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Dynamics of actions of automorphisms of discrete groups
G on SubG and applications to lattices in Lie groups

Rajdip Palit, Manoj B. Prajapati, and Riddhi Shah

Abstract. For a locally compact Hausdorff group G and the compact space SubG of closed sub-
groups of G endowed with the Chabauty topology, we study the dynamics of actions of automorph-
isms of G on SubG in terms of distality and expansivity. We prove that an infinite discrete group G,
which is either polycyclic or a lattice in a connected Lie group, does not admit any automorphism
which acts expansively on SubcG , the space of cyclic subgroups of G, while only the finite order
automorphisms of G act distally on SubcG . For an automorphism T of a connected Lie group G
which keeps a lattice � invariant, we compare the behaviour of the actions of T on SubG and Sub�
in terms of distality. Under certain necessary conditions on the Lie group G, we show that T acts
distally on SubG if and only if it acts distally on Sub� . We also obtain certain results about the
structure of lattices in a connected Lie group.

1. Introduction

A homeomorphism T of a (Hausdorff) topological spaceX is said to be distal if, for every
pair of elements x; y 2 X with x ¤ y, the closure of ¹.T n.x/; T n.y// j n 2 Zº in X �X
does not intersect the diagonal ¹.a; a/ j a 2 Xº. If X is compact and metrizable with a
metric d , then T is distal if and only if given x;y 2 X with x ¤ y, inf¹d.T n.x/; T n.y// j
n 2 Zº> 0. Distal maps on compact spaces were introduced by David Hilbert to study the
dynamics of non-ergodic maps and studied by many mathematicians in different contexts;
see Ellis [9], Furstenberg [10], Moore [20], Raja and Shah [28, 29], Shah [31], Shah and
Yadav [33–35], and the references cited therein.

For a metrizable topological space X with a metric d , a homeomorphism T of X is
said to be expansive if there exists " > 0 satisfying the following: if x; y 2 X with x ¤ y,
then d.T n.x/; T n.y// > " for some n 2 Z. Here, " is said to be an expansive constant
for T . The notion of expansivity was introduced by Utz [36] and studied by many in
different contexts (see Bryant [6], Schmidt [30], Choudhuri and Raja [8], Glöckner and
Raja [12], Shah [32], and the references cited therein). It is known that on any compact
metric space, the expansivity of a homeomorphism is independent of the metric [38], and
the class of distal homeomorphisms and that of expansive homeomorphisms are disjoint
from each other [6].
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Here, we study the dynamics of the actions of automorphisms of certain locally com-
pact groups G on the compact space of closed subgroups of G in terms of distality and
expansivity. Let G be a locally compact (Hausdorff) topological group and let SubG
denote the set of all closed subgroups of G equipped with the Chabauty topology [7].
Then SubG is compact and Hausdorff. It is metrizable if G is locally compact and second
countable (see [11] and [3, Section 1, Chapter E] for more details). Let Aut.G/ denote the
group of all automorphisms of G. There is a natural action of Aut.G/ on SubG ; namely,
.T;H/ 7! T .H/, T 2 Aut.G/, H 2 SubG . For each T 2 Aut.G/, the map H 7! T .H/

defines a homeomorphism of SubG [14, Proposition 2.1], and the corresponding map from
Aut.G/! Homeo.SubG/ is a group homomorphism.

For a locally compact second countable groupG, we say that T 2Aut.G/ acts distally
(resp. expansively) on SubG if the homeomorphism of SubG corresponding to T is distal
(resp. expansive). The distality of such an action was first studied by Shah and Yadav [35]
for connected Lie groups and the expansivity of the action was first studied by Prajapati
and Shah [25] for locally compact groups.

Let SubaG (resp. SubcG) denote the space of all closed abelian (resp. discrete cyclic)
subgroups of G. They are invariant under the action of Aut.G/, SubaG is always closed in
SubG , while SubcG is closed for many discrete groups G [23]. In particular, this also holds
for any discrete polycyclic group G. Here we will show that SubcG is closed for any lattice
G in a connected Lie group (see Corollary 3.5). We focus on studying the distality and
expansivity of the actions of automorphisms of a discrete group G on SubcG when G is
polycyclic or a lattice in a connected Lie group.

For a lattice � in a connected Lie group G, the set Subc� is usually much smaller
than SubaG . In fact, Subc� is countable since � is countable, as the latter is a discrete
subgroup of a connected Lie group. But SubaG is uncountable if G is noncompact. For a
connected Lie group G without any nontrivial compact connected central subgroup, only
those automorphisms contained in compact subgroups of Aut.G/ act distally on SubaG
[35, Theorem 4.1]. We would like to know if there exists an automorphism which is not
contained in a compact subgroup of Aut.G/, keeps a lattice �-invariant, and acts distally
on Subc� . This does not happen for a large class of Lie groupsG as shown by Theorem 4.7.
More specifically, we may ask if � admits any infinite order automorphism which acts
distally on Subc� . The answer is negative as illustrated by the following result which is a
part of Theorem 4.6.

Theorem 1.1. Let � be a lattice in a connected Lie group and let T 2 Aut.�/. Then T
acts distally on Subc� if and only if T n D Id for some n 2 N.

We compare the behaviour of distality of the T -actions on Subc� and SubG , when
T 2 Aut.G/ and T .�/ D � , in Theorem 4.7 which unifies and generalises the results
obtained by Palit and Shah in [23]. We also construct counter examples to show that
Theorem 4.7 is the best possible result in this direction.

It was shown in [25] for an almost connected locally compact metrizable group G that
if T 2 Aut.G/ acts expansively on SubG , then G is finite. In particular, a nontrivial con-
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nected Lie group G does not admit any automorphism which acts expansively on SubG .
Now the question arises whether there exists an automorphism of G which keeps a lattice
� invariant and acts expansively on Sub� . The answer is again negative if G is noncom-
pact, and equivalently if � is infinite.

Theorem 1.2. A lattice � in a connected noncompact Lie group does not admit any auto-
morphism which acts expansively on Subc� .

We also prove similar results as above for discrete (infinite) polycyclic groups (see
Theorems 4.5 and 5.2)

For many groups G, the (compact) spaces SubG , SubaG and the closure of SubcG have
been identified (see e.g. Baik and Clavier [1, 2], Bridson, de la Harpe, and Kleptsyn [5],
and Pourezza and Hubbard [24]). For the 3-dimensional Heisenberg group H, the structure
of the space of lattices in H and the action of Aut.H/ on certain subspaces of SubH have
also been studied in [5]. Since the homeomorphisms of SubG arising from the action of
Aut.G/ form a large subclass of Homeo.SubG/, it is important to study the dynamics of
such homeomorphisms of SubG .

Some results about distal actions are proven for automorphisms belonging to the class
.NC/ which was introduced in [35]. For a locally compact metrizable group G, an auto-
morphism T 2 Aut.G/ is said to belong to .NC/ if for every nontrivial closed cyclic
subgroup A of G, T nk .A/ 6! ¹eº in SubG for any sequence ¹nkº � Z. The class .NC/ of
automorphisms is studied in details in [35] for connected Lie groups, and in [23] for lat-
tices in certain connected Lie groups. The class .NC/ is larger than the set of those which
act distally on SubaG or the closure of SubcG as illustrated by [23, Example 3.11] and
Example 4.8. However, for many groups G, it turns out to be the same as the set of those
which act distally on SubG ; see [35, Theorem 4.1], [23, Corollary 3.9 and Theorem 3.16],
and also Theorem 4.6.

We prove some results on the structure of lattices in connected Lie groups which are
useful for the proofs of the main results about distal and expansive actions. It is known
that any closed subgroup H of a connected Lie group admits a unique maximal solvable
normal subgroup (say) Hrad [26, Corollary 8.6]. We show for a lattice � in a connected
Lie group G that �rad is polycyclic and �=�rad is either finite or it admits a subgroup
of finite index which is a lattice in a connected semisimple Lie group without compact
factors and with finite center (see Proposition 3.3, see also Proposition 3.2). Using known
results for semisimple and nilpotent groups and the Borel density theorem, we show that
if the radical of G is simply connected and nilpotent and a Levi subgroup of G is either
trivial or has no compact factors, then no nontrivial automorphism of G acts trivially on a
lattice �; in particular, the centraliser of � in G is the center of G (see Proposition 3.6).
We also prove an elementary but crucial lemma about the structure of SubG for a class of
countable discrete groups G with the property that the set of roots of g in G is finite for
every g 2 G; the lemma also shows that such a G does not admit any automorphism that
acts expansively on SubcG (which is closed) unless G is finite (see Lemma 5.1).
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In Section 2, we state some basic results and properties of distal and expansive actions.
We also describe the topology of SubG for locally compact groups G. In Section 3, we
prove some results about the structure of lattices in Lie groups. For the action of an auto-
morphism of a discrete group G on SubG , where G is either polycyclic or a lattice in a
connected Lie group, we explore the distality of this action in Section 4, while Section 5
deals with the study of the expansivity of this action.

We will assume that all our topological groups are locally compact Hausdorff and
second countable. For a locally compact Hausdorff group G, it is second countable if
and only if it is first countable (metrizable) and � -compact. We will use results from
[23, 25, 35], where it is assumed that both G and SubG are metrizable, for which it is
sufficient to assume that G is second countable. A compact Hausdorff first countable
group is second countable. If G is a countable discrete group or a closed subgroup of a
Lie group, then G is second countable.

For a topological group G with the identity e, and a subgroup H � G, let H 0 denote
the connected component of the identity e in H , ŒH;H� the commutator subgroup of H ,
Z.H/ the center of H , and ZG.H/ the centraliser of H in G. An element x 2 G is said
to be a torsion element if xn D e for some n 2 N. A group G is said to be torsion-free
if it does not have any nontrivial torsion element. For any x 2 G, by convention, x0 D e.
Similarly, T 0 D Id, the identity map, for any bijective map T of a space X . For x 2 G, let
Rx denote the set of roots of x in G; i.e., Rx D ¹y 2 G j yn D x for some n 2 Nº. Note
that if G D Zd , or more generally, if G is a finitely generated nilpotent group, then Rx is
finite for every x 2 G [15, Example 3.1.12, Theorems 3.1.13 and 3.1.17].

For a connected Lie groupG, let G denote the Lie algebra ofG and let exp W G !G be
the exponential map. For any T 2Aut.G/, there exists a unique Lie algebra automorphism
d T W G ! G which satisfies exp.d T .v// D T .exp.v//, v 2 G . Recall that Ad W G !
GL.G /, the adjoint representation of G on G , is defined as Ad.g/ D d.inn.g//, g 2 G,
where inn.g/ denotes the inner automorphism ofG by g; i.e., inn.g/.x/D gxg�1, x 2G.
Note that Ad.G/ is a connected Lie subgroup of GL.G /. The radical (resp. nilradical) ofG
is the maximal connected solvable (resp. nilpotent) normal subgroup of G and, G is said
to be semisimple if its radical is trivial. A connected Lie group G is said to be reductive if
its Lie algebra G is reductive; equivalently, Ad.G/ is semisimple. Note thatG is reductive
if and only if its radical is central in G and, equivalently, if G is an almost direct product
of a connected semisimple Lie group andZ.G/. A connected Lie group is said to be linear
if it is isomorphic to a subgroup of GL.n;R/ for some n 2 N. We will use certain results
about the structure of linear groups, Lie groups, and Lie algebras which are standard and
can be found in any basic textbook on Lie groups (see e.g. [16, 37]).

2. Preliminaries

For a (metrizable) topological space X , let Homeo.X/ denote the space of all homeo-
morphisms of X . We first state some known properties of distal and expansive actions for
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a compact space X . Let T 2 Homeo.X/. Then T n is distal (resp. expansive) for some
n 2 Z n ¹0º if and only if T n is so for all n 2 Z n ¹0º. If Y � X is a nonempty T -invariant
subspace and if T is distal (resp. expansive), then T jY is so. If S 2 Homeo.X/, then T
is distal (resp. expansive) if and only if STS�1 is so. An expansive homeomorphism of
a compact metric space X has only finitely many fixed points and, hence, the set of its
periodic points is countable. If a topological space is discrete, then any homeomorphism
is distal as well as expansive. The identity map of a space is distal by definition, but it
need not be expansive (for example, if the metric space is non-discrete).

Given a locally compact (Hausdorff) group G, the Chabauty topology on SubG was
introduced by Chabauty [7]. A sub-basis of the Chabauty topology on SubG is given by
the sets of the following form O1.K/ D ¹A 2 SubG j A \K D ;º and O2.U / D ¹A 2
SubG j A \ U ¤ ;º, where K (resp. U ) is a compact (resp. an open) subset of G.

Any closed subgroup of R is either a discrete group generated by a real number or
the whole group R, and SubR is homeomorphic to Œ0;1� with a compact topology. Any
proper closed subgroup of Z is of the form nZ for some n 2N [ ¹0º, and SubZ is homeo-
morphic to ¹ 1

n
j n 2 Nº [ ¹0º. The space SubR2 is homeomorphic to S4 [24]. Note that

the space SubRn is simply connected for all n 2 N [19, Theorem 1.3].
We now state a criterion for convergence of sequences in SubG when it is metriz-

able [3].
For a locally compact second countable group G, a sequence ¹Hnºn2N in SubG con-

verges to H in SubG if and only if the following conditions hold:

(I) for any h 2 H , there exists a sequence ¹hnº with hn 2 Hn, n 2 N, such that
hn ! h;

(II) for any unbounded sequence ¹nkº � N, if ¹hnk ºk2N is such that hnk 2 Hnk ,
k 2 N, and hnk ! h, then h 2 H .

In case G is discrete, we know from [23, Lemma 3.2] that Hn ! H in SubG if and
only ifH D

S1
nD1

T1
kDnHk . In particular, (for such a groupG) ifHn!H , then h 2H

if and only if h 2Hn for all large n. We will use these criteria for convergence for discrete
groups frequently. Also, for a discrete group G, if each Hn is cyclic and Hn ! H , then
H is an increasing union of cyclic groups; in particular, one can replace Hn by H 0n DT1
kDnHk and assume that Hn � HnC1.

It is easy to see that SubaG , the set of all closed abelian subgroups of G, is closed in
SubG , but the same need not be true for SubcG , the set of discrete cyclic subgroups; e.g.
G D R. Even if G is discrete, SubcG need not be closed, e.g. G is the group consisting of
all roots of unity in the unit circle endowed with the discrete topology, and for a prime p,
the groups Hn of pnth roots of unity are cyclic, n 2 N, but Hn !

S
n2N Hn, which is

not cyclic. From now on, for a group G, when we say that SubcG is closed, we mean that
SubcG is closed in SubG . In [23], for a discrete groupG, various conditions for SubcG to be
closed are discussed. We now state and prove an elementary lemma which gives one more
useful condition involving quotient groups. Note that a discrete group is second countable
if and only if it is countable.
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Lemma 2.1. Let G be a discrete countable group and let H be any normal subgroup
of G. If SubcH and SubcG=H are closed, then SubcG is closed. In particular, if H has finite
index in G and SubcH is closed, then SubcG is closed.

Proof. If G is finite, then SubG is finite and discrete and hence SubcG is closed. Suppose
that G is not finite. If H D ¹eº or H D G, then the assertions are obvious.

Now suppose that H is a proper subgroup of G. Let  W G ! G=H be the natural
projection. Suppose that SubcH and SubcG=H are closed. Let Gxn be the cyclic group gen-
erated by xn 2 G, n 2 N, such that Gxn ! L for some L 2 SubG . By [23, Lemma 3.2],
L D

S
n Gn, where Gn D

T1
kDn Gxk . In particular, L is an increasing union of cyclic

groups Gn. Then  .L/ D
S
n  .Gn/, an increasing union of cyclic groups, and hence

 .Gn/!  .L/ in SubG=H . As SubcG=H is closed,  .L/ is cyclic, and hence  .L/ D
 .Gn/ for all large n. Therefore,LH DGnH , and henceLDGn.L\H/ for all large n.
Since L \H D

S
n.Gn \H/, Gn \H ! L \H in SubH . As each Gn \H is cyclic

and SubcH is closed, we have that L \H is cyclic, and hence that Gn \H D L \H for
all large n. Therefore, we get that L D Gn for all large n, and L is cyclic. This implies
that SubcG is closed.

If G=H is finite, then so is SubG=H . Therefore, the second statement follows easily
from the first.

For a locally compact (Hausdorff) group G, recall that there is a natural group action
of Aut.G/, the group of automorphisms of G, on SubG as follows:

Aut.G/ � SubG ! SubG I .T;H/ 7! T .H/; T 2 Aut.G/; H 2 SubG :

The map H 7! T .H/ is a homeomorphism of SubG for each T 2 Aut.G/ [14, Proposi-
tion 2.1], and the corresponding map from Aut.G/ to Homeo.SubG/ is a homomorphism.

If T is an automorphism of G which is second countable, and H is a closed normal
T -invariant subgroup, then that T acts distally (resp. expansively) on SubG implies that
T acts distally (resp. expansively) on both SubH and SubG=H (see [35, Lemma 3.1] and
[25, Lemma 2.3]). However, the converse is not true as illustrated by [35, Example 3.2] and
[25, Example 4.1]. In fact, Example 3.2 in [35] shows that for G D R2 and a subgroup
H D R, T jH D Id and T acts trivially on G=H , but T does not act distally on SubG .
However, the following elementary but useful lemma shows that in such a case T acts
trivially on G=Z.H/, and in particular that T D Id if Z.H/ D ¹eº. We include a short
proof for the sake of completeness.

Lemma 2.2. LetG be a locally compact (Hausdorff) group and letH be a closed normal
subgroup. Let T 2 Aut.G/ be such that T jH D Id. Then T acts trivially on G=ZG.H/.
In particular, if T acts trivially on G=H , then T acts trivially on G=Z.H/.

Proof. Let g 2 G and h 2 H . As H is normal and T jH D Id, we have that

ghg�1 D T .ghg�1/ D T .g/hT .g�1/:
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Therefore, g�1T .g/ centralises every h2H . This implies that T .g/2gZG.H/. Moreover,
if T acts trivially on G=H , then T .g/ 2 g.H \ ZG.H// D gZ.H/, g 2 G; i.e., T acts
trivially on G=Z.H/.

3. Structure and properties of lattices in connected Lie groups

In this section, we discuss the structure and some properties of lattices in connected Lie
groups and prove some useful results. Recall that a discrete subgroup � of a locally com-
pact group G is a lattice in G if G=� carries a finite G-invariant measure. It is shown by
Mostow [22] that any lattice in a connected solvable Lie groupG is co-compact inG. IfG
is a simply connected nilpotent Lie group which admits a lattice, then any automorphism
of the lattice extends to a unique automorphism of G (see Theorem 2.11 and Corollary 1
following it in [26]). In general, a lattice need not be co-compact and an automorphism
of a lattice need not extend (uniquely) to an automorphism of the ambient group. If a
connected Lie group admits a lattice, then it is unimodular. However, there are connec-
ted unimodular Lie groups which do not admit a lattice (see e.g. [26, Theorem 2.12 and
Remark 2.14]). Any lattice in a connected Lie group is finitely generated (see Remark 3.4).
We now define polycyclic groups, many of which arise as lattices in solvable Lie groups.

A group G is polycyclic if it admits a finite sequence of subgroups G D G0 � G1 �
� � � �Gk D ¹eº such that eachGiC1 is normal inGi andGi=GiC1 is cyclic, 0� i � k � 1.
Moreover, if Gi=GiC1 is infinite, 0 � i � k � 1, then G is said to be strongly polycyclic.

Polycyclic groups are finitely generated and solvable. Every infinite polycyclic group
admits a subgroup of finite index which is strongly polycyclic. Also, every subgroup of a
polycyclic (resp. strongly polycyclic) group is polycyclic (resp. strongly polycyclic) and
hence it is finitely generated. It is easy to see that a group is polycyclic if and only if it
is solvable and every subgroup of it is finitely generated. In particular, a finitely gener-
ated nilpotent group is polycyclic since all its subgroups are finitely generated. It follows
from Corollary 3.9 of [26] that any discrete subgroup of a connected solvable Lie group is
polycyclic. The following lemma extends this to any discrete solvable subgroup of a con-
nected Lie group. The lemma is essentially known for subgroups of a connected solvable
Lie group [26] (see also [13]) and the statement (1) below is proven in [17], while (2) and
(3) may be known in general but we give a short proof for the sake of completeness.

Lemma 3.1. Let H be a closed solvable subgroup of a connected Lie group. Then the
following hold:

(1) H is compactly generated;

(2) H=H 0 is polycyclic;

(3) H admits a normal subgroup L of finite index such that ŒL;L� is nilpotent.

Proof. Let G be a connected Lie group containing H . As observed above, (1) is already
known [17, Main Theorem]. As H is compactly generated, H=H 0 is a discrete finitely
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generated solvable group, and every subgroup ofH=H 0 is also finitely generated since it is
a quotient of a closed solvable subgroup of G. Therefore,H=H 0 is polycyclic. Therefore,
(2) holds. Now we prove (3).

Suppose that G is a closed linear Lie group; i.e., G is a closed subgroup of GL.n;R/
for some n 2 N. Let zH be the Zariski closure of H in GL.n;R/. Then zH is solvable and
it has finitely many connected components. Hence L D H \ . zH/0 is a normal subgroup
of finite index in H and it is contained in . zH/0. Then

ŒL;L� �
�
. zH/0; . zH/0

�
which is nilpotent [26, Proposition 3.11]. That is, (3) holds in this case.

Let G be any connected Lie group. If H is central in G, then (3) holds trivially. Now
suppose that H is not central in G. Let � W G ! GL.G / be defined as �.g/ D Ad.g/,
g 2 G, where G is the Lie algebra of G, which is a finite dimensional real vector space.
Then ker� D Z.G/, the center of G, and �.H/ is a closed solvable subgroup of �.G/,
which is a closed connected linear Lie group. As shown above, �.H/ has a normal sub-
group (say) L0 of finite index such that ŒL0; L0� is nilpotent. Sine L0 is also open in �.H/,
�.H 0/ � �.H/

0
� L0, and L0�.H/ is open in �.H/; and hence it is equal to �.H/. As

.L0�.H//=L0 is finite, L00 WD L0 \ �.H/ is a normal subgroup of finite index in �.H/.
Let L D ��1.L00/ \H . Then H 0 � L and L is an open normal subgroup of finite index
in H . Moreover, ŒL; L� is nilpotent as Œ�.L/; �.L/� is so and ker � D Z.G/. Thus, (3)
holds.

Any closed subgroup H of a connected Lie group admits a unique maximal solvable
normal subgroup [26, Corollary 8.6], and we denote it byHrad. Note thatHrad is closed and
characteristic in H . In particular, a lattice � in a connected Lie group G admits a unique
maximal solvable normal subgroup �rad. Moreover, �rad is polycyclic by Lemma 3.1. The
following proposition about certain properties of lattices in connected Lie groups will
be useful. If G is a connected solvable Lie group, then the statements (b) and (c) of the
proposition are easy to show. The statement (d) below may be known.

Proposition 3.2. Let � be a lattice in a connected Lie group G. Then the following state-
ments hold.

(a) The unique maximal solvable normal subgroup �rad of � is polycyclic.

(b) There exists a unique maximal nilpotent normal subgroup �nil in � . If �nil is finite,
then �rad is finite.

(c) If �rad is finite, then the following hold: the radical of G is compact and central
in G. The group G is either compact and abelian, or G is reductive and it is
an almost direct product of a compact group and a semisimple group with finite
center. Moreover, G admits a finite central subgroup F such that G=F is linear.

(d) If G is semisimple and has no compact factors, then �rad D Z.�/ � Z.G/ and it
is a subgroup of finite index in Z.G/.
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Proof. (a) This follows from Lemma 3.1 (2).
(b) Any nilpotent normal subgroup of � is contained in �rad. As �rad is polycyclic, by

[26, Corollary 2 to Lemma 4.7], �rad has a unique maximal nilpotent normal subgroup,
which is also the unique maximal nilpotent normal subgroup of � .

Now suppose that �nil is finite. We show that �rad is also finite. If possible suppose that
�rad is infinite. Since �rad is polycyclic, it has a normal subgroup � 0 of finite index which
is strongly polycyclic and Œ� 0; � 0� is nilpotent (see [26, Lemma 4.6 and Corollary 4.11]).
Since Œ� 0; � 0� � �nil which is finite, and the former is torsion-free, we get that Œ� 0; � 0� is
trivial and hence � 0 is abelian. Therefore, � 0 � �nil is finite. Since � 0 is torsion-free, it is
trivial. This implies that �rad is finite.

(c) Now suppose that �rad is finite. We first show that the radical R of G is compact.
Suppose thatG is solvable. ThenG D R, � D �rad, and � is finite. By [26, Theorem 3.1],
G is compact. Then G is abelian [18, Lemma 2.2]. In this case, G itself is linear [16,
Chapter XVIII, Theorem 3.2]. Now suppose that G is not solvable. Let G D SR be a Levi
decomposition, where S is a Levi subgroup of G. Note that S is a connected semisimple
Lie subgroup.

Let K be the maximal compact normal subgroup of G. Suppose that K0 is trivial.
Then we show that S does not admit any nontrivial compact factor which centralises R. If
possible, suppose that S has a nontrivial compact factor (say) C which centralises R. As
C is normal in S and it centralises R, it is normal in G. This implies that C � K0, which
leads to a contradiction. Therefore, S does not have any compact factor centralising the
radicalR. By [26, Corollary 8.28], � \R is a lattice inR and it is normal in � . Therefore,
� \ R � �rad, and hence it is finite. This implies that R is compact since � \ R is co-
compact in R [26, Theorem 3.1].

Suppose that K0 is nontrivial. As K is compact and normal in G, � \ K is a finite
normal subgroup of � . Let � WD Z�.� \ K/. Then � is a normal subgroup of finite
index in � , and hence it is a lattice in G. Moreover, � \ K is finite and central in �.
From .a/, we get that � admits a unique maximal solvable normal subgroup �rad, which
is characteristic in�, and hence normal in � . Therefore,�rad � �rad and hence it is finite.
Let � WG!G=K be the natural projection. ThenR0 WD�.R/ is the radical of �.G/. Since
�.G/ has no nontrivial compact normal subgroup, �.�/ \ R0 is a lattice in R0 and it is
normal in �.�/. As ker� \� is central in �, we get that � \ ��1.R0/ D � \KR is a
solvable normal subgroup of�, and hence it is finite. Now �.�/\R0 is finite, and being a
lattice inR0, it is cocompact inR0. Therefore,R0 is compact. Since �.G/ has no nontrivial
compact normal subgroups, R0 D �.R/ is trivial, and hence R � K and it is compact.

NowR is compact, and by [18, Lemma 2.2],R is abelian. AsR is normal inG, and the
latter is connected, by [18, Theorem 4], R is central in G. For the Lie algebra G of G and
Ad W G ! GL.G /, we have that Ad.G/ D Ad.S/ is semisimple and G is reductive. Also,
G is an almost direct product of S andR, and S \R is central inG. Let S DK 0S 0, where
K 0 is a product of all compact factors of S (K 0 is trivial if S has no compact factors), and
S 0 is a connected semisimple Lie group without compact factors. Then K 0R � K0. Since
K \ S 0 is normal in S 0, it is closed in S 0 [27]. Therefore, K \ S 0 is compact, and hence
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it is finite and central in S 0 (as S 0 has no compact factors). In particular, K 0R D K0 and
G D KS 0 D K0S 0, an almost direct product.

Now we show that the center of �.S 0/ is finite, where � W G ! G=K is as above.
This would also imply that Z.S 0/ is finite and also that Z.S/ is finite. We know that
� \K � Z.�/ and �.�/ is a lattice in �.G/ D �.S 0/. Therefore,

�.�/rad D �.�rad/ � �.�rad/

is finite, and henceZ.�.�// is finite. Since �.S 0/ is a semisimple group without compact
factors, by [26, Corollary 5.18],Z.�.�//�Z.�.S 0//. Moreover, by [26, Theorem 5.17],
Z.�.S 0//�.�/ is discrete, and hence Z.�.�// is a subgroup of finite index in Z.�.S 0//.
This implies that Z.�.S 0// is finite. Here, ker � \ S 0 D K \ S 0, and as noted above, it
is finite and central in S 0. This, together with the fact that �.Z.S 0// � Z.�.S 0// is finite,
implies that Z.S 0/ is finite. Therefore, Z.S/ is finite. For Ad W G ! GL.G / as above,
Ad.S/ is closed in GL.G / and it is isomorphic to S=.S \ Z.G//. Let F D S \ Z.G/.
Then F is finite and S=F , being isomorphic to Ad.S/, is linear. Now the radical of
G=F is compact and abelian, and the Levi subgroup of G=F is linear. Hence by [16,
Chapter XVIII, Theorems 3.2 and 4.2], G=F is linear.

(d) LetG be a semisimple group without compact factors. As observed above,Z.�/�
Z.G/ and it is a subgroup of finite index in Z.G/ [26, Theorem 5.17 and Corollary 5.18].
Let  W G! G=Z.G/ be the natural projection, where Z.G/, the center of G, is discrete.
Then for some n 2 N,  .G/ is a closed subgroup of GL.n;R/ which is almost algebraic
(i.e.,  .G/ is a subgroup of finite index in an algebraic subgroup of GL.n;R/), and  .G/
has trivial center. By [26, Theorem 5.17], Z.G/� is closed, and hence  .�/ is a lattice in
 .G/. LetL be the Zariski closure of  .�rad/ in GL.n;R/. ThenL has finitely many con-
nected components and L0 �  .G/ as  .G/ is almost algebraic. Moreover,  .�/ norm-
alises L, and hence it normalises L0. As G has no compact factors,  .�/ is Zariski dense
in  .G/. Hence, the preceding assertion implies that  .G/ normalises both L and L0.
Now L0 is a connected solvable normal subgroup of  .G/ and the latter is semisimple.
Therefore, L0 is trivial, and hence L as well as L \  .G/ are finite. Since L \  .G/ is
also normal in  .G/, it is central in  .G/. Therefore, L \  .G/ is trivial, hence we get
that �rad � Z.G/, and that �rad D Z.�/ is a subgroup of finite index in Z.G/.

The following proposition about certain aspects of the structure of lattices in connected
Lie groups will be very useful in proving the main results about expansivity and distality.

Proposition 3.3. Let � be a lattice in a connected Lie group G and let �rad be the unique
maximal solvable normal subgroup of � . Then the following hold.

(1) Either �=�rad is finite or � admits a normal subgroup ƒ of finite index such that
�rad � ƒ and ƒ=�rad is a lattice in a connected semisimple Lie group G0 with
finite center and without compact factors, where G0 is a quotient group of G.

(2) �=�rad admits a torsion-free subgroup � 0 of finite index with the property that the
set Rg of roots of g in � 0 is finite for all g 2 � 0.
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Proof. (1) Step 1. Suppose that G is a connected semisimple Lie group without compact
factors. By Proposition 3.2 (d), �rad D Z.�/ � Z.G/ and it is a subgroup of finite index
in Z.G/. Then G=�rad is a connected semisimple Lie group without compact factors.
Moreover, it has finite center, sinceZ.G=�rad/D Z.G/=�rad (the latter statement follows
from the fact that the center of any connected semisimple Lie group is discrete). Let G0 D
G=�rad. Then �=�rad is a lattice in G0.

Step 2. We now note a useful general statement: for any closed normal subgroup H
of G and a natural projection � W G ! G=H , if �.�/ is a lattice in �.G/ and � \H is
solvable, then �.�rad/ D �.�/rad. One way inclusion �.�rad/ � �.�/rad is obvious. The
equality follows from the facts that � \H , the kernel of �j� , is a solvable normal sub-
group of � , which in turn implies that the inverse image of any solvable normal subgroup
of �.�/ under �j� is solvable and normal in � .

Step 3. Let G be any connected Lie group. If G is solvable, then so is � , and hence
� D�rad and (1) holds. LetK be the unique maximal compact connected normal subgroup
of G and let �1 D Z�.� \ K/. Then �1 is a normal subgroup of finite index in � and,
�1 \ K is central in �1. Hence �1 \ K is contained in �rad. Let �2 D �1�rad and let
F D �2 \ K. Then �2 is a normal subgroup of finite index in � . We claim that F is
solvable.

Let � W�2!�2=�1 be the natural projection. Then �.�2/D �.�rad/ is solvable. Since
ker�\ F D �1 \K is abelian, it follows that F is solvable. Replacing �1 by �2 we may
assume that �rad � �1 and �1 \ K is a finite solvable group which is normal in � , and
contained in �rad. Moreover, .�1/rad, being characteristic in �1, is normal in � . Therefore,
.�1/rad D �rad.

Let � W G ! G=K be the natural projection. Since ker� \ �1 D K \ �1 is solvable,
it follows from Step 2 that �.�rad/ D �.�/rad. Observe that �.R/ is the radical of G=K.
Since G=K has no nontrivial compact normal subgroup, it follows from [26, Corollary
8.28] that �.�1/\ �.R/ is a lattice in �.R/. Since �.�1/\ �.R/ is solvable and normal
in �.�/, we get that �.�1/ \ �.R/ � �.�rad/ and ��1.�.�1/ \ �.R// \ �1 � �rad.

Step 4. Let �1 W G ! G=KR be the natural projection, where R is the radical of G.
Since G=K has no nontrivial compact normal subgroup, arguing as in the proof of Pro-
position 3.2 (c), we get from [26, Corollary 8.28] that �1.�1/ is a lattice in G=KR which
is semisimple. Let K 0 be the product of all compact (simple) factors of G=KR (we
choose K 0 to be trivial if G=KR has no compact factors). Then K 0 is normal in �1.G/.
Moreover, �1.�/ \ K 0 is finite. Arguing as in Step 3, we get that �1.�/, and hence
� has a normal subgroup (say) ƒ1 of finite index such that �1.ƒ1/ \ K 0 is central in
�1.ƒ1/. Let ƒ D ƒ1 \ �1. Then ƒ is normal in � as well as in �1 and �=ƒ is finite.
As �1.�rad/ � �1.�/rad, arguing as in Step 3, we get that �1.ƒ�rad/ \ K

0 is a solvable
normal subgroup of �1.�/.

We know from the latter part of Step 3 that ��1.�.�1/ \ �.R// \ �1 � �rad; i.e.,
..�1 \ RK/K/ \ �1 D .�1 \ KR/.K \ �1/ � �rad. Therefore, �1 \ KR � �rad. This
implies in particular that ker�1 \ƒ�rad � KR \ �1 � �rad and ker�1 \ƒ�rad is a solv-
able normal subgroup in � as well as in �1. Replacing ƒ by ƒ�rad and arguing as in



R. Palit, M. B. Prajapati, and R. Shah 196

Step 3, we get that ƒ \ K (resp. �1.ƒ/ \ K 0) is a solvable normal subgroup of both �
and � \K (resp. �1.�/ and �1.�/ \K 0).

Step 5. Note that ƒ is a lattice in G, it is normal in � and �rad � ƒ, and hence �rad D

ƒrad. As observed above,ƒ\ ker�1 D ƒ\KR is solvable, hence it follows from Step 2
that �1.ƒrad/ D �1.ƒ/rad. Also, �1.ƒ/ \ K 0, being solvable and normal in �1.�/, is
contained in �1.ƒrad/. Therefore, by Step 2, we have that ��11 .K 0/ \ƒ � ƒrad. Let L D
��11 .K 0/. ThenL is a closed normal subgroup ofG,KR�L,L=R is compact. Moreover,
either G D L or G=L is a connected semisimple Lie group without compact factors. We
also have that L \ƒ � ƒrad which is solvable.

If G D L, then ƒ is solvable, ƒ D �rad and �=�rad is finite and (1) holds in this
case. Now suppose G ¤ L. Let �2 W G ! G=L be the natural projection. Since �2.G/ D
�1.G/=K

0 and �1.ƒ/ is a lattice in �1.G/, we get that both �2.�/ and �2.ƒ/ are lattices
in �2.G/. By Step 2, we have that �2.ƒrad/ D �2.ƒ/rad.

As shown in Step 1 above (see also the proof of Proposition 3.2 (d)), �2.ƒ/rad D

Z.�2.ƒ// � Z.�2.G//. Therefore, �2.ƒrad/D Z.�2.ƒ// which is central in �2.G/. Let
M D ��12 .Z.�2.ƒ///. Then M D ƒrad ker�2 D ƒradL. This, together with the fact that
L\ƒ is solvable, implies thatM \ƒD ƒrad.L\ƒ/D ƒrad. Now G=M is isomorphic
to �2.G/=�2.ƒrad/, which is a connected semisimple group with finite center and without
compact factors. Moreover, .ƒM/=M is a lattice inG=M and it is isomorphic toƒ=ƒrad.
As ƒrad D �rad, we get that ƒ=�rad is also a lattice in G=M . Let G0 D G=M . Then (1)
holds.

(2) If �=�rad is finite, then we can take � 0 to be trivial and the assertion follows
immediately. Now suppose that �=�rad is infinite. From (1), there exists a normal sub-
group ƒ of finite index in � such that ƒrad D �rad and ƒ=�rad is a lattice in a connected
semisimple Lie groupG0 with finite center and without compact factors. Letƒ0 Dƒ=�rad

and let  W G0 ! G0=Z.G0/ be the natural projection, where Z.G0/ is the center of G0.
As Z.G0/ is finite,  .ƒ0/ is a lattice in  .G0/. Since G0=Z.G0/ is a semisimple linear
Lie group with trivial center,  .ƒ0/ is finitely generated [21, Section 4.7, Chapter 4]. We
get from Selberg’s lemma that  .ƒ0/ admits a torsion-free subgroup (say) ƒ00 of finite
index. Since .ƒ0/rad D ¹eº, we have thatƒ0 \Z.G0/D ¹eº, and hence  �1.ƒ00/\ƒ0 is a
torsion-free subgroup of finite index in ƒ0. This, together with [23, Lemma 3.13], implies
that ƒ0 D ƒ=�rad admits a torsion-free subgroup (say) � 0 of finite index such that the set
Rg of roots of g in � 0 is finite for every g 2 � 0. Sinceƒ is a subgroup of finite index in � ,
we have that � 0 is a subgroup of finite index in �=�rad.

Remark 3.4. It is well known that any lattice � in a connected Lie group is finitely
generated [26, Remarks 6.58]; though the proof is difficult to find except in the case of
linear semisimple groups [21, Section 4.7, Chapter 4] or that of solvable Lie groups [26,
Corollary 3.9]. Using Proposition 3.3 (1), one can show that � is finitely generated as
follows: since �rad is polycyclic, and hence finitely generated, it is enough to show that
�=�rad is finitely generated. By Proposition 3.3 (1), replacing � by a subgroup of finite
index, we get that �=�rad is either finite or a lattice in a connected semisimple Lie group
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G0 with finite center Z.G0/. In the first case, it is obvious. In the second case, as in the
proof of Proposition 3.3 (2) above, we get that the image of �=�rad is a lattice in the
connected semisimple linear group G0=Z.G0/, and hence the image is finitely generated.
Since Z.G0/ is finite, It follows that �=�rad is finitely generated.

For a lattice � in a connected Lie group G, it is shown in [23] that Subc� is closed
in Sub� if G is either solvable or semisimple. Here, we generalise this to lattices in any
connected Lie group.

Corollary 3.5. Let G be a connected Lie group and let � be a lattice in G. Then Subc� is
closed.

Proof. By Lemma 3.1 (2), �rad is polycyclic, every subgroup of it is finitely generated
and, by [23, Lemma 3.3], Subc�rad

is closed. From Proposition 3.3 (1), we have that � has
a normal subgroup ƒ of finite index such that �rad � ƒ and ƒ=�rad is either finite or it is
a lattice in a connected semisimple Lie group. In the first case, Subcƒ=�rad

is finite, and in
the second case, it is closed by [23, Lemma 3.14]. As �=ƒ is finite, so is Sub�=ƒ. Now
by Lemma 2.1, Subc� is closed.

The following useful proposition holds for simply connected nilpotent groups by [26,
Theorem 2.11]. The second statement is known for connected semisimple Lie groups
without compact factors (see [26, Corollary 5.18]); the first statement should also be
known in this case as it follows from the Borel density theorem. The proposition gen-
eralises these two special cases.

Proposition 3.6. Let G be a connected Lie group and let � be a lattice G. Suppose that
the radical of G is simply connected and nilpotent and a Levi subgroup of G is either
trivial or has no compact factors. Then the following hold:

(1) if � 2 Aut.G/ is such that � j� D Id, then � D Id;

(2) the centraliser of � in G is the center of G.

Proof. For any x 2 ZG.�/, the centraliser of � in G, the inner automorphism inn.x/ of
G acts trivially on � and (1) implies that inn.x/ D Id, and hence x 2 Z.G/, the center
of G; i.e., (2) holds. Now we prove (1). Let � 2 Aut.G/ be such that � j� D Id. We want
to show that � D Id.

Suppose that G is nilpotent. As G is simply connected, any automorphism of �
extends uniquely to an automorphism of G [26, Theorem 2.11]. Therefore, � D Id and
(1) holds in this case.

Now suppose that G is semisimple. Then G has no compact factors. Recall that
Aut.G/ is identified with a subgroup of GL.G /, under the map T 7! d T , T 2 Aut.G/,
and the topology inherited by it as a subspace of GL.G / coincides with the compact-
open topology and it is a Lie group. Note that G is a real vector space of dimension
(say) n. Let M.G / be the space of all linear maps on G . Then M.G / is a real vector space
of dimension n2 and GL.G / � M.G /. Let � W G ! GL.M.G // be defined as given by
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�.g/.w/ D Ad.g/wAd.g�1/, g 2 G, w 2 M.G /. Since Ad W G ! Ad.G/ � GL.G / is a
continuous homomorphism, and the conjugation action of GL.G / on M.G / is a continu-
ous linear group action, we get that � is a continuous representation of G on M.G /. Now
�.g/.d �/ D Ad.g�.g�1// d � , g 2 G. Then �.g/.d �/ D d � for all g 2 � . Since � is a
lattice in G which is semisimple and has no compact factors, we get by the Borel density
theorem that �.g/.d �/ D d � for all g 2 G. This implies that Ad.g�.g�1// D Id, and
hence that g�.g�1/ 2 Z.G/ for all g 2 G. Since G is connected, � 2 Aut.G/, and Z.G/
is discrete, it follows that �.g/ D g for g 2 G.

Now suppose that G is neither nilpotent nor semisimple. We have a Levi decompos-
ition G D SN , where S is a (semisimple) Levi subgroup without compact factors and
N is a simply connected nilpotent normal closed subgroup. Let � W G ! G=N be the
natural projection, where G=N is a connected semisimple Lie group isomorphic to �.S/.
Then �.�/ is a lattice in �.G/ [26, Corollary 8.27 or 8.28]. As � keeps N invariant, we
have an automorphism x� of �.G/ corresponding to � , which acts trivially on �.�/. As
�.G/ D �.S/ has no compact factors, we get from above that x� D Id; i.e., � acts trivially
on G=N . We also have that � \N is a lattice in N [26, Corollary 8.28]. As � j� D Id and
� \N is a lattice in N , � acts trivially on N . Now from Lemma 2.2, we have that � also
acts trivially on G=Z.N/, where Z.N/ is the center of N .

Since S is a Levi subgroup, so is �.S/. We also have that �.S/ � SZ.N/. We now
show that SZ.N/ is closed. Note that G=N is isomorphic to S=.S \N/ and S \N is a
central subgroup of S , and hence S \ N has a subgroup of finite index which is central
in G. As N is simply connected and nilpotent, Z.G/\N D Z.G/0 � Z.N/. Moreover,
N=Z.G/0 is also simply connected. Hence we get that S \N � Z.G/0 � Z.N/. Now it
follows easily that SZ.N/ is closed. As S and �.S/ are also Levi subgroups of SZ.N/,
we have that �.S/ D aSa�1 for some a 2 Z.N/ [16]. Therefore, inn.a/�1 ı �.S/ D S .
Let s 2 S be fixed. Now s�1a�1�.s/a 2 S . Since �.s/ 2 sZ.N / andZ.N/ is normal inG,
we get that s�1a�1�.s/a 2 Z.N/. Let AD ¹s�1a�1�.s/a j s 2 Sº. Then A is connected,
e 2 A, and A � S \ Z.N/; the latter is a discrete (central) subgroup of S . This implies
thatAD ¹eº. Therefore, �.s/D asa�1 for all s 2 S . Since a 2Z.N/,G D SN , and � acts
trivially onN , we get that �.g/D aga�1 for all g 2G, i.e., � D inn.a/, where a 2Z.N/.

Note that Z.N/ is isomorphic to Rd for some d 2 N and it is normal in G. There
is a natural action of G on Z.N/ by conjugation, which factors through �.G/ D �.S/.
Moreover, if g 2 � , then �.g/ D g D aga�1, and hence gag�1 D a. Since a 2 Z.N/,
the action of �.�/ on Z.N/ fixes a. As �.�/ is a lattice in �.S/ which is semisimple and
has no compact factors, we get by the Borel density theorem that the action of �.G/ on
Z.N/ fixes a. This implies that gag�1 D a for all g 2 G; i.e., � D Id and (1) holds.

The following useful lemma generalises Lemma 3.15 and Theorem 3.16 ((5))(4)) in
[23] which are for connected semisimple Lie groups. Note that the proof of (1) (resp. (2))
below has similar arguments as in [23] but uses Proposition 3.6 (2) instead of Corollary
5.18 in [26] (resp. (1) below instead of Lemma 3.15 in [23]). We give a proof for the sake
of completeness.
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Lemma 3.7. Let G be a connected Lie group. Suppose that the radical of G is nilpotent
and the maximal compact connected normal subgroup of a Levi subgroup of G is con-
tained in the maximal compact normal subgroup of G. Let � be a lattice in G and let � 0

be a subgroup of finite index in � . Then

(1) Z.�/ \ � 0 is a subgroup of finite index in Z.� 0/;

(2) If T 2 Aut.�/ is such that T j� 0 D Id, then T n D Id for some n 2 N.

Proof. The conditions imply that G has a Levi decomposition G D SN , where N is the
nilradical of G and S is either trivial or its maximal compact connected normal subgroup
is contained in the maximal compact connected normal subgroup (say) K of G. Note that
� 0, being a subgroup of finite index in the lattice � , is also a lattice in G.

(1) If S is either trivial or it has no compact factors, and N is simply connected and
nilpotent, we have from Proposition 3.6 (2) that ZG.� 0/ � Z.G/, hence Z.� 0/ � Z.�/,
and hence Z.�/ \ � 0 D Z.� 0/.

Let  W G ! G=K be the natural projection, where K is the maximal compact con-
nected normal subgroup of G. Then G=K D  .S/ .N /, where  .N/ is nilpotent, and
it is simply connected, as the largest compact normal subgroup C of N is contained in
K and N=C is simply connected. Here,  .S/ is either trivial or it is a semisimple Levi
subgroup, and the condition on S implies that  .S/ has no compact factors. As  .�/
and  .� 0/ are lattices in  .G/, we get as above that Z. .�// \  .� 0/ D Z. .� 0//.
Therefore,  .Z.� 0// � Z. .� 0// � Z. .�//. Let x 2 Z.� 0/ and g 2 � be fixed. Then
 .x/ .g/ .x�1/ D  .g/, and hence xg D xgx�1g�1 2 K.

We first assume that � 0 is normal in � . Then Z.� 0/, and hence Z.� 0/ \K is normal
in � and xg 2 Z.� 0/ \K. Here, Z.� 0/ \K is finite. Let n be the order of Z.� 0/ \K.
As x 2 Z.� 0/ and it commutes with xg , we get that .xg/n D xngx�ng�1 D e. Since this
holds for all g 2 � and x 2 Z.� 0/, we have that xn 2 Z.�/ for all x 2 Z.� 0/. As Z.� 0/
is compactly generated and abelian, and Z.�/ \ � 0 � Z.� 0/, it follows that Z.�/ \ � 0

has finite index in Z.� 0/.
Now suppose that � 0 is not normal in � . Then � 0 has a subgroup (say) � 00 of finite

index which is normal in � . Now from above, we have that Z.� 00/=.Z.�/ \ � 00/ and
Z.� 00/=.Z.� 0/ \ � 00/ are finite. As Z.� 0/=.Z.� 0/ \ � 00/ is also finite, it is easy to see
that Z.� 0/=.Z.�/ \ � 0/ is finite.

(2) Let T 2 Aut.�/ be such that T j� 0 D Id. Passing to a subgroup of finite index of � 0,
we may assume that � 0 is normal inG. Replacing T by T l for some l 2N, we may assume
that T l acts trivially on �=� 0. By Lemma 2.2, T l acts trivially on �=Z.� 0/. From (1),
we have that Z.�/ \ � 0 is a subgroup of finite index (say) m in Z.� 0/. Let x 2 � . Then
T l .x/D xy for some y 2Z.� 0/, and T lm.x/D xym, where ym 2Z.�/\� 0. Therefore,
xym D ymx. Let k be the index of � 0 in � . Then

T lm.xk/ D xkykm D xk :

Therefore, ykm D e. Now T klm.x/ D xykm D x. Since this holds for all x 2 � , we have
that T n D Id for n D klm.
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Now we illustrate by several examples that the conditions in Proposition 3.6 and
Lemma 3.7 are necessary. Observe that Lemma 3.7 holds for lattices in semisimple Lie
groups as well as for those in nilpotent Lie groups. Example 3.11 in [23] shows that there
is a simply connected solvable Lie group G which admits two lattices �1 � �2, such that
�1 is abelian while Z.�2/ D Z.G/ has infinite index in �1. Example 4.8 shows that for a
nontrivial compact subgroupK of GL.d;R/, d � 3, the groupG DK Ë Rd with a lattice
� �Rd admits a certain element z 2Rd , which is not centralised byK. SinceK could be
chosen to be abelian, and hence G could be solvable. Both the above examples illustrate
that the condition that the radical is nilpotent is necessary in both. Since K in Example
4.8 could also be chosen to be semisimple, but it is not normal in G, the condition that
a semisimple Levi subgroup has no compact factors is necessary in Proposition 3.6, and
the condition that the maximal compact subgroup of a Levi subgroup of G is contained
in the maximal compact normal subgroup of G is necessary in Lemma 3.7. One can also
take G D K �H , where K is any nontrivial compact connected non-abelian Lie group
(which has a compact semisimple Levi subgroup) and H is a connected semisimple Lie
group (e.g. H D SL.n;R/ for some n � 2) or H is isomorphic to Rd , for some d � 3,
then any lattice � in H is a lattice in G and K � ZG.�/ but K 6� Z.G/. Hence the con-
dition that a Levi factor of G has no compact factors is necessary in Proposition 3.6. If
G D H=D, where H is the Heisenberg group of 3 � 3 strictly upper triangular real (uni-
potent) matrices and D D GL.3;Z/ \ Z.H/ is a discrete central subgroup of H which
is isomorphic to Z, then Z.G/ D Z.H/=D is compact. Let � W H! G D H=D be the
natural projection and let � D GL.3;Z/ \H. Then � \Z.H/ D D and �.�/ is a lattice
inG. Now �.�/ is abelian and it is easy to show thatZG.�.�//D �.�/�Z.G/¤Z.G/.
Thus the condition that the (nil)radical is simply connected in Proposition 3.6 is necessary.

4. Distal actions of automorphisms of lattices � in Lie groups on
Sub�

In this section, for a lattice � in a connected Lie group, we discuss and characterise auto-
morphisms of � which are in class .NC/ and also those which act distally on Subc� . For
a certain class of connected Lie groups G, we characterise those automorphisms of G
which keep a lattice � invariant and act distally on Subc� . We first state and prove some
useful elementary results for countable discrete groups. Note that any finitely generated
abelian group has a unique maximal finite subgroup. We denote by Gx the (cyclic) group
generated by x in a group.

Recall our assumption that all our groups here are second countable, which enables
us to give a metric on SubG . Any discrete group is second countable if and only if it
is countable. Any discrete subgroup of a connected Lie group is countable. Any finitely
generated group and, in particular, any polycyclic group is countable.

Lemma 4.1. Let G be a discrete countable group and let T 2 Aut.G/ be such that T 2
.NC/. Let H be a normal subgroup of G such that T jH D Id. Let x be a nontrivial
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torsion element in G such that T .x/ 2 xH . Then there exist l; n 2 N such that xl ¤ e
and T n.xl / D xl .

Moreover, if Z.H/ is finitely generated, then for the order m of the unique maximal
finite group ofZ.H/, the following holds: for every nontrivial torsion element x 2 G with
T .x/ 2 xH , there exists l 2 N, which depends on x, such that Tm.xl / D xl ¤ e.

Proof. Let x 2 G be a nontrivial torsion element and let nx 2 N n ¹1º be the smallest
number such that xnx D e. Then T .xj /D xjyj for some yj 2H , 1 � j < nx . If yj D e
for some j with 1 � j < nx , then T .xj / D xj ¤ e and the first assertion holds for
l D j and n D 1. Suppose that yj ¤ e for all j , 1 � j < nx . Now we show that yl
has finite order for some l such that 1 � l < nx . Since T 2 .NC/ and SubG is compact,
T nk .Gx/! A ¤ ¹eº for some unbounded monotone sequence ¹nkº � N. Let a 2 A be
such that a ¤ e. Since G is discrete and xnx D e, passing to a subsequence of ¹nkº,
we get that for all k, T nk .xl / D a, for some fixed l such that 1 � l < nx . Therefore,
xly

nk
l
D a, and hence ynk

l
D x�la for all k. This implies that yl has finite order (say) n.

Since T .xl / D xlyl , we get that T n.xl / D xlyn
l
D xl .

Now suppose that Z.H/ is finitely generated. To prove the last statement, we may
assume thatGD¹g j T .g/2gH º. By Lemma 2.2, we get that T acts trivially onG=Z.H/.
Let m be the order of the unique maximal finite subgroup (say) F of Z.H/. We get as
above that for a torsion element x 2 G, there exists l 2 N, which depends on x, such that
xl ¤ e and T .xl / D xlyl 2 xlF . Therefore, Tm.xl / D xlym

l
D xl ¤ e.

The following corollary will be used often and it is an easy consequence of Lemma 4.1.
We give a short proof for the sake of completeness.

Corollary 4.2. Let G be a discrete countable group and let H be a normal subgroup
of finite index in G such that Z.H/ is finitely generated. Let T 2 Aut.G/ be such that
T 2 .NC/ and T jH D Id. Then there existsm 2N such thatG0 D ¹g 2G j Tm.g/D gº is
a subgroup of finite index inG,H � G0, Tm acts trivially on G=Z.H/, and the following
holds: for every nontrivial element x 2 G, Gx \ G0 ¤ ¹eº. Moreover, if x 62 G0, then
¹T n.x/ºn2N is infinite (unbounded).

Proof. If G D H or if G is finite, then Tm D Id for some m 2 N and the assertions
follow trivially for G0 D G. Suppose that G ¤ H and G is infinite. Since G=H is finite,
there exists k 2 N such that T k acts trivially on H and on G=H . By Lemma 2.2, T k acts
trivially on G=Z.H/. Let F denote the unique maximal finite subgroup of Z.H/ and let
d be the order of F . Let m D kd and let G0 D ¹g 2 G j Tm.g/ D gº. Since T jH D Id,
we have that H � G0 and G0 is a subgroup of finite index in G. Also, Tm acts trivially
on G=Z.H/. For every element x of infinite order, Gx \G0 ¤ ¹eº. Since T 2 .NC/, we
have that T k 2 .NC/. Applying Lemma 4.1 for T k instead of T and H as above, we get
that for every nontrivial torsion element x, there exists l 2 N which depends on x, such
that Tm.xl / D xl ¤ e; i.e., Gx \G0 ¤ ¹eº.

For x 2 G, we have T k.x/ D xy for some y 2 Z.H/ and T kn.x/ D xyn, n 2 N.
Suppose that ¹T n.x/ºn2N is finite. Then so is ¹T kn.x/ºn2N , hence y has finite order and
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y 2 F . Therefore, Tm.x/ D xyd D x, and hence x 2 G0. This shows that if x 2 G nG0,
then ¹T n.x/ºn2N is infinite.

The following two lemmas will be useful for proving Theorems 4.5 and 4.6.

Lemma 4.3. Let G be a discrete countable group and let T 2 Aut.G/. Suppose that H
is a normal subgroup of finite index in G such that T jH D Id, the center Z.H/ of H is
finitely generated, and SubcH is closed. Then SubcG is closed and the following holds: T
acts distally on SubcG if and only if Tm D Id for some m 2 N.

Proof. Since SubcH is closed and G=H is finite, it follows from Lemma 2.1 that SubcG
is closed. If Tm D Id, then it acts distally on SubG , and hence so does T . Now suppose
that T acts distally on SubcG . Then T 2 .NC/ and by Corollary 4.2, there exists m 2 N
such that M D ¹g 2 G j Tm.g/ D gº has finite index in G,H �M , Tm acts trivially on
G=Z.H/, and the following holds: for every nontrivial element x 2 G, Gx \M ¤ ¹eº,
and if x 62M , then ¹T n.x/ºn2N is infinite.

We show that Tm D Id. If possible, suppose that x 2 G is such that Tm.x/¤ x. Then
x 62 M . Let l 2 N be the smallest integer such that xl 2 M . Then xl ¤ e and, from our
assumption, l ¤ 1 and l is less than or equal to the index of M in G.

Let T1 D Tm. We know from above that T1.x/ 2 xZ.H/ for all x 2G and T1.x/¤ x.
Therefore, Gx ¤ Gx \M ¤ ¹eº. There exists an unbounded monotone sequence ¹jkº �
N such that T jk1 .Gx/!L (say) in SubcG . ThenGx \M �L\M �L. Note thatGx \M
is T1-invariant. Moreover, if g 2 L \M , then g 2 T n1 .Gx/ for some n D jk , and hence
g 2Gx as T1.g/D g. That is,L\M DGx \M and it is cyclic. As T1D Tm acts distally
on SubcG , we have that L \M ¤ L. Let a 2 L be such that a 62 M . Since G is discrete,
replacing a by a�1 if necessary, we get that there exists a sequence ¹nkº � N such that
T
jk
1 .x

nk / D a for all large k. Since xl 2 M , we have that T jk1 .x
lnk / D xlnk D al for

large k. Therefore, we have that either ¹nkº is an eventually constant sequence or x has
finite order. In either case, passing to a subsequence, we can choose nk D n0 for all k.

Now we have that aD T jk1 .x
n0/ for all k. Note that n0 D i l C i0 for some i 2 ¹0º [N

and for some fixed i0 with 0 � i0 < l . Let k 2 N be fixed. Then a D T jk1 .x
i0/xil 2 xi0M

as xil 2M and T1.x/ 2 xM . Here, i0 ¤ 0 as a 62M . Since T1 acts trivially on G=Z.H/,
T1.x

i0/ D xi0y for some y 2 Z.H/. Therefore,

a D T
jk
1 .x

n0/ D xilT
jk
1 .x

i0/ D xilxi0yjk D xn0yjk :

Hence yjk D x�n0a for all k 2N. Since ¹jkº is unbounded, we get that y has finite order,
and hence y 2 F , where F is the unique maximal finite subgroup of Z.H/ with order d
(say). This implies that Tmd .xi0/ D T d1 .x

i0/ D xi0yd D xi0 and that ¹T n.xi0/ºn2N is
finite. This leads to a contradiction as 0 < i0 < l and xi0 62M . Therefore, Tm.x/D x for
all x 2 G; i.e., Tm D Id.

Lemma 4.4. Let G be a discrete group and let T 2 Aut.G/ be such that T 2 .NC/. Let
H be a closed normal strongly polycyclic subgroup such that T jH D Id and T .x/ 2 xH
for all x 2 G. Then G admits a normal subgroup G0 of finite index such that T jG0 D Id.
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Proof. The assertion follows trivially if H D G. Suppose that H ¤ G. By Lemma 2.2,
T .x/ 2 xZ.H/ for the center Z.H/ of H , which is normal in G. If Z.H/ is trivial,
then T D Id. Now suppose that Z.H/ is nontrivial. Since H is strongly polycyclic, so is
Z.H/. Replacing H by Z.H/, we may, without loss of any generality, assume that H is
compactly generated, abelian, and torsion-free. Therefore, H D Zd for some d 2 N.

Now we have a natural homomorphism % W G ! GL.d;Z/, as H is normal in G,
which is defined as

%.x/ D inn.x/jH ; x 2 G;

where inn.x/ is the inner automorphism by x in G. Note that ker % is a normal subgroup
of G which contains H . Let x 2 ker %. We show that T .x/ D x. If possible, suppose
that T .x/ D xy and y ¤ e, y 2 H . Then xy D yx and T .xm/ D xmym ¤ xm for all
m 2 Z n ¹0º as H is torsion-free. By Lemma 3.12 of [35], this leads to a contraction as
T 2 .NC/. Therefore, T .x/ D x for all x 2 ker %. If ker % is a subgroup of finite index
in G, then we can choose G0 D ker %.

Now suppose that G= ker% is infinite. As GL.n;Z/ is finitely generated, by [4, Corol-
lary 17.7], GL.n;Z/ has a subgroup (say) M of finite index which is net, i.e., for every
g 2M , the multiplicative group generated by eigenvalues of g in C n ¹0º is torsion-free.
ReplacingM by a subgroup of finite index, we may assume thatM is normal in GL.n;Z/.
Let G00 D %.G/ \M . Then G00 is a normal torsion-free subgroup of finite index in %.G/
and it is net. Now let G0 D %�1.G00/. It is a normal subgroup of finite index in G and it
contains H . We show that T jG0 D Id.

As noted above, T 2 .NC/ and T acts trivially on both G=H and H . If possible,
suppose that x 2 G0 is such that T .x/ D xy for some y 2 H , y ¤ e. If xy D yx, then
arguing as above using [35, Lemma 3.12], we arrive at a contraction as T 2 .NC/. Now
suppose that xy ¤ yx. By [35, Lemma 3.12], we get that T .xl / D xl , for some l 2
N n ¹1º. This implies that .xy/l D xl . For a WD

Pl
iD1 x

iyx�i in Z.H/ D Zd , which is
an additive group, we get that aD 0. Then, aD x�1ax, and hence xlyx�l D y. Therefore,
%.x/ has an eigenvalue which is a nontrivial root of unity. This leads to a contradiction as
x 2 G0 and %.G0/ is net. Hence T jG0 D Id.

Every polycyclic group contains a unique maximal nilpotent normal subgroup. The
following theorem about distality for polycyclic groups generalises Theorem 3.10 of [23]
as lattices in a connected solvable Lie group are polycyclic. More generally, Theorem 4.5
holds for any discrete solvable subgroup of a connected Lie group due to Lemma 3.1, and
it will be useful in proving Theorem 4.6 for lattices in a connected Lie group. Note that
the class of polycyclic groups is strictly larger than that of lattices in connected solvable
Lie groups (see [26, Examples 4.29–4.33]). Example 3.11 in [23] illustrates that not all
the statements in the theorem are equivalent.

Theorem 4.5. Let G be a discrete polycyclic group and let T 2 Aut.G/. Let Gnil be the
unique maximal nilpotent normal subgroup of G. Then SubcG is closed and (1), (2) are
equivalent as well as (3)–(6) are equivalent.
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(1) T 2 .NC/.

(2) There exist n 2 N and a subgroup G0 of finite index in G containing Gnil such
that T njG0 D Id, the identity map on G0, and G0 \Gx ¤ ¹eº for every nontrivial
element x in G.

(3) T acts distally on SubcG .

(4) T acts distally on SubaG .

(5) T acts distally on SubG .

(6) T n D Id for some n 2 N.

If G is nilpotent, then (1)–(6) are equivalent.

Proof. Since G is polycyclic, every subgroup of G is finitely generated, by [23, Lemma
3.3], SubcG is closed. If G is finite, then so is SubG and (1)–(6) hold trivially as T n D Id
for some n 2 N. Now suppose that G is infinite. Suppose that (1) holds. We know that
Gnil is characteristic in G, and hence it is T -invariant. Since Gnil is finitely generated and
nilpotent, the set Rg of roots of g 2 G is finite for every g 2 G [15, Theorems 3.1.13 and
3.1.17]. As T jGnil 2 .NC/, by [23, Proposition 3.8], T k1 jGnil D Id for some k1 2 N. If
G D Gnil, then (2) holds for G0 D G and n D k1.

Suppose that G=Gnil is nontrivial and finite. Since T k1 2 .NC/ and Z.Gnil/ is finitely
generated, applying Corollary 4.2 for T k1 , we get that (2) holds for some subgroup G0

containing Gnil and some n 2 N.
Now suppose that G=Gnil is infinite. Then we can choose a strongly polycyclic sub-

group (say) L of finite index which is T -invariant and normal in G. Then Lnil is T -invari-
ant and normal in G and Lnil � Gnil. By [26, Corollary 4.11], L=Lnil admits an abelian
subgroup of finite index which is finitely generated and infinite. Now we can choose a
T -invariant subgroup (say) L0 of finite index in L such that Lnil � L

0 and L0=Lnil is
torsion-free.

Let xT W L0=Lnil ! L0=Lnil be the automorphism corresponding to T jL0 . By [23,
Lemma 3.5], xT 2 .NC/. Since L0=Lnil is finitely generated and abelian, arguing as above,
we get that xT k2 acts trivially on L0=Lnil for some k2 2 N. Let k D lcm.k1; k2/. Then T k

acts trivially on L0=Lnil and also on Lnil which is contained in Gnil. As Lnil is strongly
polycyclic, by Lemma 4.4, we get that L0 has a normal subgroup (say) L00 of finite index
such that T kjL00 D Id. Now we can replace L00 by a subgroup of finite index and assume
that L00 is normal inG. LetG00 D L00Gnil. Then T kjG00 D Id and it is a normal subgroup of
finite index in G. As T k 2 .NC/ and Z.G00/ is finitely generated, we get by Corollary 4.2
that (2) holds for some subgroup G0 such that Gnil � G

00 � G0 and some n 2 N.
Now suppose that (2) holds. IfG is nilpotent, thenG DGnil DG

0 and hence (2))(1).
Suppose that G is not nilpotent. Let G0 and n be as in (2). Then G0 is a subgroup of finite
index (say) m and T njG0 D Id. We show that T n 2 .NC/. For x 2 G, by (2), there exists
l 2 N, such that e ¤ xl 2 G0 \Gx . Hence, T n.Gxl /D Gxl ¤ ¹eº and T nmj .Gx/ 6! ¹eº
for any sequence ¹mj º � Z. Therefore, T n 2 .NC/, and hence T 2 .NC/ and (1) holds.
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We know that (6))(5))(4))(3). Now we show that (3))(6). Suppose that (3)
holds. That is, T acts distally on SubcG . Then T 2 .NC/ and hence (2) holds. Let G0

be a subgroup of finite index in G as in (2). In particular, T njG0 D Id for some n 2 N. We
may replace G0 by a normal subgroup of finite index and assume that it is normal in G.
As Z.G0/ is finitely generated, by Lemma 4.3, we get that T n D Id for some n 2 N, and
hence (6) holds. Therefore, (3)–(6) are equivalent.

If G is nilpotent, then G D Gnil and 2, 6, and hence (1)–(6) are equivalent.

Theorems 4.6 and 4.7 together generalise Corollary 3.9, Theorem 3.10, and The-
orem 3.16 of [23] which are for lattices in simply connected nilpotent, simply connected
solvable, and connected semisimple Lie groups, respectively. We will illustrate by con-
structing several counter examples that these theorems are the best possible results in this
direction. Note that for any lattice � in a connected Lie group, Subc� is closed in Sub� by
Corollary 3.5.

Theorem 4.6. Let � be a lattice in connected Lie groupG. Let T 2 Aut.�/. Then (1)–(2)
are equivalent and (3)–(6) are equivalent.

(1) T 2 .NC/.

(2) There exist n 2N and a subgroup � 0 of finite index in � such that �nil � �
0, T nj� 0

D Id, the identity map on � 0 and for every nontrivial element x2� , Gx\� 0¤¹eº.

(3) T acts distally on Subc� .

(4) T acts distally on Suba� .

(5) T acts distally on Sub� .

(6) T n D Id for some n 2 N.

If the radical of G is nilpotent and the maximal compact connected normal subgroup of
a Levi subgroup of G is contained in the maximal compact normal subgroup of G, then
(1)–(6) are equivalent.

Proof. If G is semisimple, then the assertions in the theorem follow from [23, The-
orem 3.16]. IfG, or more generally, � is nilpotent, then � D�nil and (1)–(6) are equivalent
by Theorem 4.5 as � is polycyclic in this case.

Suppose that G is compact. Equivalently, � is finite, hence T n D Id for some n 2 N,
and (1)–(6) are equivalent.

We now assume that G is not compact (equivalently, � is not finite). We know that
(6))(5))(4))(3). Suppose that (3) holds. Note that (3))(1). Suppose that (1))(2).
Let � 0 be a subgroup of finite index in � such that T nj� 0 D Id for some n 2 N. We may
replace � 0 by a subgroup of finite index and assume that � 0 is normal in � . SinceZ.� 0/ is
finitely generated, we get from Lemma 4.3 that T n D Id for some n 2 N. Therefore, (3)–
(6) are equivalent. Now it is enough to prove that (1)–(2) are equivalent. Note that (2))(1)
follows easily as in the proof of Theorem 4.5 ((2))(1)). Now we show that (1))(2).

Suppose that � is solvable. Then it is polycyclic by Lemma 3.1 (2), and it follows from
Theorem 4.5 that (1))(2).
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Now suppose that � ¤ �rad. Then G is a (noncompact) Lie group which is not solv-
able. Suppose that (1) holds. We know that T .�rad/ D �rad and that �rad is polycyclic by
Proposition 3.2. Note that �nil � �rad and �nil is also the unique maximal nilpotent normal
subgroup of �rad. By Theorem 4.5, �rad has a subgroup (say) � of finite index such that
�nil � � and T n1 j� D Id for some n1 2 N. Replacing � by a subgroup of finite index
containing �nil, we may assume that � is normal in �rad. Suppose that �rad is a subgroup
of finite index in � . Then we can replace� again by a subgroup of finite index containing
�nil so that it is normal in � . As T n1 2 .NC/ and Z.�/ is finitely generated, we get from
Corollary 4.2 that (2) holds for some � 0 with �nil � � � �

0, and some n 2 N.
Now suppose that �=�rad is infinite. By Proposition 3.3, � has a subgroup (say) ƒ of

finite index such that �rad D ƒrad, ƒ=�rad is torsion-free, and the set Rg of roots of g in
ƒ=�rad is finite for every g 2 ƒ=�rad. We may replace ƒ by a subgroup of finite index
and assume that ƒ is normal in � and T .ƒ/ D ƒ.

Suppose that T 2 .NC/. Then T jƒ 2 .NC/. Let � W � ! �=�rad be the natural pro-
jection and let xT be the automorphism of �=�rad corresponding to T . Since � is discrete,
Sub�=�rad is metrizable, and since �.ƒ/ is torsion-free, we get by [23, Lemma 3.5] that
xT j�.ƒ/2.NC/. As the setRg of roots of g in �.ƒ/ is finite for every g2�.ƒ/, we get from
[23, Proposition 3.8] that for some n22N, xT n2 j�.ƒ/DId; i.e., T n2 acts trivially onƒ=�rad.

Suppose that �rad is a finite group of order (say) n0. Replacing n2 by its multiple in N,
we may assume that T n2 acts trivially on �rad. As T n2 acts trivially on ƒ=�rad, replacing
n2 by n2n0, we get that T n2 jƒ D Id. By Lemma 3.1, Z.ƒ/ is finitely generated, and since
T n2 2 .NC/, by Corollary 4.2 we get that (2) holds for some subgroup � 0 containing ƒ,
and some n 2 N. We note here that �nil � �rad � ƒ � �

0.
Now suppose that �rad is infinite. Note that T n2 acts trivially onƒ=�rad. We also have

from above that �rad has a normal subgroup� of finite index such that T n1 j� D Id, where
n1 2 N and �nil � �. Here, � is infinite since �rad is so. Passing to a subgroup of finite
index in�, we may assume that� is strongly polycyclic. Letm be the index of� in �rad.
Let Lm be the subgroup generated by ¹xm j x 2 �radº. Then Lm has finite index in �rad

[26, Lemma 4.4]. It is easy to see that Lm � � and it is characteristic in �rad. Replacing
� by Lm, we may assume that � is T -invariant and normal in � . Note that �nil may not
be contained in� now but .�nil�/=� is finite,�nil � �nil, and T n1 j�nil D Id. We may also
replace n2 by its multiple in N and assume that T n2 acts trivially on �rad=�.

Let n3 D lcm.n1; n2/ and let T1 D T n3m, where m is the index of � in �rad. Then T1
acts trivially on ƒ=� and on �. Since T1 2 .NC/, we get by Lemma 4.4 that there is a
normal subgroup (say)G00 of finite index inƒ such that T1jG00 D Id. Note that T1j�nil D Id.
Let H D �nilG

00. As Z.H/ is finitely generated, we get from Corollary 4.2 that (2) holds
for some subgroup � 0 containing �nil and some n 2 N.

As for the last assertion, if G is as in Lemma 3.7, it follows from the lemma that
(2))(6), and hence (1)–(6) are equivalent.

For an automorphism � of a connected Lie group G which keeps a lattice � invariant,
we compare the distality of the � -actions on SubG and Sub� in the following theorem
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which generalises Corollary 3.9 and Theorem 3.16 of [23]. From now on till the end of the
section, any of the statements (1) to (6) refers to the respective statement in Theorem 4.6.

Theorem 4.7. LetG be a connected Lie group and let � be a lattice inG. Let � 2Aut.G/
be such that �.�/D � and let T D � j� . Suppose that the radical ofG is simply connected
and nilpotent and the maximal compact connected normal subgroup of a Levi subgroup
of G is normal in G. Then (1)–(6) of Theorem 4.6 are equivalent and they are equivalent
to each of the following statements (7)–(10):

(7) � 2 .NC/;

(8) � acts distally on SubaG;

(9) � acts distally on SubG;

(10) � is contained in a compact subgroup of Aut.G/.

Moreover, if a Levi subgroup of G has no compact factors, then each of the statements
(1)–(10) are equivalent to the following:

(11) �n D Id for some n 2 N.

Proof. LetG, � , � , and T be as in the hypothesis. By Theorem 4.6, (1)–(6) are equivalent.
We first assume that G is compact. Then the condition on the radical implies that

the compact group G is either trivial or semisimple, and hence Aut.G/ is also compact.
Therefore, (1)–(10) are equivalent by [23, Theorem 3.16], and the additional condition
that a Levi subgroup of G has no compact factors implies that G is trivial in this case,
hence � D Id and (1)–(11) are equivalent.

We now assume that G is not compact (equivalently, � is not finite). Let K be the
maximal compact connected normal subgroup ofG and letN be the nilradical ofG. AsN
is simply connected, K \N D ¹eº. Then G has no nontrivial compact connected central
subgroup. By [35, Theorem 4.1], we have that (7)–(10) are equivalent. Also, (8))(4),
and hence (6) also holds since (1)–(6) are equivalent. Now suppose that (6) holds; i.e.,
�nj� D T

n D Id for some n 2 N.
By the conditions on the structure of G, we have a Levi decomposition G D SN ,

where N is simply connected and nilpotent and the Levi subgroup S is either trivial or
it is semisimple. Moreover, the maximal compact connected normal subgroup of S is
contained in K; in fact, it is equal to K, since K \ N D ¹eº. Now if K is trivial or,
equivalently, S has no compact factors, then by Proposition 3.6, �n D Id; i.e., (11) holds
and hence (1)–(11) are equivalent.

Suppose K is nontrivial. We show that (10) holds. Let  W G ! G=K be the natural
projection. Since �.K/D K, we have the corresponding action of � on G=K. Then  .G/
has no nontrivial compact connected normal subgroup,  .�/ is a lattice in  .G/, and we
get from (6) that �n acts trivially on  .�/ for some n 2 N. Now  .G/ D  .S/ .N /,
where the Levi subgroup  .S/ is either trivial or it has no compact factors and  .N/
is simply connected as K \ N D ¹eº. By Proposition 3.6, �n acts trivially on  .G/.
This implies that, for any x 2 G, �n.x/ 2 xK, and if x 2 N , x�1�n.x/ 2 K \N D ¹eº.
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Therefore, �njN D Id. AsK �S , it follows that �n.S/DS . Here, S DS 0KDKS 0, where
S 0 is either trivial or it is a connected semisimple Lie group without compact factors and
�n.S 0/ D S 0. Suppose that S 0 is nontrivial. Let F D ¹x�1�n.x/ j s 2 S 0º. Then e 2 F �
S 0 \ K and F is connected as S 0 is connected. Since S 0 \ K is finite, we get that F is
trivial, and hence �n.x/ D x for all x 2 S 0. Therefore, �n acts trivially on S 0N , which is
a co-compact normal subgroup of G.

Since K is a compact connected semisimple Lie group, its automorphism group con-
tains the group of inner automorphisms of K as a subgroup of finite index, and hence it
is compact. Moreover, as K is normal and N is simply connected, elements of K cent-
ralise N , and also S 0N . Note that G D KN (resp. G D KS 0N ) and �n acts trivially on
N (resp. S 0N ). Since �.K/ D K, �njN D Id, and �njS 0 D Id, replacing n by its multiple
in N, we have that �n is an inner automorphism of G by an element of K. Therefore, �
generates a relatively compact group in Aut.G/. That is, (6))(10), and hence (1)–(10)
are equivalent.

Now we illustrate by examples that Theorems 4.6 and 4.7 are the best possible results
for lattices in a connected Lie group. Example 3.11 in [23] shows that a simply connected
solvable Lie group G can admit a lattice � and an automorphism � 2 Aut.G/ such that
� keeps � invariant, � j� 2 .NC/ but � does not act distally on Subc� . This illustrates that
neither (1)–(6) nor (1)–(10) above are equivalent in general.

IfG is a compact connected semisimple Lie group, then the trivial subgroup is a lattice
which is invariant under any automorphism ofG and Aut.G/ is a nontrivial compact group
which contains elements of infinite order. Hence for such a G, (10) above holds, but (11)
cannot hold in general. IfG DTd , d � 2, then its lattices are finite and any automorphism
of G keeps each finite group Gn D ¹g 2 G j gn D eº invariant for any n 2 N. Note that
Aut.G/ is isomorphic to GL.d;Z/ and, by Selberg’s lemma, admits a subgroup of finite
index which is torsion-free. Hence for such a G, (6) above holds for any lattice, but (10)
or (11) cannot hold in general.

Now we give an example of a class of groups G D K Ë Rd , d � 3, where K is any
nontrivial compact connected subgroup of GL.d;R/ and G admits an automorphism �

and a lattice � such that � j� D Id but � does not generate a relatively compact group in
Aut.G/, hence (1)–(6) hold in this case, but none of (7)–(11) holds. The groupG as above
has compact or trivial Levi subgroups, and it is solvable if K is abelian. Example 4.8
together with the examples mentioned above illustrate that the conditions in Theorem 4.7
that the radical is simply connected and nilpotent and the maximal compact connected
normal subgroup of a Levi subgroup is normal in the whole group are necessary for the
equivalence of (1)–(10).

Example 4.8. Let G D K Ë Rd , for some d � 3, and let K be any nontrivial compact
connected subgroup of GL.d;R/, where the group operation is given by .h; x/.k; y/ D
.hk; k�1.x/C y/, h; k 2 K, x; y 2 Rd . Let � D Zd � Rd . Since K is compact, � is
a lattice in G. Choose k 2 K and z 2 Rd such that k.z/ ¤ z. Let � D inn.z/, the inner
automorphism ofG by z; i.e., �.g/D zgz�1 for all g 2G. Then � acts trivially on � . Now
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we prove that the closed subgroup generated by � is noncompact in Aut.G/. It is enough
to show that ¹�n.k/ j n 2 Nº is unbounded. Note that �n.k/ D .k; k�1.nz/ � nz/ D

.k; n.k�1.z/ � z// D .k; ny/, where y D k�1.z/ � z 2 Rd . Since k.z/ ¤ z, y ¤ 0.
Therefore, ¹ny j n 2 Nº is unbounded, and hence ¹�n.k/ j n 2 Nº is unbounded. Note
thatK could be chosen to be abelian or semisimple and it is not normal inG. Here (1)–(6)
hold but none of the (7)–(11) in Theorem 4.7 holds.

5. Expansive actions of automorphisms of lattices � in Lie groups on
Sub�

In this section, we study expansive actions of automorphisms of G on SubcG , the space
of discrete cyclic subgroups of G, for a certain class of discrete groups G which include
discrete polycyclic groups. We also show that a lattice � in a connected noncompact Lie
group does not admit any automorphism which acts expansively on Subc� .

For a countable discrete groupG with the property that the setRg of roots of g inG is
finite for every g 2 G, SubcG is closed in SubG [23, Lemma 3.4]. For such a group G, it is
shown in [23, Proposition 3.8] that only finite order automorphisms act distally on SubcG ,
in caseG is finitely generated. Here, we study the expansivity of actions of automorphisms
of G on SubcG in the following.

Lemma 5.1. Let G be a discrete countable group with the property that the set Rg of
roots of g in G is finite for all g 2 G. Then the complement of any neighbourhood of ¹eº
in SubcG is finite. Moreover, G does not admit any automorphism which acts expansively
on SubcG unless G is finite.

Proof. If G is finite, then SubG is finite, and the first assertion holds trivially and any
automorphism of G acts expansively on G. Now suppose that G is infinite. Let Gx be
the cyclic group generated by x 2 G. If possible, suppose that there are infinitely many
elements outside some open neighbourhood U of ¹eº in SubcG ; namely, Gxn … U , xn ¤
xm for all m; n 2 N. Note that SubcG , being closed in SubG , is compact. Passing to a
subsequence if necessary, we get that Gxn ! Gx for some x 2 G, as n ! 1. Then
Gx … U , and hence x ¤ e. As G is discrete, there exists n0 2 N such that x 2 Gxn for
all n � n0. It follows that x D x

mn
n for some mn 2 Z and for all n � n0. Replacing x

by x�1 if necessary, we may assume that mn 2 N for infinitely many n. This leads to a
contradiction as xn’s are distinct and Rx is finite. Hence, given any neighbourhood U of
¹eº in SubcG , SubcG n U is finite.

Let T 2Aut.G/. If possible, suppose that T acts expansively on SubcG with an expans-
ive constant " > 0. Let U D ¹H 2 SubcG j d.H; ¹eº/ < "º, where d is the metric on SubG .
Since G is infinite and Re is finite, there exists x 2 G which generates an infinite cyc-
lic group. For every k 2 N, there exists nk 2 Z such that d.T nk .Gxk /; ¹eº/ > ". Since
SubcG n U is finite, we have that T nk .Gxk / D T

nl .Gxl / for infinitely many k and l with
k ¤ l . Here, nk ¤ nl if l ¤ k, as x has infinite order. Let y D xk for some fixed k. Then
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y D .T nl�nk .x//l for infinitely many l . Since Ry is finite, we get that ¹T nl�nk .x/ºl2N is
finite. As ni ¤ nj , if i; j 2 N and i ¤ j , there exists m 2 N such that Tm.x/ D x. Now
Tm.Gxk /DGxk for all k 2N. That is, Tm has infinitely many fixed points in SubcG . This
leads to a contradiction, due to [38, Theorem 5.26]. Therefore, T is not expansive.

Note that Lemma 5.1, in particular, implies that any discrete finitely generated infinite
nilpotent groupG does not admit any automorphism that acts expansively on SubcG , as the
set of roots of g is finite for every g 2 G [15]. Such groups G form a proper subclass of
(discrete) polycyclic groups. IfG is any discrete polycyclic group, then every subgroup of
it is finitely generated, and by [23, Lemma 3.3], SubcG is closed in SubG . The following
theorem shows that such a G does not admit any automorphism which acts expansively
on G, unless G is finite. The theorem will be useful in the proof of Theorem 1.2. As noted
before, the class of polycyclic groups is strictly larger than that of lattices in connected
solvable Lie groups.

Theorem 5.2. Let G be an infinite discrete polycyclic group and let T 2 Aut.G/. Then
the T -action on SubcG is not expansive. In particular, this holds when G is any discrete
solvable subgroup of a connected Lie group.

Proof. Let G0 be a strongly polycyclic subgroup of finite index in G. Passing to a sub-
group of finite index, we may assume thatG0 is T -invariant. Now we may replaceG byG0

and assume thatG is strongly polycyclic. LetG.0/DG and letG.nC 1/D ŒG.n/;G.n/�
be the commutator subgroup of G.n/, n 2 N [ ¹0º. Each G.n/ is a characteristic sub-
group of G. Since G is solvable, there exists k 2 N [ ¹0º such that G.k/ ¤ ¹eº and
G.k C 1/ D ¹eº. Here, G.k/ is an infinite strongly polycyclic abelian T -invariant group.
Therefore, replacing G by G.k/ if necessary, we may assume that G is abelian. Now G is
isomorphic to Zn for some n 2 N. It is easy to see that the set Rg of roots of g is finite
in G D Zn (see also [15, Example 3.1.12]). By Lemma 5.1, the T -action on SubcG is not
expansive.

Every discrete solvable subgroup of a connected Lie group is polycyclic by Lemma
3.1 (2), hence the second assertion follows from the first.

Recall that for a locally compact group G, SubaG is the set of all closed abelian sub-
groups of G. It is closed in SubG . The following result is already known for all connected
Lie groups [25, Theorem 3.1]. Combining it with Theorem 5.2, we get the following gen-
eralisation.

Corollary 5.3. Let G be an infinite Lie group and let T 2 Aut.G/. If G=G0 is polycyclic,
then the T -action on SubaG is not expansive. In particular, if G is an infinite closed sub-
group of a connected Lie groupH such that G is either solvable or normal inH , then the
T -action on SubaG is not expansive.

Proof. Note that each of the conditions on G implies that G is second countable. The
connected componentG0 of the identity e inG is a closed T -invariant subgroup ofG and
it is a Lie group. IfG0 ¤ ¹eº, by [25, Theorem 3.1], the T -action on Suba

G0
, and hence on
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SubaG , is not expansive. If G0 D ¹eº, then G is discrete. If G=G0 is polycyclic, i.e., G is
polycyclic, by Lemma 5.1, the T -action on SubcG and, hence, on SubaG is not expansive.

Suppose that G is a closed subgroup of a connected Lie group H . If G is solvable,
then by Lemma 3.1 (2), G=G0 is polycyclic. If G is normal in H , then so is G0, and
G=G0, being a discrete normal subgroup of the connected Lie group H=G0, is central in
H=G0, and hence it is polycyclic. Therefore, in either case, the second assertion follows
from the first.

Note that a lattice � in a compact Lie group is finite and hence all its automorphisms
act expansively on Sub� . Now we are ready to prove one of the main results about expans-
ivity; namely, Theorem 1.2, which states that a lattice � in a connected noncompact Lie
group does not admit any automorphism which acts expansively on Subc� .

Proof of Theorem 1.2. Let � be a lattice in a connected noncompact Lie group G and let
T 2 Aut.�/. By Proposition 3.2 (a), the largest solvable normal subgroup �rad of � is
polycyclic. Note that �rad is characteristic in � , and hence it is T -invariant.

If possible, suppose that T acts expansively on Subc� . Then T j�rad acts expansively on
Subc�rad

. By Theorem 5.2, �rad is finite. By Proposition 3.3 (2), � has a subgroup of finite
index ƒ containing �rad such that the set Rg of roots of g in ƒ=�rad is finite, for every
g 2 ƒ=�rad. This, together with the fact that �rad is finite, implies that the set Rg of roots
of g in ƒ is finite for every g 2 ƒ. Passing to a subgroup of finite index if necessary,
we may assume that ƒ is T -invariant. Since T acts expansively on Subc� and, hence, on
Subcƒ, we get from Lemma 5.1 that ƒ is finite, and hence � is also finite. This leads to
a contradiction as G is noncompact [26, Remark 5.2 (2) and Lemma 5.4]. Hence, T does
not act expansively on Subc� .
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