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On the Bieri–Neumann–Strebel–Renz invariants
of the weak commutativity construction X.G/

Dessislava H. Kochloukova

Abstract. For a finitely generated group G, we calculate the Bieri–Neumann–Strebel–Renz invari-
ant†1.X.G// for the weak commutativity construction X.G/. Identifying S.X.G// with S.X.G/=
W.G//, we show †2.X.G/;Z/ � †2.X.G/=W.G/;Z/ and †2.X.G// � †2.X.G/=W.G//, that
are equalities when W.G/ is finitely generated, and we explicitly calculate †2.X.G/=W.G/;Z/
and †2.X.G/=W.G// in terms of the †-invariants of G. We calculate completely the †-invariants
in dimensions 1 and 2 of the group �.G/ and show that if G is finitely generated group with finitely
presented commutator subgroup then the non-abelian tensor square G ˝G is finitely presented.

1. Introduction

In this paper, we consider the Bieri–Neumann–Strebel–Renz †-invariants of the weak
commutativity construction X.G/. By definition,†m.G;Z/ and†m.G/ are subsets of the
character sphere S.G/D Hom.G;R/=�, where �1 � �2 if �1 2 R>0�2. The importance
of the†-invariants is that they control which subgroups of G that contain the commutator
have homological type FPm or homotopical type Fm. The first †-invariant was defined
by Bieri and Strebel in [9], where it was used to classify all finitely presented metabelain
groups. In the case of metabelian groups, †1.G/ has a strong connection with the valua-
tion theory from commutative algebra that was used by Bieri and Groves to prove that the
complement of†1.G/ in the character sphere S.G/ is a spherical rational polyhedron [6].
In [7], Bieri, Neumann and Strebel defined the invariant †1.G/ for any finitely generated
group G, and for 3-manifold groups, they linked †1.G/ with the Thurston norm [39].

Though in general it is difficult to calculate the †-invariants, they are known for sev-
eral classes of groups though sometimes in low dimensions or in specific cases. The case
of the Thompson group F was considered by Bieri, Geoghegan and Kochloukova [5] with
a geometric proof given in [41], and the case of generalized Thompson groups Fn;1 by
Kochloukova [24] and by Zaremsky [42]. The case of free-by-cyclic group was studied
by Funke and Kielak [18, 22], Cashen and Levitt [13], and the case of Poincaré duality
group of dimension 3 by Kielak [22]. In [16], Dowdall, Kapovich and Leininger consider
links between dynamical properties of the expanding action of Z on a free finite rank free
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group and †1. Though the case of right-angled Artin group was completely resolved by
Meier, Meinert and Van Wyk [31], the case of general Artin groups is widely open. Still,
there are some results on †1.G/ for specific Artin groups by Almeida [1], Almeida and
Kochloukova [2]. In [14], Almeida and Lima calculated †1.G/ for Artin group of finite
type (i.e., spherical type). The case of combinatorial wreath product was considered by
Mendonça [15].

Let G be a group and xG an isomorphic copy of the group G. The group X.G/ was
defined by Sidki in [38] by the presentation

X.G/ D hG; xG j Œg; xg� D 1 for g 2 Gi;

where xg is the image of g in xG. In [38, Theorem C], Sidki proved that if G 2 P , then
X.G/ 2 P when P is one of the following classes of groups: finite �-groups, where � is
a set of primes; finite nilpotent groups; solvable groups and perfect groups. Later the
following classes of groups P were added to the above list: finitely generated nilpo-
tent groups by Gupta, Rocco and Sidki [20], virtually polycyclic groups by Lima and
Oliveira [30], soluble groups of homological type FP1 by Kochloukova and Sidki [28],
finitely presented groups by Kochloukova and Bridson [12], finitely generated virtually
nilpotent groups [11], finitely generated Engel groups [11]. In this paper, we add to the
above list the class of finitely generated groups for which †1.G/c D S.G/ n †1.G/ is
a rationally defined spherical polyhedron. By definition, a subset of S.G/ is a rationally
defined spherical polyhedron if it is a finite union of finite intersection of closed rationally
defined semispheres in S.G/, where rationality means that the semisphere is defined by
a rational vector.

The group X.G/ has a special normal abelian subgroupW.G/ such that X.G/=W.G/

is a subdirect product of G � G � G that maps surjectively on pairs. Our first result cal-
culates †1.X.G// for any finitely generated group G.

Theorem A. Let G be a finitely generated group and �WX.G/! R be a character. Con-
sider the homomorphisms �1; �2WG ! R, where �1.g/ D �.g/ and �2.g/ D �.xg/. Then
Œ�� 2 †1.X.G// if and only if one of the following holds:

(1) �1 6D 0, �2 6D 0 and �1 6D �2;

(2) �1 D 0, Œ�2� 2 †1.G/;

(3) �2 D 0, Œ�1� 2 †1.G/;

(4) �1 D �2 6D 0 and Œ�1� 2 †1.G/.

In particular, identifying S.X.G// with S.X.G/=W.G// via the epimorphism X.G/!

X.G/=W.G/, we have the equality †1.X.G// D †1.X.G/=W.G//.

Theorem A implies immediately the following corollary.

Corollary B1. Let G be a finitely generated group. Then †1.G/c is a rationally defined
spherical polyhedron if and only if †1.X.G//c is a rationally defined spherical poly-
hedron.
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Let �1WX.G/! G be the epimorphism that sends xG to 1 and is identity on G. Let
�2WX.G/! G be the epimorphism that sends G to 1 and sends xg to g for every g 2 G.
Finally, set the epimorphism �3WX.G/!G that sends both g and xg to g for every g 2G.

Corollary B2. LetG be a finitely generated group andN be a subgroup of X.G/ that con-
tains the commutator subgroup X.G/0. Then N is finitely generated if and only if �1.N /,
�2.N / and �3.N / are all finitely generated. In particular, X.G/0 is finitely generated if
and only if G0 is finitely generated.

Limit groups were defined by Sela and independently studied by Kharlampovich and
Myasnikov, who referred to them as fully residually free groups. Limit groups were dis-
covered during the development of the theory that led to the solution of the Tarski problem
on the elementary theory of non-abelian free groups of finite rank in [21] and [37]. In [23],
Kochloukova showed that for a non-abelian limit group G we have †1.G/ D ;.

Corollary C. Let G be a non-abelian limit group. Then

†1.X.G// D
®
Œ�� 2 S.X.G// j �1 6D 0; �2 6D 0; �1 6D �2

¯
:

Now, we continue with the study of the †-invariants focusing on †2.X.G/;Z/ and
†2.X.G//. Our first result in this direction is for non-abelian limit groups G.

Proposition D. Let G be a finitely generated group. Suppose that †1.G/ D ;. Then
†2.X.G/;Z/ D ;. In particular, this holds for non-abelian limit groups G.

Recall that the group X.G/ has a special normal abelian subgroup W.G/ such that
X.G/=W.G/ is a subdirect product of G � G � G that maps surjectively on pairs. This
together with the result of Bridson, Howie, Miller, Short [10, Theorem A] implies that
X.G/=W.G/ is finitely presented whenever G is finitely presented. A homological ver-
sion of this result was proved in [28, Theorem D] using †-theory, i.e., X.G/=W.G/ is
FP2 whenever G is FP2. Recently Bridson and Kochloukova generalised this by showing
in [12] that X.G/ is finitely presented (resp. FP2) if and only if G is finitely presented
(resp. FP2). This does not generalise to homological type FP3, since for finitely generated
free non-cyclic group G the group X.G/ is not of type FP3 [12].

In a recent work, Kochloukova and Lima [26] studied the †-invariants of subdirect
products of non-abelian limit groups; in particular, this applies for X.G/=W.G/ when G
is a non-abelian limit group. In the following theorem, the groups are not presumed limit
groups and different techniques from [26] are applied.

Theorem E1. Let G be of type FP2 and �WK D X.G/=W.G/! R be a character. Let
�1; �2WG ! R be characters defined by �1.g/ D �.g/ and �2.g/ D �.xg/. Then Œ�� 2
†2.K;Z/ if and only if one of the following cases holds:

(1) �1 D 0, Œ�2� 2 †2.G;Z/;

(2) �2 D 0, Œ�1� 2 †2.G;Z/;

(3) �1 D �2 6D 0 and Œ�1� 2 †2.G;Z/;
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(4) �1 6D 0, �2 6D 0, �1 6D �2 and one of the following holds:

.4:1/ ¹Œ�1�; Œ�2�º � †
1.G/;

.4:2/ ¹Œ�1�; Œ�1 � �2�º � †
1.G/;

.4:3/ ¹Œ�2�; Œ�2 � �1�º � †
1.G/.

The proof of Theorem E1 uses substantially Theorem 2.7. Since Theorem 2.7 has a
homotopical version, we have a homotopical version of Theorem E1.

Theorem E2. Let G be a finitely presented group and �WK D X.G/=W.G/! R be a
character. Let �1; �2WG ! R be characters defined by �1.g/ D �.g/ and �2.g/ D �.xg/.
Then Œ�� 2 †2.K/ if and only if one of the following conditions holds:

(1) �1 D 0, Œ�2� 2 †2.G/;

(2) �2 D 0, Œ�1� 2 †2.G/;

(3) �1 D �2 6D 0 and Œ�1� 2 †2.G/;

(4) �1 6D 0; �2 6D 0, �1 6D �2 and one of the following holds:

.4:1/ ¹Œ�1�; Œ�2�º � †
1.G/;

.4:2/ ¹Œ�1�; Œ�1 � �2�º � †
1.G/;

.4:3/ ¹Œ�2�; Œ�2 � �1�º � †
1.G/.

In general, little is known for W.G/. In [28], Kochloukova and Sidki proved using
homological methods that if G is FP2 and G0=G00 is finitely generated, then W.G/ is
finitely generated. In Theorem F1, we get partial information on †2.X.G/;Z/.

Theorem F1. Suppose G is a group of type FP2. For a character �WX.G/! R, define
y�WX.G/=W ! R to be the character induced by �, where W D W.G/.

(a) If Œ�� 2 †2.X.G/;Z/, then Œy�� 2 †2.X.G/=W;Z/.

(b) Suppose W is finitely generated and Œy�� 2 †2.X.G/=W;Z/. Then

Œ�� 2 †2.X.G/;Z/:

In particular, this holds when the abelianization of the commutator group G0 D
ŒG;G� is finitely generated.

Theorem F1 has the following homotopical version.

Theorem F2. Suppose G is a finitely presented group. For a character �WX.G/ ! R
define y�WX.G/=W ! R to be the character induced by �, where W D W.G/.

(a) If Œ�� 2 †2.X.G//, then Œy�� 2 †2.X.G/=W /.

(b) Suppose W is finitely generated and Œy�� 2 †2.X.G/=W /. Then Œ�� 2 †2.X.G//.
In particular, this holds when the abelianization of the commutator group G0 D
ŒG;G� is finitely generated.
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The next result follows from Theorems A, E1, E2, F1 and F2. Though it is an easy
corollary of those theorems, it looks more symmetric than the theorems it derives from.
For a groupH and a subgroupN ofH , by definition S.H;N /D¹Œ��2S.H/ j�.N/D 0º.

Corollary G. The following statements hold:

(a) Suppose that G is a finitely generated group. Then we have the disjoint union

†1.X.G//c D V1 [ V2 [ V3;

where
Vi D †

1.X.G//c \ S.X.G/;Ker.�i //

and the epimorphism �i WX.G/! G induces a bijection ��i W†
1.G/c ! Vi .

(b) Suppose that G is a finitely presented group. Then

W1 [W2 [W3 [ .V1 C V2/ [ .V2 C V3/ [ .V1 C V3/ � †
2.X.G//c ;

where
Wi D †

2.X.G//c \ S.X.G/;Ker.�i //;

and the epimorphism �i WX.G/! G induces a bijection ��i W†
2.G/c ! Wi .

(c) Suppose that G is of homological type FP2. Then

M1 [M2 [M3 [ .V1 C V2/ [ .V2 C V3/ [ .V1 C V3/ � †
2.X.G/;Z/c ;

where
Mi D †

2.X.G/;Z/c \ S.X.G/;Ker.�i //

and the epimorphism �i WX.G/! G induces a bijection ��i W†
2.G;Z/c !Mi .

As a corollary of Theorems F1 and F2, we obtain the following result.

Corollary H. Let G be a group of type FP2 (resp. finitely presented). For a subgroup N
of X.G/ that contains the commutator X.G/0 and such thatN is of type FP2 (resp. finitely
presented), we have that N=W.G/ is of type FP2 (resp. finitely presented) too. Further-
more, for m � 1, the commutator X.G/0 is FPm (resp. finitely presented) if and only if
the commutator G0 is FPm (resp. finitely presented). When this happens, W.G/ is finitely
generated.

Inspired by Theorems F1 and F2, we suggest the following conjecture.

Conjecture I. Let G be a group of type FP2 (resp. finitely presented). Then, identifying
S.X.G// with S.X.G/=W.G// via the epimorphism X.G/! X.G/=W.G/, we have the
equality

†2.X.G/;Z/ D †2.X.G/=W.G/;Z/ .resp. †2.X.G// D †2.X.G/=W.G///:



D. H. Kochloukova 6

Note that by Theorems F1 and F2, we have that Conjecture I holds when G0=G00 is
finitely generated. Note that Theorem E1 implies that for a non-abelian limit group G
we have †2.X.G/=W.G/;Z/ D ;, so Conjecture I holds for non-abelian limit groups.
Another way to state Conjecture I is that in Corollary G in parts (b) and (c) the inclusions
are equalities.

In Section 8, we consider the non-abelian tensor square G ˝ G of a group G and
the construction �.G/. In [35], Rocco defined for an arbitrary group G the group �.G/.
In [17], Ellis and Leonard studied a similar construction. The construction �.G/ is strongly
related to the construction X.G/ in the following way: there is a central subgroup �
of �.G/ such that

�.G/=� ' X.G/=R.G/;

where R.G/ is a normal subgroup of X.G/ such thatW.G/=R.G/'H2.G;Z/. By [35],
the non-abelian tensor squareG˝G is isomorphic to the subgroup ŒG; xG� of �.G/. Using
properties of X.G/=W , we show the following result.

Proposition J. LetG be a finitely generated group such that the commutator subgroupG0

is finitely presented (resp. is FP2). Then the non-abelian tensor square G ˝ G is finitely
presented (resp. is FP2).

In Section 8, we determine the invariants †1.�.G//, †2.�.G/;Z/ and †2.�.G// and
identify them with the corresponding invariants of X.G/=W .

2. Preliminaries on the †-invariants

In [40], Wall defined a group G to be of homotopical type Fn if there is a classifying
space K.G; 1/ with finite n-skeleton. The homotopical type F2 coincides with finite pre-
sentability (in terms of generators and relations). A homological version of this property,
called FPn, was defined by Bieri in [3]. A group G is of homological type FPn if the
trivial ZG-module Z has a projective resolution with all modules finitely generated in
dimension � n.

Higher-dimensional homological invariants †n.G; A/ for a ZG-module A were de-
fined by Bieri and Renz in [8], where they showed that †n.G;Z/ controls which sub-
groups of G that contain the commutator are of homological type FPn. In [34], Renz
defined the higher-dimensional homotopical invariant †n.G/ for groups G of homo-
topical type Fn and, similarly to the homological case †n.G/, controls the homotopical
finiteness properties of the subgroups of G above the commutator. In all cases the †-
invariants are open subsets of the character sphere S.G/. For a group G of type Fn we
have †n.G/ D †n.G;Z/ \ †2.G/. The description of the †-invariants of right-angled
Artin groups by Meier, Meinert and Van Wyk show that the inclusion†n.G/�†n.G;Z/
is not necessary an equality for n � 2 [31]. For the homotopical invariants, we note that
†1.G/ D †1.G;Z/ and in general †n.G/ � †n.G;Z/.
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By definition, a character �WG ! R is a non-zero homomorphism and †n.G;Z/ is
a subset of the character sphere S.G/. The character sphere S.G/ is the set of equivalence
classes Œ�� of characters �WG ! R, where two characters �1 and �2 are equivalent if one
is obtained from the other by multiplication with any positive real number. For a fixed
character �WG ! R, define

G� D ¹g 2 G j �.g/ � 0º:

Recall that for an associative ringR andR-module A, we say that A is of type FPn overR
if A has a projective resolution over R where all projectives in dimension up to n are
finitely generated, i.e., there is an exact complex

P W � � � ! Pi ! Pi�1 ! � � � ! P0 ! A! 0;

where eachPj is a projectiveR-module and for i � nwe have thatPi is finitely generated.
Let D be an integral domain. By definition for a (left) DG-module A

†nD.G;A/ D
®
Œ�� 2 S.G/ j A is of type FPn as a DG�-module

¯
:

When A is the trivial (left)DG-moduleD, denote by †n.G;D/ the invariant †nD.G;D/.
Note that if †n.G; Z/ is a non-empty set, then G is FPn, in particular, is finitely

generated. Later we will need the description of †1.G/ given by the Cayley graph of a
finitely generated group G. Let X be a finite generating set of G. Consider the Cayley
graph � of G associated with the generating set X , i.e., the set of vertices is V.�/ D G
and the set of edges is E.�/ D X � G with the edge e D .x; g/ having beginning g and
end gx. The group G acts on � via left multiplication on V.�/, and he D .x; hg/ for any
h 2 G. The letter x is called the label of the edge e, we write .x�1; gx/ for the inverse of
e and call x�1 the label of e�1. For a fixed character �WG! R, we write �� for the (full)
subgraph of � spanned by the vertices in G�. By definition,

†1.G/ D
®
Œ�� 2 S.G/ j �� is a connected graph

¯
:

Suppose now that G is finitely presented with a finite presentation hX jRi. Gluing to the
Cayley graph � at every vertex 2-cells that spell out the relations of R we get the Cayley
complex C associated to the above finite presentation. For a fixed character �WG ! R,
we denote by C� the (full) subcomplex of C spanned by the vertices in G�. By definition,

†2.G/ D
®
Œ�� 2 S.G/ j there is a finite presentation for which C� is 1-connected

¯
:

The first result is folklore, it is an obvious corollary of the fact that†1.G;Z/D†1.G/
and tensoring is a right exact functor.

Lemma 2.1. Let � WG1!G2 be an epimorphism of finitely generated groups,�2WG2!R
be a character (i.e., non-zero homomorphism) and �1 D �2 ı � . Suppose that Œ�1� 2
†1.G1/. Then Œ�2� 2 †1.G2/.
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We warn the reader that the previous lemma does not hold for †2.

Theorem 2.2 ([31, Theorem 9.3]). Let H be a subgroup of G, M be a DG-module and
�WG ! R be a character. If ŒG W H� <1, then

Œ�jH � 2 †
n
D.H;A/ , Œ�� 2 †nD.G;A/:

In particular, if n D 0, then

A is a finitely generated DG� -module , A is a finitely generated DH�jH -module:

In [4], Bieri and Geoghegan proved a formula for the homological invariants†n.�;F /
for a direct product of groups, where F is the trivial module and is a field. If F is substi-
tuted with the trivial module Z, the result is wrong in both homological and homotopical
settings provided the dimension is sufficiently high, see [31] and [36].

Theorem 2.3 (Direct product formula [4, Theorem 1.3 and Proposition 5.2]). Let n � 0
be an integer, G1 and G2 be finitely generated groups and F be a field. Then,

†n.G1 �G2; F /
c
D

n[
pD0

†p.G1; F /
c
�†n�p.G2; F /

c ;

where � denotes the join of subsets of the character sphere S.G1 �G2/ and c denotes the
set-theoretic complement of subsets of a suitable character sphere.

The above theorem means that if �WG1 �G2! R is a character with �1 D � jG1 and
�2 D � jG2 , then Œ�� 2†n.G1 �G2; F /c D S.G1 �G2; F / n†n.G1 �G2; F / precisely
when one of the following conditions holds:

(1) �1 6D 0, �2 6D 0 and Œ�1� 2†p.G1;F /c D S.G1/ n†p.G1;F /, Œ�2� 2†n�p.G2;
F /c D S.G2/ n†

n�p.G2; F / for some 0 � p � n; or

(2) one of the characters �1, �2 is trivial and for the non-trivial one, say �i , we have
Œ�i � 2 †

n.Gi ; F /
c D S.Gi / n†

n.Gi ; F /.

Though Theorem 2.3 does not hold in general when F is not a field, it holds in small
dimensions 1 � n � 2.

Theorem 2.4 ([19]). Let 1 � n � 2 be an integer, G1, G2 be finitely generated groups.
Then,

†n.G1 �G2;Z/
c
D

n[
pD0

†p.G1;Z/
c
�†n�p.G2;Z/

c ;

where � denotes the join of subsets of the character sphere S.G1 �G2/ and c denotes the
set-theoretic complement of subsets of a suitable character sphere.

Theorem 2.5 ([8,34]). LetG be a group of type Fn (resp. FPn) andN be a subgroup ofG
that contains the commutator subgroup G0. Then N is of type Fn (resp. FPn) if and only if

S.G;N / D
®
Œ�� 2 S.G/ j �.N/ D 0

¯
� †n.G/ .resp. †n.G;Z//:
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Bieri and Renz proved the homological version of Theorem 2.5 in [8]. The homotopi-
cal version formD 2was proved by Renz in [34], and the general homotopical casem� 3
follows from the formula †m.G/ D †m.G;Z/ \†2.G/.

The following theorem can be traced back to several papers: Gehrke results in [19];
the Meier, Meinert and Van Wyk description of the †-invariants for right-angled Artin
groups [31] or the Meinert result on the †-invariants for direct products of virtually free
groups [32].

Theorem 2.6 ([19, 31, 32]). Let F2 be the free group on 2 generators. If �W Fs2 D F2 �
� � � � F2 ! R is a character whose restriction on precisely n copies of F2 is non-zero,
then Œ�� 2 †n�1.Fs2/ n†

n.Fs2/.

The next result was recently obtained by Kochloukova and Mendonça. It should be
viewed as a monoidal version of Theorem 2.5. It is surprising it was not discovered earlier,
as Theorem 2.5 is quite well known and the proof of Theorem 2.7 in [27] is based on ideas
from the proof of Theorem 2.5 but is slightly more technical.

Theorem 2.7 ([27]). The following assertions hold:

(a) Let ŒH;H� � K � H be groups such that H and K are of type FPn. Let �WK !
R be a character such that �.ŒH;H�/ D 0. Then Œ�� 2 †n.K;Z/ if and only if
Œ�� 2 †n.H;Z/ for every character �WH ! R that extends �.

(b) Let ŒH; H� � K � H be groups such that H and K are finitely presented. Let
�WK! R be a character such that �.ŒH;H�/D 0. Then Œ�� 2 †2.K/ if and only
if Œ�� 2 †2.H/ for every character �WH ! R that extends �.

3. Preliminaries on subdirect products and limit groups

The class of limit groups contains all finite rank free groups and the orientable surface
groups. It coincides with the class of the fully residually free groupsG, i.e., for every finite
subsetX ofG there is free group F and a homomorphism 'WG! F whose restriction on
X is injective. Limit groups are of type FP1, finitely presented and of finite cohomological
dimension.

A subgroup G � G1 � � � � �Gm is a subdirect product if the projection map pi WG !
Gi is surjective for all 1 � i � m. Denote by pi1;:::;in WG! Gi1 � � � � �Gin the projection
map that sends .g1; : : : ; gm/ to .gi1 ; : : : ; gin/.

Theorem 3.1 ([23]). Let G � G1 � � � � �Gm be a subdirect product of non-abelian limit
groups G1; : : : ; Gm such that G \Gi 6D 1 for every 1 � i � m and G be of type FPn for
some n � m. Then pi1;:::;in.G/ has finite index in Gi1 � � � � �Gin for every 1 � i1 < � � � <
in � m.

Theorem 3.2 ([23]). Let G be a non-abelian limit group. Then †1.G/ D ;.
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The following conjecture was defined by Kuckuck in [29].

Conjecture 3.3 (The virtual surjection conjecture [29]). LetG �G1 � � � � �Gm be a sub-
direct product of groups G1; : : : ; Gm such that G \ Gi 6D 1 for every 1 � i � m and
each Gi is of homotopical type Fn for some n � m. Suppose that pi1;:::;in.G/ has finite
index in Gi1 � � � � �Gin for every 1 � i1 < � � � < in � m. Then G is of type Fn.

The motivation behind the virtual surjection conjecture is that it holds for n D 2 [10];
that particular case was established by Bridson, Howie, Miller and Short as a corollary of
the 1-2-3 theorem. Furthermore, the virtual surjection conjecture holds for any n when G
contains G01 � � � � � G

0
m [29]. A homological version of the virtual surjection conjecture

was suggested in [25] and proved for n D 2.

Theorem 3.4 ([25]). LetG �G1 � � � � �Gm be a subdirect product of groupsG1; : : : ;Gm
such that G \ Gi 6D 1 for every 1 � i � m and each Gi is of homological type FP2.
Suppose that pi1;i2.G/ has finite index in Gi1 �Gi2 for every 1 � i1 < i2 � m. Then G is
of type FP2.

4. Preliminaries on X.G/

Recall that
X.G/ D hG; xG j Œg; xg� D 1 for g 2 Gi;

where xG is an isomorphic copy of the group G and xg is the image of g 2 G in xG. In [38],
Sidki defined the normal subgroup

L D L.G/ D h¹xg�1g j g 2 Gºi

of X.G/. Note that
X.G/ D L ÌG:

In [30], Lima and Oliveira showed that the abelianizationL=L0 is finitely generated when-
everG is finitely generated. In [12], Bridson and Kochloukova generalized this by showing
that when G is finitely generated, L is finitely generated.

Another important normal subgroup of X.G/ is

D D D.G/ D ŒG; xG�:

There are the following canonical epimorphisms of groups:

X.G/! X.G/=D ' G � xG ' G �G and X.G/! X.G/=L ' G:

The diagonal map of these two epimorphisms induces a map

�W X.G/! G �G �G
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with kernel
W D W.G/ D L.G/ \D.G/:

This map, after some permutation of the factors G in G � G � G, can be explicitly giv-
en by

�.g/ D .g; g; 1/ and �.xg/ D .1; g; g/:

Note that
Im.�/ D

®
.g1; g2; g3/ j g1g

�1
2 g3 2 G

0
¯

is a subdirect product of G � G � G that maps surjectively on pairs and contains the
commutator subgroup G0 �G0 �G0. The defining relations of X.G/ easily imply that

ŒL;D� D 1;

and this property is crucial to develop the structure theory for X.G/. For example, it
implies that W.G/ is an abelian group. Furthermore, W.G/ can be viewed as X.G/-
module via conjugation with DL acting trivially. Thus W.G/ is a X.G/=DL-module
and X.G/=DL ' G=G0 is abelian.

The following result was proved by Kochloukova and Sidki in [28] using homological
techniques. Note that every finitely presented group is FP2.

Theorem 4.1 ([28]). If G is of homological type FP2 and G0=G00 is finitely generated,
then W.G/ is finitely generated.

The question whether X.G/ is FPn when G is FPn was resolved by Bridson and
Kochloukova in [12] with affirmative answer for n D 2 and negative for n � 3.

Theorem 4.2 ([12]). If G is finitely presented (resp. FP2), then X.G/ is finitely presented
(resp. FP2). But if G is FPn for some n � 3, then X.G/ is not necessary FPn, since for F
a free non-cyclic group of finite rank X.F / is not FP3.

5. The main results for †1.X.G//

Throughout this section G is a finitely generated group,

�W X.G/! R

is a character and
�0W X.G/=D ! R

is the character induced by �. Note that

X.G/=D ' G � xG ' G �G:

We write
�0 D .�1; �2/W G �G ! R

and note that �1.g/ D �.g/ and �2.g/ D �.xg2/.
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Lemma 5.1. Suppose that G is a finitely generated group and Œ�� 2 †1.X.G//. Then
Œ�0� 2 †

1.X.G/=D/ and one of the following holds:

(1) �1 6D 0, �2 6D 0;

(2) �1 D 0, Œ�2� 2 †1.G/;

(3) �2 D 0, Œ�1� 2 †1.G/.

Furthermore, if �1 D �2 6D 0, then Œ�1� 2 †1.G/.

Proof. The fact that Œ�0� 2 †1.X.G/=D/ follows immediately by Lemma 2.1. Note that
†1.X.G/=D/ ' G �G. By Theorem 2.4 and the fact that †1.�;Z/ D †1.�/, we have

†1.G �G/ D
®
Œ.�1; �2/� 2 S.G �G/ j �1 6D 0; �2 6D 0 or �1 D 0; Œ�2� 2 †1.G/

or �2 D 0; Œ�1� 2 †1.G/
¯
: (5.1)

If �1 D �2, then �.L/ D 0 and � induces a character y�WX.G/=L ' G ! R. Note
that y� can be identified with �1 and by Lemma 2.1 Œy�� 2 †1.G/.

Lemma 5.2. Suppose thatG is a finitely generated group, Œ�0�D Œ.�1;�2/�2†1.G �G/
and �1 6D �2. Then Œ�� 2 †1.X.G//.

Proof. Note that since �1 6D �2 we have �.L/ 6D 0. From the very beginning, we can
fix an element a 2 L such that �.a/ � 1 and include it in a fixed finite generating set Y
of X.G/. Let � be the Cayley graph of X.G/ with respect to Y . Let yY be the image of Y
in X.G/=D and let y� be the Cayley graph of X.G/=D with respect to the finite generating
set yY . By definition, �� is the subgraph of � spanned by X.G/� D ¹h 2X.G/ j �.h/� 0º

and y��0 is the subgraph of y� spanned by .X.G/=D/�0 D ¹h 2 X.G/=D j �0.h/ � 0º.
Let g 2X.G/� and write yg for the image of g in X.G/=D. Since Œ�0�2†1.X.G/=D/,

we deduce that there is a path y in y��0 that starts at 1X.G/=D and finishes at yg. Then
we can lift the path y to a path  in �� that starts at 1X.G/, i.e., under the canonical
epimorphism � WF.Y /! F. yY / (where F.Y / and F. yY / are the free groups with basis Y
and yY respectively) the label l./ of  is sent to the label l.y/. Then the path  finishes at
an element of X.G/ that is mapped under the canonical epimorphism X.G/! X.G/=D

to yg, i.e., the final point is tg for some t 2 D.
Suppose there is a path 0 in �� that starts at 1X.G/ and finishes at t . Then the

composition path �10  is a path in �� that starts at t and finishes at tg. Finally, since
�.t/ 2 �.D/ D 0 we deduce that t�1:.�10 / is a path in �� that starts at 1X.G/ and
finishes at g. Thus Œ�� 2 †1.X.G// as required.

Finally, we construct the path 0. First, we start with any path z in � that starts at 1X.G/

and finishes at t . Note that for m sufficiently large positive integer, we have that z is in-
side ����m. Recall that a 2 L \ Y is an element such that �.a/ � 1. Let ım be the path
in �� that starts at 1X.G/ and has label am D a : : : a, and let ı�m be the path in � that
starts at 1X.G/ and has label a�m D a�1 : : : a�1. Then the path am:z is inside ��, starts
at am and finishes at amt . And since �.t/ D 0, the path amt:ı�m is inside ��, starts
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at amt and finishes at amta�m. Note that t 2 D and a 2 L. Since ŒD;L� D 1, we deduce
that amta�m D t , hence the concatenation 0 D ım.am:z/.amt:ı�m/ is a path inside ��
that starts at 1X.G/ and finishes at t .

Lemma 5.3. Suppose that H is a finitely generated group. Let N be a finitely generated
normal subgroup ofH and �WH !R be a character such that �.N/D 0. Let z�WH=N !
R be the character induced by �. Assume that Œz�� 2 †1.H=N/. Then Œ�� 2 †1.H/.

In particular, for a finitely generated groupG,H DX.G/ andN DL, if �1 D �2 6D 0
and Œ�1� 2 †1.G/, then Œ�� 2 †1.X.G//.

Proof. Let � be the Cayley graph of H with respect to a fixed finite generating set Y
and yY be the image of Y in H=N . Let y� be the Cayley graph of H=N with respect to the
generating set yY .

Fix g 2H� and consider yg the image of g inH=N . Since Œz�� 2†1.H=N/, we deduce
that there is a path y in y�z� that starts at 1H=N and finishes at yg. Then we can lift the path y
to a path  in �� that starts at 1H . Note that the path  finishes at an element of H of the
type tg for some t 2 N .

Suppose there is a path 0 in �� that starts at 1H and finishes at t . Then �10  is a path
in �� with beginning t and end tg. Finally, since �.t/ 2 �.N/D 0, we get that t�1.�10 /

is a path in �� with beginning 1H and end g. Thus Œ�� 2 †1.H/ as required.
Finally, we construct the path 0. Consider a finite generating set Y1 of N ; we can

choose Y such that Y1� Y . Then we can link the elements 1H and t with a path 0 in ��D0
whose label is a word on Y ˙11 , where ��D0 is the subgraph of � generated by Ker.�/.

Finally, for the case H D X.G/, N D L observe that by [12, Proposition 2.3], if G is
finitely generated, then L is finitely generated.

Lemmas 5.1, 5.2 and 5.3 imply the following corollary.

Corollary 5.4. Let G be a finitely generated group and �WX.G/ ! R be a character.
Consider the homomorphisms �1; �2WG ! R, where �1.g/ D �.g/ and �2.g/ D �.xg/.
Then Œ�� 2 †1.X.G// if and only if one of the following holds:

(1) �1 6D 0, �2 6D 0 and �1 6D �2;

(2) �1 D 0, Œ�2� 2 †1.G/;

(3) �2 D 0, Œ�1� 2 †1.G/;

(4) �1 D �2 6D 0 and Œ�1� 2 †1.G/.

Denote by
� W X.G/! X.G/=W

the canonical projection.

Lemma 5.5. Suppose that G is a finitely generated group. Let

y�W X.G/=W ! R
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be a character, �1; �2WG! R be the characters defined by �1.g/D y��.g/ and �2.g/D
y��. Ng/. Then Œy�� 2 †1.X.G/=W / if and only if one of the following conditions holds:

(1) �1 6D 0 , �2 6D 0 and �1 6D �2;

(2) �1 D 0, Œ�2� 2 †1.G/;

(3) �2 D 0, Œ�1� 2 †1.G/;

(4) �1 D �2 6D 0 and Œ�1� 2 †1.G/.

Proof. Let
� D y�� W X.G/! R:

We claim that Œy�� 2 †1.X.G/=W / if and only if Œ�� 2 †1.X.G//. Recall that †1.X.G//
is described in Corollary 5.4. If Œ�� 2 †1.X.G//, by Lemma 2.1 Œy�� 2 †1.X.G/=W /.

Suppose now that Œy�� 2 †1.X.G/=W /. Then since W � D, the group X.G/=D is
a quotient of X.G/=W , and by Lemma 2.1 for the character

.�1; �2/W X.G/=D ! R

we have Œ.�1; �2/� 2 †1.X.G/=D/. By (5.1) either �1 D 0, Œ�2� 2 †1.G/ or �2 D 0,
Œ�1� 2 †

1.G/ or �1 6D 0; �2 6D 0.
Suppose that �1 D �2. Note that for the epimorphism �0WX.G/=W ! X.G/=L we

have that y� D �1�0, where we have identified X.G/=L with G. Then by Lemma 2.1,
since Œy�� 2 †1.X.G/=W /, we deduce that Œ�1� 2 †1.G/.

Proof of Theorem A. It follows immediately from Corollary 5.4 and Lemma 5.5.

Proof of Corollary B2. Suppose that �1.N /, �2.N / and �3.N / are all finitely generated.
Let �WX.G/!R be a character such that �.N/D 0. We aim to show that Œ��2†1.X.G//.
Then by Theorem 2.5 we will obtain that N is finitely generated as required.

(1) Suppose that �1 D 0. Then �2 6D 0. Since �.N/ D 0, we have �2.�2.N // D 0.
By Theorem 2.5, the fact that �2.N / is finitely generated implies that Œ�2� 2 †1.G/.

(2) Suppose that �2 D 0. Then �1 6D 0. Since �.N/ D 0, we have �1.�1.N // D 0.
By Theorem 2.5, the fact that �1.N / is finitely generated implies that Œ�1� 2 †1.G/.

(3) Suppose that �1 D �2 6D 0. Since �.N/ D 0, we have �1.�3.N // D 0. By Theo-
rem 2.5, the fact that �3.N / is finitely generated implies that Œ�1� 2 †1.G/.

(4) The final case is �1 6D 0, �2 6D 0 and �1 6D �2.
Then by Theorem A in all four cases Œ�� 2 †1.X.G// as required.
Finally, apply the above for N D X.G/0 to deduce that X.G/0 is finitely generated if

and only if G0 is finitely generated. This completes the proof of Corollary B2.

Proof of Corollary C. Note that by Theorem 3.2, for a non-abelian limit groupG we have
†1.G/ D ;. Then by Theorem A

†1.X.G// D
®
Œ�� 2 S.X.G// j �1 6D 0; �2 6D 0; �1 6D �2

¯
:
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6. Some results on †2.X.G/;Z/ and †2.X.G//

In this section, we prove results that do not require Theorem 2.7. Note that if G is FP2
then by [12] X.G/ is FP2 too. The last condition is necessary for †2.X.G/;Z/ 6D ;, but
as we will see from the results in this section it is not sufficient, i.e., there are groups G of
type FP2 such that †2.X.G/;Z/ D ;.

Lemma 6.1. Let H be a group of type FP2, N a normal subgroup of H , Œ�� 2 †2.H;Z/
such that �.N/D 0 and z�WH=N !R be the character induced by �. Suppose further that
N=ŒN;N � is finitely generated as a left Z.H=N/z�-module, whereH=N acts onN=ŒN;N �
via conjugation. Then Œz�� 2 †2.H=N;Z/.

Proof. Since Œ�� 2 †2.H;Z/, there is a free resolution

P W � � � ! P2 ! P1 ! P0 D ZH� ! Z! 0

of the trivial left ZH�-module Z, where P1 and P2 are finitely generated as ZH�-mod-
ules. Consider the complex of free Z.H=N/z�-modules

R D Z˝ZN P W � � � ! R2
d2
�!R1

d1
�!R0 D Z.H=N/z� ! Z! 0:

Note that R is in general not exact and

H0.R/ D 0 and H1.R/ D H1.N;Z/ D N=ŒN;N �;

where the last follows from the fact that P can be viewed as a free resolution of ZN -
modules. Since R2 is finitely generated as a Z.H=N/z�-module, we conclude that Im.d2/
is finitely generated as a Z.H=N/z�-module. This together with the fact that

N=ŒN;N � D H1.R/ D Ker.d1/= Im.d2/

is finitely generated as a Z.H=N/z�-module implies that Ker.d1/ is finitely generated as
a Z.H=N/z�-module. Hence Z is FP2 as Z.H=N/z�-module, i.e., Œz�� 2 †2.H=N;Z/.

Corollary 6.2. Let N be a normal subgroup of X.G/, Œ�� 2 †2.X.G/; Z/ such that
�.N/ D 0 and z�WX.G/=N ! R be the character induced by �. Suppose further that
N=ŒN; N � is finitely generated as a left Z.X.G/=N /z�-module, where X.G/=N acts on
N=ŒN;N � via conjugation. Then Œz�� 2 †2.X.G/=N;Z/.

Proposition 6.3. Let Œ�� 2 †2.X.G/;Z/, �0 D .�1; �2/WX.G/=D ' G � G ! R and
y�WX.G/=W ! R be the characters induced by �. Then the following conditions hold:

(1) if �1 6D �2 then Œ�0� 2 †2.X.G/=D;Z/;

(2) if �1 6D �2 then Œy�� 2 †2.X.G/=W;Z/;

(3) if �1 D �2 then �.L/ D 0 and for the character z�WX.G/=L! R induced by �
we have Œz�� 2†2.X.G/=L;Z/. Identifying X.G/=L withG and z� with �1 we get
Œ�1� 2 †

2.G;Z/.
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Proof. Note that the condition �1 6D�2 is equivalent to �.L/ 6D 0. Since†2.X.G/;Z/ 6D ;,
we deduce that X.G/ is FP2, hence its retract G is FP2.

(1) By Corollary 6.2 applied for N D D, it remains to prove that D=ŒD;D� is finitely
generated as a Z.X.G/=D/�0 -module. The fact that G is FP2 implies that X.G/=D '

G �G is FP2, and so any relation module of G � G (with respect to a finite generating
set of G � G) is finitely generated as a G � G-module. Hence any quotient of a relation
module of G � G (with respect to a finite generating set of G � G) is finitely generated
as a G � G-module; in particular, D=ŒD;D� is finitely generated as a X.G/-module (via
conjugation). Since �.L/ 6D 0, we have that X.G/DX.G/�L. This combined with the fact
that L andD act trivially (via conjugation) onD=ŒD;D� implies thatD=ŒD;D� is finitely
generated as a Z.X.G/�=D/-module. Finally, note that X.G/�=D D .X.G/=D/�0 .

(2) Note that X.G/=W is a subdirect product of G �G �G that maps surjectively on
pairs. Thus since G is FP2, we can apply Theorem 3.4 to deduce that X.G/=W is FP2,
hence W=ŒW; W � D W is finitely generated as a X.G/-module via conjugation. Since
�.L/ 6D 0, we can use X.G/ D X.G/�L and the fact that L acts trivially on W via con-
jugation to deduce that W is finitely generated as a Z.X.G/�=W /-module. Finally, note
that X.G/�=W D .X.G/=W /y�.

(3) Suppose now that �.L/ D 0. This is equivalent to �1 D �2. Consider the decom-
position X.G/ D L ÌG. Then the character � induces a character z�WX.G/=L! R that,
after identifying X.G/=L with G, is the character �1. By Corollary 6.2, to show that
Œ�1� 2†

2.G;Z/, it suffices to show that L=ŒL;L� is finitely generated as a Z.X.G/=L/z�-
module. As observed before, Bridson and Kochloukova showed in [12] that L is finitely
generated whenever G is finitely generated. The fact that L=ŒL; L� is finitely generated
for a finitely generated group G was proved earlier by Lima and Oliveira in [30].

Lemma 6.4. Let H be a finitely presented group, N a normal subgroup of H , Œ�� 2
†2.H/ such that �.N/ D 0 and z�WH=N ! R be the character induced by �. Suppose
further that N is finitely generated as a left Hz�-group, where H acts on N via conjuga-
tion. Then Œz�� 2 †2.H=N/.

Proof. Since Œ�� 2 †2.H/, there is a finite presentation H D hX j Ri such that for the
Cayley complex � associated to this presentation and its subcomplex �� spanned by the
verticesH� D ¹h 2H j �.h/ � 0º we have that �� is 1-connected. The free leftH -action
on � induces an N -action on �� and thus we have a covering map

pW �� ! ��=N:

Since �1.��/ D 1, we have that

N ' �1.��=N/:

Since N is finitely generated as a left Hz�-group, there are elements b1; : : : ; bm 2 N such
that N D hH�b1; : : : ;H�bmi.
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Consider the finite presentation H=N D hX j R; b1; : : : ; bmi. The Cayley complex y�
associated to this presentation is obtained from � changing vertex set H to H=N and
gluing at each vertex extra 2-cells whose boundaries are closed paths 1; : : : ; m with
labels that correspond to b1; : : : ; bm. Then there is a non-positive real number d such that
1; : : : ; m are closed paths homotopic to a point in y�z��d , where y�z��d is the subcomplex
of y� spanned by the vertices in ¹g 2 H=N j z�.g/ � dº. Thus y�z��0 is y�z�.

The fact that �1.��=N/'N D hH�b1; : : : ;H� bmi implies that the inclusion of spaces
y�z� � y�z��d induces the trivial map �1.y�z�/! �1.y�z��d /. This is one of the definitions
of †2, hence Œz�� 2 †2.H=N/.

Alternatively, we can assume from the very beginning that the fixed generating set X
contains a finite fixed subset of H . In particular, we can assume that X contains the set
¹b1; : : : ; bmº. This guarantees that y�z� is 1-connected.

Corollary 6.5. Let G be a finitely presented group and let N be a normal subgroup
of X.G/, Œ�� 2 †2.X.G// such that �.N/D0 and z�W X.G/=N ! R be the charac-
ter induced by �. Suppose further that N is finitely generated as a left X.G/z�-group,
where X.G/ acts (on the left) on N via conjugation. Then Œz�� 2 †2.X.G/=N /.

Proposition 6.6. Let G be a finitely presented group, Œ�� 2 †2.X.G//,

�0 D .�1; �2/W X.G/=D ' G �G ! R

and y�WX.G/=W !R be the characters induced by �. Then the following conditions hold:

(1) if �1 6D �2 then Œ�0� 2 †2.X.G/=D/;

(2) if �1 6D �2 then Œy�� 2 †2.X.G/=W /;

(3) if �1 D �2 then �.L/ D 0, and for the character z�WX.G/=L! R induced by �
we have Œz�� 2 †2.X.G/=L/. Identifying X.G/=L with G and z� with �1, we get
Œ�1� 2 †

2.G/.

Proof. By Theorem 4.2, since G is finitely presented, X.G/ is finitely presented.
(1) By Corollary 6.2 applied for N D D, it remains to prove that D is finitely gener-

ated as a X.G/�0 -group where X.G/�0 acts (on the left) via conjugation. The fact thatG is
finitely presented implies that X.G/=D 'G �G is finitely presented. HenceD is finitely
generated as a normal subgroup of X.G/, i.e., is finitely generated as a X.G/-group, where
X.G/ acts (on the left) via conjugation. Since �.L/ 6D 0, we have that X.G/ D X.G/�L.
This combined with the fact that ŒL;D� D 1 implies that L acts trivially on D via conju-
gation, hence the X.G/ action on D via conjugation factors through an action of X.G/�.

(2) Note that X.G/=W is a subdirect product of G � G � G that maps surjectively
on pairs. Since by [10] the virtual surjection conjecture holds for n D 2, we deduce
that X.G/=W is finitely presented, hence W is finitely generated as a normal subgroup
of X.G/. Since W is abelian, this is equivalent to W being finitely generated as a left
ZX.G/-module via conjugation. Since �.L/ 6D 0, we can use X.G/ D X.G/�L and the
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fact that L acts trivially on W via conjugation (since W D L \D and ŒL; D� D 1) to
deduce that W is finitely generated as a left ZX.G/�-module.

(3) Suppose now that �.L/ D 0. This is equivalent to �1 D �2. Consider the decom-
position X.G/ D L Ì G. Then the character � induces a character z�WX.G/=L! R that
after identifying X.G/=L with G is the character �1. By Corollary 6.5, to show that
Œ�1� 2 †

2.G/, it suffices to show that L is finitely generated as a left X.G/z�-group.
As observed before, Bridson and Kochloukova showed in [12] that L is finitely gener-
ated as a group whenever G is finitely generated.

Proof of Proposition D. Suppose that Œ�� 2 †2.X.G/;Z/. Then, by Proposition 6.3, for
the induced character

�0 D .�1; �2/W X.G/=D ' G �G ! R

either Œ�0� 2 †2.G �G;Z/ or �1 D �2 and Œ�1� 2 †2.G;Z/. Since

†2.G;Z/ � †1.G;Z/ D †1.G/

we have that †2.G;Z/ is empty if †1.G/ is empty. Note that by Theorem 2.4 (i.e., the
direct product formula holds in dimension 2), †2.G �G;Z/ is empty if †1.G/ is empty,
a contradiction with the existence of �.

Theorem 6.7 ([33, Corollary 4.2]). Let H be a finitely presented group, N a normal
subgroup of H that is finitely presented, �WH=N ! R a character and � WH ! H=N

be the canonical epimorphism. Then Œ�� 2 †2.H=N/ if and only if Œ��� 2 †2.H/.

We will need the homological version of the above result.

Theorem 6.8. Suppose N is a normal subgroup of H such that both N and H are FP2,
�WH ! R is a character such that �.N/ D 0, z�WH=N ! R is the character induced
by � and Œz�� 2 †2.H=N;Z/. Then Œ�� 2 †2.H;Z/.

Proof. Consider the short exact sequence of groups

1! N ! H ! H=N ! 1

and the induced short exact sequence of monoids

1! N ! H� ! .H=N/z� ! 1:

This induces a LHS spectral sequence

E2p;q D Hp..H=N/z�;Hq.N; V // D Tor
Z.H=N/z�
p .Z;TorZN

q .Z; V //

that converges to HpCq.H�; V / D TorZH�
pCq .Z; V / for a fixed ZH�-module V . We set

V D
Q

ZH�.
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Note that Œz�� 2 †2.H=N;Z/ is equivalent to Tor
.H=N/z�
i .Z;�/ commutes with direct

products for i D 0 and i D 1. Note that this follows from Bieri’s criterion [3, p. 12, The-
orem 1.3, iiia)’]. By the same argument, the condition Œ�� 2 †2.H;Z/ is equivalent to
TorZH�

i .Z;
Q

ZH�/ D 0 for i D 1 and TorZH�
0 .Z;

Q
ZH�/ '

Q
TorZH�

0 .Z;ZH�/ .
(1) Note that

E21;0 D Tor
Z.H=N/z�
1

�
Z;TorZN

0

�
Z;
Y

ZH�
��
:

Since N is finitely generated, we deduce that TorZN
0 .Z;�/ commutes with direct prod-

ucts. Thus

H0

�
N;
Y

ZH�
�
D TorZN

0

�
Z;
Y

ZH�
�
'

Y
TorZN

0 .Z;ZH�/

'

Y
.ZH�=N/ '

Y
Z.H=N/z�:

Since Œz�� 2 †2..H=N/z�;Z/, we deduce that

Tor
Z.H=N/z�
1

�
Z;
Y

Z.H=N/z�
�
'

Y
Tor

Z.H=N/z�
1 .Z;Z.H=N/z�/ D

Y
0 D 0:

Combining the above equalities we deduce that

E21;0 D 0; hence E11;0 D 0:

Now
E20;1 D Tor

Z.H=N/z�
0

�
Z;TorZN

1

�
Z;
Y

ZH�
��
:

Note that N is FP2, hence TorZN
1 .Z;�/ commutes with direct products. Thus

TorZN
1

�
Z;
Y

ZH�
�
'

Y
TorZN

1 .Z;ZH�/ '
Y

0 D 0;

where we have used that ZH� is a free ZN -module and so TorZN
1 .Z;ZH�/ D 0. Hence

E20;1 D Tor
Z.H=N/z�
0 .Z; 0/ D 0:

Then E10;1 D E11;0 D 0. Finally, the convergence of the spectral sequence gives a short
exact sequence of abelian groups

0! E10;1 ! H1

�
H�;

Y
ZH�

�
! E11;0 ! 0;

hence
H1

�
H�;

Y
ZH�

�
D 0:

(2) It remains to show that TorZH�
0 .Z;

Q
ZH�/'

Q
TorZH�

0 .Z;ZH�/. This is equiv-
alent to Œ�� 2 †1.H/ and follows from Lemma 5.3.
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Corollary 6.9. Suppose N is a normal subgroup of X.G/ such that N and G are FP2,
�WX.G/ ! R is a character such that �.N/ D 0, z�WX.G/=N ! R is the character
induced by � and Œz�� 2 †2.X.G/=N;Z/. Then Œ�� 2 †2.X.G/;Z/.

Corollary 6.10. Suppose �WX.G/!R is a character such that �.L/D 0 and �1 D � jG .
Suppose that L is FP2 and that Œ�1� 2 †2.G;Z/. Then Œ�� 2 †2.X.G/;Z/.

Proof. Since †2.G;Z/ 6D ;, we have that G is FP2, hence by Theorem 4.2 X.G/ is FP2.
We apply Corollary 6.9 for N D L and identify X.G/=L with G. Note that the character
y�WX.G/=L! R under the identification of X.G/=L with G is identified with �1.

7. Proofs of Theorems E1, E2, F1 and F2, and Corollaries G and H

Let H D G �G �G and K D Im.�/. Recall that

Im.�/ D
®
.g1; g2; g3/ j g1g

�1
2 g3 2 G

0
¯
;

hence
ŒIm.�/; Im.�/� D ŒH;H�:

Proof of Theorem E1. Suppose that

� D .�1; �2; �3/W H D G �G �G ! R

is a character extending �. By Theorem 2.7, Œ�� 2 †2.K; Z/ if and only if for every
character � extending � we have Œ�� 2 †2.H;Z/. Note that in dimension 2 the † direct
product formula holds, see Theorem 2.4, hence Œ�� 2 †2.H;Z/ precisely if one of the
following cases holds for the characters �1, �2, �3:

(a) Two characters from ¹�1; �2; �3º are 0, and the third corresponds to an element
of †2.G;Z/.

(b) One character from ¹�1; �2; �3º is 0, and the other two are non-zero and at least
one corresponds to an element of †1.G/.

(c) The three characters �1; �2; �3 are non-zero.
Note that, since � is an extension of �, we have

�..g1; g1g3; g3// D �1.g1/C �2.g1g3/C �3.g3/:

Hence

�1.g1/ D �..g1; g1; 1// D �1.g1/C �2.g1/; i.e., �1 D �1 C �2 (7.1)

and
�2.g3/ D �..1; g3; g3// D �2.g3/C �3.g3/; i.e., �2 D �2 C �3: (7.2)
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Then�1D�1 ��2 and�3D�2 ��2. Suppose that for each� that extends �we have
Œ�� 2 †2.H;Z/. If �1 6D 0, �2 6D 0 and �3 6D 0, we are in case (c) and Œ�� 2 †2.H;Z/.
There are several more cases to consider.

(a1) Assume that �1 D 0 D �2. Then by (7.1) and (7.2), �3 D �2, �1 D 0 and Œ�� 2
†2.H;Z/ is equivalent to Œ�3� 2 †2.G;Z/. Thus

�1 D 0; Œ�2� 2 †
2.G;Z/:

(a2) Assume that �1 D 0 D �3. Then by (7.1) and (7.2), �1 D �2 D �2 and Œ�� 2
†2.H;Z/ is equivalent to Œ�2� 2 †2.G;Z/. Thus

�1 D �2; Œ�1� 2 †
2.G;Z/:

(a3) Assume that �2 D 0 D �3. Then by (7.1) and (7.2) �2 D 0, �1 D �1 and Œ�� 2
†2.H;Z/ is equivalent to Œ�1� 2 †2.G;Z/. Thus

�2 D 0; Œ�1� 2 †
2.G;Z/:

(b1) Assume that �1 D 0; �2 6D 0; �3 6D 0. Then by (7.1) and (7.2), �2 D �1, �3 D
�2 � �2 D �2 � �1. Then Œ�� 2 †2.H;Z/ is equivalent to the condition that both �2
and �3 are non-zero and at least one represents an element from †1.G/, i.e., �1 6D 0,
�2 6D �1 and at least one of the elements of ¹Œ�1�; Œ�2 � �1�º belongs to †1.G/.

(b2) Assume that �3 D 0; �2 6D 0; �1 6D 0. Then by (7.1) and (7.2), �2 D �2, �1 D
�1 � �2 D �1 � �2. Then Œ�� 2 †2.H;Z/ is equivalent to the condition that both �1 and
�2 are non-zero and at least one represents an element from†1.G/, i.e., �2 6D 0, �1 6D �2
and at least one of the elements of ¹Œ�2�; Œ�1 � �2� belongs to †1.G/.

(b3) Assume that�2D 0,�1 6D 0;�3 6D 0. Then by (7.1) and (7.2),�1D �1,�3D �2.
Then Œ�� 2 †2.H;Z/ is equivalent to the condition that both �1 and �3 are non-zero and
at least one represents an element from †1.G/, i.e., �2 6D 0, �1 6D 0 and at least one of
the elements of¹Œ�1�; Œ�2�º belongs to †1.G/.

As a corollary of (b1), (b2) and (b3), if �1 6D 0; �2 6D 0 and �1 6D �2, one of the
following conditions should hold:

¹Œ�1�; Œ�2�º � †
1.G/ or ¹Œ�1�; Œ�1 � �2�º � †1.G/ or ¹Œ�2�; Œ�2 � �1�º � †1.G/:

This completes the proof of Theorem E1.

We note that the proof of Theorem E2 is similar to the proof of Theorem E1, since
we can use the homotopical part of Theorem 2.7. We can obtain the proof of Theorem E2
from the proof of Theorem E1 by substituting †2.G;Z/ with †2.G/.

Proof of Theorem F1. (a) Assume now that Œ�� 2 †2.X.G/;Z/. By part 2 of Proposi-
tion 6.3, if �.L/ 6D 0, i.e., �1 6D �2, we deduce that Œy�� 2 †2.X.G/=W;Z/.

By Proposition 6.3, when �1 D �2 we have Œ�1� 2 †2.G;Z/. Then by Theorem E1,
Œy�� 2 †2.X.G/=W;Z/.
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(b) Note that by Theorem 4.1, if G is FP2 and the abelianization of the commutator
group ŒG;G� is finitely generated, then W.G/ is finitely generated as abelian group.

Note that by Corollary 6.9 for N D W when W is finitely presented (in our case
it is a finitely generated abelian group) and Œy�� 2 †2.X.G/=W;Z/, we can deduce that
Œ�� 2 †2.X.G/;Z/.

Proof of Theorem F2. (a) Assume now that Œ�� 2†2.X.G//. By part 2 of Proposition 6.6,
if �.L/ 6D 0, i.e., �1 6D �2, we deduce that Œy�� 2 †2.X.G/=W /.

By Proposition 6.6, when �1 D �2 we have Œ�1� 2 †2.G/. Then, by Theorem E2,
Œy�� 2 †2.X.G/=W /.

(b) Note that by Corollary 6.9 for N D W when W is finitely presented and Œy�� 2
†2.X.G/=W /, we can deduce that Œ�� 2 †2.X.G//.

Proof of Corollary G. (a) By Theorem A, Œ�� 2 †1.X.G//c if and only if one of the fol-
lowing conditions holds:

(1) �2 D 0; Œ�1� 2 †1.G/c ;

(2) �1 D 0; Œ�2� 2 †1.G/c ;

(3) �1 D �2 6D 0 and Œ�1� 2 †1.G/c ,

where �1; �2WG ! R are characters defined by �1.g/ D �.g/ and �2.g/ D �.xg/.
By the definition of Vi , we have that Œ��2 Vi if and only if � satisfies the i -th condition.

Hence
†1.G/c D V1 [ V2 [ V3:

(b) Identifying S.X.G// with S.X.G/=W.G// via the projection map

X.G/! X.G/=W.G/

and by Theorem F2, we have †2.X.G// � †2.X.G/=W.G//. Hence

†2.X.G/=W.G//c � †2.X.G//c :

By Theorem E2, Œ�� 2 †2.X.G/=W.G//c if and only if one of the following conditions
holds:

(1) �2 D 0; Œ�1� 2 †2.G/c ;

(2) �1 D 0; Œ�2� 2 †2.G/c ;

(3) �1 D �2 6D 0 and Œ�1� 2 †2.G/c ;

(4) �1 6D 0; �2 6D 0, �1 6D �2 and one of the following holds:

(4a) ¹Œ�1�; Œ�2�º � †1.G/c ;

(4b) ¹Œ�1�; Œ�2 � �1�º � †1.G/c ;

(4c) ¹Œ�2�; Œ�1 � �2�º � †1.G/c .
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By the definition of Wi , we have that Œ�� 2 Wi if and only if � satisfies the i -th condi-
tion for 1 � i � 3.

In case (4a), Œ�� D Œ.�1; �2/� D Œ.�1; 0/�C Œ.0; �2/� is a typical element of V1 C V2.
In case (4b), Œ�� D Œ.�1; �2/� D Œ.0; �2 � �1/� C Œ.�1; �1/� is a typical element of

V2 C V3.
In case (4c), Œ�� D Œ.�1; �2/� D Œ.�2; �2/� C Œ.�1 � �2; 0/� is a typical element of

V3 C V1.
(c) The proof is the obvious homological modification of (b).

Proof of Corollary H. Let�WX.G/=W.G/!R be a character that vanishes onN=W.G/.
We define a character �W X.G/ ! R as the composition of the canonical projection
X.G/!X.G/=W.G/with�. Thus�D y� and since �.N/D 0 andN is FP2 (resp. finite-
ly presented) by Theorem 2.5, Œ�� 2 †2.X.G/; Z/ (resp. Œ�� 2 †2.X.G//). Then by
Theorem F1, Œy�� 2†2.X.G/=W.G/;Z/ (resp. by Theorem F2, Œy�� 2†2.X.G/=W.G//),
hence by Theorem 2.5 again N=W.G/ is FP2 (resp. finitely presented).

Let us consider the case N D X.G/0. Note that X.G/ D L Ì G, hence X.G/0 D

hL0; ŒL; G�i Ì G0. Suppose that X.G/0 is FPm for some m � 1 (resp. finitely presented).
Since the property FPm (resp. finitely presented) passes to retracts, we deduce that G0 is
FPm (resp. finitely presented).

For the converse, assume that G0 is FPm for some m � 1 (resp. finitely presented).
Since FP1 is equivalent to finite generation, we have that G0 is finitely generated and by
Theorem 4.1 W.G/ is finitely generated. Then

X.G/0=W D Im.�/0 D G0 �G0 �G0 is FPm (resp. finitely presented).

Since W is abelian and finitely generated, it is of type FPm and finitely presented. This
implies that X.G/0 is FPm (resp. finitely presented) as claimed.

Remark 7.1. Though it is tempting to study the structure of†n.X.G/;Z/ and†n.X.G//
for n � 3, there are some structural problems. Firstly, we do not have a criterion to know
when X.G/ is of type FP3 and by [12], even for nice groups such as finite rank free
non-cyclic groups G, the group X.G/ is not FP3. Secondly, if we want to find a higher-
dimensional version of Theorems E1 and E2, it is natural to apply Theorem 2.7 for
H D G � G � G and K D Im.�/ ' X.G/=W.G/. But though there is a direct prod-
uct †-formula that holds for the homological †-invariants with coefficients in a field [4],
a similar formula does not hold for †n.�;Z/ for n � 4 [36] or for †n.�/ for n � 3 [31].

8. On the finite presentability of the non-abelian tensor square and
on the †-invariants of �.G/

Let G be a group. In [35], Rocco defined a group given by the following presentation

�.G/ D
˝
G; xG j Œg1; xg2�

g3 D Œg
g3
1 ; g

g3
2 � D Œg1; xg2�

xg3
˛
;
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where xG is an isomorphic copy of G. By [35], for the non-abelian tensor square G ˝ G,
we have an isomorphism

G ˝G ' ŒG; xG�;

where ŒG; xG� is the subgroup of �.G/ generated by ¹Œg1; xg2� jg1 2 G; xg2 2 xGº. Further-
more, by [35], there is a subgroup � � �.G/0 \Z.�.G// such that

�.G/=� ' X.G/=R; (8.1)

with an isomorphism that is an identity on G [ xG, R is a special normal subgroup of
X.G/ that is contained in W D W.G/ and W=R ' H2.G;Z/. Thus � is a quotient of
H2.�.G/=�;Z/ ' H2.X.G/=R;Z/.

Lemma 8.1. Let G be a group of type FP2. Then � is finitely generated and there is
a normal subgroup W0 in �.G/ such that W0 is finitely generated nilpotent of class at
most 2 and

�.G/=W0 ' X.G/=W: (8.2)

Proof. Let W0 be the normal subgroup of �.G/ such that W0=� is the preimage of W=R
in �.G/=� under isomorphism (8.1). Then

W0=� ' W=R ' H2.G;Z/

and � is a quotient of H2.X.G/=R;Z/. Since G is FP2, then H2.G;Z/ is finitely gen-
erated, hence W=R ' H2.G;Z/ is a finitely generated abelian group, hence it is finitely
presented and so is FP2. Furthermore, when G is FP2, by [28, Theorem D], X.G/=W

is FP2. Since the property FP2 is extension closed [3, Exercise, p. 23], we deduce that
X.G/=R is FP2, hence H2.X.G/=R; Z/ is finitely generated. Then its quotient � is
a finitely generated central subgroup of �.G/. Then W0 is nilpotent of class at most 2
and both � and W0=� ' H2.G;Z/ are finitely generated. Then we can deduce that W0
is finitely generated.

Proposition 8.2. LetG be a group. We identify S.�.G// with S.�.G/=W0/ via the canon-
ical projection map �.G/! �.G/=W0 and we identify S.�.G/=W0/ with S.X.G/=W /
via isomorphism (8.2). Then

(a) †2.�.G// D †2.X.G/=W / if G is finitely presented;

(b) †2.�.G/;Z/ D †2.X.G/=W;Z/ if G is FP2.

Remark. Recall that in Theorems E1 and E2, we have calculated both †2.X.G/=W;Z/
and †2.X.G/=W /.

Proof. (a), (b) In both cases G is FP2 and, by Lemma 8.1, W0 is finitely generated nilpo-
tent of class at most 2. Hence W0 is finitely presented. By construction W0 � �.G/0

and, identifying �.G/=W0 with X.G/=W , we have †2.�.G/=W0/ D †2.X.G/=W / and
†2.�.G/=W0;Z/ D †2.X.G/=W;Z/ whenever the invariants are defined.
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If G is finitely presented, by Theorem 6.7, †2.�.G// D †2.�.G/=W0/. If G is FP2,
then by Lemma 6.1 and Theorem 6.8,†2.�.G/;Z/D †2.�.G/=W0;Z/. We observe that
here we can apply Lemma 6.1 since W0=ŒW0; W0� is finitely generated.

If we want to calculate †1.�.G// only under the assumption that G is finitely gener-
ated, we cannot assume thatW0 is finitely generated since G in general is not of type FP2.

But we can follow the ideas from the proofs from Section 5. To do so, we need to
define two groups in �.G/ that would play the roles of D and L from X.G/. Here we set
L�.G/ as the subgroup of �.G/ generated by ¹gxg�1 j g 2 Gº and

D�.G/ D ŒG; xG� in �.G/:

Note that both are normal subgroups in �.G/ and that the defining relations of �.G/ imply
that

ŒD�.G/; L�.G/� D 1: (8.3)

Note that �.G/=D�.G/ ' G � xG ' X.G/=D.

Lemma 8.3. Let G be a finitely generated group. Then L�.G/ is finitely generated.

Proof. (1) We will prove first that the abelianization ofL�.G/ is finitely generated. By [38,
Theorem 2.1.1], the group

E.G/ D
˝
G; xG j Œ¹hgxg�1 j g 2 Gºi; h¹gxg�1i j g 2 Gº� D 1

˛
is isomorphic to Aug.ZG/ Ì G. Here Aug.ZG/ is the augmentation ideal of ZG. We
write an element of Aug.ZG/ÌG as .�;g/, where � 2Aug.ZG/ and g 2G. The product
is given by the formula .�1; g1/.�2; g2/ D .�1 C g1�2; g1g2/, and the isomorphism

� W E.G/! Aug.ZG/ ÌG

sends g 2 G to .0; g/ and xg 2 xG to .g � 1; g/. Note that � induces an isomorphism

�.G/=L�.G/
0
' .Aug.ZG/=I / ÌG;

where I is a left ideal of Aug.ZG/ and the above isomorphism restricted to the abelian-
ization of L�.G/ is

L�.G/=L�.G/
0
' Aug.ZG/=I:

By the definition of � ,

�.Œg1; xg2�/ D �.g
�1
1 /�.g�12 /�.g1/�.xg2/ D .0; g

�1
1 /.g�12 � 1; g

�1
2 /.0; g1/.g2 � 1; g2/

D .˛.g1; g2/; Œg1; g2�/;

where

˛.g1; g2/ D g
�1
1 .g�12 � 1/C g

�1
1 g�12 g1.g2 � 1/

D g�11 g�12 C Œg1; g2� � g
�1
1 � g

�1
1 g�12 g1:
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The relation Œg1; xg2�g3 D Œg
g3
1 ; g

g3
2 � in �.G/, where g1; g2 2 G, xg2 2 xG, implies

.g�13 ˛.g1; g2/; Œg
g3
1 ; g

g3
2 �/ D .0; g

�1
3 /.˛.g1; g2/; Œg1; g2�/.0; g3/

D �.g�13 /�.Œg1; xg2�/�.g3/ D �.Œg1; xg2�
g3/ D �.Œg

g3
1 ; g

g3
2 �/

D .˛.g
g3
1 ; g

g3
2 /; Œg

g3
1 ; g

g3
2 �/ in .Aug.ZG/=I / ÌG:

Then
g�13 ˛.g1; g2/ D ˛.g

g3
1 ; g

g3
2 / D g

�1
3 ˛.g1; g2/g3 in Aug.ZG/=I

and so
˛.g1; g2/.g3 � 1/ 2 I: (8.4)

Note that
�.g3xg

�1
3 / D .0; g3/.g

�1
3 � 1; g

�1
3 / D .1 � g3; 1/

and

�.Œg1; xg2�
g3 xg

�1
3 / D �.g3xg

�1
3 /�1�.Œg1; xg2�/�.g3xg

�1
3 /

D .g3 � 1; 1/.˛.g1; g2/; Œg1; g2�/.1 � g3; 1/

D .g3 � 1C ˛.g1; g2/C Œg1; g2�.1 � g3/; Œg1; g2�/:

The relation Œg1; xg2�g3 xg
�1
3 D Œg1; xg2� in �.G/ implies

g3 � 1C ˛.g1; g2/C Œg1; g2�.1 � g3/ D ˛.g1; g2/ in Aug.ZG/=I;

hence
.Œg1; g2� � 1/.g3 � 1/ D 0 in Aug.ZG/=I: (8.5)

Since

˛.g1; g2/ D g
�1
1 g�12 C 1 � g

�1
1 � g

�1
2

D .g�11 � 1/.g
�1
2 � 1/ in Aug.ZG/=Aug.ZG0/;

by (8.4) and (8.5), we get

0 D ˛.g1; g2/.g3 � 1/ D .g
�1
1 � 1/.g

�1
2 � 1/.g3 � 1/ in Aug.ZG/=I:

Thus for any t1; t2; t3 2 G, we have

.t1 � 1/.t2 � 1/.t3 � 1/ 2 I: (8.6)

Note that if X is a finite generating set of G then Aug.ZG/ as a Z-module is generated
by
S
k�1 Yk , where Yk D ¹.xi1 � 1/ : : : .xik � 1/ j xi1 ; : : : ; xik 2 X [X

�1º. Using (8.6),
we obtain that Aug.ZG/=I as a Z-module is generated by the finite set Y1 [ Y2.

(2) Finally, we prove that L�.G/ is finitely generated. Since we have a central exten-
sion 1!�!L�.G/!L�.G/=�! 1, by [12, Lemma 2.2],L�.G/ is finitely generated
if L�.G/=� is finitely generated and the abelianization of L�.G/ is finitely generated.
Now isomorphism (8.1) induces an isomorphismL�.G/=�'L=R and, sinceL is finitely
generated [12, Proposition 2.3], L�.G/=� is finitely generated too.
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Proposition 8.4. Let G be a finitely generated group. Via the canonical projection map
�.G/! �.G/=W0 we identify S.�.G// with S.�.G/=W0/ and we identify S.�.G/=W0/
with S.X.G/=W / via isomorphism (8.2). Then

†1.�.G/;Z/ D †1.X.G/=W;Z/:

Remark. We recall that †1.X.G/=W;Z/ was calculated in Section 5.

Proof. I. By (8.3), the same argument from Lemma 5.2 applies with X.G/ substituted
by �.G/, i.e., if �W �.G/! R is a character such that for �0 D .�1; �2/WG � G ! R
defined by �1.g/ D �.g/, �2.g/ D �.xg/ we have that �1 6D �2 and Œ�0� 2 †1.G � G/,
then Œ�� 2 †1.�.G//. Recall that Œ�0� 2 †1.G �G/ is equivalent to one of the following:
1) �1 D 0, Œ�2� 2 †1.G/; 2) �2 D 0, Œ�1� 2 †1.G/; 3) �1 6D 0, �2 6D 0.

II. In Lemma 8.3 we proved thatL�.G/ is a finitely generated subgroup of �.G/. Then
by Lemma 5.3 applied for H D �.G/ and N D L�.G/, we deduce that if �1 D �2 6D 0
and Œ�1� 2 †1.G/, then Œ�� 2 †1.�.G//.

I. and II. together with the description of †1.X.G/=W / in Section 5 imply that
†1.X.G/=W / � †1.�.G//.

On the other hand, since W0 � �.G/0, we can apply Lemma 2.1 and deduce

†1.�.G// � †1.�.G/=W0/ D †
1.X.G/=W /;

where the last equality follows from isomorphism (8.2).
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