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Polynomially growing harmonic functions on connected
groups

Idan Perl and Ariel Yadin

Abstract. We study the connection between the dimension of certain spaces of harmonic functions
on a group and its geometric and algebraic properties.

Our main result shows that (for sufficiently “nice” random walk measures) a connected, com-
pactly generated, locally compact group has polynomial volume growth if and only if the space of
linear growth harmonic functions has finite dimension.

This characterization is interesting in light of the fact that Gromov’s theorem regarding finitely
generated groups of polynomial growth does not have an analog in the connected case. That is, there
are examples of connected groups of polynomial growth that are not nilpotent by compact. Also, the
analogous result for the discrete case has only been established for solvable groups and is still open
for general finitely generated groups.

1. Introduction

1.1. Background

The study of harmonic functions on abstract groups has been quite fruitful in the past few
decades. Bounded harmonic functions have a deep algebraic structure and have been used
to study “boundaries” of groups, especially (but not only) in the discrete case. This topic
was initiated by Furstenberg [11, 12]. A search for “Poisson–Furstenberg boundary” will
reveal an immense amount of literature; we refer to [10, 17] and references therein for
the interested reader. As for unbounded harmonic functions, positive harmonic functions
were studied in the Abelian case by Chouqet and Deny [6] (and further by Raugi [23]
for nilpotent groups). Yau [24] studied positive harmonic functions on open manifolds of
non-negative Ricci curvature. He conjectured that the space of harmonic functions that
grow at most like some polynomial on such a manifold should have finite dimension. This
was proved by Colding and Minicozzi [7]. Kleiner [18] used Colding and Minicozzi’s
approach for finitely generated groups of polynomial growth to reprove Gromov’s theorem
regarding such groups [13].

These works bring to light a connection between algebraic properties (nilpotence),
analytic properties (harmonic functions and random walks), and geometric properties (vol-
ume growth, curvature). They motivate the following meta-questions: Given a group G,
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and some space of harmonic functions on G, what can be said about the dimension of
the space and its relation to the algebraic and geometric properties of the group? Is the
dimension independent of the choice of specific random walk? Does the finiteness of the
dimension depend only on the group’s algebraic properties? In general, one would like
to understand the structure of representations of the group given by its canonical action
on some specific space of harmonic functions; how do these representations vary as the
underlying random walk measure is changed?

An example for a precise formulation of one such question is the following conjecture,
which has been open for quite some time.

Conjecture 1.1. Let G be a compactly generated locally compact group. Let �, � be two
symmetric, adapted probability measures on G, with an exponential tail. Then, .G; �/ is
Liouville if and only if .G; �/ is Liouville.

Here, that .G; �/ is Liouville means that any bounded �-harmonic function is con-
stant. It is well known that the space of bounded harmonic functions is either only the
constant functions (i.e., Liouville) or has infinite dimension. (For finitely generated groups
this is also an easy consequence of Theorem 1.6 or Theorem 1.9.) So an equivalent for-
mulation of the above conjecture is that the dimension of the space of bounded harmonic
functions does not depend on the specific choice of (nicely behaved) measure �.

As stated, this question regarding bounded harmonic functions has been open for a
while. This is part of the motivation for the following conjecture, from [20].

Conjecture 1.2. Let G be a compactly generated locally compact group. Let � be a
symmetric, adapted probability measure onG, with an exponential tail. Then,G has poly-
nomial growth if and only if the space of linearly growing �-harmonic functions on G is
finite dimensional.

Note that a group G with measure � may be Liouville but still have an infinite dimen-
sion of linearly growing harmonic functions (see e.g. [17, 20] and below for examples).

In [20], this conjecture is verified for G finitely generated and (virtually) solvable. In
fact, it is known that for finitely generated G, the dimension of the space of linear growth
harmonic functions is either infinite or some number independent of the choice of specific
measure; see [19].

The main result of this paper is a proof of Conjecture 1.2 for connected topological
groups. In order to precisely state the results, we introduce some notation.

1.2. Notation and main results

Let G be a compactly generated locally compact (CGLC) group, and fix K a compact
generating set. Assume that it is symmetric (i.e., K D K�1 D ¹x�1 W x 2 Kº). Let Kn D
¹x1x2 � � � xn W x1; : : : ; xn 2 Kº. K induces a metric on G by

dK.x; y/ D dK.1; x
�1y/ WD min¹n W x�1y 2 Knº

and we use the notation jxj D jxjK D dK.1; x/. Note that this metric is left invariant, that
is dK.x; y/ D dK.zx; zy/, and that for two choices of generating sets K1 and K2, the
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respective metrics are bi-Lipschitz; i.e., there exists a constant c D c.K1; K2/ > 0 such
that c�1jxjK1 � jxjK2 � cjxjK1 for all x 2 G.

1.2.1. Growth of a group. The growth of G is the growth rate of the sequence .m.Kn//n,
where mDmK is the Haar measure on G normalized to m.K/D 1. We are mainly inter-
ested in polynomial growth: G is said to have polynomial growth if there exist constants
C > 0, k > 0 such that for all n� 1we have m.Kn/� Cnk .G is said to have exponential
growth if there exists some t > 1 and c > 0 such that m.Kn/ � ctn for all n � 1. (When
G is a connected CGLC group, the growth is always either polynomial of exponential; see
[16].) Because of the bi-Lipschitz property of the different possible metrics, the growth of
G does not depend on the specific choice of K.

1.2.2. Growth of functions. For functions f W G ! R, define the following (perhaps
infinite) quantity:

kf kk D lim sup
r!1

r�k sup
jxj�r

ˇ̌
f .x/

ˇ̌
:

We say that f W G! R has degree-k polynomial growth if kf kk <1. In the case k D 1,
we say that f has linear growth. Note that kf kk <1 is equivalent to the existence of a
constant c > 0 such that jf .x/j � c.1C jxj/k for all x 2G. The groupG acts naturally on
RG by .:f /.x/D f .�1x/. By bi-Lipschitzness, the property kf kk <1 is independent
of the choice of specific generating set (although the specific value of kf kk does depend
on the metric induced by K).

The reader should beware to not confuse the growth of the group, and the growth of a
function on the group, which are two different notions.

1.2.3. Laplacian and harmonic functions. Throughout, we will consider a probability
measure � on G. We will always assume that

• it is adapted; i.e., there is no proper closed subgroup H Œ G such that �.H/ D 1;

• it is symmetric; i.e., �.A/ D �.A�1/ for any measurable set A;

• it has a third moment; i.e.,
R
G
jsj3 d�.s/ <1.

For short, we call a probability satisfying these three assumptions courteous. If � satisfiesR
G
e"jsj d�.s/ < 1 for some " > 0, we say that � has an exponential tail. Note that

the property of having a third moment or of having an exponential tail is independent of
specific choice of generating set, again because the different metrics are bi-Lipschitz.

For measurable functions f W G ! R, we define the Laplace operator by

.��f /.x/ D f .x/ �

Z
G

f .xs/ d�.s/;

and we say that a function f W G ! R is �-harmonic if ��f � 0.
We can now define the space of �-harmonic functions with polynomial growth of

degree at most k:

HFk.G;�/ WD
®
f W G ! R j ��f � 0; kf kk <1; f is continuous

¯
:



I. Perl and A. Yadin 114

Note that since G acts on the left and harmonicity is checked on the right, HFk.G; �/ is a
G-invariant subspace of RG .

1.3. Main result: characterization of polynomial growth

As mentioned, Gromov’s theorem [13] characterizes the geometric property of polynomial
growth of a finitely generated group by the algebraic property of containing a finite index
nilpotent subgroup. However, in the connected case, there is no such characterization. In
fact, it is not true that any CGLC group of polynomial growth is nilpotent by compact. One
can construct a connected 2-step solvable linear group of polynomial growth that is not
nilpotent by compact; see [4, Example 7.9]. It is known that connected CGLC groups have
either polynomial or exponential growths. In fact, Jenkins [16] proves some equivalent
conditions to polynomial growth, one of which is not containing a free uniformly-discrete
semigroup. See [16] for details.

Our main result is the following theorem characterizing connected CGLC groups of
polynomial growth using an analytic property, namely the finiteness of the dimension of
HF1.

Theorem 1.3. Let G be a connected CGLC group. Let � be a courteous measure with
exponential tail. The following are equivalent:

(1) G has polynomial growth;

(2) for any k � 1, we have dimHFk.G;�/ <1;

(3) dimHF1.G;�/ <1;

(4) the space HF1.G;�/ does not contain a non-constant positive function.

This is a solution of Conjecture 1.2 for the connected case.
Here is a sketch of the main steps of the argument.
The first step uses the result of [2] stating that if G is a closed subgroup of the d -

dimensional affine group, �d , and ifG does not have polynomial growth, then there exists
a non-constant positive continuous harmonic function h on G.

The second step is to show that the above positive function has linear growth. This
was shown in [5] for the case d D 1, and we extend their result to general d � 1.

These two steps culminate in the following lemma.

Lemma 1.4. Let G be a closed subgroup of �d and let � be a courteous measure on G.
Suppose that G does not have polynomial growth. Then, there exists a continuous, non-
constant positive �-harmonic function on G, which admits linear growth; i.e., HF1.G; �/
contains a non-constant positive function.

The proof of this lemma is in Section 2.2.
The third step is a reduction from general connected CGLC groups to the case of �d .

This step utilizes heavy machinery such as the solution to Hilbert’s fifth problem, which
enables understanding of the structure of connected CGLC groups. Ultimately, this third
step proves the following lemma. The proof is given in Section 2.3.
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Lemma 1.5. Let G be a connected CGLC group and let � be a courteous measure on G.
Then, there exists a connected closed subgroup G0 of the d -dimensional affine group �d ,
and a courteous measure �0 on G0 such that

• dimHF1.G0; �0/ � dimHF1.G;�/,

• if G0 has polynomial growth, then also G has polynomial growth,

• if there exists a non-constant positive function in HF1.G0; �0/, then there also exists a
non-constant positive function in HF1.G;�/.

For the fourth and last step, we want to show that HF1 has infinite dimension as soon
as it admits some non-constant positive function. This is the content of the following
theorem, which may be of independent interest.

Theorem 1.6. Let G be an amenable CGLC group. Let � be a courteous measure on G.
If dimHF1.G;�/ <1, then any h 2 HF1.G;�/ which is positive must be constant.

Proof of Theorem 1.3. In [22], it is shown that for any CGLC group of polynomial growth,
G, and any courteous � with exponential tail on G, the dimension of HFk.G; �/ is finite
for all k � 1. (This is an extension of Kleiner’s work [18] to non-compactly-supported
measures, and to connected CGLC groups.) This gives the implication (1))(2).

(2))(3) is trivial.
(3))(4) follows from Theorem 1.6.
For (4))(1): assuming (4), by Lemma 1.5, there exists G0 � �d a closed connected

subgroup of the affine group �d , and a courteous measure �0 on G0 such that HF1.G0; �0/
does not contain a non-constant positive function. By Lemma 1.4, it follows that G0 must
have polynomial growth. By Lemma 1.5 again, G has polynomial growth as well.

Remark 1.7. The exponential tail property of � was only used to prove (1))(2). It is
basically there because the measure � needs to have good enough decay for the Laplacian
to be well defined on polynomially growing functions.

Our proof actually shows that (3))(4))(1) even when � is only assumed to be cour-
teous, without the exponential tail assumption.

1.4. Convergence along random walks

Let us stress here that Theorem 1.6 holds in the non-connected case as well, that is, for
finitely generated groups. This may be of independent interest in other contexts. The main
idea behind the proof of Theorem 1.6 is Theorem 1.9 which states that if a function
converges a.s. along the random walk and has sub-exponential growth, then it must be
constant. This is relevant to positive harmonic functions since a positive harmonic func-
tion evaluated on the corresponding random walk provides a positive martingale, which
converges a.s. by the martingale convergence theorem (see [8]).

Definition 1.8. A function f W G ! R converges along random walks if the sequence
.f .xXt //t converges a.s. for any x 2 G, (where .Xt /t is the �-random walk).
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For example, as mentioned above, any positive harmonic function converges along
random walks. As do bounded harmonic functions. Hence, Theorem 1.6 follows from the
following theorem, which may be of independent interest.

Theorem 1.9. Let G be an amenable CGLC group and let � be a courteous measure on
G. Let .Xt /t denote the �-random walk. Let f W G ! R be a continuous function such
that f converges along random walks. Assume that f has sub-exponential growth; that is,

lim sup
r!1

1

r
sup
jxj�r

log
ˇ̌
f .x/

ˇ̌
D 0:

If dim span.G:f / <1, then f is constant.

The proof is carried out in Section 3.
The assumption of sub-exponential growth in Theorem 1.9 is technical, and most prob-

ably superfluous. In Section 3, we will show that in the discrete case, where G is finitely
generated, this assumption is not actually required. We conjecture that the assumption of
sub-exponential growth can be removed in the general CGLC case; see Conjecture 1.13.
In addition, although the proof heavily uses the amenability of G, it is not clear that this
is a necessary condition for Theorem 1.9 to hold. Again, see the open questions below.

1.5. Further questions

These open questions are motivated by the results mentioned above.
In [19], it is shown that for a finitely generated groupG and courteous measure � with

exponential tail, if dim HFk.G; �/ <1, then the space HFk.G; �/ is basically the space
of harmonic polynomials on G of degree at most k (see [19] for precise definitions). This
proves that dimHFk.G;�/ 2 ¹1; dº for some d which depends only on the group G and
not on �.

Conjecture 1.10. Let G be a CGLC group. Let �, � be courteous measures on G with an
exponential tail. Then dimHFk.G;�/ D dimHFk.G; �/ for any k � 0.

Note the we have also included the k D 0 case in the above conjecture, i.e., the space
of bounded harmonic functions.

We have seen that the finiteness of the dimension of HF1 characterizes polynomial
growth (at least for connected groups and for solvable groups). In the connected case,
the same solvable linear non-nilpotent-by-compact example mentioned above from [4]
shows that one can no longer obtain results analogous to [19], since this group has finite
dimensional HF1 but linear growth harmonic functions which are not polynomials. If the
group G is nilpotent however, one can show that functions in HFk are polynomials even in
the connected case.

Question 1.11. Let G be a connected CGLC group. Let � be a courteous measure on G
with an exponential tail. Let P k.G/ denote the space of polynomials of degree at most k
onG (see [19]). Fix k � 1. Is it true that HFk.G;�/� P k.G/ if and only ifG is nilpotent?
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The results of Choquet and Deny [6], Raugi [23], and Yau [24] motivate the question
of the existence of non-constant positive harmonic functions on some group; specifically
as illustrated in the following:

Question 1.12. Let G be a CGLC group of non-polynomial growth. Let � be a courteous
measure with an exponential tail on G.

Is it true that there exists a positive �-harmonic function that is non-constant?
Is it true that there exists such a function of linear growth?

Let us remark that our proof of Theorem 1.3 answers the above question affirmatively,
in the connected case (see the characterization in Section 1.3). The results of [20] also
provide an affirmative answer in the finitely generated solvable case.

It is known that any finitely generated group of exponential growth admits a non-
constant positive harmonic function, as observed in [1], although the function constructed
there may have exponential growth, so it does not necessarily belong to HFk . For finitely
generated groups, in general, we do not know the answer, even for some specific examples,
e.g. the Grigorchuk groups.

Regarding Theorem 1.9, as mentioned above, the condition of sub-exponential growth
seems to be superfluous.

Conjecture 1.13. Let G be an amenable CGLC group and � a courteous measure on G.
Let f W G ! R be a continuous function that converges along random walks.

If dim span.G:f / <1, then f is constant.

Finally, we only know how to prove Theorem 1.9 for amenable groups. It would be
quite surprising if this theorem does not hold in the non-amenable case; precisely as fol-
lows:

Question 1.14. If G is a CGLC group, is it true that for any continuous function f W
G!R that converges along random walks, if f is non-constant its orbit spans an infinite
dimensional space?

2. Linear growth positive harmonic function

2.1. Stationary measure on �d

Denote by �d the group of affine similarities on Rd . An element of �d is g D .a; k; b/,
where a 2 .0;1/, k 2 O.d/, b 2 Rd . Here O.d/ is the group of d � d orthogonal real
matrices. (Note that in the 1-dimensional case, �1, we may omit the k-coordinate). The
group’s multiplication is defined by

g1 � g2 D .a1; k1; b1/ � .a2; k2; b2/ WD .a1a2; k1k2; a1k1b2 C b1/:

�d acts from the left on Rd by .a; k; b/:x D akx C b. For an element g D .a; k; b/, let
a.g/ D a.
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Let G be a closed subgroup of �d and let � be a courteous probability measure on G.
Let � be a measure on Rd and define

� � �.A/ D

Z
G

Z
Rd

1A.g:x/ d�.x/ d�.g/:

for any measurable set A.
A Radon measure � on Rd is called �-stationary if � � � D �.

Remark 2.1. In [2] and related texts, a measure satisfying� � �D � is called�-invariant.
One should be careful to distinguish between invariance of � with respect to convolution
with the measure �, and the different notion of a G-invariant measure, which means
g:� D � for all g 2 G. In this text, we only deal with the former. In order to avoid confu-
sion, we prefer the terminology stationary.

The existence of a �-stationary Radon measure is shown in [2]. Namely, we have the
following lemma.

Lemma 2.2 ([2, Proposition 1.1]). Let G be a closed CGLC subgroup of �d and � a
courteous measure on G. Then there exist a �-stationary (unbounded) Radon measure �
on Rd .

2.2. Linear growth harmonic functions

In this section, we prove Lemma 1.4.
Let � be a �-stationary Radon measure on Rd . Let � W Rd ! R be a compactly

supported function. Define

h.g/ WD

Z
Rd

�.g:x/ d�.x/: (1)

It is straightforward to check that h is a �-harmonic function on G, because � is �-
stationary. If � � 0, then h � 0. If 1¹A1º � � � 1¹A2º for some measurable sets A1 �
A2, then �.g:A1/ � h.g/ � �.g:A2/ for all g 2 G. Also, if � is continuous, then h is
continuous as well.

Let B D Œ�1; 1�d � Rd . Fix a compactly supported continuous function � W Rd ! R
such that 1¹.1=2/Bº � � � 1¹Bº. Define h as in (1). By [3, Lemma 2.10], h is non-constant
as soon as G does not have polynomial growth (since � can be chosen so that it is not
G-invariant).

We want to show that h has linear growth, i.e., that there exists a constant ch > 0

such that h.g/ � ch.1 C jgj/ for all g 2 G. By compactness and the continuity of the
action, there exists a constant M > 1 such that k:B � Œ�M;M�d for all k in the compact
symmetric generating setK. By induction, this implies that g:B � Œ�M jgj;M jgj�d for all
g 2 G. Hence, to show linear growth of h, it will be sufficient to show that

�
�
Œ�z; z�d

�
� C.1C log z/ 8z > 1 (2)
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for some constant C > 0. In [5, Proposition 3.1 (1)], this is shown for the case of d D 1.
Their proof relies on the total ordering of the real numbers, hence it does not generalize
to Rd in a straightforward manner. We now use results from [5] to prove the general
d -dimensional case.

Let  D .a; k; b/ be a random element generated by the probability measure � on �d .
We assume the following.

• Recurrence: EŒlog.a/� D 0 and P Œa D 1� ¤ 1.

• Non-degeneracy: P Œ :x D x� < 1 for all x 2 Rd .

• Moment condition: EŒ.j log.a/j C log.1C kbk//3� <1.

We note that by [9, 15], there exist constants C;D > 0 such that

C�1j j �D <
ˇ̌
log.a/

ˇ̌
C log

�
1C kbk

�
< C j j CD:

Hence, the above moment condition is equivalent to existence of a third moment of �.
In the above, and throughout this section, the k � k norm on Rd is the L1-norm; i.e.,

kxk D max1�j�d jxj j.
Next, for an element  as above, we define

g WD
�
a;max

®
kbk; 1

¯�
2 �1: (3)

We denote by . t /t�0 a sequence of i.i.d. � random elements, and abbreviate by .gt /t�0
the induced sequence .g t /t�0. For an element g D .a; b/ 2 �1, denote a.g/D a, b.g/D
b. Finally, we define R0 D 0 and ‰0 D .1; I; 0/ as the identity element in �d , as well as

Rt D g1 � � �gt ; ˆt D  1 � � � t :

Note that
b.RtC1/ D a.Rt /b.gtC1/C b.Rt /; (4)

which implies that also
kˆt :xk � Rt :kxk 8x 2 Rd : (5)

Lemma 2.3. Let U; V be two compact Borel subsets of Rd . Define

T D TU;V WD inf¹t � 0 W ˆt :U � V º:

Then,
�.V / � P ŒT <1� � �.U /:

Proof. Let Mt WD �.ˆ
�1
t :V /. Because � is �-stationary, this process is a (positive) mar-

tingale. Indeed,

EŒMtC1 j ˆ0; : : : ; ˆt � D

Z
d�. /�. �1ˆ�1t :V /D � � �.ˆ

�1
t :V /D �.ˆ

�1
t :V /DMt :
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For any t > 0, by the optional stopping theorem (see e.g. [8]) at time T ^ t , we have that

�.V / DM0 D EŒMT^t � � EŒMT 1¹T<tº� � �.U / � P ŒT < t�;

where we have used that U � ˆ�1T :V a.s.
Sending t !1 completes the proof.

Lemma 2.4. Fix a constant k0 > 1. Define the following subsets of �1:

V0 D
®
.a; b/ W k�10 � a � k0; jbj � k0

¯
;

Vz D V0 � .z
�1; 0/ D

®
.a; b/ W k�10 � z

�1
� a � k0 � z

�1; jbj � k0
¯
:

We have
�
�
Œ�2k0; 2k0�

d
�
� P ŒTVz <1� � �

�
Œ�z; z�d

�
;

where TVz D inf¹t W Rt 2 Vzº.

Proof. Note that if Rt 2 Vz and x 2 Rd satisfies kxk � z, then Rt :kxk � 2k0, and thus
by (5), we have kˆt .x/k � 2k0. So if we take V D Œ�2k0; 2k0�d and U D Œ�z; z�d , we
get that TVz � TU;V . Applying Lemma 2.3,

�.V / � P ŒTU;V <1� � �.U / � P ŒTVz <1� � �.U /:

Proof of Lemma 1.4. Lemma 3.4(2) in [5] states that under our assumptions on �, there
exists some k0 > 1 and ı > 0, such that for V0; Vz as in Lemma 2.4, we have for all z � 1,

P ŒTVz <1� >
ı

1C log z
:

Plugging this into Lemma 2.4, we arrive at

�
�
Œ�z; z�d

�
� �

�
Œ�2k0; 2k0�

d
�
�
1C log z

ı
;

for all z � 1. This proves (2), which is sufficient to obtain Lemma 1.4, as remarked above
(before (2)).

2.3. From locally compact groups to �d

In this section, we will overview the reduction from general connected CGLC groups to
the case of closed subgroups of �d , namely Lemma 1.5.

Observe, that one may always pass to a continuous image of the group: let � WG!Q

be a continuous surjective homomorphism. In [3, Lemma 3.1], it is shown that if � is
courteous on G, then �Q WD � ı ��1 is courteous on Q. It is then straightforward to
show that if fQ is a �Q-harmonic function with linear growth on Q, then f D fQ ı � is
a �-harmonic function with linear growth on G.

By the above, we may freely pass to quotients, as long as the growth does not change.
This will be used in the following proof, to exploit the special structure of connected
CGLC groups.
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Proof of Lemma 1.5. A theorem of Yamabe and Gleason (see e.g. [21]) tells us that since
G is connected, for any open neighborhood U of the identity inG, we may find a compact
normal subgroupK � U , such that G=K is a Lie group. SinceK is compact, G=K and G
have the same growth. So we may, without loss of generality, assume thatG is a connected
Lie group.

Using the Yamabe–Gleason theorem, Jenkins proves in [16] that G must have either
polynomial growth or exponential growth.

Assume first that G has polynomial growth, in which case there is nothing really to
prove. Since constant functions are always harmonic, dimHF1.G;�/� 1. Taking the trivial
subgroup for G0 completes this (rather vacuous) case.

So assume that G has exponential growth.
We now proceed similarly to the proof of [3, Theorem 1.4].
As a connected Lie group of exponential growth, Lemma 3.10 in [3] tells us that we

may find a homomorphism � W G ! GL.Rd / such that �.G/ has exponential growth. As
a homomorphic image ofG, the dimension of HF1 on �.G/ cannot increase, as mentioned
above. So we may further assume without loss of generality that G is a connected closed
subgroup of GL.Rd /, that has exponential growth.

If G is non-amenable, it admits non-constant bounded harmonic functions, as is well
known (see e.g. [3, Theorem 1.1]). So assume that G is amenable. In this case, by [3,
Proposition 3.9] (see also [3, Definition 3.5]), there exist a finite-index normal subgroup
H C G and a homomorphism � W H ! �d such that �.H/ has exponential growth.
Because H has finite index in G, and G is connected, it must be that H D G, completing
the proof, as again, the dimension of HF1 does not increase when passing to a quotient.

3. Infinite dimensional orbit
In this section, we prove Theorem 1.9.

Although not required in the connected case, we remark here that it is also always
possible to pass to a finite-index subgroup: let G be a CGLC group and � a courteous
measure on G. Let .Xt /t�0 be a �-random walk on G, i.e., X0 D 1 and the increments
X�1t XtC1 are independent �-random variables. Let H � G be a finite-index subgroup,
and define the return time to H by �H D inf¹t W Xt 2 H º. It is well known that since H
is of finite index, �H is almost surely finite. Define the hitting measure �H on H by

�H .A/ D P ŒX�H 2 A�:

In [3], it is shown that �H is a courteous measure on H . It is then shown, that if fH
is a �H -harmonic function on H , then f .g/ WD EŒfH .X�H / j X0 D g� is a �-harmonic
function on G. In fact, we have the following proposition.

Proposition 3.1 ([3, Lemma 3.4], [20, Proposition 3.4]). Let G be a CGLC group, �
a courteous measure, and H a finite index subgroup. Then �H is a courteous measure
on H . Moreover, for any k the restriction map f 7! f jH is a linear isomorphism from
HFk.G;�/ to HFk.H;�H /.
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Simply put, by passing to a finite index subgroup, the space of harmonic function of
polynomial growth of degree at most k is essentially the same. This proposition indicates
that courteous measures provide a suitable framework to prove Conjecture 1.2.

Lemma 3.2. LetG be a CGLC group and let � be a courteous measure onG. LetH �G
be a subgroup of finite index and let �H be the hitting measure.

If f W G ! R converges along random walks (with respect to �), then the restriction
f jH converges along random walks (with respect to �H ).

Proof. Let .Xt /t be a �-random walk started at X0 D y 2 H . Let �0 D 0 and let �nC1 D
inf¹t � �n C 1 W Xt 2 H º be the successive return times to H . So .Yn WD X�n/n is a
�H -random walk started at Y0 D y.

Since .f .Xt //t converges a.s., also .f .Yn//n converges a.s. as a sub-sequence. This
holds for arbitrary y 2 H completing the proof.

Lemma 3.3. Let G be a compact group and � a courteous measure on G.
If f W G ! R is a continuous function that converges along random walks, then f is

constant.

Proof. Assume for a contradiction that f is non-constant. Let x 2 G be such that f .x/¤
f .1/. f is continuous, so we may choose two open neighborhoods x 2 U , 1 2 V such
that

sup
z2U

ˇ̌
f .x/ � f .z/

ˇ̌
<
1

2

ˇ̌
f .x/ � f .1/

ˇ̌
and sup

y2V

ˇ̌
f .1/ � f .y/

ˇ̌
<
1

2

ˇ̌
f .x/ � f .1/

ˇ̌
:

Specifically, V \U D; and U;V have positive Haar measure. Also, for any z 2U , y 2 V
we have f .z/ ¤ f .y/.

Now, the ergodic theorem tells us that for any measurable subset A � G we have that
1
t
1¹Aº.Xt /! �.A/ a.s., where � is the normalized Haar probability measure on G. Thus,

a.s. the sequence .f .Xt /t / contains an accumulation point in any open set of positive Haar
measure, contradicting convergence along random walks.

Lemma 3.4. LetG be an amenable CGLC group and let � be a courteous measure onG.
Let f W G ! R be a continuous function that converges along random walks.

Assume that there exists a co-compact normal subgroup H C G such that H acts
trivially on f .

Then, f is constant.

Proof. Since H acts trivially on f , this induces a continuous function on the compact
group G=H via Nf .Hx/ D f .x/. If we consider the projected random walk (i.e., the pro-
cess .HXt /t ) on this compact group, then Nf converges along random walks (because f
does). Thus, by Lemma 3.3 Nf is constant. This implies that f is constant as well.

We require the notion of a type S action following [3].
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Definition 3.5. Let � W G ! GL.V / be an action of G on a finite-dimensional real vector
space V . We say that this action is of type S if there exists a compact subgroup K of
GL.V /, a continuous homomorphism k W G ! K, and a continuous homomorphism a W

G ! .0;1/ such that �.g/ D a.g/k.g/ for all g 2 G.

Proof of Theorem 1.9. We will denoteXtC1DXtUtC1 for .Ut /t�1 i.i.d.-� random steps.
Let V D span.G:f / and assume that dimV D d <1. Note that .h.xXt //t converges

for all h 2 V . Since functions in V factor through the kernel of the G-action, we may
assume that G � GL.V /.

Under this assumption, G is now an amenable linear group. A result by Guivarc’h
[14] states that there exists a finite index normal subgroup G0 of G, for which there is
a finite sequence ¹0º D V0 � V1 � � � � Vn D V Š Rd of G0-invariant linear subspaces
of V such that the action of G0 on each ViC1=Vi is of type S. By Lemma 3.2, we may,
without loss of generality, pass to the finite index subgroup, since we are only required
to prove that G0 acts trivially on f , due to Lemma 3.4. So we assume that a sequence
¹0º D V0 � V1 � � � � Vn D V exists with respect to G. Specifically, by an appropriate
choice of basis B we have

Œx�B D

0BBB@
a1.x/k1.x/ x12 � � � x1n

0 a2.x/k2.x/ � � � x2n
:::

: : :
:::

0 � � � an.x/kn.x/

1CCCA ; (6)

where ki W G ! Ki � GL.Rd / and ai W G ! .0;1/ are homomorphisms and Ki is a
compact subgroup of GL.Rd /.

Let H C G be the kernel of the homomorphism x 7! .k1.x/; : : : ; kn.x//. So G=H is
isomorphic to the compact group k1.G/ � � � � � kn.G/. Also, for any x 2 H we have that
kj .x/ D I .

Step I. First we show that V1 is the space of constant functions (soG acts trivially on V1).
For any x 2 G and h 2 V1, we have

Œx:h�B D Œx�B Œh�B D a1.x/k1.x/Œh�B :

This is a slight abuse of notation, since we regard a1.x/k1.x/ as acting on the whole space
Rd , by identifying

aj .x/kj .x/ D

0BBBBBBB@

I 0 0 � � � 0

0
: : : � � � 0

::: aj .x/kj .x/
:::

:::
: : :

:::

0 � � � 0 I

1CCCCCCCA : (7)
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Consider h�; �i as the inner product on Rd . For any y 2 G, the map h 7! h.y/ is a
linear functional on V , so by the Riesz representation theorem there exists vy 2 Rd such
that hŒh�B ; vyi D h.y/ for all h 2 V .

Let h 2 V1 be any function. Then for any x 2 H and y 2 G, since k1.x/ D I ,

h.xy/ D x�1:h.y/ D a1.x/
�1
�
˝
Œh�B ; vy

˛
D a1.x/

�1
� h.y/:

Thus, for any x 2 H we have h.x�n/ D a1.x/nh.1/. Because we assumed that h grows
sub-exponentially, this implies that a1.x/ D 1 for all x 2 H . So H acts trivially on any
h 2 V1. By Lemma 3.4, this implies that V1 is the space of constant functions.

Step II. We now show that H acts trivially on V2. (If d D 1, this step is redundant, since
we have already shown that V D V1 is the space of constant functions).

Let h 2 V2. Let ı1 2 Rd be the vector with 1 in the first coordinate and 0 elsewhere.
Note that since V1 is the space of constant functions, ı1 ? vy � v1 for all y 2 G.

For all x 2 G, we have

Œx:h�B D a2.x/ � k2.x/Œh�B C
˝
.0; x12; : : : ; x1n/; Œh�B

˛
� ı1:

The important observation here is that the coefficient of ı1 above depends only on x and
not on the specific point of evaluation of the function ı1. So if x 2H , then for any y 2 G,

h.xy/ � h.x/ D a2.x/
�1
�
˝
Œh�B ; vy � v1

˛
D a2.x/

�1
�
h.y/ � h.1/

�
:

This implies that for any x 2 H ,

h.x�n/ � h.1/ D

n�1X
jD0

a2.x/
j
�
�
h.x�1/ � h.1/

�
D
a2.x/

n � 1

a2.x/ � 1
�
�
h.x�1/ � h.1/

�
:

If a2.x/>1, then the right-hand side grows exponentially. If a2.x/<1, then a2.x�1/>1.
As before, since we assumed that h has sub-exponential growth, this implies that a2.x/D
1 for any x 2 H , which is to say that H acts trivially on any h 2 V2.

Thus, by Lemma 3.4 any h 2 V2 is constant, implying that G acts trivially on V2.

Conclusion. Since V2 is the space of constant functions, it must be that actually d D 1
and V1 D V is the space of constant functions, and that originally in (6) the matrices were
all the identity matrix. This shows that G acts trivially on the orbit of f and specifically
on f .

Following the statement of Theorem 1.9, we remarked that in the case where G is
finitely generated this theorem holds without the sub-exponential growth assumption.
Since the proof is almost identical, we only sketch the proof of this observation.

Sketch of proof. As in the proof of Theorem 1.9, we arrive at a representation as in (6).
Setting H to be the co-compact subgroup which is the kernel of the map

x 7!
�
k1.x/; : : : ; kn.x/

�
;

we find that H is of finite index (because the compact group k1.G/ � � � � � kn.G/ is
actually finitely generated in this case, and thus finite).
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Thus, by Lemma 3.2, we may pass to the subgroup H instead of G. Then, the same
reasoning as in Step I of the proof above gives that for any h 2 V1, we have h.Xt / D
a1.Xt /

�1 � h.1/. Thus, log h.Xt /
h.1/

is a symmetric random walk on the additive group R.
Such a random walk can only converge if it is degenerate (see [8]), that is, if h.Xt /D h.1/
a.s. for all t . Because � is adapted, this implies that h is constant.

Once establishing that V1 is the constant function, as in Step II of the proof of Theorem
1.9, we arrive at

h.Xty/ � h.Xt / D a2.Xt /
�1
�
�
h.y/ � h.1/

�
(8)

for any y and any t , and for any h 2 V2. Now, for a fixed y there exist n 2 N and ˛ > 0
such that �n.y/ > ˛. Thus, as t !1 for any " > 0,

˛ � P
�ˇ̌
h.Xty/ � h.Xt /

ˇ̌
> "

�
� P

�ˇ̌
h.XtCn/ � h.Xt /

ˇ̌
> "

�
! 0:

That is, the left-hand side of (8) converges to 0 in probability. However, as before,
.log a2.Xt //t is a symmetric random walk on R, implying that it can only converge if
it is degenerate. So it must be that a2 � 1 and we arrive at h.xy/ � h.x/ D h.y/ � h.1/
for all x; y 2 H . This implies that h � h.1/ is a homomorphism from H into the addi-
tive group R. Specifically, .h.Xt / � h.1//t forms a symmetric random walk on R, and
because this random walk must converge a.s., we obtain as before that h is constant.
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