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Stable loops and almost transverse surfaces

Michael Landry

Abstract. We use veering triangulations to study homology classes on the boundary of the cone
over a fibered face of a compact fibered hyperbolic three-manifold. This allows us to give a hands-
on proof of an extension of Mosher’s transverse surface theorem to the setting of manifolds with
boundary. We also show that the cone over a fibered face is dual to the cone generated by the
homology classes of a canonical finite collection of curves called minimal stable loops living in the
associated veering triangulation.

1. Introduction

In this paper, we use veering triangulations to study the suspension flows of pseudo-
Anosov homeomorphisms on compact orientable surfaces and their relation to the unit
ball of the Thurston norm. We call these flows circular pseudo-Anosov flows. The term
circular indicates that the flow is a suspension flow, and is standard. However, pseudo-
Anosov flows as defined by Mosher in [19] live only in closed three-manifolds, making
the terminology here slightly nonstandard. We use the term “compact hyperbolic three-
manifold” throughout to refer to compact three-manifolds whose interiors admit complete
hyperbolic metrics of finite volume.

1.1. Main results and outline

Let M be a compact hyperbolic three-manifold with fibered face o C H,(M, 0M; R).
Each integral point in the interior of cone(o) := R - 0 corresponds to a fibration M —
S! (the nonprimitive integral points correspond to fibrations with disconnected fibers).
There is a circular pseudo-Anosov flow ¢ called the suspension flow of o, unique up to
reparameterization and conjugation by homeomorphisms of M isotopic to the identity,
which collates the fibers and monodromies of all fibrations of M corresponding to o.
More precisely, each fiber of a fibration M — S is isotopic to a cross section of ¢, and
the monodromy of the fibration is given by the first return map of ¢ on that cross section.
This theorem was proven for closed M by Fried in [7, Theorem 14.11]; a proof in the case
when dM # O has yet to appear in the literature and so we include one in Appendix A.
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In addition to capturing data about the integral points of int(cone(c)), the suspension
flow ¢ detects the integral points in d cone(o). In this direction, our first result is a gen-
eralization of Mosher’s transverse surface theorem [18, Theorem 1.4] to the setting of
manifolds with boundary.

Theorem 3.5 (Almost transverse surfaces). Let M be a compact hyperbolic three-mani-
fold, with a fibered face o of Bx(M) and associated suspension flow ¢. Let v € Hy(M,0M)
be an integral homology class. Then o €cone(o) if and only if o is represented by a surface
almost transverse to ¢.

In the theorem statement, the symbol By (M) denotes the unit ball of the Thurston
norm. A surface is almost transverse to ¢ if it is transverse to a closely related flow
o* obtained from ¢ by a process called dynamically blowing up singular orbits, which
amounts to replacing some number of singular orbits of ¢ by mapping tori of homeo-
morphisms of finite trees. The precise definition of almost transversality is found in Sec-
tion 3.2. Note that transverse implies almost transverse, so in the case « € int(cone(o)) the
forward direction of Theorem 3.5 amounts to the theorem of Fried mentioned above; the
case of most interest here is when « € d cone(o). We remark that this generalization of the
transverse surface theorem to the setting of manifolds with boundary has already proven
useful: in [2] the authors use Theorem 3.5 to prove results about the asymptotic translation
length of pseudo-Anosov mapping classes acting on the curve graph of a surface.

The main tool in the proof of Theorem 3.5 is an object 7, canonically associated to ¢,
called the veering triangulation of o. The veering triangulation 7 is an ideal triangulation
of a cusped hyperbolic three-manifold M’ obtained from M by deleting finitely many
closed curves from int(M'). We find it fruitful in this paper to view 7 as sitting in M as an
ideal triangulation of a subspace.

Loosely speaking, the strategy of our proof of Theorem 3.5 is to arrange a surface
to lie in a regular neighborhood of the 2-skeleton of the veering triangulation away from
the singular orbits of ¢, and then use our knowledge of how the veering triangulation
sits in relation to ¢ in order to appropriately blow up the flow near the singular orbits.
Mosher, without the machinery of veering triangulations available to him, performed a
deep analysis of the dynamics of the lift of ¢ to the cyclic cover of M associated to
the surface. Including this dynamical analysis, his complete proof of the theorem spans
[16-18]. It is an advertisement for the power of veering triangulations that once their
combinatorics are understood, the proof of Theorem 3.5 is fairly simple.

The construction of 7 depends on ¢, and so one might expect the combinatorics of t to
encode information about ¢. The main result of Section 4, Theorem 4.9, gives an example
of this. Before stating the result, we state a few facts about ¢. The suspension flow ¢
has the following property: a cohomology class u € H'(M:R) is Lefschetz dual to a
class in cone(o) := R - o if and only if u is nonnegative on €, the cone of homology
directions of ¢. Hence computing €, is equivalent to computing cone(c’). For a flow F
on M, €F is the smallest closed cone containing the projective accumulation points of
homology classes of nearly closed orbits of F. Since ¢ is a circular pseudo-Anosov flow,
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C, has a more convenient characterization as the smallest closed cone containing the
homology classes of the closed orbits of ¢. In fact, Fried showed that €, is generated by
the homology classes of the simple loops in the directed graph associated to any Markov
partition for ¢ [7,8].

While a Markov partition is a noncanonical object, the following result gives a canon-
ical finite family of curves whose homology classes generate €,. The family is easily
defined in terms of the structure of t and has an interpretation in terms of .

Theorem 4.9 (Stable loops). Let M be a compact hyperbolic three-manifold with fibered
face o. Let T and ¢ be the associated veering triangulation and circular pseudo-Anosov
Sflow, respectively. Then €, is the smallest convex cone containing the homology classes
of the minimal stable loops of t.

The stable loops of t are a family of closed curves carried by the so-called stable
train track of t, which lies in the 2-skeleton of 7 and records the combinatorics of the
intersection of the stable foliation of ¢ with the 2-skeleton. A minimal stable loop is a
stable loop traversing each switch of the stable train track at most once. Precise definitions
are given in Section 4.3 (for the stable train track) and Section 4.5 (for stable loops).

To interpret Theorem 4.9, we recall a theorem of Cooper, Long, and Reid: an immersed
surface § transverse to a circular pseudo-Anosov flow in a closed three-manifold is a
virtual fiber of M if and only if the singular foliation on S induced by its intersection with
the stable foliation of the flow has no closed leaves [4, Theorem 1.2]. As a consequence,
the induced foliation on an embedded surface transverse to ¢ and representing a homology
class in d cone(o) must have a closed leaf. This closed leaf represents a nontrivial element
of the fundamental group of the corresponding leaf of the stable foliation of ¢, and is
therefore freely homotopic to a multiple of a closed orbit y of ¢ whose homology class
has 0 intersection with the homology class of the surface. It follows that [y] lies in the
boundary of €.

In our context, we would like to understand the homology classes generating €,. One
of the things we show in the course of proving Theorem 4.9 is that any integral class in
d cone(a) is represented by a surface almost transverse to ¢ whose intersection with the
stable foliation of ¢ contains a closed leaf which can be homotoped to a stable loop.

By choosing an integral class lying in an appropriate top-dimensional face of cone(o),
we can produce a stable loop whose homology class lies in any given 1-dimensional face
of €,, giving the result.

In other words, the stable loops needed to generate €, arise naturally from closed
leaves of induced singular foliations on surfaces transverse and almost transverse to ¢.

To briefly outline the paper: in Section 2, we provide background on the Thurston
norm, circular pseudo-Anosov flows, and branched surfaces. We then develop some of the
combinatorial structure of veering triangulations. In Section 3, we review the notion of
dynamic blowups and prove Theorem 3.5. In Section 4, we show that a property called
infinite flippability distinguishes fibers carried by the 2-skeleton of a veering triangulation,
and use this fact to prove Theorem 4.9.
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We include two appendices. In Appendix A, mentioned above, we prove that Fried’s
results from [7] concerning cross sections and the duality of €, and cone(o) hold for
compact hyperbolic three-manifolds with boundary. In Appendix B, we explain how to
use Theorem 3.5 to show the results of [13] hold for manifolds with boundary, extending
that paper’s partial answer of a question of Oertel from [20]. In particular, we obtain the
following corollary.

Corollary B.4. Let L be a fibered hyperbolic link with at most three components. Let M,
be the exterior of L in S3. Any fibered face of Bx(Mp) is spanned by a taut branched
surface.

1.2. Context, references

A veering triangulation is a special type of taut ideal triangulation. Taut ideal triangula-
tions were introduced by Lackenby in [12] as combinatorial analogues of taut foliations,
where he uses them to give an alternative proof of Gabai’s theorem that the singular genus
of a knot is equal to its genus. He states that “one of the principal limitations of taut ideal
triangulations is that they do not occur in closed three-manifolds,” and asks the following
question:

Question (Lackenby). Is there a version of taut ideal triangulations for closed three-
manifolds?

While we do not claim a comprehensive answer to Lackenby’s question, an under-
current of this paper (and [13]) is that for fibered hyperbolic three-manifolds, possibly
closed, a veering triangulation of a dense open submanifold is a useful version of a taut
ideal triangulation.

Veering triangulations are introduced by Agol in [1]. There is a canonical veering tri-
angulation associated to any fibered face of a hyperbolic three-manifold, and Guéritaud
showed [11] that it can be built directly from the suspension flow. If taut ideal triangula-
tions are combinatorial analogues of taut foliations, Guéritaud’s construction allows us to
view veering triangulations as combinatorializations of pseudo-Anosov flows.

2. Preliminaries

In this paper, all manifolds are orientable and all homology and cohomology groups have
coefficients in R.

2.1. The Thurston norm, fibered faces, relative Euler class

We review some facts about the Thurston norm, which can be found in [22]. Let M be a
compact, irreducible, boundary irreducible, atoroidal, anannular three-manifold (dM may
be empty). If S is a connected surface embedded in M, define

x—(S) = max {0, —x(S)}.
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where y denotes Euler characteristic. If S is disconnected, let y_(S) = >, x—(S;), where
the sum is taken over the connected components of S. For any integral homology class
o € Hy(M,0M), we can find an embedded surface representing «. Define

x (o) = min { x—(S) | S is an embedded surface representing Ol}.

Then x extends by linearity and continuity from the integer lattice to a vector space norm
on Hy(M, 0M) called the Thurston norm [22]. We mention that Thurston defined x more
generally to be a seminorm on H,(M, dM) for any compact orientable M. However,
in this paper x will always be a norm, since the manifolds we consider will not admit
essential surfaces of nonnegative Euler characteristic.

The unit ball of x is denoted by By (M). As a consequence of x taking integer val-
ues on the integer lattice, By (M) is a finite-sided polyhedron with rational vertices. Our
convention in this paper is that a face of By (M) is a closed cell of the polyhedron.

We say that an embedded surface S is taut if it is incompressible and realizes the
minimal y_ in [S]. If ¥ C M is the fiber of a fibration ¥ < M — S!, then X is taut,
any taut surface representing [X] is isotopic to X, and [X] lies in int(cone(o)) for some
top-dimensional face o of B, (M ). Moreover, any other integral class representing a class
in int(cone(o)) is represented by the fiber of some fibration of M over S!. Such a top-
dimensional face o is called a fibered face.

Let £ be an oriented plane field on M which is transverse to dM . If we fix an outward
pointing section of £|yys, this determines a relative Euler class ez € H*(M,dM). For a
relative 2-cycle S, eg([S]) is the first obstruction to finding a nonvanishing section of £|g
agreeing with the outward pointing section on S C dM. A reference on relative Euler
class is [21].

If ¢ is a flow on M tangent to dM, let T ¢ be the oriented line field determined by
the tangent vectors to orbits of ¢. Let &, be the oriented plane field which is the quotient
bundle of TM by T¢. We can think of &, as a subbundle of TM by choosing a Rie-
mannian metric and identifying &, with the orthogonal complement of T'¢. For notational
simplicity, we define e, = eg,, the relative Euler class of &,.

Fix a fibration Y < M — S, which allows us to express M 2= (Y x [0,1])/(y,1) ~
(g(»),0) for some homeomorphism g of Y. Let TY be the tangent plane field to the
foliation of M by (Y x {t})’s. Let ¢ be the suspension flow of g, which moves points
in M along lines (y, t) for fixed y, gluing by g at the boundary of Y x [0, 1]. We have
£, = T'Y and hence e, = ery. For some fibered face o, we have [Y] € int(cone(o)). We
have x([Y]) = —x(Y) = —ery([Y]). i.e., x and ery agree on [Y]. In fact, more is true:
cone(o) is exactly the subset of H,(M, dM ) on which —ery and x agree.

It can be fruitful to think of a properly embedded surface S in M as representing both
a homology class in Hy(M, dM) and a cohomology class in H (M) mapping homology
classes of closed curves to their intersection number with S. As such we will sometimes
think of x as a norm on H (M) via Lefschetz duality. The image in H ! (M) of a face o
of B, (M) will be denoted by o1 p, and in general the subscript LD, when attached to an
object, will denote the Lefschetz dual of that object.
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Figure 1. A boundary singularity of an invariant singular foliation of a generic pseudo-Anosov map
has three separatrices.

2.2. Circular pseudo-Anosov flows

Let F be a flow on M which is tangent to M . By flow we mean a continuous action of
R on M with C! orbits. We call the orbits flow lines. Recall that a cross section to F is
a fiber of a fibration M — S whose fibers are transverse to F. Flows which admit cross
sections are called circular.

Let g: Y — Y be a pseudo-Anosov map on a compact surface ¥ which is maximally
blown up on dY in the sense that the singularities on dY of its invariant foliations (see
[23, §3]) each have three separatrices in the sense of [5, Chapter 5, §5.1] (see Figure 1).
We call g a generic pseudo-Anosov map. Up to conjugacy by a homeomorphism of Y
isotopic to the identity, g is unique within its isotopy class. We call the suspension flow
¢ of a generic pseudo-Anosov map a circular pseudo-Anosov flow. In contrast, one can
also define pseudo-Anosov flows which are not circular, essentially by requiring neigh-
borhoods of closed orbits be modeled on closed orbits of circular pseudo-Anosov flows
(see [3, Definition 6.41]). We will not use these flows, however—we mention them simply
to provide context.

The suspension of the stable and unstable foliations of g give two codimension-1 foli-
ations in M preserved by ¢ called the stable and unstable foliations of ¢. These foliations
are transverse to one another in int(M). The closed orbits corresponding to the singular
points of g lying in int(Y") are called singular orbits. The closed orbits lying on dM are
called d-singular orbits. See Figure 2.

If Z is a cross section to a flow ¢, the first return map of Z is the map sending z € Z
to the first point in its forward orbit under ¢ lying in Z. If ¢ is a circular pseudo-Anosov
flow, the first return map of any cross section to ¢ will be pseudo-Anosov (this was proved
in [7, Lemma 14.2] for closed manifolds, but the proof in general is essentially the same).

2.3. Review of the veering triangulation

A taut tetrahedron is an ideal tetrahedron with the following edge and face decorations.
Four edges are labeled 0 and two are labeled &. Two faces are cooriented outwards and
two are cooriented inwards, and faces of opposite coorientation meet only along edges
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Figure 2. The behavior of circular pseudo-Anosov flow near a singular orbit (left) and a boundary
component of the ambient three-manifold (right).

Figure 3. A taut tetrahedron. The labels on edges indicate interior angles, and our convention is that
the coorientation of each face points out of the page.

labeled 0. The edge labels should be thought of as the interior angles of the corresponding
edges; see Figure 3. We define the rop (resp., bottom) of a taut tetrahedron ¢ to be the union
of the two faces whose coorientations point out of (resp., into) ¢. The top (resp., bottom)
m-edge of ¢t will be the edge labeled 7 lying in the top (resp., bottom) of 7.

Definition 2.1 ([12]). A taut ideal triangulation of a three-manifold is an ideal triangula-
tion by taut tetrahedra such that

(1) when two faces are identified their coorientations agree, and

(2) the sum of interior angles around a single edge is 2.

The 0 and 7 angle labels tell us how to “pinch” a taut ideal triangulation along its

edges so that the 2-skeleton has a well-defined tangent space at every point. We will always
assume that the 2-skeleton of a taut ideal triangulation is embedded in such a way.
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Figure 4. When the edges which are bottommost in the page are distinguished, the taut tetrahedron
on the left is of type L and the taut tetrahedron on the right is of type R.

Figure 5. Part of a veering triangulation. The edge a is left veering, while b is right veering.

Note that up to orientation-preserving combinatorial equivalence, there are two types
of taut tetrahedron with a distinguished 0-edge. We call these L and R and they are shown
in Figure 4.

Definition 2.2. Let e be an edge of a taut ideal triangulation A such that no two interior
angles of m are adjacent around e. If e has the property that all tetrahedra for which e is a
0-edge are of type R when e is distinguished, we say that e is right veering. Symmetrically,
if they are all of type L we say e is left veering. If every edge of A is either right or left
veering, A is veering; see Figure 5.

A consequence of the above condition that no two interior 7 angles be adjacent is that
each edge of a veering triangulation has degree > 4.

2.4. The veering triangulation of a fibered face

In this section, we move somewhat delicately between compact manifolds and their inte-
riors. The reason for this is that we wish to work in a compact manifold and study its
second homology rel boundary, but veering triangulations live most naturally in cusped
manifolds.
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Figure 6. A maximal rectangle and the image of the associated taut tetrahedron under flattening.

Veering triangulations are introduced by Agol in [1], where he canonically associates
a veering triangulation to a pseudo-Anosov surface homeomorphism. Let g: Y — Y be a
pseudo-Anosov map on a compact surface Y with associated stable and unstable measured
foliations #° and F*. Let Y’ = intY \ {singularities of ¥*, ¥%} and g’ = g|y’, and let
Mg and My be the respective mapping tori of g and g’. Agol constructs an ideal veering
triangulation of M, from a sequence of Whitehead moves between ideal triangulations
of Y’ which are dual to a periodic splitting sequence of measured train tracks carrying the
stable lamination of g’. Each Whitehead move corresponds to gluing a taut tetrahedron to
Y’, and the resulting taut ideal triangulation of the Z-cover associated to Y’ descends to a
taut ideal triangulation of M. We call a taut ideal triangulation of this type layered on Y.
Agol shows that up to combinatorial equivalence there is only one veering triangulation
of Mg+ which is layered on Y, and we call this the veering triangulation of g.

In [11], Guéritaud provides an alternative construction of the veering triangulation of
g which we summarize now; a nice account is also given in [15].

Let ¥ be the universal cover of Y’, and let Y’ be the space obtained by attaching a
point to each lift of an end of Y’ to Y'. The measured foliation % |y lifts to Y’ and gives
rise to a measured foliation on ¥’ with singularities at points of Y’ \ Y'. We call this the
vertical foliation, and the analogous measured foliation coming from ¥ *|y- is called the
horizontal foliation. In pictures, we will arrange the vertical and horizontal foliations so
they are actually vertical and horizontal in the page.

The transverse measures on the vertical and horizontal foliations give Y a singular
flat structure. A singularity-free rectangle is a subset of Y’ which can be identified with
[0, 1] x [0, 1] such that for all ¢ € [0, 1], {¢t} x [0, 1] (resp., [0, 1] x {¢}) is a leaf of the
vertical (resp., horizontal) foliation.

We consider the family of singularity-free rectangles which are maximal with respect
to inclusion. Any such maximal rectangle has one singularity in the interior of each edge.

Each maximal rectangle R defines a map fg:tg — R of a taut tetrahedron into R
which “flattens” 7g and has the following properties: the pullback of the orientation on R
induces the correct coorientation on each triangle in 7y, the top (resp., bottom) w-edge of
tr is mapped to a segment connecting the singularities on the horizontal (resp., vertical)
edges of R, and f(e) is a geodesic in the singular flat structure of Y’ ; see Figure 0.
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We can build a complex from | ¢g,, where the union is taken over all maximal rect-
angles, by making all the identifications of the following type: let R; and R, be maximal
rectangles, and suppose that A; and A, are faces of ¢, and tg, such that fg, (A1) =
fRr,(A2). Then we identify A; and A,. The resulting complex is a taut ideal triangula-
tion of 17’ x R, and one checks that it is veering. Guéritaud shows that it descends to a
layered veering triangulation of M/, which must be the one constructed by Agol.

While the veering triangulation is canonically associated to g: Y — Y, it is in fact
“even more canonical” than that. To elaborate, we need the following result.

Theorem 2.3 (Fried). Let ¢ be a circular pseudo-Anosov flow on a compact three-mani-
fold M. Let S be a cross section of ¢ and let o be the fibered face of Bx(M) such that
[S] € cone(o). An integral class « € Hy(M, dM) lies in int(cone(o)) if and only if « is
represented by a cross section to ¢. Up to reparameterization and conjugation by homeo-
morphisms of M isotopic to the identity, ¢ is the only such circular pseudo-Anosov flow.

Thus we we will speak of the suspension flow of a fibered face. Theorem 2.3 says that
all the monodromies of fibrations coming from o are realized as first return maps of the
suspension flow. Theorem 2.3 is proven by Fried in [7, Theorem 14.11] in the case where
M is closed. The proof of this more general result, when the fiber possibly has boundary,
does not seem to exist in the literature. For the reader’s convenience, we provide a proof
in Appendix A (Theorem A.7).

Set M = M,. Let o be the face of Bx(Mg) such that [Y] € cone(c), let ¢ be the
associated suspension flow, and let ¢’ = g¢| M-

The lift ;;’ of ¢’ to the universal cover 1\7&: of M is product covered, i.e., conjugate
to the unit-speed flow in the z direction on R3. Consequently, the quotient of ]\77;/ by the
flowing action of R, which we call the flowspace of ¢’ and denote by flowspace(¢’), is
homeomorphic to R?. In addition, flowspace(¢’) has two transverse (unmeasured) foli-
ations which are the quotients of the lifts of the (2-dimensional) stable and unstable
foliations of ¢’ to IT/IV

Let Z be another fiber of M over S such that [Z] € cone(o), with monodromy
h:Z —>Z.1LetZ',Z', 7', and Z' be obtained from Z and / in the same way that Y, Y’, and
Y’ were obtained from ¥ and g.

By Theorem 2.3, both Y Y’ and Z' and their vertical and horizontal foliations can be
identified with flowspace(¢’) and its foliations by forgetting measures. Hence we can
identify Y and Z’ together with their vertical and horizontal foliations. The maximal rect-
angles from Guéritaud’s construction depend only on the vertical and horizontal foliations,
and not on their transverse measures. The geodesics defining the edges of a tetrahedron
do depend on the measures (and hence on g and h), but for either pair of measures, the
geodesics will be transverse to both the vertical and horizontal foliations. We see then that
the triangles of the veering triangulation of

?XR%?XRE@
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are well defined up to isotopy. It follows that the veering triangulations of g and & are the
same up to isotopy in Mgr = My, = int(M) \ {singular orbits of ¢}.
Synthesizing the above discussion, we have shown the following.

Theorem 2.4 (Agol). Let M be a compact hyperbolic three-manifold, and suppose that
Y and Z are fibers of fibrations M — S with monodromies g and h such that [Y],[Z] €
cone(a) for some fibered face of By (M). Then the veering triangulations of g and h are
combinatorially equivalent.

It therefore makes sense to speak of the veering triangulation of a fibered face of
Bx(M).

2.5. Some notation

We now fix some notation which will hold for the remainder of the paper.

Let M be a compact hyperbolic three-manifold, and let ¢ be a circular pseudo-Anosov
flow on M. Let ¢ be the union of the singular orbits cj,...,c, of ¢ and let U; be a
small regular neighborhood of ¢;. Let V be a small regular neighborhood of dM and
put U =V U (l; U;) and M=M \ U. Let o be the (closed) fibered face of By (M)
determined by ¢, with associated veering triangulation t.

The homology long exact sequence associated to the triple (M, U, dM) contains the
sequence

Ho(U, 3M) > Hy(M,0M) — Hy(M, U).
By excision, Ho(M,U) = HZ(ASI , M ). Hence there is an injective map

P: Ho(M,3M) — Hy(M,3M).

At the level of chains, the map corresponds to sending a relative 2-chain S to S\ U. We
call P the puncturing map, and if o € H(M, dM) we often write & to mean P ().

2.6. Veering triangulations, branched surfaces, and boundaries of fibered faces

Recall that a branched surface in M is an embedded 2-complex transverse to dM which is
locally modeled on the quotient of a stack of disks Dy,...,D, suchthatfori=1,...,n—1,
D; is glued to D; 1 along the closure of a component of the complement of a smooth arc
through D;. The quotient is given a smooth structure such that the inclusion of each D; is
smooth (see Figure 7). Branched surfaces were introduced in [6], but the definition here is
a slightly more general one appearing in [20].

Let B C M be a branched surface. The union of points in B with no neighborhood
homeomorphic to a disk is called the branching locus of B, and the components of the
complement of the branching locus are called sectors. Let N(B) be the closure of a regular
neighborhood of B. Then N(B) can be foliated by closed intervals transverse to B, and
we call this the normal foliation of N(B). If the normal foliation is oriented, we say that
B is an oriented branched surface. In this paper, all branched surfaces will be oriented. If
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Figure 7. A portion of a branched surface, obtained as the quotient of a stack of disks.

~NM

S C N(B) is a cooriented surface properly embedded in M which is positively transverse
to the normal foliation in the sense that its coorientation is compatible with orientation of
the normal foliation, we say that S is carried by B. A surface carried by B gives a system
of nonnegative integer weights on the sectors of B which is compatible with natural linear
equations along the branching locus of B. Any system of nonnegative real weights w
satisfying these linear equations gives a 2-cycle and thus determines a homology class
[w] € Ho(M, 0M ). We say that [w] is carried by B. The collection of homology classes
carried by Bis clearly a convex cone.

Put # = t N M. Then the 2-skeleton of £ has the structure of a cooriented branched
surface. We call this branched surface Bs.

Corollary 2.5 (Agol) Let o be the closed face of Bx(M) determined by P and let & be
the face of By (M) such that P(c) C cone(G). The cone of classes in H (M 8M) carried
by Bg is equal to cone(5).

Proof. Let X be a fiber of M such that [Z] € cone(6). By Theorem 2.4, t can be built
as a layered triangulation on int(X). It follows that [X] is carried by Bg. Therefore, any
integral class in int(cone(&)) is carried, so every rational class in int(cone(&)) is carried.
We can find a closed oriented transversal through each point of Bg, so Bg is a homol-
ogy branched surface in the sense of [20]; it follows that the cone of classes it carries is
closed (see [13, Lemma 2.1] for details). Since each class in cone(G) is approximable by
a sequence of rational classes in the interior of the cone, the proof is finished. ]

We say a homology branched surface B is faut if any surface carried by B is taut. We
record the following useful lemma.

Lemma 2.6. B is taut.

Proof. Thisis [12, Theorem 3], stated in the special case when the taut ideal triangulation
is veering. u
2.7. Relating 37 and ¢

o
The complex 7 is a decomposition of M into truncated taut tetrahedra; see Figure 8. Let ¢
be a taut tetrahedron of 7, and let ¢’ be the truncation of ¢ obtained by deleting £ N U. The
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Figure 8. A truncated taut tetrahedron. The coorientation is such that the solid 7-edge is on top.

IR~

Figure 9. Upward (left) and downward (right) flat triangles.

top and bottom of t', and top and bottom m-edges of t’ are defined to be the restrictions
to ¢’ of the corresponding parts of z. Each of the four faces of ¢’ corresponding to ideal
vertices of ¢ is a triangle with two interior angles of 0 and one of &, which we call a flat
triangle. Because the faces of ¢ are cooriented, a flat triangle inherits a coorientation on its
edges. We say a flat triangle which is cooriented outwards (resp., inwards) at its & vertex
is an upward (resp., downward) flat triangle, as in Figure 9. The upwards flat triangles of
t’ correspond to the ideal vertices connected by the top m-edge of ¢’.

The flat triangles of ¢ give a triangulation of dM . Some of the combinatorics of this
triangulation are described in [10, 11, 13]. The terms ladder, ladderpole, and rung, defined
below, first appeared in [10]. Some of these ideas are illustrated in Figure 10.

The union u of all upward flat triangles is a collection of annuli. The triangulation
restricted to each annulus component of u has the property that each edge of a flat triangle
either traverses the annulus or lies on the boundary of the annulus. The same holds for
the union d of all downward flat triangles. A component of u is called an upward ladder
and a component of d is called a downward ladder. We call the boundary components of
ladders ladderpoles.

The 1-skeleton of this triangulation by flat triangles of M is a cooriented train track,
which we call 97. We define a notion of left and right on each branch e of d7: orient
OM inwards, and map some neighborhood of e homeomorphically to R? so that e is
identified with [—1, 1] x {0} and the pushforward of e’s coorientation points in the positive
y direction. Define the left (resp., right) switch of e to be the preimage of —1 (resp., 1). We
orient each branch of 97 from right to left, and this consistently determines an orientation
on d7. If an oriented curve is carried by 97 such that orientations agree, we say that y is
positively carried by 0T. By our choice of orientation if S is a surface carried by Be, then
its boundary, given the orientation induced by an outward-pointing vector field on M , 18
positively carried by 97.

We call branches of 37 contained in ladderpoles ladderpole branches, and branches
that traverse ladders rungs. We define the left (resp., right) ladderpole of a ladder to be
the ladderpole containing the left (resp., right) boundary switches of its rungs. A closed
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Figure 10. A truncated taut tetrahedron meeting a component of 9M in an upward flat triangle. An
upward and downward ladder are shown. The top w-edge of the truncated taut tetrahedron must be
left veering since it corresponds to a vertex in the right ladderpole of an upward ladder.

oriented curve positively carried by d¢ and traversing only ladderpole branches is called a
ladderpole curve.

Note that a switch of 97 corresponds to an edge of 7. The combinatorics of the flat and
veering triangulations are related by the following lemma, the proof of which is elemen-
tary.

Lemma 2.7. Let v be a switch of T corresponding to an edge e of t. If v lies in the left
ladderpole of an upward ladder, then e is right veering. If v lies in the right ladderpole of
an upward ladder, then e is left veering.

Consider a singular orbit ¢; of ¢ and fix a cross section Y of ¢. Let p be a point of
¢; N Y. If £ is a separatrix of the stable foliation of the first return map at p, let L denote
the orbit of £ under ¢. In the path topology, L is the quotient of a half-closed, half open
annulus A by a map which wraps 04 around ¢; some finite number of times. The flow lines
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p

Figure 11. Four triangles of T, lying in a single quadrant bounded by vertical and horizontal leaves

which meet at the singular point p of Y'.

of ¢|r, converge in forward time to ¢;. Since L is dense in M, the intersection L N cl(U;)
has many components; we will call the component containing ¢; a stable flow prong of c;.
An unstable flow prong of c; is defined symmetrically with an unstable separatrix.

Lemma 2.8. A stable flow prong of ¢; intersects dU; in the interior of an upward ladder.
Symmetrically, an unstable flow prong of c; intersects dU; in the interior of a downward
ladder.

Proof. Fix afiber Y of M with [Y] € cone(o), and let Y’ and ¥ be as in Section 2.4. Let
M’ = int(M) \ {singular orbits of ¢}.

Pick a singular orbit ¢; of ¢ and consider the left ladderpole £ of an upward ladder
of U;. The vertices of £ define a family 7" of triangles of 7. Let T'=TnNU,let T’ be
a component of the lift of 77" to M’, M’ the universal cover of M’ let T be the union of
triangles in the veering trlangulatlon of M’ intersecting T' and let T be the closure in
Y’ of the projection of T. This is a bi-infinite sequence of triangles, each sharing an edge
with the next, and all sharing a single vertex at a singular point p of Y. Y’

The vertical and horizontal foliations define infinitely many quadrants each meeting p
in a corner of angle 7, which are each bounded by one vertical and one horizontal leaf.
We claim that 7 lives in only one of these quadrants, a situation depicted in Figure 11.

Iny’ , the edges of positive slope are right veering while the edges of negative slope are
left veering; this follows immediately from Figure 4 and the fact that the edge connecting
the horizontal edges of a maximal rectangle lies above the edge connecting the vertical
edges. Thus every edge in T meeting p lies in a quadrant with horizontal left boundary
leaf and vertical right boundary leaf (where our notion of left and right is determined
looking at p from inside Y”).
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Figure 12. These 10 taut tetrahedra (left) define this part of an upward ladder (right) on the torus
coming from the top, central singularity on the left.

Fix one of the triangles of T, defined by edges e; and e, meeting p. The two edges lie
in the interior of a singularity-free rectangle with vertical and horizontal sides containing
p in its boundary. Such a rectangle lies in the union of two adjacent quadrants of p, only
one of which can have horizontal left boundary and vertical right boundary. Therefore,
e1 and e; lie in the same quadrant, and all the edges of T lie in the same quadrant by
induction.

Applying this analysis to each ladderpole yields the result. ]

For a picture illustrating the situation in Lemma 2.8; see Figure 12.

3. Almost transverse surfaces

3.1. Dynamic blowups

We now describe the process of dynamically blowing up a singular periodic orbit y of a
pseudo-Anosov flow ¢, which can be thought of as replacing a singular orbit by the sus-
pension of a homeomorphism of a tree. For more details, the reader can consult [19, §3.5].

Let g € N, g > 3. Define a pseudo-Anosov star to be a directed tree 7 embedded
in the plane with 2¢ edges meeting at a central vertex v, such that the orientations of
edges around v alternate between inward and outward with respect to v. We say that a
directed tree T* is a dynamic blowup of T if the closed neighborhood of each vertex of
T* is a pseudo-Anosov star, and there exists a cellular map 7: T# — T preserving edge
orientations such that 7 is injective on the complement of 7! (v). See Figure 13 for two
examples.
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Figure 13. A pseudo-Anosov star (left) and two possible dynamic blowups.

Let y be a singular periodic orbit of ¢ meeting ¢ stable and ¢ unstable flow prongs,
and suppose that ¢ rotates the flow prongs by 2x - g traveling once around y, where
ged(p.q) = 1.

The intersection of the flow prongs of y with a local cross section of ¢ gives a pseudo-
Anosov star T with 2¢q edges, with each edge oriented according to whether points in that
flow prong spiral towards or away from y in forward time. Let 7% be a dynamic blowup
of T that is invariant under rotation by 27 - g, and let G be the preimage of the central
vertex of T under the collapsing map 7: T% — T.

There is a flow ¢* on M which replaces y by the suspension of a homeomorphism
h: G — G with the following properties. Each edge E of G is mapped by 4 to its image
under rotation by 27 - g, and h4(FE) fixes vertices and moves interior points in the direc-
tion E inherits from T¥.

The orbit of G under ¢ is a complex of annuli A invariant under ¢*. A point interior
to an annulus of A spirals away from one boundary circle and towards the other in forward
time, and the boundaries of annuli are closed orbits of ¢¥. The flows ¢* and ¢ are semi-
conjugate via amap K: M — M collapsing A to y which is injective on the complement
of A.

We say that ¢* is obtained from ¢ by dynamically blowing up y. A flow obtained from
¢ by dynamically blowing up some collection of singular orbits is a dynamic blowup of ¢.

The effect of dynamically blowing up a singular orbit is to pull apart its flow prongs,
otherwise leaving the dynamics of the flow unchanged; see Figure 14.

3.2. Statement of transverse surface theorem, and Mosher’s approach

Definition 3.1. Let i be a circular pseudo-Anosov flow on a three-manifold N. We say
that an oriented surface S embedded in N is almost transverse to ¥ if there is a dynamic
blowup y# of ¥ such that S is transverse to ¥* and the orientation of 7S & Ty* agrees
with that of the tangent bundle of N at every pointin N.

Transverse surface theorem (Mosher). Let N be a closed hyperbolic three-manifold
with fibered face F and associated suspension flow . An integral class @ € Hp(N) lies
in cone(F) if and only if it is represented by a surface which is almost transverse to V.
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Figure 14. A dynamic blowup pulls apart the flow prongs of a singular orbit.

Let S be a surface which is almost transverse to i, and thus transverse to some
dynamic blowup ¥* of ¥. Then S is taut and [S] € cone(F). This is true even when
N has boundary, as we will now show.

Note that since ¥ is a topologically transitive flow, meaning it has a dense orbit, ¥ * is
as well. This follows from the fact that the collapsing map K: M — M semiconjugating
o* and ¢ is injective on the complement of complex of annuli introduced by the dynamic
blowup.

Consider a point s € S’ for some component S’ of S. There is an open neighborhood
e(s) of s which is homeomorphic to (—1, 1)? such that the restricted flow lines of ¥
correspond to the vertical lines {a} x {b} x (—=1,1) for—1 < a,b < 1, and S’ N &(s) cor-
responds to (—1, 1)2 x {0}. Let o be a dense orbit of y*. We can take a segment of o with
endpoints near each other in e(s) and attach endpoints with a short path to obtain a closed
curve y(0) positively intersecting S’, so S’ is homologically nontrivial. In particular, it
follows that S has no sphere or disk components.

We record a lemma:

Lemma 3.2. Let ¥ be a dynamic blowup of ¢. Then the tangent vector fields of ¢ and ¢*
are homotopic, and consequently e, = e ;.

Next, note that the restriction of £,4 to S is homotopic to T'S, so (e, [S]) = x([S].
Here (-, -) denotes the pairing of H? with H,. Hence

x([S]) = —x(S)
= (—eys.[5])

The first inequality holds because S has no sphere or disk components. The final
inequality follows from the fact that x is a supremum of finitely many linear functionals
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on H,(N) which include (—e,, -). The fact that x([S]) = —x(S) means that S is taut,
while (—e,, [S]) means that x and (—e,, -) agree on [S] so [S] € cone(o).

In light of the above discussion, to prove the transverse surface theorem it suffices to
produce an almost transverse representative of any integral class in cone(F'), and since
any such class in the interior of cone(F) is represented by a cross section, it suffices to
produce an almost transverse representative for any integral class in d cone(F').

Mosher’s proof of the transverse surface theorem spans [16—18]; we give a brief sum-
mary here. Given an integral class « € H,(N ) lying in d cone(o'), we consider its Poincaré
dual u € H'(N). Associated to u is an infinite cyclic covering space Nz. Mosher shows
that there is a way to dynamically blow up a collection of singular orbits of ¥ to get a
dynamic blowup ¥ that lifts to a flow ¥* on Mz with nice dynamics. More specifically,
he defines a natural partial order < on the set of chain components of ¥ and shows that ¢ #
has finitely many chain components up to the deck action of Z. He constructs a strongly
connected directed graph I" with vertices the deck orbits of chain components of v¥, and
edges determined by <. He shows that flow isotopy classes of surfaces transverse to /¥
and compatible with u are in bijection with positive cocycles on I' representing a coho-
mology class v € H!(I") which is determined by u. Finally, he proves the existence of
such a cocycle.

3.3. A veering proof of the transverse surface theorem

The proof of the transverse surface theorem which we present in this section depends on
the combinatorial Lemma 3.4, the statement of which requires some definitions.

A pseudo-Anosov tree T is a directed tree embedded in the plane such that the closed
neighborhood of each non-leaf vertex is a pseudo-Anosov star. We can embed 7 in a disk
A such that its leaves lie in dA.

Let d be the closure of a component of A \ T. Then d is homeomorphic to a closed
disk and dd is a union of edges in 7" and one closed interval [ in dA. The boundary of 7 is
composed of two leaves of 7. Each leaf can be assigned a 4+ or — depending on whether
the corresponding edge of T points into or away from the leaf, respectively. We endow [
with the orientation pointing from — to +.

Lemma 3.3. Let A, B be complementary regions of T which are incident along a single
vertex of T, and the orientations on cl(A) N A and cl(B) N dA are opposite. Then there
is a unique dynamic blowup T* of T with one more edge than T such that A and B are
incident along an edge of T*.

A picture makes this obvious; in lieu of a proof, see Figure 15 for a diagram of this
dynamic blowup (for simplicity, we are abusing notation slightly by identifying A and B
with the corresponding complementary regions of T'#).

If we choose an orientation for dA, then any point p lying in a component / of A\ T
can be given a sign according to whether the orientation of A agrees with the orientation
of the component of dA \ T containing p.
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Figure 15. An illustration of Lemma 3.3.

Figure 16. In this picture, we see a pseudo-Anosov tree 7" and an even family of size 4 being
mw-symmetrically filled in over 7' by two cooriented line segments.

An even family E for a pseudo-Anosov tree T is a finite subset of dA \ T which
represents 0 in Hy(dA) when each p € E is given a sign as in the previous paragraph and
E is viewed as a 0-chain. We say that an even family can be filled in over T if there exists
a family L of disjoint cooriented line segments with L N dA = dL such that

* 0dL = E aschains, i.e., the coorientations at each point in L agree with the orientation
of each segment of dA \ T, and

» for each segment £ of L, £ intersects T only transversely in the interior of edges such
that the coorientation of £ agrees with the orientation of the intersected edge.

If T and E above are symmetric under rotation of A by an angle of 6, and L can be
chosen to respect this symmetry, we say that £ can be 8-symmetrically filled in over T .
Figure 16 shows an example.

Lemma 3.4. Let % and E be a pseudo-Anosov star and an even family for %, respectively,
that are symmetric under rotation by 0. There exists a dynamic blowup %* of % such that
E can be 0-symmetrically filled in over %¥.

Note that the lemma statement includes the case 6 = 0.

Proof. Choose a pair of points py, ¢ in E of opposite sign which are circularly adjacent
and let py,..., pyand qy,..., g, be all their images, without repeats, under rotation of A
by 6. Let P;, Q; be the components of A \ S corresponding to p;, ¢;, respectively. If P;
and Q; are incident along an edge of %, then there is a family of cooriented line segments
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Figure 17. A diagram of the proof of Lemma 3.4 when X is the pseudo-Anosov star on the left
with an even family of size 4, and 6 = 0. In the notation of the proof, £ = {p1,41,a, b} and
Ey ={r(a).r(b)}.

filling in {p;, g; }7_, over %. Otherwise, P; and Q; are incident at the vertex of % and
determine a dynamic blowup of % as in Lemma 3.3. Since the pairs (p;, ¢;) are unlinked
in dA, we may perform all n of these dynamic blowups in concert to obtain a dynamic
blowup ¥¥ of % such that {p;, g }7_, can be 0-symmetrically filled in over xH,

Let L be the family of cooriented line segments filling in {p;,¢q;}}_,. Let E' =
E\ {pi.qi}!_,. By construction, E’ is contained in a single component A" of A\ L,
and S* N A’ has a single vertex v which is preserved under rotation by 6. There exists
a closed disk A; C A’ centered around v which is also preserved under rotation by 6.
We can connect each point e in E’ by a cooriented line segment to its image r(e) under
a retraction r: A — Aj such that the union of these segments is invariant under rotation
by 6. Let E; = {d(e) | e € E'}, and %; = %* N A;. A picture of this situation is shown
in Figure 17.

We see that E is an even family for %; which is smaller than E. Iterating this proce-
dure, we eventually 8-symmetrically fill in £ over a dynamic blowup of *. ]

Now we are equipped to prove the transverse surface theorem. As noted in Section 1,
we actually prove a generalization to compact manifolds which might have boundary.

Theorem 3.5 (Almost transverse surfaces). Let M be a compact hyperbolic three-mani-
fold, with a fibered face o of Bx(M) and associated circular pseudo-Anosov suspension
flow @. Let « € Hy(M, dM) be an integral homology class. Then o € cone(o) if and only
if a is represented by a surface almost transverse to ¢.

Proof. By the discussion following the statement of the transverse surface theorem in
Section 3.2, the homology class of any surface almost transverse to ¢ lies in cone(o).
Hence we need only produce a representative of « transverse to some dynamic blowup
of . Since any integral class in int(cone(o)) is represented by a cross section, we assume
that @ € d cone(o).

Our strategy will be to take a nice representative of @ which is transverse to ¢ and
complete it over U by gluing in disks and annuli which are also transverse to ¢. Where
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Figure 18. A portion of U; is shown, illustrating implications of Lemma 2.8. The top disk is A. The
shaded region denotes an upward ladder. Its boundary ladderpoles inherit a coorientation from Bg
agreeing with the orientations of the intervals of dA \ S. The vertical line inside the ladder is the
intersection of a stable flow prong with dU;.

necessary, we dynamically blow up some singular orbits of ¢ and glue in annuli which are
transverse to the blown up flow. .

By Corollgtry 2.5, @ has some representative A which is carried by Be, so we can
assume that A lies in N(Bg) transverse to the normal foliation. Since Bg is transverse
to ¢, so is /(1)

First, to each boundary component of A lying in 0V (see Section 2.5 for notation), we
glue an annulus which extends that component of 94 to IM maintaining transversality
to .

Next, let ¢; be a singular orbit of ¢ whose flow prongs ¢ rotates by 6. The proof of
[13, Lemma 3.3] goes through in our setting, allowing us to conclude that An aU; is
either

(a) empty,
(b) a collection of meridians of cl(U;) or
(¢) acollection of ladderpole curves which is nulhomologous in Hy (3(U;)).

In case (a), we have nothing to do. In case (b), the curves can be capped off by merid-
ional disks of cl(Uj;) transverse to ¢.

In case (c), we consider a meridional disk A of cl(U;) which is transverse to ¢. The
intersection of the flow prongs of ¢; with A gives a pseudo-Anosov star ¥. Further, we
claim that A N A is an even family for *.

By Lemma 2.8, each interval component of dA \ % intersects a single ladderpole,
and the orientation of the interval agrees with the coorientation the ladderpole inherits
from Bg; see Figure 18.
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Figure 19. In this example, c¢; is a 3-pronged singular orbit, § = 0, and A intersects dU; in two
curves which gives an even family E of size 2 (left). We dynamically blow up S to S # and fill in £
over S¥ by L, which in this case is a single cooriented line segment (center). We can model gou ly;
as the vertical flow restricted to the distorted cyclinder shown on the right, with the top and bottom
identified by a homeomorphism. Then we see L gives rise to an annulus which is transverse to (p”.

Because 94 N dU; is a collection of ladderpole curves nulhomologous in H;(dU;), it
consists of equal numbers of left and right ladderpole curves of upward ladders. It follows
that E = dA N A is an even family for %.

By Lemma 3.4, there exists a dynamic blowup %¥ of ¥ such that E can be #-symmetri-
cally filled in by a collection of cooriented line segments L over %¥*. The tree ¥# deter-
mines a dynamic blowup (pf of ¢. We can suspend L to a family of annuli with boundary

94 that are transverse to oF (see Figure 19 and caption).

By gluing these annuli to A we eliminate all boundary components of A meeting dUj;.
The coorientations agree along IA by construction.

By repeating this procedure at every singular orbit of ¢, we obtain a surface A which
is transverse to a dynamic blowup of ¢. The image of [A] under the puncturing map P is
evidently . Since P is injective, [4] = a. |

4. Homology directions and 7

Our notation for this section is the same as defined at the beginning of Section 2.5: ¢ is
a circular pseudo-Anosov flow on a compact three-manifold M, and o is the associated
fibered face with veering triangulation . By M’ we mean int(M) \ {singular orbits of ¢}.

4.1. Convex polyhedral cones
We recall some facts about convex polyhedral cones (for a reference see, e.g., [9, §1.2]).
Let A be a subset of a finite-dimensional real vector space V. Define the dual of A to be

AY ={ueV*|u() =0Va e A}.

A convex polyhedral cone in V is the collection of all linear combinations, with nonnega-
tive coefficients, of finitely many vectors. If C is a convex polyhedral cone in V, then C
is a convex polyhedral cone in V*. We have the relation C¥Y = C.



M. Landry 58

Figure 20. With labels as shown, a is a mixed branch of St(t) and b and ¢ are small.

A face of C is defined to be the intersection of C with the kernel of an element
in CV. The dimension of a face of a convex polyhedral cone is the dimension of the vec-
tor subspace generated by points in the face. A top-dimensional proper face of a convex
polyhedral cone is called a facet of the cone. If F is a face of C, define

F*={ueC"|u(v)=0VYv e F}.

Then F* is a face of CY with dimension(F*) = dimension(V') — dimension(F), and
F + F* defines a bijection between the faces of C and the faces of CY. We indulge
in some foreshadowing by remarking that, in particular, F — F* restricts to a bijection
between the one-dimensional faces of C and the facets of CV.

We can identify H;(M) with H'(M)* via the universal coefficients theorem, so if C
is a convex polyhedral cone in H'(M), we will view C" as living in H;(M) and vice
versa.

4.2. Flipping

Recall that Bg is the 2-skeleton of 7 viewed as a branched surface. Let A be a truncated
taut tetrahedron of z. If S is carried with positive weights on both of the sectors of Be
corresponding to the bottom of A, then S may be isotoped upwards through A to a new
surface carried by Bg such that the uppermost (with respect to the orientation of the normal
foliation of N(Bg)) portion of S which was carried by the bottom of A is now carried by
the top of A. Outside of a neighborhood of A, this isotopy is the identity. We call this
isotopy an upward flip. If S is the image of S under a single upward flip of S, we say that
S is an upward flip of S.

4.3. A train track on t

Let T be a train track embedded in the 2-skeleton of ¢ with a single trivalent switch lying
in the interior of each ideal triangle such that each edge of 7 intersects 7" in a single point.
Since each edge of t has degree at least 4, this point is a switch of 7" with valence > 4.
Note that 7" is nonstandard in two ways: it is embedded in the 2-skeleton of 7 rather than
a surface, and it is not trivalent.

Let ¢ be a triangle of 7, and let s be the switch of T interior to ¢. The interior of #
is divided into three disks by 7" N ¢, one of which has a cusp at s. The branch which is
disjoint from the cusped region is called a mixed branch of T'. A branch which is not large
is called a small branch of T'; see Figure 20.
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Figure 21. A portion of a veering triangulation and its stable train track.

We now define a particular train track in the 2-skeleton of v which we call the stable
train track of t and denote it by St(t). For each triangle ¢ of 7, we place a trivalent switch
in the interior of 7, and connect the branch which is large at the switch to the unique
edge of ¢ which is the bottom m-edge of the taut tetrahedron which # bounds below. We
connect the two small branches to the other two edges of ¢. Gluing so that St(7) intersects
each edge of 7 in a point yields our desired train track. This is precisely the train track
we would get from Agol’s construction of 7 by fixing a fibration, building 7 as a layered
triangulation on the fiber by looking at dual triangulations to a periodic maximal splitting
sequence of the monodromy’s stable train track, and recording the switches of stable train
tracks on the relevant ideal triangles. We will also view St(t) as living in Bg. Figure 21
shows a portion of a veering triangulation with its stable train track.

Any surface S carried by Bg naturally inherits a trivalent train track from St(z) which
we call St(S). There is a natural cellular map St(S) — St(z), which allows us to identify
each branch of St(S) with two branches of St(z). This map need be neither surjective nor
injective. A branch of St(S) composed of two mixed branches of St(z) is called a large
branch of St(S). This agrees with the standard notion of a large branch of a trivalent train
track in a surface (see, e.g., [14, §2.3]).

By construction, we have the following.

Observation 4.1. Let S be a surface carried by Bg. There exists an upward flip of S if
and only if St(S) contains a large branch.

Any curve carried by St(S) corresponds to a curve carried by St(r) under the map
St(S) — St(r), and we will abuse terminology slightly by considering a curve carried by
St(S) to also be carried by St(7).

4.4. Infinite flippability

A finite or infinite sequence {S;} of surfaces carried by Bg such that each successive ele-
ment is an upward flip of the previous element is called a flipping sequence. Any element
of an infinite flipping sequence is called infinitely flippable.
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If A is a surface carried by a branched surface with positive weights on each sector,
we say that [A] is fully carried.
We use these new words in a mathematical sentence:

Observation 4.2. Let A be a surface carried by Be which is a fiber of M. Because 7 can

be built as a layered triangulation on the extension of Ato M ’ A is infinitely flippable
and some positive integer multiple of [A] is fully carried by Be.

The cone of homology directions of a flow F', denoted by €F, is the smallest closed
cone containing the projective accumulation points of nearly closed orbits of F. Since in
our case ¢ is a circular pseudo-Anosov flow, there is a more convenient characterization
of €, as the smallest closed, convex cone containing the homology classes of the closed
orbits of ¢ (see the proof of Lemma A.3). As we noted in the introduction, Fried showed
that it suffices to take the smallest convex cone containing a certain finite collection of
closed orbits. It follows that €, is a rational convex polyhedral cone.

Let t be the veering triangulation of g. Define a t-transversal to be an oriented curve
in M’ which is positively transverse to the 2-skeleton of z, i.e., intersects the 2-skeleton
only transversely and agrees with the coorientation of . Let €, C H; (M) be the smallest
closed cone containing the homology class of each closed r-transversal.

Proposition 4.3. Let { be a closed t-transversal. Then £ € €, \ {0}. Moreover, €, = €;.

Remark 4.4. There are several cones at play in the following proof. As an aid to the
reader, we provide the following summary:

Cone Habitat Description

cone(o) Hy(M,0M)  cone over the fibered face

cone(orp) H'(M) Lefschetz dual of cone(o)
€y H{(M) Cone of homology directions of ¢

jo H{(M) Cone generated by closed t-transversals

By the work of Fried and also Theorem A.7 for the case with boundary, we have
cone(orp) = (€y)V.

Proof. Since both cones are closed, to show that €, = €, it suffices to show that the
homology class of every closed orbit lies in €;, and that the homology class of every
closed t-transversal lies in €.

Suppose that o is a closed orbit of ¢. If 0 lies interior to int(M) \ ¢, then o is already
a closed t-transversal. Otherwise, o is a singular or d-singular orbit and can be isotoped
onto a closed t-transversal lying in the interior of a ladder in 9M . Hence €y C C;.

Now suppose that £ is a closed t-transversal. We can isotope £ into M such that ¢
is positively transverse to Bg. Let B € int(cone(o)) be an integral class, and let B be
a representative of 8 carried by Bg. Since B is a fiber of M , by Observation 4.2 there
exists a surface n B (topologically n Bisn parallel copies of B for some positive integer 1)
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representing n E which is fully carried by Bg. We can cap off the boundary components
of nB to obtain a surface nB in M representing 18 whose intersection with M is nB.
Since £ is positively transverse to Bg, it has positive intersection with nB. Letting Bip €
H'(M) denote the Lefschetz dual of B, we see that B p([¢]) > 0. Viewing [€] as a linear
functional on H!(M), we see that [{] is strictly positive on int(oyp), so [£] is nonnegative
on cone(oLp), whence £ € cone(orp)¥ \ {0}.

As noted in the above remark, we have cone(orp) = (€,)". Hence cone(orp)Y = €,
so [£] € €, \ {0}. |

We now introduce some ideas and notation that will be used in the following proof. If
R is a union of 2-cells and 3-cells of 7, we say that a 2-cell f in R is outward (inward)
pointing if f € R and the 3-cell above (below) f is not in R. Note that a 2-cell can be
both inward and outward pointing, for example if R is a single 2-cell. Recall that N(B2)
denotes a regular neighborhood of Bg, foliated by intervals. Let

coll: N(B;) — B;
be the map collapsing the intervals.

Proposition 4.5. A surface carried by Bs is a fiber of M if and only if it is infinitely
flippable.

Proof. The forward implication follows immediately from Observation 4.2.

For the other direction, we will show that if a flipping sequence is such that there is a
3-cell of 7 which is not swept across by a flip in the sequence, then the sequence is finite.
Therefore, if S is infinitely flippable, some integer multiple of [S] will be fully carried by
Bg. Any fully carried homology class has positive intersection with any closed transversal
to 7 and thus is represented by a fiber by Proposition 4.3 and Theorem A.7. Hence S
is a taut by Lemma 2.6. Any taut surface homologous to a fiber is isotopic to a fiber by
[22, Theorem 4], so S will be a fiber.

Let {S;} be a flipping sequence. We assume that S; is connected, as otherwise we
can apply the following reasoning to the flipping sequence associated to each component
of ;. Let R, be the union of | J7_, coll(S;) with all 3-cells swept across by the flipping
sequence {S;}7_,. Since 7 is a finite complex, the chain Ry C R, C R3 C - -- stabilizes
at some Ry . Let R = Ry and suppose that R & M. We claim that there is some 3-cell ¢
of T whose bottom 7-edge e lies in R such that ¢ does not lie in R. This follows from the
fact that each R; possesses an equal number of inward and outward pointing 2-cells, so if
R € M, then R must have an outward pointing 2-cell.

Let Sk be a surface such that coll(Sx) contains e. Any surface carried by Bg inherits
an ideal triangulation of its interior in the obvious way, and a flipping sequence gives
a sequence of diagonal exchanges between ideal triangulations of a reference copy of
the surface. Let ¥ be a reference copy of Sk. Then {S;};>x gives a sequence of ideal
triangulations of X related by diagonal exchanges, and e is an edge of each triangulation.
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Figure 22. A stable loop.

We say that an edge in this sequence of diagonal exchanges is adjacent to a particular
diagonal exchange if it is a boundary edge of the ideal quadrilateral whose diagonal is
exchanged. Because each edge of ¢ is incident to only finitely many tetrahedra, each
edge in this sequence of ideal triangulations of ¢ can be adjacent to only finitely many
diagonal exchanges before it either disappears or remains forever. Since e is present in
each triangulation, there exists j > k and edges e’, ¢” which form a triangle with e such
that the triangle (e, ¢’, ¢”) is present in S; for i > j. Since e’ is adjacent to only finitely
many diagonal exchanges, it is also eventually incident to a triangle (¢’, ", e”) that is
fixed by the sequence of diagonal exchanges, and similarly for e”. Each triangulation has
the same number of triangles, so continuing in this way we eventually cover X by triangles
which are fixed. Therefore, the sequence is finite. [

Remark 4.6. We did not use the veering structure in the proof of the reverse direction, so
it holds for general taut ideal triangulations.

4.5. Stable loops

Let A be a closed curve carried by St(7). If A has the property that it traverses alternately
small and mixed branches of St(t), we call A a stable loop. If A additionally has the
property that it traverses each switch of St(t) at most once, then we say that A is a minimal
stable loop. Since 1 consists of finitely many ideal tetrahedra, St(z) has finitely many
switches and thus finitely many minimal stable loops. We endow each stable loop A with
an orientation such that at a switch in the interior of a 2-cell, A passes from a mixed branch
to a small branch (see Figure 22).

Note that for any veering triangulation p, St(p) has stable loops. It is easily checkable
that for any 2-cell A of 5, St(p) N A determines the left or right veeringness of two out
of the three edges of A not lying in the boundary of the ambient three-manifold, as shown
in Figure 23. The small branch of St(p) incident to a right veering edge is called a right
small branch, and a left small branch is defined symmetrically. To produce a stable loop
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Figure 23. The intersection of the stable traintrack of a veering triangulation restricted to any 2-cell
determines the left or right veeringness of two edges as shown, where the coorientation is pointing
out of the page.

Figure 24. The 2-cells incident to a ladderpole give rise to a stable loop.

we can choose, for example, the left ladderpole L of an upward ladder and look at the
collection A of all 2-cells of o meeting L. The edges of 5 corresponding to vertices in L
are all right veering by Lemma 2.7, so St(p) N A is as shown in Figure 24, and carries a
stable loop. We claim that this stable loop is also minimal, or equivalently that the edges
of L are in bijection with the 2-cells of A. This is true: for each 2-cell A meeting L, A
is incident to L along the unique truncated ideal vertex bounded by the edges meeting the
large branch and right small branch of St(p) N A.

Observe that for any stable loop A carried by St(t), we have [A] € €;. This is because
the condition that A traverses alternately mixed and small branches of St(t) implies that
A can be perturbed to a closed z-transversal, as shown in Figure 25. Hence we have the
following lemma.

Lemma 4.7. Let A be a stable loop. Then [A] € €,,.

Let S be a surface carried by ¢ which is not a fiber of a fibration M St By Propo-
sition 4.5, any flipping sequence starting with S is finite. Therefore, S is isotopic to a
surface S” which is carried by Be such that S” has no upward flips. We call such a surface
unflippable.

Proposition 4.8. Let S be a surface carried by Bg which is unflippable. Then St(S) car-
ries a stable loop of t.
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Figure 25. A stable loop may be perturbed to a closed t-transversal.

Proof. The unflippability of S is equivalent to St(.S') having no large branches. We define
a curve carried by St(S) as follows: start at any switch of St(.S), and travel along its large
half-branch. When arriving at the next switch, exit along that switch’s large half-branch,
and so on. Since St(S) has finitely many branches, eventually the path will return to a
branch it has previously visited, at which point we obtain a closed curve carried by St(.S).
By construction, it alternates between mixed and small branches of St(7). ]

We now prove the main result of this section. Recall that the subscript LD attached to
an object denotes its image under Lefschetz duality.

Theorem 4.9 (Stable loops). Let M be a compact hyperbolic three-manifold with fibered
face o. Let T and ¢ be the associated veering triangulation and circular pseudo-Anosov
Sflow, respectively. Then €, is the smallest convex cone containing the homology classes
of the minimal stable loops of T.

Proof. By Lemma 4.7, the cone generated by the minimal stable loops lies in €,. Hence
it suffices to show that every 1-dimensional face of €, is generated by the homology class
of a minimal stable loop.

Suppose first that dimension(H>(M, dM)) = 1. Then H;(M) = R, and €, is a ray.
Let A be a minimal stable loop of t. Since [A] € €, \ {0} by Proposition 4.3, we have
proved the claim in this case.

Now suppose that dimension(H,(M, dM)) > 1. Consider a 1-dimensional face ® of
€, = (cone(orp))Y, which can be characterized as ® = (FLp)* for some facet F of
cone(o).
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Leta € Hy(M,0M) be a primitive integral class lying in the relative interior of F'. By
Corollary 2.5, Proposition 4.5, and Proposition 4.8, there exists an unflippable surface S
representing & and carried by Bg such that St(S) carries a stable loop A.

As in the proof of Proposmon 4.3, we can cap off S to obtain a surface S in M
representing & with S N M =S. Since A may be isotoped off of S, a1 p € ker([A]), viewing
[A] as a linear functional on H'(M). It follows that [A] € ® \ {0}, so ® is generated by [A].
Because F has codimension 1, (FLp)* has dimension 1 and is thus generated by [A].

Since S is embedded in N (Bg), A never traverses a switch of St(z) in two directions.
This is clear for switches of St(z) lying in the interiors of 2-cells, and for a switch lying
on an edge of 7; such behavior would force S to be non-embedded.

Any curve carried by a train track which traverses each switch in at most one direction,
and also never traverses the same branch twice, must never traverse the same vertex twice.
Therefore, by cutting and pasting A along any edges of St(z) carrying A with weight > 1,
we see that A is homologous to a union of minimal stable loops A1, ..., A,:

Al = Al + -+ [Aal.

Since [A] lies in a one-dimensional face of €,, we conclude that for each n there is some
positive integer n; such that A = n;[A;]. It follows that ® is generated by the homology
class of a minimal stable loop. ]

Remark 4.10. We could just as easily have defined unstable loops using a symmetrically
defined unstable train track of t, and flipped surfaces downward in the arguments above
to achieve the corresponding results.

Combining Proposition 4.3 and Theorem 4.9, we have the following immediate corol-
lary, which is not obvious from the definitions.

Corollary 4.11. The cone €, is the smallest convex cone containing the homology classes
of the stable loops of .

A. The suspension flow is canonical when our manifold has boundary

The purpose of this appendix is to record a generalization of Fried’s theory, relating circu-
lar pseudo-Anosov flows on closed three-manifolds to fibered faces, that does not currently
exist in the literature. The generalization here is to the case of circular pseudo-Anosov
flows on compact three-manifolds, possibly with boundary.

Theorem A.7. Let ¢ be a circular pseudo-Anosov flow on a compact three-manifold M
with cross section Y. Let o be the fibered face of Bx(M) such that [Y] € cone(o). Let
o € Hy(M,0M) be an integral class. The following are equivalent:

(1) «a lies in int(cone(o)),
(2) the Lefschetz dual of « is positive on the homology directions of ¢,

(3) « is represented by a cross section to ¢.
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Moreover; ¢ is the unique circular pseudo-Anosov flow admitting cross sections represent-
ing classes in cone(o) up to reparameterization and conjugation by homeomorphisms of
M isotopic to the identity.

Homology directions are essentially projectivized homology classes of nearly-closed
orbits of ¢. Their precise definition is given below, in Section A.1.

Some experts may have verified for themselves that this generalization works. How-
ever, the results in this paper depend on it, so we include a proof. Our proof attempts to
follow the arguments of Fried, making modifications when necessary to deal with bound-
ary components.

A.1. Homology directions and cross sections

We begin by recalling some definitions and a result from [8]. Let M be a compact smooth
manifold, and let Dy be the quotient of H; (M) by positive scalar multiplication, endowed
with the topology of the disjoint union of a sphere and an isolated point corresponding to 0.
We denote the quotient map H,(M) — Dys by 7. Let ¢ be a C! flow on M which is
tangent to dM . Let ¢, (a) denote the image of a € M under the time ¢ map of ¢.

A closing sequence based at m € M is a sequence of points (my, tx) € M x R with
mg — m € M, ¢ (mg) — m, and tx - 0. For sufficiently large k, the points mj and
¢y, (my) lie in a small ball B around M. We can define a closed curve yx based at m by
traveling along a short path in B from m to my, flowing to ¢y, (my), and returning to m
by a short path in B. The y; are well defined up to isotopy.

Since Dy is compact, 7 ([yx]) must have accumulation points. Any such accumulation
point § is called a homology direction for ¢. We call (my, t) a closing sequence for § if
7([yx]) — 6. The set of homology directions for ¢ is denoted by D,. Let § € Dy and
o € H'(M). While «(8) is not well defined unless we choose a norm on H;(M) and
identify Djs with the vectors of length 0 and 1, we can say whether « is positive, negative,
or zero on §.

We define €, the cone of homology directions of ¢, by €, := =1 (D, U {0}).

Fried gives a useful criterion for when an integral cohomology class in H1(M) is
compatible with a cross section, i.e., has a cross section of ¢ representing its Lefschetz
dual.

Theorem A.1 (Fried). Let « € H'(M) be an integral class. Then « is compatible with a
cross section to @ if and only if a(§) > 0 for all § € D,,.

We relate two useful observations of Fried. The first is that if (myg, tx) is a closing
sequence for 6 € D, based at m and f; has a bounded subsequence, then m lies on a
periodic orbit 0,, and § = 7w ([0,]). Thus (my = m, tp = kp), where p is the period
of m, is also a closing sequence for §. The second observation is that if ¢ admits a cross
section Y, then each 6 € D, admits a closing sequence (my, tx) with m, my, @;, (mg) € Y.
This can be seen by flowing each point in a closing sequence for § until it meets Y for the
first time. We record these observations in a lemma.
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Figure 26. A pentagon. The diagonal edge on the upper left is a d-edge.

Lemma A.2 (Fried). Suppose that ¢ admits a cross section Y, and let § € D,. Then &
admits a closing sequence (my, ty) based at m with m, my, ¢z, (mg) € Y and ty — oo.

A.2. Proving Theorem A.7

Throughout this section, our notation mimics that in Section 2.4. We consider a compact
hyperbolic three-manifold M and a circular pseudo-Anosov flow ¢ on M admitting a
cross section Y with first return map g. We assume that ¢ is parameterized so that for all
z € Z,we have ¢1(z) = g(z2).

As in [5, Exposé 10, §10.5], we can find a Markov partition M for g: Y — Y, where
the definition of Markov partition is altered slightly to account for the fact that ¥ may
have boundary (Markov “rectangles” touching dY are actually pentagons). We will call
the elements of M shapes, and the elements of M which touch Y pentagons. By the
construction in [5] we can assume that an edge of a pentagon meeting dY in a single point
is contained in a separatrix of the stable or unstable foliation of g. Each pentagon has a
single edge entirely contained in Y called a d-edge; see Figure 26.

Let G be the directed graph associated to M, whose vertices are labeled by the ele-
ments of M and whose edges are (r;,r;) € M x M, where g stretches r; over r;. By a
cycle or path in G, we mean a directed cycle or directed path, respectively. As in the case
of closed surfaces, G is a strongly connected directed graph, meaning that for any vertices
ri, r; of G, there exists a path from r; to r;.

Let O, be the set of closed orbits of ¢, and let L be the collection of cycles in G.
Let p; € M be a pentagon with d-edge e. The image of e under g is a 0-edge of some
pentagon p;, and there exists some finite n for which (p1,..., p,)isacycle. Let dILg C
L be the collection of all such cycles.

We now define a surjection w: Lg — O,. Let £ € dLg, and pick one of its vertices
labeled by a pentagon p € M. Let e = p N dY. If we give dY the orientation induced
by an outward-pointing vector field, we induce an orientation on e. Let e be the positive
endpoint of e with respect to this orientation. Since the other edge of p containing e lies
in a separatrix of the stable or unstable foliation of g, the orbit o(e) of e under ¢ is
a d-singular orbit. Let w(£) = o(e); this is well defined (i.e., it does not depend on the
initial choice of p). Next, any cycle £ € L \ 0L g determines a unique closed orbit of ¢,
just as in the case when Y is a closed surface. We let w({) be this closed orbit.
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We say that a path (ry,...,r,) in G is simple if r; #r; for 1 <i, j <n,i # j.
Similarly, a cycle (r1,...,7,), 11 =1, in G is simple it r; # rj for2 <i, j <n—1,
i # j.Let Sg C Lg be the set of simple cycles in G. Since M is finite, S¢ is finite.

We now define a finite set B C H;(M). Let By = {[w(s)] € H{(M) | s € Sg}. For
every simple path p = (rq,...,r,) € G which is almost closed, i.e., starts and ends
on vertices labeled by shapes in M meeting along an edge or vertex, let o(p) be an
orbit segment starting in ry, passing sequentially through the r;’s, and ending in r,. Let
e(p) be a segment in Y connecting the endpoints of o(p) and supported in r; U r,. Let
B, = {[o(p) * e(p)] | p is an almost closed simple path in G}, where * is concatenation
of paths. Let B = B; U B,. The salient feature of B that will be used below is that it is
finite, and hence bounded.

Lemma A.3. The cone C, of homology directions of ¢ is a finite-sided rational convex
polyhedral cone.

Proof. First, we claim that €, is generated by the set of homology classes of orbits of ¢,
{[o] | 0 € Oy}.

Let § € D,. By Lemma A.2, § admits a closing sequence (my, ) based at m € ¥
withmy € Y, ty € Z4 for all k, and t; — oo.

Consider the curves y, which for sufficiently large k we can express as

Yk = Ok * &k,

where oy is the curve @;(my), 0 < ¢t < 1 and g is a short curve in ¥ from ¢y, (my) to
my supported in the union of at most two shapes of M. We can lift og to a path r(og) =

(r1,....Tn)) in G. For sufficiently large k, r(oy) is not simple. Let
Z(Ok) = (rll?ra-‘rlv" . 7rb—l’rb)
be the longest cycle subpath of r(ox). Then (r1,...,7¢—1,7a. b1, -- -, Fn(k)) is simple

and corresponds to some orbit segment g; with endpoints in rectangles which are either
equal or intersect along an edge or vertex. Let s be a segment connecting the endpoints
of g(k) supported in 7y U rpx). We have

[Vl = gk * si] + [0 (Ch)].

and [gx * sg] € B. Letting k — o0, the intersection of [yx] with [Y] approaches infinity
0 {[y«]} is unbounded. Since B is bounded, we conclude that

Jim 7 ([yid) = lim 7 (),

so § is projectively approximated by homology classes of closed orbits. Since the homol-
ogy class of each closed orbit lies in €,, we have that €, is the smallest closed cone
containing the homology classes of closed orbits of ¢ as claimed.
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Next we will show that €, is convex. Let A1, A, be two closed orbits of ¢ that
respectively pass through rectangles r; and r,. Let £;, i = 1,2, be cycles in G such that
w({;) = A;. Let vy (resp., v2,1) be a path in G from ry to ry (resp., 5 to r1). Letting

Yn = o((€1)" % viz* (£2)" *va1),

we have
[Vn] = n[A1] 4 n[Aa] + [@(vi2 % v2,1)].

Therefore,
7 (1] + [a]) = lim 7 (lyal) € Dy,

s0 [A1] + [A2] € €, and €, is convex.

It remains to show that €, is finite-sided and rational. To do this, it suffices to show
that €, is the convex cone generated by S, = {[w({)] | £ € Sg}. Itis clear that S, C €.
On the other hand, let 0 € O,. There exists some cycle £ in G such that w({) = o, and {
is a concatenation of simple cycles £ = s1 * --- *x s,. By cutting and pasting, we see that

[o] = [w(s)] + -+ + [@(sn)]-
Hence Oy, is contained in the cone generated by S, so €, is also. |

Let F be a circular flow on M . Following Fried, we define two sets in H1(M):
€r(F) = {ue H'(M) | u(DF) > 0},

and
€z (F) = {u € Cr(F) | u is an integral point}.

We can think of € (F) as the set of linear functionals on H; (M) which are positive
on 7~ !(DF). Since this is an open condition, €g (F) is an open cone, and it is also clearly
convex.

Proposition A.4. Let F and F' be two circular pseudo-Anosov flows on M. Then €g (F)
and €r (F") are either disjoint or equal.

Proof. Suppose that €g (F) N €r(F’) is nonempty. We will show that D = Dps and
hence €r(F) = Cr(F’).

The intersection is open, so we can find a primitive class u € €z(F) N €z(F’). By
Theorem A.1, there are fibrations f, f': M — S! whose fibers are transverse to F and
F’, respectively, and are homologous. Let Z and Z’ be fibers of f and f”, respectively.
By [22, Theorem 4], Z’ is isotopic to Z. By the isotopy extension theorem, the isotopy
extends to an ambient isotopy of M.

Let F” be the image of F’ under this isotopy; Z is a cross section of F and F”. We
reparametrize F and F” so that the first return maps p, p”’: Z — Z of F and F" are given
by flowing for time 1 along the respective flows.
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The maps p and p” are both pseudo-Anosov representatives of the same isotopy class,
so they are strictly conjugate. This means that there exists a map g: Z — Z which is
isotopic to the identity such that

poh=hop".

This isotopy extends to an ambient isotopy of M. Let F"’ denote the image of F” under
this ambient isotopy. By construction, the first return map of F’”/ on Z is p.
Now we need a lemma.

Lemma A.5. Let p € 0Z be the boundary point of a leaf £, of the stable or unstable
foliation of p. Then F;(p) and F]"(p), 0 <t < 1, are homotopic in IM rel endpoints.

Proof of Lemma A.5. We first cut M open along Z. The result is a manifold with bound-
ary that we can identify with Z x [0, 1], such that F is identified with the vertical flow.
Let rz: Z x [0, 1] = Z x {0} be the projection. We identify Z x {0} with Z.

Consider the homotopy g;: Z x [0, 1] — Z given by g;(z) = nz(F/"(z)). We claim
that g;(p), 0 <t < 1, is not an essential loop in 9Z.

Let Z be the universal cover of Z, and let &: be the unique homotopy of id; that
covers g;. We see that g, preserves each component of the union of lines in dZ covering
dZ . Hence it fixes the ends of Z.

Let Zp be a lift of £, to Z.1tis aray [0, 00) — Z with its endpoint on a lift 575 of a
component of dZ and the other end exiting an end of Z.

Suppose that g;(p), 0 <t < 1, is essential in dZ. Then g; carries Zp to a separate lift
é;’ of £, with its endpoint on évg. Since g7 fixes the ends of 7. E, and é:,’ must exit the
same end. We conclude that K; = lz;’ , a contradiction.

It follows that F/”(p), 0 <t < 1, can be homotoped rel endpoints to a vertical arc in
dZ x [0, 1], proving the claim. |

With our lemma in hand, we can finish proving Proposition A.4. We define a map
conjugating F and F"”, which we will show is isotopic to the identity. Forz € Z, ¢t € [0, 1]
let

C(Fi(2)) = F"(2).

As the first return maps of F and F”” to Z are both equal to p, C is well defined.

Fix a basepoint z, € dZ lying in a d-singular orbit 0 of F and let ¢, be a curve
which starts at z,, travels along o for time 1, and returns to z, via a path in Z. If G is
a set of generators of m1(Z, z,), then G U {{} generates m1(M, z,). Since C restricted
to Z is the identity, Cy: w1 (M, z,) — m1(M, z,) fixes each element of G. Since Cy also
fixes [{,] by Lemma A.5, we see that C, is the identity map. Since M is a K(w1(M), 1)
space, C must be homotopic to the identity. In fact, C is isotopic to the identity by a
theorem of Waldhausen [24, Theorem 7.1] which states that any homeomorphism of a
compact, irreducible, boundary irreducible, Haken three-manifold which is homotopic to
the identity is isotopic to the identity.
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Conjugating a flow by a homeomorphism isotopic to the identity does not change its
set of homology directions. Hence Dr = D/, so Cr(F) = €r(F’) as desired. ]

Let orp denote the image of o under the Lefschetz duality isomorphism
Hy(M,0M) =~ H'Y(M).
Proposition A.6. Cr(¢) = int(cone(oLp)).

Proof. Let o be Lefschetz dual to a class in €z(¢). By Theorem A.l, « is represented
by a cross section ¥ to ¢. By [22, Theorem 5], « lies interior to the cone over some
top-dimensional face of By (M ). We show that this face is in fact o.

As a leaf of a taut foliation, ¥ is taut. Since X is a cross section to ¢, the tangent plane
field 7% of the fibration ¥ < M — S is homotopic to &, (recall from Section 2.1 that
&, is the quotient of Tjs by T, the tangent line bundle to the 1-dimensional foliation by
flowlines of ¢). The same is true for 7Y, so the relative Euler classes of the two plane
fields are equal. Let ey denote this Euler class. We have

x(@) = —x(X) = —ey(a).

so « lies in the portion of H,(M, OM), where x agrees with —ey. By the discussion in
Section 2.1, this is cone(o).
It follows that
€z7(p) € int (cone(orp)),

so every rational point in € (¢) lies in int(cone(oLp)). Since €r(¢) and int(cone(oLp))
are both open, €r(¢) C int(cone(orp))-
Now suppose that
Cr(¢) < int(cone(op)).

We have Cr(p) = int(‘(?qf ). By Lemma A.3, €, is a rational convex polyhedral cone,
so Cr(gp) is the interior of a rational convex polyhedral cone. Hence there is an integral
cohomology class v € int(cone(orp)) N ICR (¢).

The Lefschetz dual of v is represented by a cross section to another circular pseudo-
Anosov flow ¢’. We must have Cr(¢) N Cr(¢’) # O, but the cones cannot be equal
because v ¢ €Rr(¢). This contradicts Proposition A.4, so we conclude that

Cr(¢) = int (cone(orp)). n

We remark that the proof of the inclusion € (¢) C int(cone(orp)) did not require ¢
to be pseudo-Anosov, so the corresponding statement is still true if we replace M by any
compact three-manifold and ¢ by any circular flow.

We conclude this section by observing that we have proven Theorem A.7.

Theorem A.7. Let ¢ be a circular pseudo-Anosov flow on a compact three-manifold M
with cross section Y. Let o be the fibered face of Bx(M) such that [Y] € cone(o). Let
o € Hy(M, 0M) be an integral class. The following are equivalent:
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(1) « lies in int(cone(0)),
(2) the Lefschetz dual of o is positive on the homology directions of ¢,
(3) « is represented by a cross section to ¢.

Moreover, @ is the unique circular pseudo-Anosov flow admitting cross sections represent-
ing classes in cone(o) up to reparameterization and conjugation by homeomorphisms of
M isotopic to the identity.

Proof of Theorem A.7. (1)<>(2): This is a restatement of Proposition A.6.

(2)<>(3): This is a restatement of Theorem A.1.

The truth of the last claim can be seen from the proof of Proposition A.4. Recall that
we showed that if F!, F? are circular pseudo-Anosov flows admitting homologous cross
sections, then they are conjugate by a homeomorphism of M isotopic to the identity. m

B. Face-spanning taut homology branched surfaces in manifolds with
boundary

Let M be a three-manifold such that x is a norm on H(M, dM), and let B be a taut
branched surface in M. The cone of homology classes carried by B is contained in
cone(F) for some face F of Bx(M) (this is because one can see, via cutting and past-
ing surfaces carried by B, that x is linear on the cone of carried classes). If this cone of
carried classes is equal to cone(F'), we say that B spans F. In [20], Ulrich Oertel asked
when a face of the Thurston norm ball is spanned by a single taut homology branched
surface. Recall that faut means every surface carried by B is taut, and that a homology
branched surface has a closed oriented transversal through every point.

In [13, Theorem 3.9], we gave a sufficient criterion for a fibered face of a closed
hyperbolic three-manifold to admit a spanning taut homology branched surface via a con-
struction using veering triangulations. In this appendix, we describe why that criterion
is also sufficient in the broader setting of this paper, i.e., when the compact hyperbolic
three-manifold in question possibly has boundary.

The general result is the following.

Theorem B.1. Let o be a fibered face of a compact hyperbolic three-manifold, and let ¢
be the suspension flow of o. If each singular orbit of ¢ witnesses at most two ladderpole
boundary classes of o, then there exists a taut branched surface By spanning o.

A ladderpole vertex class is a primitive integral class « lying in a 1-dimensional face
of cone(o) such that @ is represented by a surface A carried by Be and for some U;,
94N U; is a collection of ladderpole curves. Note that here we make no requirements on
the boundary components of A which lie in V.

The technical lemma that allows us to prove Theorem B.1 is the following, which was
proven in [13] only for closed hyperbolic three-manifolds.
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Lemma B.2. Let o, ¢ be as above. Let o € cone(o) be an integral class. Then
x(@) = x(@) —i(a,c),
where c is the union of the singular orbits of ¢.

Proof. Let A be a surface carried by Bg and representing &. By our proof of Theorem 3.5,
there exists a surface A which is almost transverse to ¢ and represents « with y_(A4) =
)(_(/T) —i(a,c). Since A is almost transverse to ¢, A is taut. Since By is a taut branched
surface, A is taut. Therefore, x (o) = x (@) — i (, ¢). |

The proof above represents a significant shortening of the proof of the corresponding
lemma in [13, Lemma 3.6]. The ingredients that make this possible are (a) we now know
that the transverse surface theorem holds when our manifold has boundary and (b) we can
assume that our almost transverse surface representative of « lies in a neighborhood of Bg
away from the singular orbits, and is simple in a neighborhood of the singular orbits.

With Lemma B.2 proven, the proof of Theorem B.1 proceeds exactly as in [13].

‘We once again observe that the condition on ladderpole vertex classes is satisfied when
dimension(H> (M, dM)) < 3, so we have the following corollary.

Corollary B.3. Let o be a fibered face of a compact hyperbolic three-manifold M such
that the dimension of Hy(M, 0M) is at most three. Any fibered face of Bx(M) is spanned
by a taut homology branched surface.

Finally, as a special case of the above we observe that the result holds for exteriors of
links with < 3 components.

Corollary B.4. Let L be a fibered hyperbolic link with at most three components. Let M,
be the exterior of L in S3. Any fibered face of Bx(My) is spanned by a taut homology
branched surface.
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