � E.A/C of non-trivial words.

Suppose further that every word w D w0 : : : w`�1 2 Le is a path in A satisfying
�.w�0 / D e

� and �.wC
`�1
/ D eC. Then the graph H with vertices and edges

V.H/ D
®
v 2 V.G/ W �.v/ ¤ ?

¯
;

E.H/ D
®
.u; e; v/ 2 V.G/ �E.B/ � V.G/ W there is an Le-labelled path from u to v

¯
with .u; e; v/� D u; .u; e; v/C D v and B-labelling ˇ.v/ D �.˛.v//, ˇ..u; e; v// D e, is
called a regular B-subdivision of G.

With these definitions in place, let us prove the equivalence of these notions:

Lemma 2.25. Let G be an A-labelled graph. Then the following are equivalent:

(1) G simulates H up to full simplification.

(2) Some vertex blow-up of G GWA-simulates H.

(3) H is a regular B-subdivision of a vertex blow-up of G.
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Simplification is only a technicality: it is natural to require it in an automata-theoretic
setting, by including only one edge if a run exists, while in the categorical setting of graphs
we find it more natural to include an edge for each run. Simplification translates between
these conventions. Full simplification (including self-loops) is mainly for notational con-
venience; self-loops have little effect on the tiling problems we are concerned with, and
their presence simplifies some proofs.

Proof. (1)) (2). Let G simulate H up to simplification by some simulator S; we denote
by ˛WG!A and ˛SWS!A and ˇSWS!B� the respective labellings. We start by blowing
up the vertices of G using the function kWV.A/! ¹subsets of V.S/º defined by

k.u/ D
®
v 2 V.S/ W ˛S.v/ D u

¯
:

Then the graph Gk has vertices .w; v/ with w 2 V.G/ and v 2 k.˛.w//. For the function
� we pick �.v/ D ˇS.v/ whenever ˇS.v/ 2 V.B/, and �.v/ D ? whenever v 2 V.B�/ n
V.B/.

The vertices of both GÌ S and H are by definition pairs .w;v/where ˛.w/D ˛.v/ and
ˇ.v/ 2 B. No matter how we pick the automata Me , the vertices of the GWA-simulated
graph will be ¹.w; v/ W �.v/¤?º. These sets are equal, so also in the simulated graph the
vertex set will literally be V.G Ì S/.

Now, for e 2 E.B/, we pick the automata Me . By the definition of simulation up
to simplification, in H there is at most one edge with label e between w 2 V.H/ and
w0 2 V.H/, and there is such an edge precisely when w ¤ w0 and we are in one of the
following cases:

(1) there is an edge .eG; eS/ 2 G Ì S with e�G D w, eCG D w
0 and ˇS.eS/ D .0; e; 0/,

or

(2) there is a path of length at least two in G Ì S from w to w0, such that the following
three conditions are satisfied:

(a) the first edge .eG; eS/ on the path satisfies ˇS.eS/ D .0; e; 1/,

(b) the last edge .eG; eS/ on the path satisfies ˇS.eS/ D .1; e; 0/,

(c) all other edges .eG; eS/ on the path satisfy ˇS.eS/ D .1; e; 1/.

We are now ready to construct a GWA M D Me such that there is an M -run from w

to w0 if one of these cases occurs. Such a GWA is obtained from the B�-labelled graph
.S; ˇS/ as follows:

(1) Make three disjoint copies of V.S/, say Si D V.S/ � ¹iº for i D 1; 2; 3.

(2) In S1 retain only vertices .v; 1/ with ˇS.v/ D e�, remove others.

(3) In S2 retain only vertices .v; 2/ with ˇS.v/ D e, remove others.

(4) In S3 retain only vertices .v; 3/ with ˇS.v/ D eC, remove others.

(5) Set Q D S1 [ S2 [ S3 as the set of states.
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(6) Construct then��Q �E.A/�Q as follows: for each edge eS 2E.S/, say with
ˇS.eS/ D .i; e; j /, include ..e�; 1C i/; ˛S.eS/; .eC; 3 � j // in �.

(7) As initial states choose I D S1, and as final states F D S3.

Setting M D .Q; I; F; �/, we see that M -runs are in bijective correspondence with
the G-paths and G-edges defining edges of GÌ S with label e, in particular there is an edge
with label e from w to w0 if and only if there is an M -run from w to w0. This concludes
the proof that if G simulates H, then a vertex blow-up of G GWA-simulates H.

(2)) (1). Recall from Lemma 2.17 that simulation is transitive, so it suffices to show
separately that if H is a vertex blow-up of G, then G simulates H, and that if G GWA-
simulates H, then it simulates H.

Vertex blow-ups are in fact a special case of simulation: if kWV.A/!N is a function,
let S be the graph Ak ; with B D Ak and ˛W S ! A the canonical labelling of Ak and
ˇW S ! B ! B� the identity and natural inclusion, we see that G Ì S is precisely the
vertex blow-up of G by k.

We next show that if G GWA-simulates H, then it simulates H. For e 2 B, let Qe �
Ie; Fe be the stateset, initial and final states of the automaton Me , and assume all Qe are
disjoint. The nodes of the simulator S will be

V.S/ D V.A/ t
G
e2B

Qe:

The B�-labelling on vertices is given by ˇ.u/ D �.u/ for u 2 V.A/, and ˇ.q/ D e if
q 2Qe . In E.S/ we include an edge with B�-label .0; e; 0/ from e� to eC if there is a run
of length one in Me , with a suitable ˛-label, namely if there exists .s; ˛.e0/; t/ 2 � with
s 2 Ie , t 2 Fe , and ˇ.e0/ D e.

For each transition .u; e0; u0/ of Me (so u; u0 2 Qe , e0 2 E.A/), we include an edge
in S with ˛-label e0 and ˇ-label .1; e; 1/ from u to u0. For each u 2 V.A/, we include an
edge with ˛-label e0 and ˇ-label .0; e; 1/ from u to q 2Qe whenever there is .s; e0; q/ 2�
with s 2 I . Symmetrically, for each u 2 V.A/, we include an edge with ˛-label e0 and
ˇ-label .1; e; 0/ from q 2 Qe to u whenever there is .q; e0; s/ 2 � with s 2 F .

Then the simulated graph G Ì S can be seen to be isomorphic to the GWA-simulated
graph H. We conclude that GWA-simulation and simulation are equivalent concepts.

(2), (3). It is enough to show that H is a regular B-subdivision of G if and only
if G simulates H. This is clear from the definition of a regular language, because the
possible paths corresponding to validMe-runs forMe satisfying I \F D; form precisely
a regular language of nonempty words.

3. Subshifts

We are ready to define subshifts using the language of graphs introduced in the previous
section.
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3.1. Subshifts of finite type

Definition 3.1. Let G be a graph, possibly labelled. A directed Hom-shift (short: DHS)
with carrier G is the space Hom.G;F/, for some finite graph F.

If G is A-labelled, then F should also be A-labelled, and the space of homomorphisms
should be taken in the appropriate category Graph=A.

DHSs are nothing more than a formalism for subshifts of finite type, and as explained
in Section 3.3 this definition is dynamically entirely equivalent to the more standard defin-
ition of a subshift of finite type by finitely many allowed (or forbidden) patterns.

The topology on Hom.G;F/ is the usual function topology; namely, Hom.G;F/ is a
closed subset of V.F/V.G/ �E.F/E.G/, and therefore is compact.

Example 3.2. Consider G D N tN, with nC D nC 1 and n� D n. Geometrically, it is
a one-sided ray. Consider the following finite graphs:

0 1

F1

0 1

F2

10

F3

Then, in the standard symbolic dynamics terminology [16],

• Hom.G;F1/ is the full vertex shift ¹0; 1ºN ;

• Hom.G;F2/ is the “golden mean” shift
®
x 2 ¹0; 1ºN W 8n 2 NW xnxnC1 D 0

¯
;

• Hom.G;F3/ is the full edge shift ¹0; 1ºN .

3.2. The tiling problem

Definition 3.3. Let G be a graph, possibly labelled. The tiling problem for G is the decision
problem of, given a finite graph F, deciding whether Hom.G;F/ is non-empty.

Let now � be a family of graphs. The tiling problem for � is the problem of, given a
finite graph F, deciding whether Hom.G;F/ is non-empty for at least one G 2 � .

We call the tiling problem for G (respectively �) solvable if there exists an algorithm
that truthfully answers its tiling problem. Next, we show that simulation can be used to
transport tiling problems from one graph to another. In the terminology of recursion the-
ory, this is a many-one reduction, meaning we algorithmically produce an instance of the
tiling problem of one graph given an instance of that of the other (of course while pre-
serving the answer).

Theorem 3.4. Let G;H be labelled graphs, and assume that G simulates H, and H is
weakly étale. Then the tiling problem of H many-one reduces to that of G. In particular, if
H has unsolvable tiling problem, then so does G.

Proof. Let F be an instance of the tiling problem for H, namely a finite graph with same
labelling as H. Since H is simulated by G, there exists a finite simulator S with HŠ GÌ S.
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We may algorithmically compute the finite graph FS, and by hypothesis we may decide
whether Hom.G;FS/ is non-empty. Now by Lemma 2.16 we have Hom.G;FS/¤ ; if and
only if Hom.H;F/¤ ;, so solving the tiling problem for G on FS solves at the same time
the tiling problem for H on F.

This result extends readily to families of graphs; this is the most general result we
obtain.

Definition 3.5. For two graphs G;H, we say that G weakly maps to H if every finite
subgraph of G maps to H; namely Hom.G0;H/ ¤ ; for all finite subgraphs G0 of G.

In case H is finite, this is equivalent, by compactness, to Hom.G;H/ ¤ ;, but in
general it differs: for example if G is an infinite ray and H is a disjoint union of arbitrarily
long finite rays.

Definition 3.6. Let �;� be families of graphs. We say that � weakly simulates� if there
exists a finite simulator S such that

(1) every graph in � may be simulated: for every H 2 � there is G 2 � such that
G Ì S is weakly étale and weakly maps to H;

(2) simulated graphs are images of �: for every G 2 � there is H 2 � that weakly
maps to G Ì S.

Theorem 3.7. Let �;� be families of graphs, and suppose � weakly simulates �. Then
the tiling problem of � many-one reduces to that of � . In particular, if � has unsolvable
tiling problem, then so does � .

Proof. Let F be an instance of tiling problem for �. As in the proof of Theorem 3.4, we
may solve the tiling problem for � on instance FS, so it suffices to prove

9G 2 �W Hom.G;FS/ D ; ” 9H 2 �W Hom.H;F/ D ;:

If Hom.G;FS/ is non-empty for some G2� , then Hom.GÌ S;F/¤; by Lemma 2.16,
so by the second assumption there is a graph H 2 � such that

Hom.H0;F/ � Hom.G Ì S;F/ ı Hom.H0;G Ì S/ ¤ ;

for all finite H0 � H. Since F is finite, Hom.H;F/ D lim Hom.H0;F/ ¤ ; by compact-
ness.

Conversely, if Hom.H;F/ ¤ ; for some H 2 �, then by the first assumption there
is a graph G 2 � such that G Ì S is étale and Hom.G0 Ì S;H/ ¤ ; for all finite G0 � G,
so Hom.G0 Ì S; F/ ¤ ;, so Hom.G0; FS/ ¤ ; by Lemma 2.16 (because subgraphs of
étale graphs are étale). Now FS is finite, so Hom.G; FS/ D lim Hom.G0; FS/ ¤ ; by
compactness.

Remark 3.8. If � and� are singletons with the same labelling graph AD B, and SD A

is the trivial simulator (both labellings are the identity map), the theorem reduces to the
fact that if two graphs weakly map to each other, then their tiling problems are equivalent.
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The literature often mentions the “seeded tiling problem”; we shall return to it in
Section 3.3. It suffices, for now, to define it as a tiling problem for a graph with the sunny-
side-up labelling, see Example 2.4.

As a side-note, it is an interesting, and not yet fully understood, problem to determ-
ine which groups admit a sunny-side-up labelling defined as a factor (shift-commuting
continuous image) of a shift of finite type (equivalently, factor of a DHS), see [9]. Such
images are called sofic. For us, the sunny-side-up labelling is fixed once and for all on the
graph, and exists independently of the tiling problem. The soficity of the sunny-side-up
on the lamplighter group is a side-effect of our constructions, see Proposition 6.5.

Our undecidability result rests on the following result of Wang, proven itself by a
reduction to the halting problem of Turing machines.

Theorem 3.9 (Kahr–Moore–Wang [14, 21]). The seeded tiling problem on Z2 (namely,
on the Cayley graph of Z2 marked by the sunny-side-up) is unsolvable.

Since the quadrant and half-plane simulate the plane, by Example 2.14, it follows
that the tiling problem on the quadrant (with the markings from Example 2.13) is also
unsolvable.

One can interpret Robinson’s classical proof of undecidability of the tiling problem
[19] as simulating seeded-Z2 on Z2. We give an informal explanation that concentrates on
the link to weak mappings, assuming the reader is familiar with the proof. More specific-
ally, we have in mind Kari’s presentation [15, Section 8.2.4]. This continues Example 2.18.

Example 3.10. In Robinson’s proof of the undecidability of the tiling problem, one builds
a subshift of finite type whose configurations contain drawings of squares (containing
squares containing squares . . .) around a square grid (possibly with some degenerate
squares), so that

• each configuration contains arbitrarily large finite squares;

• the larger a square is, the more “free rows” (resp. free columns) it contains; a free row
is one that does not hit (a smaller square inside);

• in some configuration every cell of the grid is contained in a finite square.

One can use additional signals to mark the free rows and free columns inside the
rectangles, and the cells that are part of a free row and a free column necessarily form a set-
theoretic rectangle. Thus, every square can be seen as being of the type in Example 2.18.

The bottom row and leftmost column can be made visible in each cell, and thus we
can modify the construction in Example 2.18 slightly to obtain a simulator S such that the
simulated rectangles ¹0; 1; : : : ; jAj � 1º � ¹0; 1; : : : ; jBj � 1º simulate a rectangle on the
left corner of N2 with its natural vertex labelling from Example 2.13.

We claim that the family � of all tilings of Z2 by this tile set then weakly simulates
the singleton family � D ¹N2º (with its natural labelling). To prove

every graph in � may be simulated: for every H 2 � there is G 2 � such that
G Ì S is weakly étale and weakly maps to H,
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take G 2 � from the third item. Then every finite subgraph of GÌ S is contained in one that
is a disjoint union of simulated full finite squares. These are subgraphs of N2, so to get a
graph homomorphism, on each such square separately we can take its graph embedding
into N2. It is clear that all simulated graphs are weakly étale because of the form of the
simulator, so in particular G Ì S is. To prove

simulated graphs are images of �: for every G 2 � there is H 2 � that weakly
maps to G Ì S,

for any finite subgraph of H0 � H, taking a large enough square in G, we see that G Ì S

contains an actual copy of H0, and we can use the graph embedding as the graph homo-
morphism.

Since N2 with the labelling from Example 2.13 simulates seeded-Z2, � also weakly
simulates ¹seeded-Z2º, since weak simulation is easily seen to be transitive.

3.3. General SFTs on Cayley and Schreier graphs

We further develop the link between graphs and groups, sketched in Example 2.2. Con-
sider a group G D hSi, and a set X on whichG acts on the right. We associate with X the
Schreier graph X with vertex set X and edge set X � S , with as usual .x; s/� D x and
.x; s/C D xs. If S D S�1, then X is unoriented with .x; s/0 D .xs; s�1/.

Definition 3.11. A subshift of finite type (short: SFT) � on X is given by a finite set A
called the alphabet, an integer n called the radius, and a subset … of AS

�n
called the

allowed patterns. It is defined as

� D
®
˛ 2 AX W 8x 2 X W 9Px 2 …W Px.w/ D ˛.xw/ for all w 2 S�n

¯
;

namely the set of labellings of X by elements of A such that, in every neighbourhood of
size n, the labels form an allowed pattern.

The definition above is a generalization of the more classical notion, in which X D G
with action by translation. The tiling problem for X asks for an algorithm that, given
… � AS

�n
, determines whether the corresponding SFT � is non-empty.

An important variant is the seeded tiling problem, which asks for an algorithm that,
given … � AS

�n
, x0 2 X and a0 2 A, determines whether the corresponding � contains

a configuration ˛ 2 AX with ˛.x0/ D a0.
As we shall now see, the tiling problem for X is essentially equivalent to the tiling

problem on graphs from Definition 3.3, and the seeded tiling problem is essentially equi-
valent to the tiling problem on a graph with a marked vertex (as in Example 2.4).

We need a few technicalities. First, SFTs of course lose all edge information, so we
need the following definition.

Definition 3.12. A DHS Hom.G;F/ is weakly resolving if F is weakly étale.
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Note that one can make any DHS weakly resolving at the cost of adding a few more
vertices to F, without changing the system up to isomorphism (in the sense of the fol-
lowing definition). Even when no information is lost, the constructions between SFTs and
DHSs are only inverses of each other up to isomorphism.

We now give a suitable notion of isomorphism:

Definition 3.13. Let�1;�2 be SFTs on aG-set X . A block map from�1 to�2 is a map
of the form

f .�/x D floc.�.xg1/; : : : ; �.xgk//

for some flocWA
k ! B and some fixed g1; : : : ; gk 2 G. We say two SFTs are (block

map) isomorphic if there are block maps fi W�i !�3�i which are inverses of each other.
Similarly one can define block maps and isomorphisms between DHSs Hom.X;F1/ and
Hom.X;F2/, as well as between SFTs and DHSs.

In the classical situation G D X with G acting by g � �.h/ D �.g�1h/, morphisms
between SFTs are just the usual morphisms of topological G-systems, namely shift-com-
muting continuous functions, and isomorphisms are just the topological conjugacies, or
shift-commuting homeomorphisms.

In the general situation, there are some subtleties. If X is a G-set, then G also acts
on AX by g�.x/ D �.xg/, but the above block maps are not the continuous functions
commuting with this action. Indeed, if G acts 1-transitively on X , then only finitely
many continuous functions commute with its natural action on AX (but there are plenty
of morphisms in the above sense); on the other hand if G D Z and no element in X has
infinite orbit but infinitely many elements have non-trivial orbit, then there are uncount-
ably many shift-commuting continuous functions on AX . We also note that bijectivity of
a block map f WAX ! AX for a transitive G-set X is equivalent to having a block map
inverse, but this is no longer true if the action is not transitive.

Proposition 3.14. Let G be a monoid acting on a set X . SFTs on X are equivalent by
block map isomorphisms to weakly resolving DHSs.

In essence, every SFT can be converted into a DHS, and vice versa; the constructions
are defined by local rules, and involve no funny business.

" The precise statement we are referring to is the following: In the proof we con-
struct a mapping F that turns an SFT � into a weakly resolving DHS Hom.X;F/, and
give another construction F 0 for the other direction. These extend to functors between
the appropriate categories, when one takes the morphisms to be the block maps, and the
functors F and F 0 give an equivalence of categories.

This equivalence is also “by block map isomorphisms”, in that the object mappings
of F and F 0 are themselves given by invertible block maps; in the classical dynamical
situation of G-subshifts, the object mappings are topological conjugacies.
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Proof. We only give the object mappings and show that they are isomorphisms. The
choices of mappings between morphisms are obvious, and the verification that the res-
ulting functors are a categorical equivalence is routine.

In the direction “X to X”: let F be a finite graph with no vertex labels and edge labels
S , and consider the DHS Hom.X; F/ that it defines. We construct an SFT � on X as
follows: we set A D V.F/ and n D 1, and define … � AS

�1
by taking P 2 … if for all

s 2 S , the graph F has an edge with label s from P.1/ to P.s/. The next two paragraphs
describe maps �$ Hom.X;F/.

Firstly, consider � 2 Hom.X;F/ and construct ˛ 2 AX by ˛.x/ WD �.x/ for all x 2 X ;
namely, ˛ D ��V.X/. We claim ˛ 2 �. Indeed consider x 2 X , and define Px 2 AS

�1

by Px.w/ WD ˛.xw/ for all w 2 S�1. Then in X the edge .x; s/ has label s from x to xs,
and we have �.x/D ˛.x/D Px.1/ and �.xs/D ˛.xs/D Px.s/, to �map the edge .x; s/
to some edge in F with label s from Px.1/ to Px.s/; in particular such an edge exists, and
we have Px 2 ….

Secondly, consider ˛ 2 �, and associate a homomorphism � 2 Hom.X;F/ with it as
follows: We define �.x/ WD ˛.x/ on vertices. Consider an edge .x; s/ with label s from x

to xs, and define Px 2 AS
�1

by Px.w/ WD ˛.x/ for all w 2 S�1. Because Px 2 …, there
must be an edge from Px.1/ to Px.s/ with label s in F, and since F is weakly resolving,
there is a unique such edge, which we call �.x; s/. In this manner we defined a graph
morphism �WX! F.

The constructions are clearly inverses of each other and are given by block maps.
In the direction “X to X”: let� be an SFT on X for some alphabet A, some n � 0 and

some … � AS
�n

. We define a weakly resolving DHS via a graph F, which is constructed
as follows: V.F/ D …, and for each P; P 0 2 … we include in F an edge e D .P; s; P 0/
labelled s 2 S with eC D P and f � D P 0 whenever P 0.w/D P.sw/ for all w 2 S�n�1.
This graph is obviously weakly resolving, since the labelling map and the head and tail
maps are projections. The next two paragraphs describe maps Hom.X;F/$ �.

Firstly, consider ˛ 2 �. We construct a homomorphism � 2 Hom.X;F/ as follows.
On vertices x 2X , set �.x/ WD P with P.w/ WD ˛.xw/ for allw 2AS

�n
. For edges .x; s/

of X, on whose extremities we have already defined �.x/ D P and �.xs/ D P 0, note that
by definition we have

P 0.w/ D ˛.xs � w/ D ˛.x � sw/ D P.sw/

for all w 2 S�n�1, so F has an edge labelled s from P to P 0. We let �.x; s/ be this edge.
By definition of F, we have indeed defined a graph morphism � 2 Hom.X;F/.

Secondly, consider � 2 Hom.X;F/, and construct a configuration ˛ 2 AX as follows.
Set ˛.x/ WD �.x/.1/, namely look at the pattern �.x/ and extract its symbol at the identity.
We claim ˛ 2 �. To see this, define Px 2 AS

�n
by Px.w/ WD ˛.xw/ for all w 2 S�n. To

prove that all Px belong to…, it suffices to show Px D �.x/, since then Px 2 V.F/D….
We show this simultaneously for all x 2X , considering allw 2 S�n in order of increasing
length. If jwj D 0, this is true by definition, since Px.1/ D ˛.x/ D �.x/.1/. Supposing
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the claim is true for w, consider a word sw with s 2 S . Unwrapping the definitions we
have

Px.sw/ D ˛.x � sw/ D ˛.xs � w/ D Pxs.w/ D �.xs/.w/;

so we are led to show �.xs/.w/ D �.x/.sw/. The edge .x; s/ 2 E.X/ has label s and
extremities .x; s/C D xs and .x; s/� D x, so if we write �.x; s/ D .P; s; P 0/ 2 E.F/,
then P 0.w/ D P.sw/, that is, �.xs/.w/ D P 0.w/ D P.sw/ D �.x/.sw/ as required.

The constructions are clearly inverses of each other and are given by block maps.

In the seeded case, we fix an “origin” o in the G-set X , and consider the Schreier
graph of X with generating set S , with the sunny-side-up labelling where o is mapped
to the vitellus, and all others to albumen (edge labellings are uniquely determined). The
DHSs on this graph are seeded-DHSs. (This is a slight generalization of Example 2.4.) We
define similarly a seeded variant of SFTs.

Definition 3.15. A seeded SFT � on .X; o/ is given by a finite set A called the alpha-
bet, an integer n called the radius, and a subset … of .A � ¹0; 1º/S

�n
called the allowed

patterns. Writing �1; �2 respectively for the pointwise projections to the first and second
coordinate of the alphabet, the SFT � is defined as

� D
®
�1.˛/ W ˛ 2 .A � ¹0; 1º/

X
^ .�2.˛/x D 1 ” x D o/ ^

8x 2 X W 9Px 2 …W Px.w/ D ˛.xw/ for all w 2 S�n
¯
:

In other words, the allowed patterns see the marking at the origin, but this is erased in
the actual configurations.

We can define isomorphisms on seeded SFTs and on seeded DHSs by block maps,
similarly as in the unseeded case. The only difference is that the block map is allowed to
behave differently when near the seed, which can be implemented as in Definition 3.15
(allowing them to see the seed position). The proof of the following proposition is similar
to that of Proposition 3.14, and is omitted.

Proposition 3.16. LetG be a monoid acting on a setX . Seeded SFTs onX are equivalent
by block map isomorphisms to weakly resolving seeded DHSs.

4. The lamplighter group

Our main result applies to a specific example, the “lamplighter group”. Write Z=2 for
the two-element group. The group L may be defined in various manners: it is the wreath
productLDZ=2 oZ, namely the extension of ¹f WZ!Z=2 a finitely supported set mapº
by Z acting by shifts.

Writing a for the generator of Z and d for the delta-function f WZ!Z=2 taking value
1 at 0 and 0 elsewhere, we have the presentation

L D
˝
a; d j d2; Œd; da

n

� for all n > 0
˛
:
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We shall prefer the more symmetric presentation, setting b D da,

L D
˝
a; b j .anb�n/2 for all n > 0

˛
:

The reason L is called the “lamplighter group” is the following. Picture a two-way-
infinite street, with a house at every integer, and a lamp between any two neighbouring
houses. The “lamplighter” starts at house 0, and has a schedule to follow: turn on some
specified lamps, and stop at a given house. This schedule is an element of L. It may
be expressed as a word in elementary operations: “move to the next house” (a or a�1,
depending on the direction), and “move to the next house, flipping the state of the lamp
along the way” (b or b�1).

This description, where the lamps are between houses, avoids the issue of whether the
lamplighter flips the lamp before or after moving. We find this convenient, and thus from
now on consider the lamps to be on ZC 1=2. We use the notation E D ZC 1=2 for the
half-integers. To avoid confusion between the lamplighter in this mental picture and the
group itself, we usually refer to the position of the lamplighter as the head.

We shall make use of two representations for elements of L: firstly, words over
¹a˙1; b˙1º as in the second paragraph of this section; and secondly, as a global descrip-
tion of lamp configurations and final position, as follows: if at the end of its schedule the
lamplighter is at position n � 0 and for all i 2 E the lamp at position i is in state si , then
the corresponding element of L is written

s�N � � � sn�1 sn � � � s�1=2 s1=2 � � � sM ;

with N;M minimal such that s�N ; sM are non-zero. If n � 0, the same notation is used,
but with now the symbol ‘ ’ to the left of the ‘ ’. Thus the expressions for the generators
are respectively

a D 0 ; b D 1 ; a�1 D 0 ; b�1 D 1 :

Global descriptions may be multiplied as follows: align the ‘ ’ of the first with the ‘ ’ of the
second, and add bitwise the strings of 0 and 1. The ‘ ’ and ‘ ’ of the result are respectively
the ‘ ’ of the first and the ‘ ’ of the second operand.

From a description u v w or u v w one easily reads the final position n of the lamp-
lighter, and the states .si /i2ZC1=2 of the lamps. In that notation, the product of .r;m/ and
.s; n/ is .t; mC n/ with ti D ri C si�m.

Sometimes, the origin in a global description is unimportant, and is omitted; so we
may consider partial descriptions of the form ‘u v’. Such partial descriptions may be acted
upon by L, by right multiplication. They are naturally identified with the homogeneous
space hai n L.

4.1. The Cayley graph of L

The Cayley graph of L, in the generating set ¹a; bº˙1, is a special case of a horocyclic
product, see [5]. Let first T1; T2 be two 3-regular trees, and choose on each of them a
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infinite ray �i W .�N/! Ti . (These rays define points at infinity !i in the respective trees).
The corresponding Busemann functions are hi WTi ! Z defined by

hi .v/ D lim
n!�1

nC d.v; �i .n//I

the points close to !i have very negative hi , and points with same Busemann function
value form horocycles with respect to the boundary points !i . Now the horocyclic product
of these trees, with respect to these Busemann functions, is

L D
®
.v1; v2/ 2 T1 � T2 W h1.v1/C h2.v2/ D 0

¯
:

Formally speaking, we have defined the vertex set of L above; there is then an edge
between .v1; v2/ and .w1; w2/ whenever there are edges in Ti between vi and wi for all
i D 1; 2. One could also say that hi is extended linearly to edges, and take the definition
of L above at face value.

A yet equivalent formulation is that the Busemann function h1 defines a graph morph-
ism T1 ! C.Z; ¹˙1º/, and �h2 defines likewise a graph morphism T2 ! C.Z; ¹˙1º/.
Then L is the pullback

L D T1 �C.Z;¹˙1º/ T2:

Proposition 4.1 ([23, §2]). The Cayley graph C.L; ¹a; bº˙1/ is the horocyclic product L
defined above.

The proof is in fact straightforward: picture T1 as having its boundary point !1 at the
bottom and T2 as having its boundary point !2 at the top. With our choice of orientation,
a point in L is then a pair of points .v1; v2/ of same height.

Label all edges of Ti by ¹0; 1º with the condition that the edges on the rays �i are all 0.
Then a vertex .v1; v2/ 2 L may be uniquely identified by the following data: a height
n 2 Z, a finite string u 2 ¹0; 1º� expressing the labels on the geodesic from v1 to �1,
and a finite string v 2 ¹0; 1º� expressing the labels on the geodesic from v2 to �2. The
corresponding element of L is ‘reverse.u/ v’, with the extra ‘ ’ inserted n places to the
left of the ‘ ’.

Consider now a finite subgraph of L as follows: choose H 2 N and vertices vi 2 Ti
with h.v1/C h.v2/ D H . There are height-H binary trees in Ti consisting of all vertices
wi with h.wi / D d.vi ; wi / � H , and their product, in L, gives a height-H tetrahedron.
Such a tetrahedron is displayed in Figure 2 for H D 4.

These tetrahedra in L are naturally nested: every vertex belongs to increasing se-
quences of tetrahedra, and every height-H tetrahedron is naturally contained in two
height-.H C 1/ tetrahedra, one extending above it and one below it.

4.2. The geometry of L

We describe some geometric aspects of the Cayley graph of L; these will not be used
elsewhere in the text, and serve as an illustration of the relevance ofL to the tiling problem.
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Figure 2. (A portion of) the Cayley graph L of the lamplighter group, with generators a in green
and b in red.

Firstly, L does not contain any embedded plane, so is a good test case for Conjec-
ture 1.2. Indeed, assume there were an injective Lipschitz map Z2 ! L. In particular, the
elementary relation Œx; y�D 1 in Z2 would map to relations of bounded length in L. Thus
we may equivalently ask whether there exists an embedded plane in the finitely presented
group

LN D
˝
a; d j d2; Œd; da

n

� whenever 0 < n < N
˛
:

(Note that we use, for more convenience, the presentation of L on generators ¹a; d D
ab�1º). Now free groups do not contain embedded planes, and

Lemma 4.2. The group LN is virtually free.

Proof. Consider the subgroupK D ha; Œd;aN �i ofLN . On the one hand,K has index 2N :
every element of LN may be written in the form da

n1
� � � da

nk a`, and K contains every
such expression in which #¹i W ni � m .mod 2/º is even for allm D 0; : : : ;N � 1. On the
other hand, one can check using the Reidemeister–Schreier procedure thatK is free on its
generators [17, §II.4].

The groupL is “amenable”; there are numerous equivalent definitions of this property,
but the simplest to state is probably the graph-theoretical one: For every " > 0, there exists
a finite subset F � L whose boundary F � ¹a; bº n F has cardinality at most "#F . These
subsets may simply be taken to be the tetrahedra mentioned above: a tetrahedron of height
H contains .H C 1/ � 2H vertices, and its boundary consists only of the upper and lower
strips, so contains 2 � 2H vertices.
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4.3. Dominos on L

We now finally begin tiling the lamplighter group. As our application is to the seeded
tiling problem, as shown in Proposition 3.16 instead of the sunny-side-up labelling we
can simply work with allowed patterns, and specify a different tiling rule near the origin.
In practice, we work with tilings of L, and in the end, we pose an additional restriction at
the origin, in fact only at the identity element.

We have written the theory of tilings using the DHSs, and in the previous section we
explained how to convert between these and the SFTs in the sense of Definition 3.11,
which we think of as the most general setting. In the case of the lamplighter group, we
introduce two more presentations specific to this group: tetrahedron tilings, and Wang
tilings for a particular generating set. Tetrahedron tilings are a special case of SFTs, using
the (non-symmetric) generating set ¹e; a; b; ab�1º, and they are the most convenient way
to present the rules for the sea level construction in Section 6. Wang tiles can be seen as
a special case of DHSs, and they are the most convenient way to present the rules for the
comb construction in Section 5.

For Wang tiles we always use the generating set L D ha˙1; b˙1i. A set of Wang
tiles consists of a finite set A of edge colours, and a subset … � A¹a

˙1;b˙1º. Vertices are
coloured by elements of …, and we check that the A-colourings match. We visualize each
pattern � 2 … as a diamond or, equivalently, as a matrix in angle brackets:

� D p q
rs
D
˝
p q
s r

˛
means �.a/ D p; �.b/ D q; �.a�1/ D r; �.b�1/ D s:

The resulting SFT is a subset � � …L, namely

� D
®
� 2 …L

W 8g 2 LW �.g/.a/ D �.ga/.a�1/; �.g/.b/ D �.gb/.b�1/
¯
:

This can be seen as a special case of the Hom-presentation.
Equivalently, we may specify a colour on every vertex of L, and impose constraints on

the edges, or on small subgraphs. We found it most convenient to impose constraints on
small, height-1 tetrahedra, as follows. We fix a finite set A of vertex colours, and a subset
‚ � A¹1;ab

�1;a;bº Š A4. The resulting tetrahedron tiling system is a subset � � AL,
namely

� D
®
� 2 AL W 8g 2 LW

�
�.g/; �.gab�1/; �.ga/; �.gb/

�
2 ‚

¯
:

Note that we may, and do, always assume that ‚ is invariant under the permutation
.1; 2/.3; 4/ of its coordinates because the condition applied at gab�1 is precisely�

�.gab�1/; �.g/; �.gb/; �.ga/
�
2 ‚:

For � 2 ‚ we denote this by N� .
We note, even though it is irrelevant to our construction, that the “tetrahedra graph”

of L, namely the graph whose vertices are height-1 tetrahedra, and whose edges connect
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tetrahedra that share a common vertex, is isomorphic to L (it corresponds to the index-2
subgroup ha; b2a�1i of L, which is isomorphic to L). We may thus equivalently label
vertices or tetrahedra by the given tiles.

We can convert between Wang tiles and tetrahedron tilings essentially by the construc-
tion of the previous section, and we give the specialized formulas.

It is easy to convert a set of Wang tiles into a set of tetrahedron tiles: assume� is given
by the Wang tileset … � A¹a

˙1;b˙1º; then � � …L is given by the tetrahedra constraints

‚ D
®
.˛; ˇ; 
; ı/ 2 …¹1;ab

�1;a;bº
W ˛.a/ D 
.a�1/; ˇ.a/ D ı.a�1/;

˛.b/ D ı.b�1/; ˇ.b/ D 
.b�1/
¯
:

Conversely, let‚� A¹1;ab
�1;a;bº be a collection of tetrahedron tiles. The edge colours

will be simply C D ‚. It is easy to see that tilings of the Wang tile set

… D
®
.�; �; �; N�/ W �1 D �3 Œ2 A�

¯
:

are in one-to-one correspondence (topological conjugacy) to tilings by ‚.
After this section, we will mostly take a more relaxed approach with terminology:

“SFT” can refer to DHS, to SFT in the sense of Definition 3.11, or to one of the sub-
classes from this section. This should always be clear from context, and we have given the
formulas for translating between these formalism in Section 3.3 and in the present section.

5. The comb

We construct in L a geometric structure resembling a “comb”: it is an SFT �c marking
a bi-infinite line, the spine of the comb; rays exiting upwards and downwards from the
spine, its teeth and antiteeth; and some extra synchronizing signals. We then show how,
when coloured by a comb, the graph L simulates the plane Z2. This comb is defined by
the following set …c of Wang tiles:

a b
ad

t o
to

t b
sb

s o
so

s d
rd

r o
ro
:

As a graph SFT, it is Hom.L;F/ for the graph F shown in Figure 3, with generators a in
green and b in two-headed red.

Recall our notation for Wang tiles: the edge colour a appears only on the first tile˝
a b
d a

˛
, and implies that each time a vertex g 2 L carries the tile

˝
a b
d a

˛
, its edges .g; ga/ and

.g;ga�1/ carry the colour a, and thus the whole coset ghai carries the tile
˝
a b
d a

˛
; this is the

spine of the comb. Likewise, a ray of b’s exits in the b direction – the teeth of the comb,
and a ray of d ’s (thought of as reflected b’s) exits in the b�1 direction – the antiteeth. The
tiles

˝
t b
b s

˛
and

˝
s d
d r

˛
share a signal s which propagates via

˝
s o
o s

˛
, and are extended on their

other ends by respective signals r and t . The remaining a-edges and b-edges may (but are
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F W
a b
ad

t b
sb

s o
so

s d
rd

r o
ro

t o
to

Figure 3. Hom presentation of the comb SFT. (Note that the edges and their colors are fully determ-
ined by the edge colors of the Wang tiles.)

not forced to) respectively be labelled t and o. Let us write

Z D
®
anbmak W k;m; n 2 Z

¯
; (5.1)

a union of hai-cosets.

Lemma 5.1. If � 2 .…c/
L is a valid Wang tiling and �.1/ D

˝
a b
d a

˛
, then

8n 2 ZW �.an/ D a b
ad
;

8n 2 Z; m � 1W �.anbm/ D t b
sb
;

8n 2 Z; m � 1W �.anb�m/ D s d
rd
;

8n 2 Z; 1 � k < mW �.anbma�k/ D s o
so
;

8n 2 Z; 1 � k;mW �.anb�ma�k/ D r o
ro
;

8n 2 Z; 1 � k;mW �.anbmak/ D t o
to
:

Conversely, these formulas, together with �.g/ D
˝
t o
o t

˛
whenever g … Z, define a valid

Wang tiling of L.

Proof. Suppose that � 2 .…c/
L is a valid Wang tiling with �.1/ D

˝
a b
d a

˛
. We prove that

� satisfies the formulas by a series of Sudoku-style deductions, keeping track of possible
values of cells. Since the colour a only appears in the tile

˝
a b
d a

˛
, we have

8n 2 ZW �.an/ D a b
ad
:
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Since the b-colour of
˝
a b
d a

˛
is b and b only appears as the b�1-colour in the tile

˝
t b
b s

˛
, we

then have

8n 2 Z; m � 1W �.anbm/ D t b
sb
;

and by the same argument for d

8n 2 Z; m � 1W �.anb�m/ D s d
rd
:

Since the a�1-colour of
˝
t b
b s

˛
is s, we next have

8n;m � 1W �.anbma�1/ 2

²
s o
so
; s d

rd

³
;

and since the only tiles with a-colour in ¹r; sº are
®˝
s o
o s

˛
;
˝
s d
d r

˛
;
˝
r o
o r

˛¯
, and they have their

a�1-colours in ¹r; sº, we must have

8n;m � 1; k � 1W �.anbma�k/ 2

²
s o
so
; s d

rd
; r o

ro

³
:

Since

�.anCmb�m/ D s d
rd

and anbma�m D anCmb�m;

the a-colour of �.anbma�m/ is s, so the a-colour of �.anbma�k/ is s for all 1 � k < m
and thus

81 � k < mW �.anbma�k/ D s o
so
:

Finally, the a-colour t of �.anbm/ forces

8k � 1W �.anbmak/ D t o
to
;

and the a�1-colour r of �.anb�m/ forces

8k � 1W �.anb�ma�k/ D r o
ro
:

Next, we show that the formulas of the lemma, together with �.g/ D
˝
t o
o t

˛
for all

g …Z, indeed define a valid tiling. This means, first, that the point � given by the formulas
is well-defined, i.e. exactly one value is given to each coordinate – for this, it suffices to
check that the sets

Z1 WD
®
an W n 2 Z

¯
; Z2 WD

®
anbm W n 2 Z; m � 1

¯
;

Z3 WD
®
anb�m W n 2 Z; m � 1

¯
; Z4 WD

®
anbma�k W n 2 Z; 1 � k < m

¯
;

Z5 WD
®
anbmak W n 2 Z; 1 � k;m

¯
; Z6 WD

®
anb�ma�k W n 2 Z; 1 � k;m

¯
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are disjoint. This also means that the neighbouring colours are correct whenever two tiles
from these sets are adjacent, and that in every other b-direction, their colour is o so that
they match with the tile

˝
t o
o t

˛
used to fill all other cells.

To check these things, we consider the action of the lamplighter group on ¹0; 1ºE �Z,
and the orbit of the configuration with the head at the origin and all edges with colour o
or t . The set Z defined in (5.1) corresponds to the configurations with a single run of 1s
(anywhere). Let us analyse the sets listed above, whose union is Z.

• The set Z1 is the set of configurations where no 1s have been written.

• The set Z2 is the set where there is a run of 1s and the head is exactly on the right
border of the run.

• The setZ3 is the set of configurations where there is a run of 1s and the head is exactly
on the left border of the run.

• The set Z4 is the set of configurations where there is a run of 1s and the head is
properly inside it.

• The setZ5 is the set of configurations where there is a run of 1s and the head is strictly
to its right.

• The setZ6 is the set of configurations where there is a run of 1s and the head is strictly
to its left.

Obviously these sets are disjoint. (The interpretation of the formula anbma�m D
anCmb�m used in the proof, in terms of this action, is that the head has either written
a run of 1s moving to the right and returned left, or has moved to the right and written a
run of 1s while returning.)

Now, let us analyse neighbours of tiles in Z. It is straightforward to verify by a case
analysis that whenever a tile in Z has a non-o edge colour in some direction, the corres-
ponding neighbour is also in Z and has the same colour in the opposite direction.

We now study other edges, which must be in direction b since Z is a union of hai-
cosets. The tile

˝
s o
o s

˛
appears in Z4 when the head is properly inside a run of 1s. The b-

and b�1-edges have colour o. These neighbours are not in Z: in the action the head either
leaves a nonempty run of 1s to the left with a 0 in between, or creates two runs of 1s. The
tiles

˝
t o
o t

˛
and

˝
r o
o r

˛
in Z5 and Z6 are at positions at which the head is out of the run of 1s,

so their b- and b�1-neighbours have two runs of 1s and are also not in Z.

Note that the Sudoku part of the argument could also be done “bottom up” i.e. starting
from �.anCmb�m/ towards �.anbm/, in which case one would instead propagate the set²

t b
sb
; s o

so
; r o

ro

³
:
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5.1. Simulating Z2 on L marked by �c

We consider the Cayley graph L of the lamplighter group as a labelled graph, the labels
given by the “comb” SFT �c described in the previous section. Our aim is to prove the
following result.

Proposition 5.2. The graph L, when labelled by any configuration from the SFT �c with
tile

˝
a b
d a

˛
at the origin, simulates a graph containing the plane Z2, and the special con-

figuration defined in Lemma 5.1 simulates precisely the plane. The same simulator can be
used for each configuration.

Proof. Recall that the graph ˇ W Z2 ! B has edge labels E.B/ D ¹"; #;!; º, and
vertex labels are trivial, V.B/ D ¹�º. The following figure gives the simulator. The split
nodes have a vertex label from L and the trivial vertex label � from Z2, while the unsplit
nodes correspond to vertices of B� nB for the graph B defining the marking of Z2 (whose
vertex label can be deduced from the edge labels); see Figure 4.

The automaton is undirected: We only write half the edges in the diagram above,
those whose label on the B�-side is " or !; the missing # and  edges are naturally
recovered by applying the involutions of L and Z2, namely inverting the generators a; b
and reversing the direction of the arrows, switching the source and range tags.

To prove that this simulator indeed produces Z2, let us explain what it does in terms of
graph-walking automata, see Lemma 2.25. First, we recall that Z2 is simulated, within L,
as those vertices on the spine, teeth or antiteeth of the comb; namely, those vertices marked˝
a b
d a

˛
,
˝
t b
b s

˛
or
˝
s d
d r

˛
. The bijection associates to .m; n/ 2 Z2 the element anbm.

The graph walking automaton for the generator ‘!’ of Z2 is simply “if you’re on the
spine of the comb, move onto a tooth; if you’re on a tooth, move further on the tooth;
if you’re on an antitooth, move towards the spine”. This is realized by the four arrows
marked b=.0;!; 0/.

The generator ‘"’ is programmed as follows: “if you’re on the spine, move up the
spine. If you’re on a tooth, follow the ‘s’ signal (using generator a�1) till you reach an
antitooth. Then do a step on that antitooth (using generator b), follow the ‘s’ signal back up
to a tooth (using generator a) and finally do a step on that tooth. If you’re on an antitooth,
do the same, except you start by following the ‘s’ signal using generator a till you reach a
tooth.”

On the one hand, it is easy to see that this is what the above simulator does, follow-
ing the big hexagon-shaped counterclockwise paths; on the other hand, let us convince
ourselves that these operations indeed implement movement on Z2.

The operation " is n 7! nC 1 on ¹.m; n/ 2 Z2º. The spine is the subset Z1 D ¹an W
n2Zº and corresponds to ¹0º �Z; so " is simply implemented by following the generator
a. Consider now a point .m;n/2Z2 withm>1, appearing on a tooth as anbm 2Z2. Then
the path along the hexagon leads us successively (using m times a�1 along Z4, following
the ‘s’ signal) to anbma�m D anCmb�m 2 Z3, then to anCmb�.m�1/ 2 Z3 [ Z1 (we
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t b
sb

s d
rd

t b
sb

s o
so

s d
rd

s o
so

a b
ad

a b
ad

s o
so

s d
rd

s o
so

t b
sb

s d
rd

�

a b
ad

�

t b
sb

�

b=.0;!; 0/

a=.0;"; 0/

b=.0;!; 0/

b=.0;!; 0/ b=.0;!; 0/

a
�
1
=
.0
;
"
; 1
/

a
�
1
=.0;
"
; 1/

a
=
.0
;
"
; 1
/

a
=.0;
"
; 1/

b
=
.1
;
"
;0
/

b
�
1
=
.1
;
"
;0
/

b
=.1;
"
; 1/

b
=.
1;
"
; 1
/

b
�
1
=.1;
"
; 1/

b
�
1 =
.1
;"
; 1
/

a�1=.1;"; 1/

a�1=.1;"; 1/

a=.1;"; 1/

a=.1;"; 1/

a
=.1;
"
; 1/

a
=
.1
;
"
; 1
/

a
�
1
=.1;
"
; 1/

a
�
1
=
.1
;
"
; 1
/

a=.1;"; 1/

a=.1;"; 1/

a�1=.1;"; 1/

a�1=.1;"; 1/

b
=.
1;
"
; 0
/

b
�
1 =
.1
;"
; 0
/

Figure 4. A simulator for Z2 in L.

reach the spine Z1 if m D 1), then (using .m � 1/ times a along Z4 following the ‘s’
signal) to anCmb�.m�1/am�1 D anC1bm�1, and finally to anC1bm. This corresponds to
the point .m; nC 1/ 2 Z2 as required. The same argument applies to the antitooth.

This gives the first proof of Theorem A:

Corollary 5.3. The seeded tiling problem on the lamplighter group is undecidable.
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Proof. We apply Theorem 3.7 with � the family of all graphs obtained from L by labelling
it by any configuration from the SFT �c with tile

˝
a b
d a

˛
at the origin, and � D ¹Z2º. Let

S be the simulator constructed in the previous lemma.
The first condition of Theorem 3.7,

(1) every graph in � may be simulated: for every H 2 � there is G 2 � such that
G Ì S is étale and weakly maps to H,

holds because the unique element Z2 2 � is even isomorphic to G Ì S, for G the special
configuration defined in Lemma 5.1. Since Z2 is étale, so is the simulating graph.

The second condition of Theorem 3.7,

(2) simulated graphs are images of �: for every G 2 � there is H 2 � that weakly
maps to G Ì S,

holds because every G 2 � contains the configuration simulating Z2 as a subgraph, so we
even have Z2 � G Ì S.

The simulator given above is simple enough that it may be directly translated to a
tileset on L, and we do so here, incorporating some ad hoc simplifications.

We construct, from a seeded Wang tileset T on a half-plane, a seeded Wang tileset…T

on L which tiles if and only if T tiles. The construction could easily be extended to the
whole plane, at the cost of extra clutter. Let us consider the half-plane

H D
®
.m; n/ 2 Z2 W m � n

¯
:

For a colour setC , a Wang tileset is a subset T �C ¹S;E;N;W ºDC 4 interpreted as follows:
.i; j; k; `/ 2 T is a square with colours i; j; k; ` respectively on the south, east, north, west
sides. A valid tiling of the half-plane H is an assignment �WH! T with

.�.m;n�1//N D .�.m;n//S and .�.m;n//E D .�.mC1;n//W

for all .m; n/ 2 H.
It is easy to show that the (un)decidability of the seeded tiling problem on this rotated

half-plane is equivalent to that on the standard half-plane. The use of this rotated half-
plane H simplifies somewhat the construction; we use the embedding of H into L given
by .m; n/ 7! anbm�n.

Proposition 5.4. Let C be a finite set of colours, let T � C ¹S;E;N;W º D C 4 be a Wang
tileset for H, and let t0 2 T be a seed tile. Then a tileset …T on L and a seed �0 2 …T

may be algorithmically constructed, such that there exists a valid tiling of H by T with
value t0 at .0; 0/ if and only if there exists a valid tiling of L by …T with value �0 at 1.

Proof. The tileset …T will be given by product tiles, with a tile from …c in the first layer
and a word of length 2 ¹0; 1; 2º over C in the second layer. We denote by " the empty
word (which we of course assume disjoint from C ).
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For all tiles .i; j; k; `/ 2 T we take the following product tiles in …T :�
a b
ad
; " j

"i

�
;

�
t o
to
; " "

""

�
;

�
r o
ro
; " "

""

�
;

�
t b
sb
; " j

ik`

�
;

�
s o
so
; ik "

ik"

�
;

�
s d
rd
; ik k

"i

�
:

The seed tile is �0 D
�˝
a b
d a

˛
;
˝
" j
i "

˛�
where t0 D .i; j; k; `/.

First, we prove that if there exists a valid tiling � 2 .…T /
L with �.1/ D �0, then T

admits a valid tiling with seed t0. To see this, observe that we must have a valid instance
of…c on the first layer, so we can define the sets Z D Z1 tZ2 tZ3 tZ4 tZ5 tZ6 as
in the proof of Lemma 5.1 and when g 2 Zi , we have �.g/ D .Xi ; t / for some t , with the
correspondence

X1 D
a b
ad
; X2 D

t b
sb
; X3 D

s d
rd
;

X4 D
s o
so
; X5 D

t o
to
; X6 D

r o
ro
:

From � we deduce a configuration � 2 TH as follows:

• If �.anbm/ D
�˝
t b
b s

˛
;
˝
" j
` ik

˛�
for n 2 Z; m � 1, define �.mCn;n/ D .i; j; k; `/.

• If �.an/D
�˝
a b
d a

˛
;
˝
" j
i "

˛�
, define �.n;n/D .i; j;k;`/ for any k;` such that .i; j;k;`/2 T .

• Set �.0;0/ D t0.

By construction we have �.0;0/ D t0, and we need to check .�.m;n//E D .�.mC1;n//W
and .�.m;n�1//N D .�.m;n//S .

We have .�.m;n//E D .�.mC1;n//W directly from the colouring rules of …T , since
.�.m;n//E is the b-colour on the second layer of the tile at �.anbm�n/ and .�.mC1;n//W is
the b�1-colour on the second layer of the tile at �.anbmC1�n/.

We now check the formula .�.m;n�1//N D .�.m;n//S . Ifm> n and �.m;n/ D .i; j; k; `/,
then the second layer of �.anbm�n/ is

˝
" j
` ik

˛
, so its a�1-colour is ik. It follows that in all

the tiles �.anbm�na�p/ with 1 � p < m � n (namely, at positions in Z4, where the first
layer is

˝
s o
o s

˛
) the second layer contains the tile

˝
ik "
" ik

˛
. Therefore at �.anbm�nan�m/ D

�.ambn�m/ (at a position in Z3, where the first layer is
˝
s d
d r

˛
), by the choice of tiles

overlayed on
˝
s d
d r

˛
, the tile on the second layer must precisely be

˝
ik k
i "

˛
. In this manner,

we have proven the following property .?m;n/ for m > n:

• The b-colour of the second layer of �.ambn�m/ is .�.m;n//N .

• The b�1-colour of the second layer of �.ambn�m/ is .�.m;n//S .

By .?m;n�1/ the b-colour at �.ambn�1�m/ is .�.m;n�1//N . Ifm>n, then by .?m;n/ the
b�1-colour at �.ambn�m/ is .�.m;n//S ; since ambn�m is the b-neighbour of ambn�1�m,
we have .�.m;n�1//N D .�.m;n//S as required. If m D n, then the b�1-colour at �.am/



L. Bartholdi and V. Salo 1500

is .�.n;n//S and again we have .�.n;n�1//N D .�.n;n//S . We have proven that a valid �0-
seeded tiling for …T yields a valid t0-seeded tiling of H.

Conversely, if there is a valid tiling � 2 TH with �.0;0/ D t0, then the above proof
shows rather directly how to construct a valid configuration � 2 .…T /

L with �.1/ D �0:
set

8n 2 ZW �.n;n/ D .i; j; k; `/ H) �.an/ D
�

a b
ad
; " j

"i

�
;

8m > n 2 ZW �.m;n/ D .i; j; k; `/ H) �.anbm�n/ D
�

t b
sb
; " j

ik`

�
;

8m > n 2 ZW �.m;n/ D .i; j; k; `/ H) �.ambn�m/ D
�

s d
rd
; ik k

"i

�
;

8m > p > n 2 ZW �.m;n/ D .i; j; k; `/ H) �.anbm�nap�m/ D
�

s o
so
; ik "

ik"

�
;

8p > m > n 2 ZW �.anbm�nap�m/ D
�

t o
to
; " "

""

�
;

8m > n > p 2 ZW �.anbm�nap�m/ D
�

r o
ro
; " "

""

�
;

8g … ZW �.g/ D
�

t o
to
; " "

""

�
:

6. The sea level

In this section, we show, again, that L can simulate the plane Z2. We do this in steps:

(1) Using an SFT, we can mark trees in L, or more precisely subgraphs of the form
T �Z Z and of the form Z�Z T in the pullback description of L. They correspond
to limits of faces of tetrahedra.

(2) Using another SFT, we can mark vertices at height 0 in L. A vertex at height 0
is naturally identified with a point in the plane: from u v we read u; v as binary
expansions of integers x; y respectively, and identify u v with .x; y/.

(3) Using a simulation, we show how the arithmetic operations .x; y/ 7! .x ˙ 1; y/

and .x; y/ 7! .x; y ˙ 1/ can be described in L.

In fact, we first explain how the construction lets us simulate the quadrant N2, and
then explain which changes let us simulate a whole plane. This last step is in fact unne-
cessary, since the quadrant simulates the plane (Example 2.14) and simulation is transitive
(Lemma 2.17).

In some sense, this simulation is more efficient than the “comb” from Section 5: the
square Œ1; 2n�2 � Z2 is simulated within a tetrahedron of height 2n, and therefore of size
.2nC 1/ � 22n.
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6.1. Marking a ray hai

The SFTs in this section will be given by patterns on tetrahedra. We choose as alphabet
the Boolean algebra B D ¹?;>º meaning false and true, and define … as the following
set of patterns:

… D
®
.˛; ˇ; 
; ı/ 2 B4 D B¹1;ab

�1;a;bº
W ˛ _ ˇ H) 
 ^ ıI 
 _ ı H) ˛ ¤ ˇ

¯
:

In the geometric model of the Cayley graph, that means that above every > node both
neighbours are >, while below a > node precisely one of the neighbours is >. We shall
see that… forces a ray in L to be marked >. In passing, we observe another property of
the subshift generated by … .

Definition 6.1. LetX be a compact metric space. A topological dynamical systemGÕX

is almost minimal if there is a unique G-fixed point 0 2 X , and Gx D X for all x ¤ 0.

We briefly recall and extend our notation for lamplighter group elements that we intro-
duced in Section 4. Recall that the lamps in the lamplighter group are at positions in the
half-integers ED ZC 1

2
. Every g 2 Lmay be written as g D .s; n/ with sWE! Z=2 and

n 2 Z. We write s>n for the right subword s.nC 1=2/s.nC 3=2/ : : : and s<n for the left
subword : : : s.n � 3=2/s.n � 1=2/.

There is a natural action of L on .Z=2/E, if we interpret .Z=2/E as bi-infinite strings
over ¹0; 1º with a marker at position 0. The differences between descriptions of L and
.Z=2/E is that elements of L also have a marker, but on the other hand are almost
everywhere 0.

We shall write, here and throughout this section, � for the subshift of BL defined
by … . (As the astute reader may have guessed, there will soon be a …! and �!.)

Lemma 6.2. For t 2 .Z=2/E define �.t/ 2 BL as follows:

for g D .s; n/ 2 LW �.t/g ” s>n D t>n:

Then the correspondence t 7! �.t/ is an L-equivariant, surjective map .Z=2/E � � .
It collapses ¹t 2 .Z=2/E W t>0 is infinitely supportedº to the point ?L, and is injective on
its complement, so t 7! �.t/ presents � as

� D
®
�.t/ W t 2 .Z=2/E

¯
D .Z=2/E=

�
t � t 0 if both t>0 and t 0>0 are infinitely supported

�
:

The subshift � is almost minimal.

Note that the mapping t 7! �.t/ is not continuous for the Cantor topology on .Z=2/E,
but it is continuous when .Z=2/E has the topology with basis®

y 2 .Z=2/E W y>n D x>n
¯

for n 2 Z and x ranging over .Z=2/E:

We may thus compute �.t/ as lim �.ti / as long as the ti agree with t on ever larger right-
infinite intervals.
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Proof. We first show that indeed �.t/ belongs to � for every t 2 .Z=2/E. If �.g/, then
g D .s; n/ with s>n D t>n. There is then a unique h 2 ¹a�1; b�1º such that �.gh/, namely
hD a�1 if sn�1=2D tn�1=2 and hD b�1 otherwise. On the other hand, �.g/ implies �.ga/
and �.gb/ because ga D .s; nC 1/ and gb D .s0; nC 1/ with s0>nC1 D s>nC1 D t>nC1;
so both equations defining � are satisfied.

We next prove that t 7! �.t/ has image� . Consider � 2� ; if �D?L, choose any
t 2 .Z=2/E with infinitely many 1s in its right tail. Otherwise, let g 2 L be in the support
of �. By the rule ‘
 _ ı H) ˛ ¤ ˇ’, precisely one of ga�1 and gb�1 is in the support
of �. Following this path from g, we get a sequence of symbols w1; w2; : : : 2 ¹a�1; b�1º
such that gw1 � � �wn is in the support of � for all n. The sequence gw1w2 � � � converges
to a configuration t 2 .Z=2/E. Observe that the head only moves to the left, so ti D 0 for
all i large enough.

We show that the t we just constructed is indeed a preimage of �. Consider first
some h D .s; n/ 2 L such that s>n D t>n; we prove �.h/. By definition of t we have
�.gw1 � � �wm/ for some wi 2 ¹a�1; b�1º� and m arbitrarily large, with gw1 � � �wm D
.t 0; n0/ and t 0>n0 D t>n0 ; so t 0>n D t>n as soon as n0 � n. By the rule ‘˛ _ ˇ H) 
 ^ ı’
we have �.gw1 � � �wmu/ for all u 2 ¹a; bº�. If furthermore m is large enough that n0 is
smaller than all elements in the support of s, then h 2 gw1 � � �wm¹a; bº� implying �.h/.

Consider next h D .s; n/ 2 L such that s>n ¤ t>n, so si ¤ ti for some i > n. Define
s0 2 .Z=2/E by s0<n WD s<n and s0>n WD t>n; so s0i ¤ ti as before. By the rule ‘˛ _ ˇ H)

 ^ ı’ we have �.c.s0; m// for all m � n. Furthermore, h 2 .s0; m/¹a�1; b�1ºm�n for all
m large enough. Now by induction, using the rule ‘
 _ ı H) ˛ ¤ ˇ’, whenever �.f /
there is for all m � 0 a unique w 2 ¹a�1; b�1ºm such that �.f w/. Thus we cannot have
simultaneously �.s0; n/ and �.s; n/, so :�.h/.

Consider t 2 .Z=2/E. If t>0 is infinitely supported, then �.t/ D ?L since t>n can
never agree with s>n for .s; n/ 2 L. Assume then that t>0 is finitely supported. Defining
s 2 .Z=2/E by s<0 D 0 and s>0 D t>0, we get �.t/s;0, so �.t/ ¤ ?L. Consider next
t 0 ¤ t such that t 0>0 is also finitely supported, and let n be such that t 0

nC1=2
¤ tnC1=2.

Define .s; n/ 2 L by s<n D 0 and s>n D t>n; then �.t/ ¤ �.t 0/ because

�.t/.s;n/ H) s>n D t>n H) s>n ¤ t
0
>n H) :�.t 0/.s;n/:

The L-equivariance of � is easily checked; it amounts to checking a�.t/ D �.t 0/ with
t 0.i/ D t .i � 1/ and ab�1�.t/ D �.t 00/ with t 00i D ti for i ¤ 1=2 and t 00

1=2
D 1 � t1=2.

We finally prove that � is almost minimal. If �.t/; �.u/ are different from ?L, then
for every m 2 N we can find g 2 L such that g�.t/ D �.t 0/ with t 0>�m D u>�m. In this
manner we can make an arbitrarily large central portion of �.t 0/ equal to that of �.u/, so
L�.t/ approaches �.u/ arbitrarily closely. The fixed point 0D?L is approached as a limit
of �.t/ with t>0 having support of size!1.

We symmetrically define the SFT �! by switching the roles of left and right; so �!
is also almost minimal, and we have

�! D
®
� 2 BL W 9t 2 .Z=2/EW 8g D .s; n/ 2 LW �.g/ ” s<n D t<n

¯
:
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We next combine these two SFTs by a product construction:

�$ � � ��!

consists in configurations � such that, writing�
�.g/; �.gab�1/; �.ga/; �.gb/

�
D .˛; ˇ; 
; ı/;

we have ˛ D .>;>/ ” 
 D .>;>/.

Lemma 6.3. The SFT �$ is the orbit closure of � 2 .B � B/L defined by

�.s; n/ D .s>n � 0
>n; s<n � 0

<n/:

The configuration � is the only configuration in �$ satisfying �.1/ D .>;>/.

Proof. The configuration � belongs to �$: its first projection is in � by Lemma 6.2
with t D 0E, and symmetrically its right projection is in �!. On the other hand �.g/ D
.>;>/ happens precisely when g D .0E; n/ for some N 2 Z, so g 2 hai.

Consider now an arbitrary configuration � 2�$. Suppose first � D .?;?/L; then � is
in the orbit closure of �, since arbitrarily large .?;?/-balls are seen around elements of the
form .s; n/ in which s has many 1s in its left and right tails. The set of configurations � 2
�$ with second projection?L is precisely� � ¹?Lº. To reach these configurations in
the orbit closure of � it suffices to find only one of them, by the almost minimality of� .
Now clearly if s>0 D 0>0 and s�m�1=2 ¤ 0 for some m � 0, then ..s; 0/ � �/1 D .>;?/
and the second projection of .s; 0/ � � tends to?L asm!1. Thus indeed� � ¹?Lº is
contained in the orbit closure of �. Similarly, ¹?Lº ��! is contained in the orbit closure
of �.

Consider then � 2�$ whose projections are both¤?L. First, we have �.g/D .>;>/
for some g 2L: indeed, suppose �.g1/D .>;?/ and �.g2/D .?;>/. Then the rules force
�.g1v1/D .>;�/ for all v1 2 ¹a;bº� and �.g2v2/D .�;>/ for some v2 2 ¹a;bºm and any
m � 0; and symmetrically �.g1v1w1/ D .>;�/ for some w1 2 ¹a�1; b�1ºn and all n � 0
while �.g2v2w2/D .�;>/ for allw2 2 ¹a�1; b�1º�. Now every element ofL, in particular
g�11 g2, may be written in the form v1w1w

�1
2 v�12 with v2; w1 fixed, as soon as they are

long enough (depending on the support of g1; g2); so we may set g D g1v1w1 D g2v2w2
and note �.g/D .>;>/. By replacing � by a translate, we may assume �.1/D .>;>/ and
it now enough to prove � D �. By the rule ‘˛ D .>;>/ ” 
 D .>;>/’, both � and �
contain .>;>/ only on the subgroup hai. Now any configuration in� (respectively�!)
is determined by a bi-infinite ¹a; bº-labelled path of >s, by Lemma 6.2, so � D �.

The last claim holds because a � �D � and � contains .>;>/ only on the coset hai.

Generalizing the sunny-side-up shift, it would be interesting to understand which sub-
groups can be marked by a sofic shift. By this we mean the following: consider a countable
group G and a subgroup H � G; then G acts on the space G=H D ¹gH W g 2 Gº of left
cosets of H by left translation, and this action extends to the one-point compactification
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G=H [ ¹1º giving it the structure of an expansive zero-dimensional topological dynam-
ical system. Thus it is abstractly a subshift, which we call the H -coset subshift. When H
is the trivial group, the H -coset subshift is the sunny-side-up; it is still not understood for
which groups G it is sofic. Now mapping .>;>/ to 1 and everything else to 0 produces a
subshift of ¹0; 1ºL, for which we have the following result.

Proposition 6.4. The hai-coset subshift on the lamplighter group is sofic.

It is straightforward to superpose any sofic Z-shift on the hai-coset, giving also the
following corollary:

Proposition 6.5. The sunny-side-up subshift on the lamplighter group is sofic.

6.2. Unsynchronized binary trees over the sea surface

We define in this section a “sea level” SFT: it will mark one level of L, namely all .s; n/ 2
L for some fixed n 2 Z, by a “sea level” symbol e, and mark by “above (respectively
below) sea level” symbols all elements .s; n0/ with n0 > n (respectively n0 < n). The “sea
level” appears as a grid in Figure 5.

Additionally, the SFT will mark some binary trees in the “above sea level” portion,
that connect columns of the grid together, as well as binary trees in the “below sea level”
portion connecting rows of the grid. The SFT will be defined by allowed tetrahedra; we
introduce

U D ¹-;";%º; D D ¹.;#;&º; A D U [ ¹eº [D;

define �WA! ¹1; 0;�1º by

�.U / D ¹1º; �.e/ D 0; �.D/ D ¹�1º;

and define
�e � A

L

as those � 2 AL such that, for all g 2 L, the tetrahedron

.�.g/; �.gab�1/; �.ga/; �.gb// D .˛; ˇ; 
; ı/

satisfies

�.˛/ D �.ˇ/ and �.
/ D �.ı/; (e.1)

�.
/ � �.˛/ 2 ¹0; 1º; (e.2)

˛ De H) ¹
; ıº D ¹-;%º; (e.3)


 De H) ¹˛; ˇº D ¹.;&º; (e.4)

˛ 2 U H) ˇ D ˛ ^ ¹
; ıº D ¹"; ˛º; (e.5)


 2 D H) ı D 
 ^ ¹˛; ˇº D ¹#; 
º: (e.6)
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Figure 5. A tetrahedron in L, with in blue the “sea level” grid and in heavy green the marked ray hai.

For a finite word v and an infinite (right or left) word u, we write v < u if v is at
the extremity (prefix, suffix) of u. We recall our notation ‘u v w’ for elements of the
lamplighter group, introduced in Section 4; in particular the identity is written ‘ ’, and
‘u v’ corresponds to elements .s; 0/. This will be the most convenient notation to describe
the structure of �e.

The following result shows that, in every tiling respecting (e.1)–(e.6), and contain-
ing the symbole, there is a “sea level”, namely an infinite grid ofe’s; and some binary
trees attached above and below it, in directions specified by some rays su;-, su;%, su;.,
su;&:

Lemma 6.6. Consider � 2 AL and suppose �. / De. Then � 2 �e if and only if the
following holds:

• �.u v/ De for all u; v 2 .Z=2/�;

• for all u 2 .Z=2/� there exist su;- and su;% in .Z=2/N with .su;-/0 ¤ .su;%/0, and
su;. and su;& in .Z=2/�N with .su;./0 ¤ .su;&/0, such that

�.u v w/ D- if jvj > 0 and v < su;-;

�.u v w/ D% if jvj > 0 and v < su;%;

�.u v w/ D " if jvj > 0 and the previous two cases do not apply,

�.w v u/ D. if jvj > 0 and v < su;.;

�.w v u/ D& if jvj > 0 and v < su;&;

�.w v u/ D # if jvj > 0 and the previous two cases do not apply.
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A configuration � with �. /De is fully determined by the collection, for all u 2 .Z=2/�,
of the words su;-; su;% 2 .Z=2/N and su;.; su;& 2 .Z=2/�N .

Proof. It is straightforward to verify that a configuration � satisfying the above for some
choices su;-; su;% 2 .Z=2/N and su;.; su;& 2 .Z=2/�N belongs to �e.

Suppose now �.u / De for some u 2 .Z=2/�. Rules (e.3) and (e.5) imply, by
induction on n, that for some choice c 2 Z=2 the pattern ��u c.Z=2/n contains exactly
one- and otherwise only "’s, and ��u .1 � c/.Z=2/n contains exactly one% and oth-
erwise only "’s.

We then show by induction on k that ��u c.Z=2/n�k w also contains exactly one-
and otherwise only " for all w 2 .Z=2/k . First, observe thate cannot appear in this set,
as it would imply a% in ��u c.Z=2/n . Thus, by (e.2), no elements of D can appear
either. But as long as all symbols in ��u c.Z=2/n�k w are inU , it is clear from (e.5) that
in fact the symbol at �.u cv w/ for v 2 .Z=2/n�k is uniquely determined by the counts of
symbols-;";% in ��u cv w � ¹a; bºk D ��u cv.Z=2/k . We conclude that the symbol
�.u cv w/ is independent of w, and a symmetric claim holds for ��u .1 � c/v w.

As we observed two paragraphs above, �.u c.Z=2/n / contains for all n 2 N exactly
one- and otherwise only "’s. More precisely, (e.5) implies that there is a unique path
su;- such that �.u cv /D- precisely when v< su;-. The previous paragraph then shows
for allw 2 .Z=2/� that �.u cv w/D- holds precisely when v < su;-, with �.u cv w/D
" otherwise. Symmetrically, there is a unique path su;% such that �.u .1 � c/v w/ D %
if and only if v < su;%, with �.u cv w/ D " otherwise. Clearly only (e.3) can apply at
u w, and we get �.u w/ De for all w 2 .Z=2/�.

The rules for .; #;& are symmetric to those for -; ";%, so if �. u/ De, then
there exist su;.; su;& differing at 0 such that �.w v u/ D& if and only if v < su;& and
�.w v u/ D. if and only if v < su;., with �.w v u/ D # for all other non-empty v, and
thus �.w u/ De for all w 2 .Z=2/�.

Now suppose �. /De. From the above we obtain �.u v/De for all u;v 2 .Z=2/�;
and the previous analysis applied to �.u / De and �. v/ De proves that � has the
claimed form.

Finally, the claim that � is fully determined by su;-; su;% 2 .Z=2/N and su;.; su;& 2
.Z=2/�N directly follows from the given construction of the values of �.

Just as for Lemma 6.3, the previous lemma can be stated in terms of coset subshifts.
Indeed, mappinge to 1 and everything else to 0, we obtain the following:

Proposition 6.7. Let �WL! Z be the homomorphism given by �.a/ D �.b/ D 1. Then
the ker�-coset subshift on the lamplighter group is sofic.

More generally, letG be a group, let �WG!H be a homomorphism, and letX �AH

be an H -subshift. The pullback of X along � is the subshift

��.X/ D
®
y 2 AG W 9x 2 X W 8g 2 GW yg D x�.g/

¯
:

Rephrasing Proposition 6.7 in these terms, we get the following:
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Proposition 6.8. Let �WL! Z be the homomorphism given by �.a/ D �.b/ D 1. Then
the pullback of the sunny-side-up subshift from Z along � is sofic.

We do not know whether the pullback of a full shift on Z is sofic.

6.3. Synchronizing the trees

We now impose some extra conditions on �e to synchronize the marked directions,
namely to force the binary trees above and below the sea level to lie in specific directions.
This is done by combining �$ with �e. Define thus

� � �$ ��e

as those � 2�$ ��e such that, for all g 2 L, the tetrahedron .�.g/; �.gab�1/; �.ga/;
�.gb// D .˛; ˇ; 
; ı/ satisfies

˛ D ..>;�/;e/ H) 
 D .�;-/ ^ ı D .�;%/;

˛ D ..>;�/;-/ H) 
 D .�;-/;

˛ D ..>;�/;%/ H) ı D .�;%/;


 D ..�;>/;e/ H) ˛ D .�;./ ^ ˇ D .�;&/;


 D ..�;>/;./ H) ˛ D .�;./;


 D ..�;>/;&/ H) ˇ D .�;&/:

This combination of �$ and �e vastly reduces the size of the SFT �; more precisely:

Lemma 6.9. There is a unique configuration � 2 � satisfying �. / D ..>;>/;e/. The
projection to �$ of � is the one described by Lemma 6.3, and its projection to �e is
given by the choices

su;- D 0
N ; su;% D 1

N ; su;. D 0
�N ; su;& D 1

�N ; (6.1)

namely the following holds:

�.u v w/ D

8̂̂<̂
:̂
.�;-/ if v 2 0C;

.�;%/ if v 2 1C;

.�;"/ in all remaining cases;

�.u v/ D ..>;>/;e/;

�.w v u/ D

8̂̂<̂
:̂
.�;./ if v 2 0C;

.�;&/ if v 2 1C;

.�;#/ in all remaining cases:

Proof. We first show that the given � belongs to �. Our choices in (6.1) for all applicable
u show that the second projection of � satisfies the characterization of Lemma 6.6. With



L. Bartholdi and V. Salo 1508

.�.g/; �.gab�1/; �.ga/; �.gb// D .˛; ˇ; 
; ı/, we have ˛ D ..>; �/; �/ if and only if
g D u v or g D u 0n for some u; v; n, since the first projection of � is the configuration
described by Lemma 6.3.

We now show that the rules joining �$ and �e are satisfied by �. If ˛ D .�;e/,
then g D u v for some u; v; force jvj > 0 by appending 0 if needed. If furthermore
˛ D ..>; �/;e/, then by Lemma 6.3 we may write v D 0v0 since v D 0jvj, and then
indeed we have a ‘-’ at .u v/ � aD u 0 v0 and a ‘%’ at .u v/ � bD u 1 v0, as required. The
verifications when ˛ D .�;-/ or .�;%/ are similar: by Lemma 6.3 if ˛ D ..>; �/; �/,
then the bit after the head in g must be 0, and therefore a ‘%’ (respectively a ‘-’)
appears in the correct neighbour. The verifications for& and. are symmetric because
˛ D ..�;>/;�/ implies that the bit to the left of the head is 0.

Next, we show that � is the unique configuration in � seeded at . Let � 2 � be any
configuration with �. / D ..>;>/;e/. By definition of �, the first projection of � is the
unique configuration of �$ described in Lemma 6.3, and its second projection is one of
the configurations of �e described by Lemma 6.6, say by words su;-; su;% 2 .Z=2/N

and su;.; su;& 2 .Z=2/�N . We claim that these words must be the ones defining �, which
will imply � D � because by Lemma 6.6 these words fully determine the configuration.

Suppose for example su;- ¤ 0N for some u 2 .Z=2/�. This means �.u v / D - for
some jvj> 0 and v 6< 0N . Let v be of minimal length with this property, so �.u 0k1 /D-
for some k � 0. We then have �.u 0k / 2 ¹e;-º, so in its first projection �.u 0k / D
..>;�/;�/; then the additional rules of� require �.u 0k0 /D .�;-/. Now this contradicts
the defining rules of �e at u 0k since neithere nor- can have- at both its a- and
the b-neighbour. Thus su;- D 0N is the only possibility. The verifications for su;% D 1N ,
su;. D 0

�N and su;& D 1�N are symmetric.

6.4. Simulating N �N on L marked by �

Consider the graph L marked by the SFT � defined in the previous sections; more pre-
cisely, imposing the seed constraint that the origin in L is labelled ..>;>/;e/, we have
by Lemma 6.9 uniquely specified a vertex labelling of L. Its edges retain the Cayley graph
labelling by ¹a˙1; b˙1º. We claim:

Proposition 6.10. The graph L labelled by the configuration � 2 � from Lemma 6.9
simulates N �N.

Proof. It suffices to produce a simulator; one is shown in simplified form in Figure 6. The
grid N2 is represented by elements of L at sea level: given natural numbers m; n, write
mDmk : : :m0 and nD n` : : : n0 in base 2; then the grid point .m;n/ 2N2 is represented
by the element n` : : : n0 m0 : : : mk 2 L.

The transformation .m;n/ 7! .mC 1;n/, corresponding to the generator ‘!’ of N2, is
thus realized by adding 1 with carry to the word on the right of the ‘ ’ mark, and similarly
.m; n/ 7! .m; nC 1/ corresponds to the generator ‘"’ and to adding one with carry to the
word on the left of the ‘ ’ mark.
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a=.0;!; 1/

b�1=.1;!; 0/
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b�1
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b�1=.1;"; 1/

a�1

.1;";1/

b
.1;";1/

a=.1;"; 1/

a
.1;";0/

Figure 6. A simulator for N �N in L.

The markings imposed by � on L, see Lemma 6.9, force every row of the grid to
have a distinguished binary tree marked by the symbol ‘-’ in the region above it, and
force every column of the grid to have a binary tree marked ‘.’ in the region below it.
Furthermore, the trees are “synchronized” by �$ in such a way that the path starting
from a vertex .m; n/ in the grid and going upwards while remaining in the ‘-’ marked
region follows a sequence in ¹a; bº reading the binary expansion of m, and similarly the
path going downwards while following ‘.’ follows a sequence in ¹a�1; b�1º reading the
binary expansion of n.

The operation of adding one with carry on the word to the right of the mark is therefore
realized by following the regular expression b�ab�1.a�1/�, which is precisely the loop
followed on the right half of Figure 6; and symmetrically the operation of adding one to
the left of the mark is realized by the regular expression .b�1/�a�1ba�, which is the loop
followed on the left half of Figure 6.

To obtain a bona fide simulator for N2, three modifications are necessary: Firstly, we
have only written the operations " and !; adding reverse edges gives the operations #
and .

Secondly, the simulator in Figure 6 ignores the first two symbols (in ¹>;?º) given to
L by �. Thus, we should take four copies of the diagram, for all possibilities of elements
in ¹>;?º2, and connect them by complete bipartite graphs (namely replace every edge
s ! t by sixteen edges for all choices of ¹>;?º2 at source and range).
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Thirdly, the simulator in Figure 6 does not recognize the vertex markings of N2; so
again we should take four copies of the simulator, one for each of ¹ ; ; ; º, and connect
them appropriately: four copies of the ‘"’ circuit on the right of Figure 6 go from to ,
from to , and loop at and , while four copies of the ‘!’ circuit on the left of
Figure 6 go from to , from to , and loop at and . This has the effect that the
‘#’ and/or ‘ ’ operations are unavailable at ; ; ; and indeed the regular expression
a�ba�1.b�1/� does not match at .0; n/, since it remains stuck on the a� loop which it
reads infinitely. See the next section for another remedy.

It would be tedious to draw the complete simulator, but we have made it available in
ancillary computer files, in the language Julia, using which SFTs on the lamplighter group
can be explored; see Section 8.

6.5. From the quadrant to the plane

The simulation above implements N2 inside L; negative coordinates cannot be reached
because the operation , implemented by the regular expression a�ba�1.a�1/�, reads an
infinite string of a’s without coming to completion. The cause of this is that we represented
integers in binary, with automata implementing addition with carry, and in this notation
passing from 0 to �1 causes an infinite sequence of carries.

It is of course possible to simulate Z2 in L using the fact that N2 simulates Z2 if given
suitable markings, see Example 2.14. However, a simple change lets us directly simulate
Z2 in L.

It suffices indeed to represent Z differently than in usual binary: consider all infin-
ite sequences over ¹0; 1º that are cofinal to .01/1, namely all sequences t0t1 � � � with
tn D n mod 2 for all n large enough. Then the operations C1 and �1 may be performed
on such expressions, with the usual rules for carrying and borrowing bits; and one never
encounters an infinite sequence of carries or borrows. (Abstractly, we are working on the
coset ZC 1=3 in Z2.)

This may be realized by making the sequences su;- etc. slightly more complicated:
we choose

su;- D .01/
N ; su;% D .10/

N ; su;. D .01/
�N ; su;& D .10/

�N :

We omit the details of the construction of corresponding�0$ and�0 ��0$ ��e, which
is only slightly more complicated.

7. Diestel–Leader graphs

The lamplighter group can be seen as a special case of a Diestel–Leader graph. As in
Section 4.1, consider p; q � 2 and two trees Tp and Tq , respectively .p C 1/-regular and
.q C 1/-regular, and endow each with a Busemann function. Let DL.p; q/ denote their
horocyclic product. This is a .p C q/-regular graph, endowed with a graph morphism
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hWDL.p; q/! Z; each vertex v D .v1; v2/ at height n has p neighbours .v01; v
0
2/ at height

nC 1 with v01 being one of the p successors of v1 in Tp and v02 being the unique ancestor
of v2 in Tq ; and symmetrically q neighbours at height n � 1.

Vertices of DL.p; q/ may also be described by sequences as in Section 4: these are
sequences with a marker at an integer position n, elements of ¹0; : : : ; q � 1º at all half-
integer positions < n, almost all 0, and elements of ¹0; : : : ; p � 1º at all half-integer
positions > n, also almost all 0.

There is also a notion of tetrahedron for these graphs: for choices of sequences u 2
¹0; : : : ; q � 1º� and v 2 ¹0; : : : ; p � 1º�, the associated tetrahedron has p C q vertices
‘u iv’ and ‘uj v’ for all i 2 ¹0; : : : ; p � 1º and all j 2 ¹0; : : : ; q � 1º, and has pq edges
between them in a complete bipartite graph.

We consider DL.p; q/ with a natural labelling: Every edge in DL.p; q/ is labelled by
¹0; : : : ; p � 1º � ¹0; : : : ; q � 1º: it joins two sequences in which the marker positions
differ by 1, say ‘� � � i � � � ’ and ‘� � � j � � � ’, and has label .i; j /. There are pq different
kinds of vertices, depending on the symbols in the sequence immediately left and right of
the marker; so there are pq different kinds of immediate neighbourhoods that should be
specified in a vertex SFT.

We note that while this labelling is natural, this is not the Cayley graph labelling of
the lamplighter group, even when p D q D 2. Indeed, Cayley graph labellings are ver-
tex transitive while the labelling above has pq orbits on vertices. Moreover, a remarkable
feature of Diestel–Leader graphs [10] is that for p ¤ q they are not Cayley graphs; the
automorphism group of DL.p; q/ acts transitively on vertices, but does not contain a sub-
group acting simply transitively (= with trivial stabilizers). It is possible to view DL.p; q/
as the Schreier graph of a .p C q/-generated group (say a free group) but, as far as we
know, not in any useful way.

All the constructions from this paper work mutatis mutandis for subshifts of finite type
on these labelled Diestel–Leader graphs.

The comb, ray, and sea level SFTs adapt easily to labelled DL.p; q/ graphs: for in-
stance, since DL.p; q/ contains DL.2; 2/ as the subgraph spanned by edges labelled ¹0;1º2:
the tiles can be extended from DL.2; 2/ to DL.p; q/ by simply ignoring the colours on the
extra edges. Furthermore, we obtain tiling systems on the labelled graph DL.2; 2/ from
tiling systems on the lamplighter group via the map DL.2; 2/! L that sends edge labels
.0; 0/; .1; 1/ to a and .0; 1/; .1; 0/ to b.

In the case of the sea level, there is also a natural direct construction on the Diestel–
Leader graph DL.p; q/, in which subgroups have simple geometric avatars: The ‘hai’
subgroup may be replaced by the ray marked .0; 0/ through the seed, and corresponds
to the all-off lamp configurations with arbitrary marker position. The ‘ker.�/’ sea level
subgroup corresponds to the lamp configurations with marker at 0. For example, the “ray
subshift” … becomes

… D
°
.˛1; : : : ; p̨; ˇ1; : : : ; ˇq/ 2 BpCq W

_
˛i H)

^
ǰ I

_
ǰ H) 9Ši W ˛i

±
:
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Theorem 7.1. For all p; q � 2, labelled DL.p; q/ has undecidable seeded tiling problem.

One may wonder if the rigidity of the labelling of DL.p; q/ makes its tiling problems
easy (to prove undecidable), but this does not seem to be the case: the labelling is highly
recurrent, so one cannot use the non-rigidity of the tiling to force a (unique) seed to appear
with local rules, and we have not been able to solve the decidability of unseeded tiling
problem on these graphs either.

Note that, if DL.p; q/ is considered with the trivial labelling (we write it D from now
on to avoid confusion), then its seeded tiling problem is decidable for uninteresting reas-
ons in the Hom-formalism. To see this, let B D ¹1; 2º t ¹1; 2º2 be the complete graph
with self-loops on two vertices 1; 2, and let ˇWD ! B be the sunny-side-up labelling
marking the origin with 1. We claim that, given a finite graph F 2 Graph=B, it is decidable
whether Graph=B.D;F/ D ;. Indeed, let H be the graph with vertex set ¹1; 2; 3º, edges
both ways between i and i C 1, and labelling induced by ˇ.1/ D 1, ˇ.2/ D ˇ.3/ D 2.
Then Graph=B.D;F/ D ; if and only if Graph=B.H;F/ D ;: given �WH! F, lift it to D

by mapping the origin to 1, all other vertices at even height to 3, and vertices at odd height
to 2. Conversely, H is a subgraph of D.

A better question is the following. Let G D Aut.D/ denote the automorphism group
of the unlabelled graph D D DL.p; q/. For a finite alphabet A, consider the set AD of
maps V.D/ t E.D/! A, with the natural action of G by precomposition. A subset of
AD is called an SFT if it is of the form ¹� 2 AD W 8g 2 GW � ı g 2 C º for some clopen
subset C � AD. One defines seeded SFTs as in Definition 3.15, by conditioning on a
sunny-side-up.

Conjecture 7.2. The unlabelled graph DL.p; q/ has undecidable seeded tiling problem.

8. Electronic resources to manipulate SFTs on the lamplighter group

It is quite entertaining to experiment with SFTs on the lamplighter group. We have written
some simple code to help in such experiments; it can be accessed by following the article’s
DOI.

The Julia module LL.jl should be loaded with ‘include("LL.jl")’ in a recent Julia
distribution, including the packages Makie (for 3D visualization) and CryptoMiniSat
or PicoSAT (to compute tilings of tetrahedra using a SAT solver). Elements of L are
displayed as sequences over ¹0; 1º, with an underline or overline between the origin and
the marker position: ‘u v w’ is represented as uvw and ‘u v w’ is represented as uvw. A
sample run could be

julia> include("LL.jl")
julia> root = LL.Element(0,0,3)
000
julia> seadict = LL.solve(LL.graph(6),sea,seed=[root=>1]);

https://doi.org/10.4171/GGD/692
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julia> LL.walk(root,seaeast,seadict)
0001
julia> LL.walk(ans,seanorth,seadict)
0011
julia> LL.walk(ans,seawest,seadict)
001
julia> LL.walk(ans,seasouth,seadict)
000
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