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A description of Aut.dVn/ and Out.dVn/
using transducers

Luke Elliott

Abstract. The groups dVn are an infinite family of groups, first introduced by C. Martínez-Pérez,
F. Matucci and B. E. A. Nucinkis, which includes both the Higman–Thompson groups Vn (D 1Vn)
and the Brin–Thompson groups nV (D nV2). A description of the groups Aut.Gn;r / (including the
groups Gn;1 D Vn) has previously been given by C. Bleak, P. Cameron, Y. Maissel, A. Navas, and
F. Olukoya. Their description uses the transducer representations of homeomorphisms of Cantor
space introduced in a paper of R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii, together
with a theorem of M. Rubin. We generalise the transducers of the latter paper and make use of these
transducers to give a description of Aut.dVn/ which extends the description of Aut.1Vn/ given in
the former paper. We make use of this description to show that Out.dV2/Š Out.V2/ o Sd , and more
generally give a natural embedding of Out.dVn/ into Out.Gn;n�1/ o Sd .

1. Introduction

In Matthew G. Brin’s 2004 paper [5], he introduces the family of simple groups dV ,
which serve as d -dimensional analogues to Thompson’s group V . The present paper is
concerned with finding a “nice” way to represent the automorphism groups of the groups
dV . To do this we follow a similar path to that by Collin Bleak, Peter Cameron, Yonah
Maissel, Andrés Navas, and Feyishayo Olukoya [2], but via a more category theoretic
perspective. This enables us to prove a conjecture made by Nathan Barker in 2012:

Theorem 1.1. For all d � 1, we have Out.dV /ŠOut.V / o Sd (using the standard action
of Sd on d points).

We view the transducers of [8] as a category in their own right, and then identify sub-
categories of transducers which are more appropriate for representing homeomorphisms
of “n-dimensional” Cantor spaces. Similarly to [2], we then employ Rubin’s theorem [14]
to represent the elements of Aut.dV / as homeomorphisms, which in turn are represented
with transducers. We also extend the description of Out.V / given in [2] to Out.dV /.

From this perspective we are able to represent the automorphisms of the encompassing
family of groups dVn, first introduced in the paper [11] of Martínez-Pérez, Matucci, and
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Nucinkis. We also describe the outer automorphisms of these groups with transducers and
give the following theorem extending the one given for dV :

Theorem 1.2. For all d � 1 and n � 2 we have

Out.dVn/ Š
°

T 2 Out.Gn;n�1/d W
Y
i<d

.T�i /sig D 1
±

Ì Sd ;

where the action of Sd is the standard permutation of coordinates, �i is the i -th projection
map and sig is the homomorphism of [12, Definition 7.6].

The outer automorphisms of Thompson groups have a history in the literature. In
[4, 7], Brin and Fernando Guzmán study the automorphisms of F and T type groups.
As previously mentioned, the authors of [2] gave a means of describing Out.Gn;r / with
transducers, in particular the way the groups Out.1Vn/ are viewed in this paper is theirs.
More recently Feyishayo Olukoya has used transducer based methods to study the outer
automorphisms of the groups Tn;r in [12].

The family of groups dV has also been extensively studied in the literature. In [5], it
is proved that the groups dV are all infinite, simple, and finitely generated. In [6], Brin
goes on to give an explicit finite presentation for 2V with 8 generators and 70 relations.
The paper [3] of Collin Bleak and Daniel Lanoue uses Rubin’s theorem to show that dV
and nV are non-isomorphic for d ¤ n.

In [9], Johanna Hennig and Francesco Matucci show that in general dV can be finitely
presented with 2d C 4 generators and 10d2 C 10d C 10 relations. More recently, Martyn
Quick [13] has built much smaller presentations for dV , using only 2 generators as well
as 2d2 C 3d C 13 relations.

It is shown in [2] that Aut.Gn;r / embeds in the rational group R of finite transducers
as defined in [8]. In [1], it is shown that there is a natural topological conjugacy embedding
2V into R as well (which can be naturally generalised to dV ). It is therefore natural to
ask if this conjugacy sends Aut.dV / to a subgroup of R. In this paper we give examples
to demonstrate that this fails for all d � 2 (see Section 5).

Mark V. Lawson and Alina Vdovina have constructed many additional Thompson-like
groups using the notion of “k-monoids” in [10] . Their Proposition 3.9 suggests that the
methods of this document are likely only compatible with groups corresponding to the
k-monoids which are finite products of finite rank free monoids.

2. Preliminaries

We will compose functions from left to right and we will always index from 0. For n 2N,
we will use the notations Xn and xn to denote the set ¹0; 1; : : : ; n � 1º. We use the former
when thinking of this set as an alphabet, and the latter when thinking of an initial segment
of N. We denote the free monoid of all finite words over a finite alphabet X by X�. That
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is,
X� WD

[
n2N

Xn:

This notably includes the empty word which we denote by ". If w 2 X�, then we define
jwj to be the length of w as a word (the value of n such that w 2 Xn). We also follow the
standard convention of identifying a letter with a word of length 1. If X is an alphabet,
then the set X� [X! is naturally partially ordered by

x � y if and only if x is a “prefix” of y:

We also extend this partial order to the sets .X� [X!/d via the product order.

Definition 2.1. We will denote all projection morphisms by �0;�1; : : : in all categories
with products (the specific morphism used will be determined by the context).

If x 2 .X�n /
d , y 2 .X�n [ X

!
n /
d and x � y, then we define y � x to be the unique

z 2 .X�n [X
!
n /
d such that xz D y (using coordinate-wise concatenation).

Definition 2.2. If n � 2, then we define Cn WD X
!
n to be the usual Cantor space with the

product topology. Moreover, if w 2 .X�n /
d , then we define

wCdn WD
®
x 2 Cdn W w � x

¯
:

Note that these sets are clopen, and the collection of all such sets is a basis for Cdn . Such
basic open sets will be referred to as cones.

Definition 2.3. If X is a topological space, then we denote the homeomorphism group of
X by H.X/.

We can now give the definition of the groups dVn which we will use throughout the
paper.

Definition 2.4. Suppose that F1; F2 are finite subsets of .X�n /
d , such that®

wCdn W w 2 F1
¯

and
®
wCdn W w 2 F2

¯
are partitions of Cdn , and � W F1 ! F2 is a bijection. We call such sets F1; F2 complete
prefix codes for Cdn . We then define the prefix exchange map f� W Cdn ! Cdn as follows:
If w 2 F1 and x 2 wCdn , then

.x/f� D .w�/.x � w/:

Such prefix exchange maps are always homeomorphisms and the set of all such maps
under composition forms the group dVn (or just dV if n D 2).

Remark 2.5. There is a complete prefix code for Cdn of size m if and only if m 2
.1C .n � 1/N/.
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3. Generalizing the transducers of Grigorchuk, Nekrashevich, and
Sushchanskii

A transducer, as introduced by Grigorchuk, Nekrashevich, and Sushchanskii (which we
shorten to GNS) in [8], can be thought of as a way of assigning each letter of an alphabet, a
transformation of a “state set”, together with a word to write for each state. These are then
extended to all words in the input alphabet via the universal property of the free monoid.
With reading elements of a monoid in mind, the following is a natural generalisation of
their transducer definition:

Definition 3.1. We say that T WD .QT ;DT ; RT ; �T ; �T / is a transducer if

(1) QT is a set (called the set of states),

(2) DT is a semigroup (called the domain semigroup),

(3) RT is a semigroup (called the range semigroup),

(4) �T WQT �DT !QT is a (right) action ofDT on the setQT (called the transition
function),

(5) �T W QT � DT ! RT is a function with the property that for all q 2 QT and
s; t 2 DT we have

.q; st/�T D .q; s/�T ..q; s/�T ; t /�T (called the output function).

We will often refer to the domain semigroup and range semigroup of a transducer as
simply its domain and range.

Note that a one state transducer is equivalent to a semigroup homomorphism.

Definition 3.2. Let A; B be transducers. We say that � is a transducer homomorphism
from A to B (written � W A ! B), if � is a 3-tuple .�Q; �D; �R/ with the following
properties:

(1) �R W RA ! RB is a semigroup homomorphism,

(2) �D W DA ! DB is a semigroup homomorphism,

(3) �Q W QA ! QB is a function, such that for all q 2 QA and s 2 DA we have

.q; s/�A�Q D .q�Q; s�D/�B and .q; s/�A�R D .q�Q; s�D/�B :

If furthermore, the maps �D; �R are identity maps, then we say that � is strong.

Remark 3.3. We now have two categories which have the class of transducers as their
object class. The first has transducer homomorphisms (using coordinate-wise composi-
tion) as its class of morphisms and the second has only the class of strong transducer
homomorphisms.

Definition 3.4. A transducer homomorphism � is called a quotient map if each of �Q,
�D , �R is surjective.
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We say that transducers A and B are isomorphic (denoted A Š B) if they are iso-
morphic in the category of transducers and transducer homomorphisms. Similarly, we say
that A and B are strongly isomorphic (denoted A ŠS B) if they are isomorphic in the
category of transducers and strong transducer homomorphisms.

The next definition gives us a means of minimizing our transducers which coincides
with the GNS notion of combining equivalent states.

Definition 3.5. If T is a transducer with RT cancellative, then we define its minimal
transducer MT to be .QT = �MT

; DT ; RT ; �MT
; �MT

/ where �MT
; �MT

and �MT
are

defined as follows:

(1) �MT
is the equivalence relation®

.p; q/ 2 Q2
T W .p; s/�T D .q; s/�T for all s 2 DT

¯
;

(2) if q 2 QT , s 2 DT , then .Œq��MT ; s/�MT
D Œ.q; s/�T ��MT ,

(3) if q 2 QT , s 2 DT , then .Œq��MT ; s/�MT
D .q; s/�T .

It is routine to verify that this is well defined (as RT is cancellative) and the natural strong
quotient candidate qT W T !MT , with .p/qT Q D Œp��MT is a strong quotient map.

Lemma 3.6. If A is a transducer with RA cancellative, then all strong quotient maps
� W A! B are left divisors of qA.

Proof. We define  W B !MA by having  D;  R be the identity maps and defining  Q
by

..q/�Q/ Q WD .q/qAQ:

If we can show that is a well-defined transducer homomorphism, then the result follows.
Note that all the maps �D; �R;  D;  R; qAD and qAR are identity maps so we can

ignore them for the purposes of this proof. We first show that  is well defined. Suppose
that q0; q1 2QA satisfy .q0/�Q D .q1/�Q. We need to show that q0 �MT

q1. Let s 2DA
be arbitrary, then

.q0; s/�A D ..q0/�Q; s/�B D ..q1/�Q; s/�B D .q1; s/�A:

We next show that  is a homomorphism. Using the fact that �Q is surjective, let .p; s/D
..q/�Q; s/ 2 QB �DB be arbitrary. We need only verify that  satisfies condition (3)
from the definition of a transducer homomorphism. We have

.p; s/�B Q D ..q/�Q; s/�B Q by the definition of p

D .q; s/�A�Q Q because � is a homomorphism

D ..q/qAQ; s/�MA because qA is a homomorphism

D ...q/�Q/ Q; s/�MA by the definition of  

D ..p/ Q; s/�MA by the definition of p;

and similarly .p; s/�B D ..p/ Q; s/�MA as required.
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Definition 3.7. If T is a transducer, and we restrict QT ; DT , and RT to sets which are
(together) closed under the transition and output functions, then we obtain another trans-
ducer. We call such a transducer a subtransducer of T .

Definition 3.8. If d 2 N and n 2 Nn¹0; 1º, then we define a .d; n/-transducer to be a
transducer T with .X�n /

d as its domain and range, and such that the transition function is
a monoid action (so you don’t transition when reading the identity).

If T is a transducer, q 2 QT , and w 2 DT , then we will view the maps .q; �/�T and
.q; �/�T as readingw through a path in T from q, ending at the state .q;w/�T , and writing
.q;w/�T along the way (similarly to GNS transducers). Note that unlike GNS transducers,
there is not always a “best” way of splitting up this path into minimal steps, for example
.0; 0/ 2 .X�2 /

2 could naturally be decomposed as either .0; "/."; 0/ or ."; 0/.0; "/.
If T is a .d; n/-transducer, then (like GNS transducers) we can naturally extend this

idea to “infinite words”, which in this case means elements of .X!n /
d , by reading arbitrar-

ily long finite prefixes of an element and taking the limit of the elements written.

Definition 3.9. If T is a .d; n/-transducer and q 2 QT , then we define fT;q W .X!n /
d !

.X!n [ X
�
n /
d to be the map which maps w 2 .X!n /

d to the word written when w is read
in T from the state q.

Note that if A is a .d; n/-transducer, q 2 QA and � W A! B is a strong transducer
homomorphism, then fA;q D fB;.q/�Q . In particular, this is true of the homomorphism qA.

Definition 3.10. Similarly to GNS we say that a .d;n/-transducer T is degenerate if there
exist q 2 QT , i 2 xd and x 2 Cdn such that .x/fT;q�i is finite.

We will often use the following fact without comment:

Remark 3.11. If T is a non-degenerate .d; n/-transducer and q 2QT , then for allm 2N
there is k 2 N such that reading an element of .Xkn /

d always writes a word whose length
is at least m in every coordinate.

There are two important ways by which we combine our transducers, there is “com-
position” as was done in GNS, and taking products in the categorical sense.

Definition 3.12. If A and B are transducers, such that the range of A is contained in the
domain of B , then we define their composite by

AB D .QAB ;DAB ; RAB ; �AB ; �AB/;

where

(1) QAB WD QA �QB , DAB WD DA, RAB WD RB ,

(2) ..a; b/; s/�AB D ..a; s/�A; .b; .a; s/�A/�B/,

(3) ..a; b/; s/�A;B D .b; .a; s/�A/�B .
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As was the case in GNS, this definition is constructed so that whenever A;B are non-
degenerate .d; n/-transducers, and .p; q/ 2 A � B , we obtain

fA;pfB;q D fAB;.p;q/:

Definition 3.13. If .A/i2I are transducers, then we define
Q
i2I Ai WD P where

QP WD
Y
i2I

QAi ; DP WD
Y
i2I

DAi ; RP WD
Y
i2I

RAi ;

and for all .pi /i2I 2 QP and .si /i2I 2 DP we have

..pi /i2I ; .si /i2I /�P D ..pi ; si /�Ai /i2I ;

..pi /i2I ; .si /i2I /�P D ..pi ; si /�Ai /i2I :

For i 2 I we then define �i W P ! Ai to be the transducer homomorphism .�i ;�i ;�i /.
One can verify that this is a product in the category theoretic sense (using transducer
homomorphisms but not strong transducer homomorphisms).

The following definition gives us, for each homeomorphism h of Cdn , a transducerMh

representing it. From the definition, one can see that this transducer has no inaccessible
states, has complete response and has no distinct but equivalent states. So in particular
when d D 1, the transducer Mh is the minimal transducer representing h as described by
GNS.

Definition 3.14. If h 2 H.Cdn /, then we define Th to be the .d; n/-transducer with

(1) QTh WD .X
�
n /
d ,

(2) .s; t/�Th D st ,

(3) ..s; t/�Th/�i is b � a, where b is the longest common prefix of the words in
the set ..stCdn /h/�i and a is the longest common prefix of the words in the set
..sCdn /h/�i .

(As h is a homeomorphism, the set .stCdn /h is always open and thus .s; t/�Th is always
an element of .X�n /

d .) Moreover, as was the case in GNS, if q D 1.X�n /d then fTh;q D h.
We also define Mh WDMTh .

Remark 3.15. If h 2 H.Cdn / and q 2 QMh
, then fMh;q is injective with clopen image.

The proof of the following theorem is analogous to the proof of the analogous theorem
in GNS (the above construction deals with the homeomorphism case).

Theorem 3.16. A function h W Cdn ! Cdn is continuous if and only if there are a non-
degenerate .d; n/-transducer T and q 2 QT such that h D fT;q .
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4. Generalizing the synchronizing homeomorphisms of
Bleak, Cameron, Maissel, Navas, and Olukoya

As was the case in [2] when analysing Aut.Gn;r /, we now want to restrict to the trans-
ducers which give us the automorphisms we want. We thus extend the notion of synchron-
ization given there.

Definition 4.1. We say that a .d; n/-transducer T is synchronizing at level k if for all
q1; q2 2 QT and w 2 .X�n /

d with min.¹jw�i j W i 2 xdº/ � k, we have .q1; w/�T D
.q2; w/�T . We say that T is synchronizing if there is a level at which it is synchroniz-
ing. The synchronizing length of a synchronizing transducer T is

min
�®
k 2 N W T is synchronizing at level k

¯�
:

In this case we define the function

sT WD
®
.w; q/ 2 .X�n /

d
�QT W for all p 2 QT we have .w; p/�T D q

¯
:

So sT is basically �T restricted to the part of its domain where the input state is not
needed. The image of sT , denoted Core.T /, is called the core of T .

It is useful to think of the core of a synchronizing .d; n/-transducer as the place
reached when a sufficient amount of information has been read in each coordinate. In
particular, if a word is read from any core state of a synchronizing .d; n/-transducer T ,
then you stay in the core, thus Core.T / is a (synchronizing) subtransducer of T (when
given the restrictions of the transition and output functions of T ).

As Core.T / D ..Xkn /
d /sT (where k is the synchronizing length of T ), it follows that

Core.T / is always finite.
The following proposition is routine to verify, and shows that our transducer frame-

work describes dVn in a manner analogous to the way in which the transducers of GNS
describe Vn.

Proposition 4.2. If h 2 H.Cdn /, then h 2 dVn if and only if Mh is a synchronizing trans-
ducer whose core consists of a single “identity” state.

Unlike for Vn, the transducers for elements of dVn can sometimes be infinite. For
example the transducer representing the baker’s map of 2V is infinite (as can be seen in
Figure 1) as it can’t write anything until something is read in the first coordinate.

We will now introduce the monoids d�n;1, AdOn;1, dBn;1 and dOn;1 which generalise
the monoids �n;1, eOn;1, Bn;1 and On;1 of [2].

Definition 4.3. We say an element f 2 H.Cdn / is synchronizing if Mf is synchronizing.
We define d�n;1 to be the set of synchronizing elements of H.Cdn /.

Remark 4.4. If A and B are synchronizing, non-degenerate transducers, then so is their
compositeAB . This works as you can synchronize the first coordinate using the synchron-
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Start

Core

:::
: : :

: : :

: : :

.1; "/=."; 1/

.0; "/=."; 0/

."; 1/=."; "/

."; 0/=."; "/

.1; "/=."; 11/

.0; "/=."; 01/

."; 1/=."; "/

."; 0/=."; "/

.1; "/=.1; "/

.0; "/=.0; "/

."; 1/=."; 1/
."; 0/=."; 0/

.1; "/=."; 10/

.0; "/=."; 00/

."; 1/=."; "/
."; 0/=."; "/

Figure 1. Part of a minimal transducer with .X�2 /
2 as domain and range. This represents the baker’s

map in 2V (this transducer is infinite and every state has an edge with the core as its target).

izing property of A, and once the first coordinate is in the finite non-degenerate core of A,
one can read enough so that the output of A synchronizes B as well.

Corollary 4.5. If f; g 2 d�n;1 then Core.MfMg/ is a subtransducer of the composite
transducer Core.Mf /Core.Mg/.

Corollary 4.6. The set d�n;1 is always a monoid.

Proof. It follows from Remark 4.4 that, if f; g 2 d�n;1, then MfMg is synchronizing.
We will now essentially minimise MfMg in the GNS fashion and obtain Mfg . Let

qf WD .1.X�n /d /qTf Q and qg WD .1.X�n /d /qTgQ:

We have
fg D fMf ;qf fMg ;qg D fMfMg ;.qf ;qg /:

We then define A to be the transducer with the same states, domain, range and trans-
ition function asMfMg but with .q;w/�A D b � s, where b is the longest common prefix
of the set .wCdn /fMfMg ;q and s is the longest common prefix of the set .Cdn /fMfMg ;q (it
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follows from Remark 3.15 that b and s are finite). Let A0 be the subtransducer of A con-
sisting of the states that are accessible from .qf ; qg/ (the image of ..qf ; qg/; �/�A).

It follows from the definition that A0 is a strong quotient of the transducer Tfg . Thus
Mfg is a strong quotient ofA0. AsA has the same transitions asMfMg , it follows thatA is
synchronizing. Moreover, sinceA0 is a subtransducer ofA, we get thatA0 is synchronizing
and thus Mfg is also synchronizing (as a strong quotient of A0).

Corollary 4.7. The binary operation

ŒCore.Mf /�ŠS ŒCore.Mg/�ŠS D ŒCore.Mfg/�ŠS

on the set AdOn;1 WD ¹ŒCore.Mf /�ŠS W f 2 d�n;1º is well defined. Moreover, this set with
this operation is a quotient of the monoid d�n;1.

Proof. This is well defined as the strong isomorphism type Core.Mfg/ can be found by
removing incomplete response from Core.Mf / Core.Mg/, combining equivalent states
and passing to the core (in the same manner as the proof of Corollary 4.6).

Definition 4.8. We define dBn;1 to be the group of units of d�n;1, and

dOn;1 WD
®
ŒCore.Mf /�ŠS W f 2 dBn;1

¯
:

Lemma 4.9. The map f 7! ŒCore.Mf /�ŠS is a surjective group homomorphism from
dBn;1 to dOn;1 with kernel dVn.

Proof. This map is a homomorphism by the definition of multiplication in AdOn;1, it is
surjective by the definition of dOn;1 and thus as dBn;1 is a group, dOn;1 is also. The
identity of dOn;1 is the image of the identity map, and is thus the single state “identity”
transducer. From Proposition 4.2, we get that dVn is the kernel.

We have now introduced the monoids we need. We now begin showing that dBn;1

coincides with the normalizer of dVn in H.Cdn / (the case with d D 1 was done in [2]).

Lemma 4.10. Let h 2NH.Cdn /.dVn/ and s; t 2 .X�n /
dn¹1.X�n /d º. Let qh WD .1.X�n /d /qThQ.

There exists Kh;s;t 2 N such that for all a 2 .X�n /
d with

min
�®
ja�i j W i 2 xd

¯�
� Kh;s;t ;

we have .qh; sa/�Mh
D .qh; ta/�Mh

.

Proof. For all x 2 .X�n /
d , let qx WD .qh; x/�Mh

. Let f 2 dVn be such that f replaces the
prefix s with the prefix t . By the choice of h, there is some g 2 nV such that h�1f h D g
and so f h D hg.

Let qf WD .1.X�n /d /qTf Q and qg WD .1.X�n /d /qTgQ. It follows that

fMfMh;.qf ;qh/ D f h D hg D fMhMg ;.qh;qg /:
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Let If ; Ig be the core states of Mf and Mg , respectively (which don’t do anything). Note
that

..qf ; qh/; s/�MfMh
D .If ; qt /;

..qh; qg/; s/�MhMg D .qs; .qg ; .qh; s/�Mh
/�Mg /:

Let K 2 N be such that for all w 2 .X�n /
d with min.¹jw�i j W i 2 xdº/ � K, we have that

min
�®
j..qh; s/�Mh

; w/�Mh
�i j W i 2 xd

¯�
is at least the synchronizing length of Mg .

Let a 2 .X�n /
d be arbitrary such that min.¹jw�i j W i 2 xdº/ � K. We have

..qf ; qh/; sa/�MfMh
D .If ; qta/;

..qh; qg/; sa/�MhMg D .qsa; Ig/:

Thus, for all v 2 .X!n /
d we have

..qf ; qh/; sa/�MfMh
.v/fMh;qta D ..qf ; qh/; sa/�MfMh

.v/fMfMh;.If ;qta/

D .sav/f h

D .sav/hg

D ..qh; qg/; sa/�MhMg .v/fMhMg ;.qsa;Ig /

D ..qh; qg/; sa/�MhMg .v/fMh;qsa :

It follows that ..qf ; qh/; sa/�MfMh
and ..qh; qg/; sa/�MhMg are comparable in each

coordinate.
If there was a coordinate in which ..qf ; qh/; sa/�MfMh

and ..qh; qg/; sa/�MhMg

differed, it would follow that either the map fMh;qta or fMh;qsa has its image contained in
a proper cone. This is impossible as Mh by definition has no incomplete response. Thus

..qf ; qh/; sa/�MfMh
D ..qh; qg/; sa/�MhMg :

We deduce from the equality

..qf ; qh/; sa/�MfMh
.v/fMh;qta D ..qh; qg/; sa/�MhMg .v/fMh;qsa

that fMh;qta D fMh;qsa . As Mh is minimal, it follows that qta D qsa as required.

Lemma 4.11. The group NH.Cdn /.dVn/ is contained in dBn;1.

Proof. The proof of this is essentially the same as [2, Corollary 6.17]. The idea is as
follows: We need only show containment in d�n;1 because NH.Cdn /.dVn/ is a group with
the same identity as d�n;1. Thus we need only show the synchronizing condition. So it
suffices to show that, for all h 2NH.Cdn /.dVn/, there is aK 2N such that the state reached
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by reading an arbitrary word from .1.X�n /d /qThQ is determined by the last K letters of the
word (in every coordinate). We do this by collapsing an arbitrary given input word from
the front by repeated applications of Lemma 4.10 using s with size 1 and t with size 2
(where size means the sum of the lengths of the coordinates).

We now recall the theorem of Rubin which connects our arguments to automorphism
groups:

Theorem 4.12 (Rubin’s theorem [14]). LetG be a group of homeomorphisms of a perfect,
locally compact, Hausdorff topological space X . For U � X let

GU WD
®
g 2 G W .x/g D x for all x 2 XnU

¯
:

Suppose further that for all x 2 X and U a neighbourhood of x, we have .x/GU is
somewhere dense. If � W G! G is a group isomorphism, then there is a  � 2H.X/ such
that .g/� D ��1� g � for all g 2 G.

In [2], it is shown that Rubin’s theorem allows us to naturally embed Aut.Gn;r / into
H.Cn;r /. This same argument also applies to dVn, and in fact to any group with an action
satisfying the hypothesis of Rubin’s theorem.

Corollary 4.13. The groups Aut.dVn/ and NH.Cdn /.dVn/ are isomorphic.

Theorem 4.14. The groups Aut.dVn/ and dBn;1 are isomorphic.

Proof. We have Aut.dVn/ Š NH.Cdn /.dVn/ by Corollary 4.13, and we have

NH.Cdn /.dVn/ � dBn;1 � NH.Cdn /.dVn/

by Lemma 4.11 and Lemma 4.9.

Corollary 4.15. The groups Out.dVn/ and dOn;1 are isomorphic.

Proof. This follows from Theorem 4.14 and Lemma 4.9.

Corollary 4.16. For d; m 2 Nn¹0º and n 2 Nn¹0; 1º the group Aut.dVn/m embeds in
the group Aut..md/Vn/.

Proof. If .dBn/
m acts on .Cdn /

m Š Cdmn in the natural fashion, then these homeomorph-
isms are contained in the group .md/Bn.

Corollary 4.17. The group Aut.dVn/ is countably infinite.

Proof. The group dVn is countably infinite and the group dOn;1 is countable (it consists
of the isomorphism classes of transducers with finitely many states and finitely generated
domains).
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q0

q0

1=1

0=0

1=01

0="
1=1

0=00

1=1

0=0

1=1

0=0

Figure 2. Two transducers with domain and range X�2 .

5. Rationality and representations

Unfortunately, unlike with B2;1, representing elements of 2B2;1 with transducers can
sometimes result in a transducer which has infinitely many states. In Figure 1 we see that
the baker’s map when represented by a transducer, in the way described in this paper, has
infinitely many states.

However, if we want our pictures to be finite, then we can consider the submonoid
of .X�n /

d consisting of those elements w 2 .X�n /
d such that jw�i j is the same for all i .

As elements of dBn;1 are synchronizing, it follows that if we restrict the domain of a
minimal transducer representing an element of dBn;1 to this submonoid, then we will only
need finitely many states to represent it. In Figure 3 we see the baker’s map represented
in this fashion. The main problem with this representation is that composing functions
represented with these transducers is much harder (due to the fact that the transducers
have distinct domains and ranges).

Figure 2 displays two elements of B2;1, where the q0 are the initial states. These
transducers are particularly nice as they are finite. The first one acts by swapping the
strings “0” and “00” wherever it sees them, and the second one is the identity. These
transducers are special in that they are each equal to their own cores. Thus, these pictures
also represent elements of O2;1 if we ignore the choice of initial state. In Figure 4 we
see the categorical product of the transducers in Figure 2, which represents an element of
2B2;1 (and also an element of 2O2;1).

In [2], it is shown that B2;1 consists of rational homeomorphisms, and in [1, Theorem
5.2] it is shown that 2V naturally embeds in R4 via conjugation by a homeomorphism
between C4 and C22. The map of [1, Theorem 5.2] acts by converting a pair of words
.x0x1 : : : ; y0y1 : : :/ to a word .x0; y0/.x1; y1/ : : : over the alphabet®

.0; 0/; .0; 1/; .1; 0/; .1; 1/
¯
:
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q0

Core

.1; 0/=."; 10/

.0; 1/=."; 01/

.1; 1/=."; 11/

.0; 0/=."; 00/

.0; 0/=.0; 0/

.0; 1/=.0; 1/

.1; 0/=.1; 0/
.1; 1/=.1; 1/

Figure 3. The subtransducer of the transducer in Figure 1 with ¹w 2 .¹0; 1º�/2 W jw�0j D jw�1jº
as domain and no longer accessible states removed.

q0

.1; "/=.1; "/

.0; "/=.0; "/."; 1/=."; 1/

."; 0/=."; 0/

.1; "/=.01; "/

.0; "/=."; "/

."; 1/=."; 1/

."; 0/=."; 0/

.1; "/=.1; "/

.0; "/=.00; "/

."; 1/=."; 1/

."; 0/=."; 0/

.1; "/=.1; "/

.0; "/=.0; "/ ."; 1/=."; 1/

."; 0/=."; 0/

Figure 4. The transducer obtained by taking the categorical product of the transducers in Figure 2.

It is natural to ask if the same map gives an embedding of 2B2;1 into R. However it is
routine to verify that if we conjugate the homeomorphism defined by the transducer of
Figure 4, then the resulting map is not rational. This happens because this transducer is
a product of a transducer which never resizes words, with a transducer which does this
arbitrarily amounts (for example by reading the words .01/n). So it seems that there is no
good way to describe the groups Aut.dVn/ using only finite transducers.
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6. A closer look at the groups dOn;1

We now want to pin down what the core transducers representing dOn;1 look like. We
are going to end up with a semidirect product, so we will deal with the acting part of the
product first. Before that we introduce a notation which we will use repeatedly throughout
this section.

Definition 6.1. For d � 1, n � 2 and S � xd , we define

Fd;n;S WD
®
w 2 .X�n /

d
W w�i D " for all i 2 xdnS

¯
:

That is, Fd;n;S is the submonoid of .X�n /
d , consisting of those elements only allowed to

be non-trivial in the coordinates in S .

Lemma 6.2. Let T be a transducer representing an element of AdOn;1. If i 2 xd , then there
is a unique .i/ T 2 xd , such that for all q 2 QT and l 2 Fd;n;¹iº, we have .q; l/�T 2
Fd;n;¹.i/ T º.

Proof. We start by showing the existence of .i/ T . First note that for all q 2 QT , the
map fT;q is necessarily injective (Remark 3.15). Suppose for a contradiction that there are
i 2 xd , l0; l1 2 Fd;n;¹iº, q0; q1 2 QT and ˛; ˇ 2 xd such that ˛ ¤ ˇ and

j.q0; l0/�T�˛j > 0; j.q1; l1/�T�ˇ j > 0:

We may assume without loss of generality that ˛ D 0 and ˇ D 1.
For all j 2 xdn¹0;1º let qj 2QT , ij 2 xd and lj 2Fd;n;¹ij º be such that j.qj ; lj /�T�j j>

0 (note these must exist as T is non-degenerate and the sets Fd;n;¹ij º for ij 2 xd generate
.X�n /

d ). Also let i0 D i1 D i .
It is now the case that if we read a word in coordinate ij , it is possible to write in

coordinate j (if we are in the correct state). Moreover, i0 D i1, so there is a coordinate b
such that we can write words in any given coordinate without reading from coordinate b.
We will use this observation to contradict injectivity.

For each state qj we choose some wj 2 .qj /s�1T . If we read wj lj from anywhere, we
will write non-trivially into the coordinate j . Considerwj aswj;bw0j wherewj;b 2Fd;n;¹bº
and w0j 2 Fd;n;xdn¹bº.

Consider the elements

sm WD w0;bw1;b : : : wd�1;b.w
0
0l0w

0
1l1 : : : w

0
d�1ld�1/

m
2 .X�n /

d :

As the wj;b type elements will commute with all other kind of elements in the product
defining of sm, by commuting the words so that wj;b.w00l0w

0
1l1 : : : w

0
d�1

ld�1/
m is a part

of the product defining sm, it follows that for all q 2 QT we have

j.q; sm/�T�j j � m

for all j .
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Thus all elements of .X!n /
d which have all the sm as prefixes have the same image

under fT;q . This is a contradiction as there are infinitely many such elements and fT;q is
injective.

It remains to show the uniqueness of .i/ T . The only way .i/ T could be non-unique
is if T never writes anything when reading from coordinate i . In this case it follows from
the existence of the other .j / T , that there is some coordinate into which T never writes,
which is impossible as T is non-degenerate.

Definition 6.3. If T is a transducer representing an element of AdOn;1, then we define
 T W xd ! xd to be the map which was shown to be well defined in Lemma 6.2.

Theorem 6.4. The group dOn;1 is isomorphic to dKn;1 Ì Sd , where Sd acts by permut-
ing the coordinates of Cdn and dKn;1 D ¹ŒT �ŠS 2 dOn;1 W  T D idº.

Proof. Note that the map ŒT �ŠS !  T is a monoid homomorphism to the full transform-
ation monoid on d points. As dOn;1 is a group, it follows that  T is always a permutation
for ŒT �Š 2 dOn;1. To see that the map is onto the symmetric group and the extension
splits, note that for an arbitrary f 2 Sd the map

.p0; p1; : : : ; pd�1/
h
�! .p.0/f ; p.1/f ; : : : ; p.d�1/f /

is an element of dBn;1. Moreover, ŒCore.Mh/�ŠS maps to f under the homomorphism.
This proves the theorem.

We next need to understand the group dKn;1. To this end, we recall the groups On;n�1
of [2]. These are groups of synchronizing core .1; n/-transducers, which are isomorphic
to the outer automorphism groups of Gn;n�1.

In [2], it was shown that On;n�1 contains On;j for all j , and that a .1; n/-transducer
represents an element of On;n�1 if and only if it is minimal (in the sense of GNS), syn-
chronizing, it is its own core, all its states are injective, all its states have clopen image
and it is invertible. In particular, 1On;1 D On;1 is a subgroup of On;n�1.

Theorem 6.5. If ŒT �ŠS 2 dKn;1, then there are T0; T1; : : : ; Td�1 2 On;n�1 such that

T ŠS
Y
i2xd

Ti :

Proof. For each i 2 xd , let

�i WD
®
.p; q/ 2 Q2

T W there is w 2 Fd;n;¹iº with .p;w/�T D q
¯
:

One can check that each �i is an equivalence relation. If q 2 QT , i 2 xd , we restrict the
domain and range of T to Fd;n;¹iº and restrict the state set of T to Œq��i , then we obtain a
subtransducer Sq;i of T .

Moreover, for allw 2 Fd;n;xdn¹iº, one can check that the map q 7! .q;w/�T is a strong
transducer isomorphism from Sq;i to S.q;w/�T ;i .
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We will show that Sq;i 2On;n�1 (if we make the natural identification between Fd;n;¹iº
and X�n ). It suffices to check that the conditions given in [2] are satisfied. The transducer
Sq;i has no inaccessible states by the definition of �i , it has complete response because
T has complete response, it is synchronizing and is its own core because T is and it
has injective state functions because T does (Remark 3.15). By Remark 3.15, each state
function fT;q of T has clopen image. As the image of a state function fSq;i ;p of Sq;i is a
projection of the image of the corresponding state function fT;p of T (because  T is well
defined), it follows that this image of fT;p is compact and open (hence clopen). It remains
to show that Sq;i has no distinct but equivalent states. As T has no distinct but equivalent
states, it suffices to show that if p0;p1 are equivalent states in Sq;i , then they are equivalent
in T . Let j 2 xd , and w 2 Fd;n;¹j º. It suffices to show that .p0; w/�T D .p1; w/�T . If
j D i , then this follows by the assumption on p0; p1. Otherwise let s 2 Fd;n;¹iº be such
that .p0; s/�T D p1. Then

.p0; w/�T�j D .p0; ws/�T�j D .p0; sw/�T�j

D ..p0; s/�T .p1; w/�T /�j D .p1; w/�T�j

as required. So we can conclude that Sq;i 2 On;n�1 (if we make the natural identification
between Fd;n;¹iº and X�n ).

For each i 2 xd; let Sq;i be isomorphic to Ti 2 On;n�1 via an isomorphism which uses
�i as the domain and range isomorphisms (recall that q has no effect on the isomorphism
type). Moreover, let �q;i W Sq;i ! Ti be the unique such transducer isomorphism (this is
unique as the image of an arbitrary state is determined by any one of its synchronizing
words). Let �i W T ! Ti be the transducer homomorphism with

�iD D �i T D �i ; �iQ D
[
q2QT

�q;iQ:

We then define � W T !
Q
i2xd Ti to be the unique transducer homomorphism such

that for all i 2 xd we have
��i D �i :

We need to show that � is a strong isomorphism. We have �D D �R D id by defin-
ition, so we need only show that �Q is a bijection. It must be surjective as its target is
synchronizing, and so each state is the image of the state reached in T by reading one of
its synchronizing words. Injectivity is also immediate as T was assumed to be minimal
and hence has no proper strong quotients.

It is routine to check that the multiplication in dKn;1 is also compatible with the
multiplication in On;n�1, so we can make the following definition:

Definition 6.6. We define an embedding ˛ W dKn;1 ! Od
n;n�1 byY

i2xd

.ŒT �ŠS /˛�i ŠS T:
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Corollary 6.7. The group Out.dVn/ embeds in the group On;n�1 o Sd .

Proof. Follows from Definition 6.6 (Theorem 6.5), Theorem 6.4 and Corollary 4.15.

We now have a connection between dOn;1 and On;n�1. To pin this down precisely we
recall the map sig W On;n�1 ! .Z=.n � 1/Z;�/ of [12, Definition 7.6].

This group homomorphism takes an On;n�1 transducer to the unique element .mC
.n � 1/Z/ 2 Z=.n � 1/Z, such that when a cone is read through the transducer, the
transducer writes m disjoint cones. We can naturally use this map to define a new homo-
morphism from Od

n;n�1.

Definition 6.8. We define the homomorphism sigd W O
d
n;n�1 ! .Z=.n � 1/Z;�/ by

.T/sigd D
Y
i2xd

..T/�i /sig:

Moreover, we observe that this definition functions as one might expect:

Lemma 6.9. If T 2 Od
n;n�1, then .T/sigd is the unique element .m C .n � 1/Z/ of

Z=.n � 1/Z, such that m disjoint cones are written when a cone is read throughQ
i2xd .T�i /.

Proof. This is well defined by Remark 2.5. The result follows from the observations that
a .d; n/ cone is the same as a product of d .1;n/ cones, and the set of words writable from
a state in a product of transducers is the product of the sets of words which can be written
in each coordinate.

In [12, Proposition 7.7] and [2, Theorem 9.5], the signature map has been used to
identify the groups On;r inside of On;n�1. We can now do the same with dKn;1 via a
similar argument.

Lemma 6.10. If T 2 .On;n�1/d , then P WD
Q
i2xd T�i is strongly isomorphic to a trans-

ducer representing an element of dKn;1 if and only if T 2 ker.sigd /.

Proof. .)/ Suppose that f 2 dBn;1 is such that the transducer P is strongly isomorphic
to Core.Mf /. If U is clopen in Cdn , then let count.U / be the smallest number of cones in
a decomposition of U into cones. Let k be the synchronizing length ofMf . It follows that

1C .n � 1/Z D count..Cdn /f /C .n � 1/Z

D

X
w2.Xkn /d

count..Cdn /fMf ;.w/sMf /C .n � 1/Z

D

X
w2.Xkn /d

.T/sigd C .n � 1/Z

D nkd .T/sigd C .n � 1/Z

D .T/sigd C .n � 1/Z:

The result follows.
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.(/ Let q 2 QP be arbitrary. Then let
S
a2A aCdn be a decomposition of img.fP;q/

into disjoint cones. We have that jAj 2 1C .n � 1/Z. Let k 2 N be greater than jAj, and
such that for all w 2 .Xkn /

d and i 2 xd , we have

j.q; w/�P�i j � max
®
ja�j j W a 2 A; j 2 xd

¯
:

For all w 2 .Xkn /
d let aw 2 A be such that aw is a prefix of .q; w/�P . For all a 2 A we

now have that®
..q; w/�P � aw/ img.fP;.q;w/�T / W w 2 .X

k
n /
d has aw D a

¯
is a partition of Cdn .

As jAj 2 1C .n� 1/N, there is a complete prefix code B of size jAj. Let � W A! B

be a bijection. It follows that®
.aw/�..q; w/�P � aw/ img.fP;.q;w/�P / W w 2 .X

k
n /
d
¯

is a partition of Cdn . We now define an element f 2 H.Cdn / as follows:
If w 2 .Xkn /

d and xx 2 Cdn then

.wxx/f D .aw/�..q; w/�P � aw/.xx/fP;.q;w/�P :

It is routine to verify that Mf is synchronizing and has core strongly isomorphic to P .
Thus f 2 d�n;1, and P represents an element of AdOn;1. As ker.sigd / is a group, we have
T�1 2 ker.sigd /, and so by the same argument

P 0 WD
Y
i2xd

.T�i /�1

also represents an element of AdOn;1. Thus P is dOn;1. As P is a product of .1; n/-
transducers, we also have  P D id, so the result follows.

We now have all the tools to prove Theorem 1.2 from the introduction (the statement
is a bit simpler now that we have defined sigd ).

Theorem 6.11. For all d � 1 and n � 2 we have Out.dVn/ Š ker.sigd / Ì Sd , where the
action of Sd is the standard permutation of coordinates.

Proof. By Corollary 4.15 we have Out.dVn/Š dOn;1. Thus the result follows from The-
orem 6.4 and Lemma 6.10.

Corollary 6.12. For all d � 1 we have Out.dV / Š Out.V / o Sd (using the standard
action of Sd on d points).

Proof. This follows from the previous theorem together with the observation that
.Z=.2 � 1/Z;�/ is the trivial group.
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