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Cocycle superrigidity for profinite actions
of irreducible lattices

Daniel Drimbe, Adrian Ioana, and Jesse Peterson

Abstract. Let � be an irreducible lattice in a product of two locally compact groups and assume
that � is densely embedded in a profinite group K. We give necessary conditions which imply that
the left translation action � Õ K is “virtually” cocycle superrigid: any cocycle wW� �K ! �

with values in a countable group � is cohomologous to a cocycle which factors through the map
� �K!� �K0 for some finite quotient groupK0 ofK. As a corollary, we deduce that any ergodic
profinite action of � D SL2.ZŒS�1�/ is virtually cocycle superrigid and virtually W�-superrigid for
any finite nonempty set of primes S .

1. Introduction and statement of main results

The study of measure preserving actions of countable groups on standard probability
spaces up to orbit equivalence has witnessed an explosion of activity in the last 20 years
(see the surveys [10, 11, 20, 22, 34, 40, 43]). Recall that two probability measure preserv-
ing (p.m.p.) actions � Õ .X; �/ and � Õ .Y; �/ are called orbit equivalent (OE) if there
is an isomorphism of probability spaces � WX ! Y such that �.� � x/ D � � �.x/ for
almost every x 2 X . If, in addition, there is a group isomorphism ıW � ! � such that
�.g � x/D ı.g/ � �.x/ for every g 2 � and almost every x 2 X , then the actions are called
conjugate.

The theory of orbit equivalence was initiated by Dye, in connection with the theory of
von Neumann algebras [29]. He proved that any two ergodic p.m.p. actions of the group
of integers Z are orbit equivalent [7]. In the early 1980s, this result was extended to show
that all ergodic p.m.p. actions of infinite amenable groups are orbit equivalent [30] (see
also [3]). In contrast, it was shown in [8] that any non-amenable group has uncountably
many pairwise non-orbit equivalent free ergodic p.m.p. actions (see also [13, 16, 18] for
results addressing various important classes of non-amenable groups).

Moreover, the non-amenable case revealed a striking rigidity phenomenon: within cer-
tain families of actions of non-amenable groups, orbit equivalence implies conjugacy. The
first OE rigidity results were obtained by Zimmer for actions of higher rank lattices via
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his cocycle superrigidity theorem [44]. By building upon Zimmer’s work, Furman proved
the remarkable fact that generic ergodic p.m.p. actions � Õ .X;�/ of higher rank lattices
(e.g., SLn.Z/ Õ Tn for n � 3) are OE superrigid [9]: any free p.m.p. action which is OE
to � Õ .X;�/must be “virtually” conjugate to it. Subsequently, numerous impressive OE
superrigidity results were obtained in [1, 2, 4, 10, 12, 17, 21, 23, 24, 28, 32, 33, 35, 37, 42].

We highlight here the breakthrough work of Popa, who used his deformation/rigidity
theory to prove that Bernoulli actions of property (T) and product groups are OE super-
rigid [33, 35]. Popa derived this result from his seminal cocycle superrigidity theorem
asserting that any cocycle for such an action with values in a countable (more generally,
Ufin, see [33, Definition 2.5]) group is cohomologous to a group homomorphism [33,35].
Later on, techniques and ideas from deformation/rigidity theory were used to prove several
additional cocycle superrigidity results in [1,4,10,12,17,21,32,37,42]. Notably, the second
author proved a cocycle superrigidity theorem for ergodic profinite actions � Õ .X; �/

of property (T) groups [17]. This shows that any cocycle for � Õ .X; �/ with values in
a countable group is virtually (i.e., after restricting to a finite index subgroup �0 < � and
an ergodic component of �0) cohomologous to a group homomorphism. Soon after, this
result was generalized to compact actions in [10]. More recently, completing an analogy
with Bernoulli actions, Gaboriau, Tucker-Drob and the second author proved that sep-
arately ergodic profinite actions of product groups are cocycle superrigid in the above
sense [12].

In this paper, we establish cocycle superrigidity results for profinite actions of a new
class of groups that arise as irreducible lattices in products of locally compact groups. This
is in part motivated by a question in [41] asking whether profinite actions of groups with
property .τ/, and in particular the irreducible lattices SL2.ZŒ1=p�/ for prime p, are cocy-
cle superrigid (see Remark 1.1). Additional motivation is provided, in view of the analogy
between existing results for Bernoulli and profinite actions, by a recent result in [1], fol-
lowing earlier results in [32], showing that Bernoulli actions of lattices in products of
locally compact groups are cocycle superrigid.

Before stating our main result, we need to recall some terminology. Let G Õ .X; �/

be a p.m.p. action of a locally compact second countable (l.c.s.c.) group G on a standard
probability space .X; �/. A sequence ¹Anºn2N of measurable subsets of X is said to be
asymptotically invariant if it satisfies limn!1 supg2F �.g �An4An/D 0 for every com-
pact set F � G. The action G Õ .X; �/ is called strongly ergodic if any asymptotically
invariant sequence ¹Anºn2N is trivial, in the sense that limn!1 �.An/.1 � �.An// D 0.
For a l.c.s.c. group H , a measurable map wWG � X ! H is called a cocycle if for all
g;h 2 G, we have that w.gh; x/D w.g;h � x/w.h; x/ for almost every x 2 X . Two cocy-
cles w1; w2WG � X ! H are cohomologous if there is a measurable map �WX ! H

such that for all g 2 G, w1.g; x/ D �.g � x/w2.g; x/�.x/
�1 for almost every x 2 X .

Finally, let � be a lattice in G and mG=� be the unique G-invariant Borel probability
measure of G=� . For a p.m.p. action �

˛Õ .Y; �/, we denote by IndG� .˛/, the associated
induced actionG Õ .G=� � Y;mG=� � �/ (see the beginning of Section 2 for the precise
definition of induced actions).
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Our main result shows that, under certain strong ergodicity assumptions, any cocy-
cle of a profinite action of a lattice in a product of locally compact groups is virtually
cohomologous to a homomorphism.

Theorem A. Let � be a countable dense subgroup of a compact profinite group K and
consider the left translation action �

˛Õ .K;mK/, where mK denotes the Haar measure
of K. Write K D lim

 
Kn as an inverse limit of finite groups Kn, and let rnWK ! Kn be

the quotient homomorphism. Suppose that � is a lattice in a product of two compactly
generated l.c.s.c. groups G D G1 � G2. Assume that the restrictions of IndG� .˛/ to G1
and G2 are strongly ergodic and ergodic, respectively.

Let wW � � K ! � be a cocycle with values in a countable group �. Then there
is an integer n such that w is cohomologous to a cocycle w0W � � K ! � of the form
w0 D w0 ı .id� � rn/ for some cocycle w0W� �Kn ! �.

Next, we discuss two consequences of Theorem A. By [17, Theorem B], any ergodic
profinite action of a finitely generated group � that has property (T) (or, more gener-
ally, has an infinite normal subgroup with the relative property (T)) is virtually cocycle
superrigid. As a consequence of Theorem A, we obtain the first class of residually finite
groups � not admitting infinite subgroups with the relative property (T) whose every
ergodic profinite translation action is virtually cocycle superrigid.

Corollary B. Let � D SL2.ZŒS�1�/ for a finite nonempty set of primes S . Let �
˛Õ.X; �/

be an ergodic profinite p.m.p. action. Write ˛ as an inverse limit of actions �
˛nÕ .Xn; �n/,

with Xn finite, and denote by rnWX ! Xn the quotient map for every n.
Let wW � � X ! � be a cocycle with values in a countable group �. Then there

is an integer n such that w is cohomologous to a cocycle w0W � � X ! � of the form
w0 D w0 ı .id� � rn/ for some cocycle w0W� �Xn ! �.

Remark 1.1. In [41, Theorem 1.1], Thomas proved that if n � 2 and S , T are sets
of primes, then the classification problem for the S -local torsion-free abelian groups of
rank n is Borel reducible to that for the T -local groups of rank n if and only if S � T .
The proof of this result relies on cocycle superrigidity results for profinite actions of
� D SLn.ZŒ1=p�/ for p prime. If n � 3, the proof of [41, Theorem 1.1] uses [17, Theo-
rem B], which can be applied as � has property (T). On the other hand, if n D 2, then �
does have property (T) and the proof of [41, Theorem 1.1] is much more complicated and
relies on Zimmer’s cocycle superrigidity theorem.

In this context, Thomas asked if the cocycle superrigidity theorem of [17] holds for
groups � with property .τ/. Corollary B gives a partial positive answer to this question in
the case when � D SL2.ZŒS�1�/ for a finite set of primes S (for which property .τ/ has
been established in [27]). As explained in [41, footnote on p. 3700 and Remark B.3], the
case when S D ¹pº consists of one prime can be used to considerably simplify the proof
of [41, Theorem 1.1] for n D 2.



D. Drimbe, A. Ioana, and J. Peterson 318

By using standard arguments (see [17]), Theorem A and Corollary B imply that the
actions from their statements are virtually OE-superrigid. Our next result shows that the
actions covered by Corollary B are moreover virtually W�-superrigid. Recall that a free
ergodic p.m.p. action � Õ .X; �/ is called W�-superrigid if any free ergodic p.m.p.
action � Õ .Y; �/ giving rise to an isomorphic von Neumann algebra, L1.X/ Ì � Š
L1.Y /Ì�, must be conjugate to it. The first families of W�-superrigid actions were dis-
covered about 10 years ago [19,31,36]. Since then, many other families of W�-superrigid
actions have been found (see the introduction of [5]).

By combining Corollary B with Popa and Vaes’ work [38], we obtain the following:

Corollary C. Let � Õ .X;�/ be any action as in Corollary B. Let�Õ .Y; �/ be any free
ergodic p.m.p. action of a countable group �. Then L1.X/ Ì � Š L1.Y / Ì � if and
only if there exist finite index subgroups �0 < � and �0 < �, a �0-invariant measurable
set X0 � X and a �0-invariant measurable set Y0 � Y such that:

• � Õ X is induced from �0 Õ X0,

• � Õ Y is induced from �0 Õ Y0,

• �0 Õ X0 is conjugate to �0 Õ Y0,

• Œ� W �0� D Œ� W �0�.

Here, we say that an ergodic p.m.p. action � Õ .Y; �/ is induced from an action
�0 Õ Y0 if �0 < � is a finite index subgroup, Y0 � Y is a �0-invariant measurable set
and �.gY0 \ Y0/ D 0 for all g 2 � n�0.

2. Cocycle rigidity for induced actions

The goal of this section is to prove cocycle rigidity results for induced actions of transla-
tion actions.

We start by recalling the construction of induced actions and cocycles. Let � be a lat-
tice in a l.c.s.c. groupG. Let pWG=�!G be a Borel map such that p.g�/ 2 g� for every
g 2 G. Define a cocycle cWG � G=� ! � by letting c.g; x�/ D p.gx�/�1gp.x�/ for
every g 2 G and x� 2 G=� .

Let �
˛Õ .Y;�/ be a p.m.p. action andwW� �Y !� be a cocycle for a l.c.s.c. group�.

Put . zY ;z�/ WD .G=� �Y;mG=� � �/. Then the induced action z̨ WD IndG� .˛/ ofG on . zY ;z�/
is defined by the formula z̨.g/.x�; y/ D .gx�; ˛.c.g; x�//y/, and the induced cocycle
zwWG � zY !� associated to w is defined by the formula zw.g; .x�;y//D w.c.g;x�/;y/
for every g 2 G, x� 2 G=� and y 2 Y .

We also recall that ifGÕ .X;�/ is a p.m.p. action of a l.c.s.c. groupG on a probability
space .X;�/ and� is a countable group, then the uniform distance between two cocycles
w1; w2WG �X ! � is given by

d.w1; w2/ D sup
g2G

�.¹x 2 X j w1.g; x/ ¤ w2.g; x/º/:
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The following result extends [17, Lemma 2.1] to locally compact groups with an iden-
tical proof.

Lemma 2.1 ([17, Lemma 2.1]). Let GÕ.X; �/ be an ergodic p.m.p. action of a l.c.s.c.
group G. Let � be a countable group, and w1; w2WG � X ! � be two cocycles such
that d.w1; w2/ < 1=8. Then there is a measurable map �W X ! � such that for all
g 2 G, w1.g; x/ D �.gx/w2.g; x/�.x/

�1 for almost every x 2 X . Moreover, �.¹x 2
X j �.x/ D 1�º/ > 3=4.

Assumption 2.2. Throughout this and the next section, we assume the following setting:

• Assume that � is a countable dense subgroup of a compact profinite group K D
lim
 
Kn, whereKn is a finite group for every n. Let rnWK!Kn be the quotient homo-

morphism.

• Let �
˛Õ .K;mK/ be the left translation action.

• Assume that � is a lattice in a product of two l.c.s.c. groups G D G1 �G2.

• Let G
z̨Õ .X; �/ D .G=� �K;mG=� �mK/ be the induced action z̨ WD IndG� .˛/.

• We define an action K
�Õ .X; �/ which commutes with z̨ by letting �.t/.x�; y/ D

.x�; yt�1/. For simplicity, we will use the notation zt�1 WD �.t/z for every z 2 X
and t 2 K.

The following theorem is the main result of this section.

Theorem 2.3. Let G0 be a closed subgroup of G such that the restriction of z̨ to G0
is ergodic. Let wWG0 � X ! � be a cocycle for the restriction of z̨ to G0 with values
in a countable group �. For every t 2 K, define a cocycle wt WG0 � X ! � by letting
wt .g; x/ D w.g; xt

�1/. Assume that d.wt ; w/ < 1=32 for every t in a neighborhood V
of the identity 1K of K.

Then there is an integer n such that the cocycle w is cohomologous to a cocycle
w0W G0 � X ! � of the form w0.g; x/ D w0.g; .idG=� � rn/.x// for some cocycle
w0WG0 � .G=� �Kn/! �.

Proof. We follow closely the proof of [10, Theorem 5.21]. By Lemma 2.1, wt is coho-
mologous to w for every t 2 V . Therefore, there is a measurable map ft WX ! � such
that for all g 2 G0,

wt .g; x/ D ft .gx/w.g; x/ft .x/
�1 for almost every x 2 X: (2.1)

Moreover, the map ft satisfies �.¹x 2 X j ft .x/ D 1�º/ � 3=4 for every t 2 V .
Let W � K be a neighborhood of 1K such that we have W 2 � V . Let t; s 2 W and

denote F.x/ D fts.x/�1ft .xs�1/fs.x/. Using (2.1) twice, we obtain for all g 2 G0

F.gx/ D w.g; x/F.x/w.g; x/�1 for almost every x 2 X:

This implies that F �1.¹1�º/ isG0-invariant and has positive measure since fs , ft and fts
take the value 1� with probability at least 3=4. Thus �.F �1.¹1�º//D 1 by the ergodicity
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of z̨jG0 . Therefore, for all s; t 2 W , we have

fts.x/ D ft .xs
�1/fs.x/ for almost every x 2 X: (2.2)

Since the finite index subgroups Ln WD ker.rn/ < K form a basis of neighborhoods
of 1K , there is n such that Ln � W . We claim that there is a measurable map �WX ! �

such that

ft .x/ D �.xt
�1/�.x/�1 for almost every .t; x/ 2 Ln �X:

To prove the claim, let R � K be a system of representatives for the left cosets
ofK=Ln. Equation (2.2) shows that fts.z; rx0/D ft .z; rx0s�1/fs.z; rx0/ for all r 2R,
almost every x0; s; t 2 Ln and almost every z 2 G=� . By making the substitution s D
x�11 x0, we get that for all r 2 R, almost every x0; x1; t 2 Ln and almost every z 2 G=� ,
we have

ft .z; rx1/ D ftx�11 x0
.z; rx0/fx�11 x0

.z; rx0/
�1: (2.3)

By Fubini’s theorem, we can find x0 2 Ln such that (2.3) holds for all r 2 R, almost
every x1; t 2 Ln and almost every z 2 G=� . Define �WX ! � by letting �.z; rx1/ D
fx�11 x0

.z; rx0/ for all r 2 R, x1 2 Ln, z 2 G=� . Then (2.3) implies the claim.
Define the cocycle w0WG0 � X ! � by w0.g; x/ D �.gx/�1w.g; x/�.x/. Equa-

tion (2.1) combined with the above claim implies that for every g 2 G0, we have

w0.g; xt�1/ D w0.g; x/;

for almost every t 2 Ln and x 2 X . By Fubini’s theorem, we can find a map w0WG0 �
.G=� � Kn/! � such that for all g 2 G0, we have w0.g; .x; y// D w0.g; .x; rn.y///
for almost every .x; y/ 2 X . Then for all g1; g2 2 G0, zw0 satisfies the cocycle identity
w0.g1g2; .x; y//D w0.g1; g2.x; y//w0.g2; .x; y// for almost every .x; y/ 2 G=� �Kn.
Moreover, if q D idG0 � idG=� � rn, then w0 ı q D w0, .mG0 � mG=� � mK/-almost
everywhere. Since w0 is measurable, w0 is measurable. Hence, w0 is a cocycle, which
finishes the proof.

The hypothesis of Theorem 2.3 requires that wt ! w, as t ! 1K , in the uniform
metric. This assumption is guaranteed by the following lemma:

Lemma 2.4. Assume that the restriction of z̨ to G1 is strongly ergodic and G2 is com-
pactly generated. Let wWG � X ! � be a cocycle into a countable group �. For every
t 2 K, define a cocycle wt WG �X ! � by letting wt .g; x/ D w.g; xt�1/. Then

d.wt jG2 ; wjG2/! 0 as t ! 1K :

Here, wjG2 denotes the restriction of w to G2 �X .

The proof of this lemma follows closely [14] (see also the proof of [12, Lemma 3.1]).
Nevertheless, we include a detailed proof for the reader’s convenience.
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Proof. Let S be a compact generating set for G2 and " 2 .0; 1/. Since the restriction of z̨
to G1 is strongly ergodic, there exist a compact set F � G1 and ı > 0 such that if A � X
is any measurable subset satisfying supg2F �.g

�1A�A/ < ı, then either �.A/ < "=4 or
�.A/ > 1 � "=4.

For every t 2 K and g 2 G, define

Atg D
®
x 2 X j w.g; x/ D w.g; xt�1/

¯
:

We claim that since � is countable for every compact set L � G, we have that

inf
g2L

�.Atg/! 1 as t ! 1K :

To justify this, note that the formula g � .x; �/ D .gx; w.g; x/�/ defines a measure pre-
serving near actionG Õ .X ��;�� c/, where c denotes the counting measure of�. Let
� WG ! U.L2.X ��// be the associated unitary representation. Since � is measurable,
it must be continuous (see, e.g., [44, Theorem B.3]). Let � WK ! U.L2.X ��// be the
continuous unitary representation associated with the action K Õ .X ��;� � c/ given
by t � .x; �/ D .xt�1; �/. Let � D 1X�1� 2 L2.X ��/. Then k�k2 D 1 and we have that

�.g/.�/ D 1¹.x;�/2X��jw.g;g�1x/D�º for every g 2 G:

This implies that�.Atg/Dh�.t/.�.g/�/;�.g/�i for every g 2G and t 2K. Since � and �
are continuous in the strong operator topology, the set ¹�.g/� j g 2 Lº � L2.X ��/ is
compact and for every g 2 G we have that h�.t/.�.g/�/; �.g/�i ! 1 as t ! 1K . This
easily implies the claim.

Next, the claim provides an open neighborhood U � K of 1K such for every t 2 U
we have

�.Atg/ > 1 � ı=2 for all g 2 F and �.Ath/ > 1 � "=4 for all h 2 S: (2.4)

Note that for any t 2 K, g 2 G1 and h 2 G2 we have

g�1Ath�A
t
h � X n .A

t
g \ h

�1Atg/: (2.5)

Indeed, first notice that the cocycle relation implies w.g; hx/w.h; x/ D w.h; gx/w.g; x/
for almost every x 2 X . Now, if we take x 2 Atg \ h

�1Atg , then w.g; x/ D w.g; xt�1/
and w.g; hx/ D w.g; hxt�1/. Therefore, x 2 At

h
if and only if w.h; x/ D w.h; xt�1/ if

and only if w.h; gx/ D w.h; gxt�1/ if and only if x 2 g�1At
h
. This proves (2.5).

For every g 2 F , h 2 G2 and t 2 U , (2.4) and (2.5) imply that �.g�1At
h
�At

h
/ < ı.

By our choice of ı, it follows that

for all t 2 U and h 2 G2; either �.Ath/ < "=4 or �.Ath/ > 1 � "=4: (2.6)

We next claim that the set G02 WD ¹h 2 G2 j �.A
t
h
/ > 1 � "=4 for all t 2 U º is a sub-

group of G2. Note that for At
h1
\ h�11 A

t
h2
� At

h1h2
for every h1; h2 2 G2 and t 2 K.
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Therefore, if h1; h2 2G02 and t 2U , then �.At
h1h2

/ > �.At
h1
\ h�11 A

t
h2
/ > 1� "=2. Since

1� "=2 > "=4, relation (2.6) implies that �.At
h1h2

/ > 1� "=4, which implies h1h2 2 G02.
Since At

h�1
D hAt

h
and thus �.At

h�1
/ D �.Aht / for every g 2 G and t 2 K, this proves

the claim.
Since S � G02, G02 is a group and S generates G2, we get that G02 D G2. This proves

the lemma.

3. Proof of Theorem A

We assume the setting from Assumption 2.2. Let wW� �K ! � be a cocycle for ˛ with
values into a countable group�. Let zwWG �X !� be the induced cocycle for z̨ defined
by zw.g; .x�; y// D w.c.g; x�/; y/ for every g 2 G, x� 2 G=� and y 2 K.

For every n, recall that rnWK ! Kn denotes the quotient homomorphism and put
Ln WD ker.rn/. Define Xn WD G=� �Kn and zrn WD idG=� � rnWX ! Xn.

Since the restriction of z̨ toG1 is strongly ergodic, Lemma 2.4 implies there is a neigh-
borhood V of 1K inK such that d. zwt jG2 ; zwjG2/ < 1=32 for any t 2 V . Theorem 2.3 further
implies that there exist an integer n, a map �WX!� and a cocycle vWG2 �Xn ! � such
that

�.gx/�1 zw.g; x/�.x/ D v.g; zrn.x// for all g 2 G2 and for almost every x 2 X:

Define the cocycle � WG �X ! � by �.g; x/ D ��1.gx/ zw.g; x/�.x/ for g 2 G and
x 2 X . Note that

�.h; x/ D v.h; zrn.x// for all h 2 G2 and a.e. x 2 X: (3.1)

Therefore, for all g 2 G1, h 2 G2 and for almost every x 2 X , we have

�.g; hx/v.h; zrn.x// D v.h; zrn.gx//�.g; x/;

which is equivalent to

�.g; hx/ D v.h; zrn.gx//�.g; x/v.h; zrn.x//
�1:

For all t 2K and g 2G defineAtg D ¹x 2X j �.g;x/D �.g;xt
�1/º. SinceLn D ker.rn/,

the set Atg is G2-invariant for every g 2 G1, t 2 Ln. Using that ˛jG2 is ergodic, Atg must
be null or co-null for every g 2 G1, t 2 Ln.

Let F � G1 be a compact generating set. Then we can find N � n such that Atg is
non-null for every g 2 F , t 2 LN . The previous paragraph then implies that Atg is co-
null for every g 2 F , t 2 LN . Since the set of g 2 G1 such that Atg is co-null in X for
all t 2 LN is clearly a subgroup of G1 and F generates G1, we get that Atg is co-null
for every g 2 G1, t 2 LN . Moreover, (3.1) shows that Atg is co-null, for every g 2 G2,
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t 2 LN . Since G D G1 �G2, it follows that Atg is co-null, for every g 2 G, t 2 LN . This
implies the existence of a cocycle �0WG �XN ! � such that

�.gx/�1 zw.g; x/�.x/ D �.g; x/ D �0.g; zrN .x//

for all g 2 G and for almost every x 2 X . Finally, this together with Lemma 3.1 below
implies the existence of a cocycle w0W� �KN ! � and a measurable map �0WK ! �

such that
w.g; x/ D �0.gx/w0.g; rN .x//�0.x/

�1

for all g 2 � and for almost every x 2 K. This finishes the proof of Theorem A.
We end this section with the following well-known result, whose proof we include for

reader’s convenience.

Lemma 3.1. Let � be a lattice of a l.c.s.c. group G. Let �
˛Õ .X; �/ and �

ˇ
Õ .X0; �0/

be p.m.p. actions such that there is a measurable onto map � WX!X0 satisfying �.gx/D
g�.x/ for all g 2 � and almost every x 2 X . Denote byGÕ. zX; z�/ andGÕ. zX0; z�0/ the
induced actions of G associated to ˛ and ˇ, respectively.

Let wW� �X !� be a cocycle into a countable group�. Denote by zwWG � zX ! �

the induced cocycle of w. Assume zw is cohomologous to a cocycle zw0WG � zX ! � of the
form zw0.g; zx/ D zw0.g; .idG=� � �/.zx// for some cocycle zw0WG � zX0 ! �. Then w is
cohomologous to a cocycle w0W� �X ! � of the form w0.; x/ D w0.; �.x// for some
cocycle w0W� �X0 ! �.

Proof. Let pWG=� ! G be a Borel map such that p.g�/ 2 g� for every g 2 G. Define
the cocycle cWG � G=� ! � by c.g; z/ D p.gz/�1gp.z/ for all g 2 G and for every
z 2 G=� . Recall that for every g 2 G and zx D .z; x/ 2 zX D G=� � X we have gzx D
.gz; c.g; z/x/ and zw.g; zx/ D w.c.g; z/; x/.

Let z�W zX ! � be a measurable map such that

zw.g; zx/ D z�.gzx/ zw0.g; .idG=� � �/.zx//z�.zx/�1 (3.2)

for all g 2 G and for almost every zx D .z; x/ 2 zX .
By Fubini’s theorem, we can find z D h� 2 G=� , with h 2 G, and a co-null subset

G0 � G such that for all g 2 G0, the identity (3.2) holds for almost every x 2 X . Remark
that there exists g0 2 G such that g0�h�1 � G0. Indeed, this holds for any g0 belonging
to the co-null set \2�G0h�1.

For any  2 � , we denote h D g0h
�1 2 G0 and h D c.h; h�/ 2 � . Note that

h.h�; x/D .g0�; hx/ and zw.h; .h�; x//D w.h; x/for every x 2 X . Moreover, h D
p.g0�/

�1g0h
�1p.h�/.

Since g�1p.g�/ 2 � for all g 2 G, it follows that the map  ! h is a bijection of � .
Hence, we can define a map v0W� � X0 ! � by letting v0.h; x0/ D zw0.h; .h�; x0//.
Define also some measurable maps �WX!� and WX!� by letting �.x/D z�.g0�;x/
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and  .x/ D z�.h�; x/�1 z�.g0�; x/. Therefore, for all  2 � and almost every x 2 X , we
have

w.h; x/ D zw.
h; .h�; x// D z�.h.h�; x// zw0.

h; .idG=� � �/.h�; x//z�.h�; x/�1

D z�.g0�; hx/ zw0.
h; .h�; �.x/// .x/z�.g0�; x/

�1

D �.hx/v0.h; �.x// .x/�.x/
�1:

Since the map  ! h is a bijection of � , we obtain that �.x/�1w.; x/�.x/ D
v0.; �.x// .x/ for all  2 � and almost every x 2 X . By taking  D 1� , it follows that

 .x/ D v0.1� ; �.x//
�1:

Define the map w0W� � X0 ! � by w0.; x0/ D v0.; x0/v0.1� ; x0/�1. Therefore, the
map w0W� �X !� defined by w0.; x/D w0.; �.x// is a cocycle cohomologous to w.
In particular, w0 is measurable, thus w0 is measurable. Hence, w0 is a cocycle, which
finishes the proof.

4. Proof of Corollaries B and C

Let � D SL2.ZŒS�1�/, where S is a finite nonempty set of primes. Then � is a lattice in
G D G1 �G2, where G1 D SL2.R/ and G2 D

Q
p2S SL2.Qp/. Fix a positive integer m

with no prime factors from S . Denote �.m/ WD ker.� ! SL2.Z=mZ// and consider the
left translation action G Õ .G=�.m/; �m/, where �m is the unique G-invariant Borel
probability measure on G=�.m/. Let �m be the associated Koopman unitary representa-
tion of G on L20.G=�.m// D L

2.G=�.m//	C1G=�.m/. Finally, let

� D ˚¹mjp−m;8p2Sº�m

be the direct sum of all such representations �m. The proof of Corollary B relies essentially
on the following well-known fact.

Theorem 4.1. The restrictions of � to G1 and G2 have spectral gap.

For the reader’s convenience, we indicate below how this result follows from the liter-
ature. Assuming Theorem 4.1, we will now prove Corollary B.

Proof of Corollary B. We will first prove the conclusion when �
˛Õ .X; �/ is a left trans-

lation action � Õ lim
 
�=�.mn/ for some sequence of positive integers ¹mnº containing

no prime factors from S and satisfying mn j mnC1 for all n. In this case, the induced
action IndG� .˛/ is isomorphic to the left translation action G Õ lim

 
G=�.mn/. Since the

Koopman representation of G on L20.lim
 
G=�.mn// is isomorphic to a subrepresentation

of � , Theorem 4.1 implies that restrictions of IndG� .˛/ to G1 and G2 are strongly ergodic.
Thus, in this case, the conclusion of Corollary B follows from Theorem A.
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In general, assume that ˛ is the inverse limit of a sequence of p.m.p. actions � Õ
.Xn; �n/ with Xn finite for every n. Denote by rnWX ! Xn the �-equivariant quotient
map. Since ˛ is ergodic, we may assume that Xn D �=�n, where ¹�nºn is a descending
chain of finite index subgroups of � .

By a result of Serre [39], � has the congruence subgroup property: any finite index
subgroup of � contains �.m/ for some positive integerm having no prime factors from S .
Thus, we can find a sequence of positive integers ¹mnº such that mn contains no primes
factors from S , mn j mnC1, and �.mn/ � �n for all n. Consider the profinite group
K D lim

 
Kn, whereKn D �=�.mn/. For every n, let qnWK ! Kn be the quotient homo-

morphism and denote Ln D ker.qn/. Since the action � Õ .X; �/ is a quotient of the
left translation action � Õ .K; mK/, we may identify it with the left translation � Õ
.K=M;mK=M / for some closed subgroup M < K.

Let wW � � K=M ! � be a cocycle with values into a countable group �. Define
a cocycle zwW� �K ! � by letting zw.g; x/ D w.g; xM/. Since the conclusion holds for
the action � Õ K by the above, zw is cohomologous to a cocycle which factors through
id� � qn0 for some n0 � 1. Thus, we can find a homomorphism ıW �.mn0/ ! � and
a measurable map 'WLn0 ! � such that

w.g; xM/ D '.gx/ı.g/'.x/�1 (4.1)

for all g 2 �.mn0/ and almost every x 2 Ln0 .
For h 2Ln0 , consider the set ShD ¹x 2Ln0 j '.xh/D '.x/º. Since limh!1K mK.Sh/

D mK.Ln0/ > 0, we can find n1 � n0 such that mK.Sh/ > 0 for all h 2 Ln1 . Now, if
h 2 M \ Ln0 , then (4.1) implies that Sh � Ln0 is invariant under the left translation
action of �.mn0/. Since �.mn0/ < Ln0 is dense and Sh is not null, we conclude that
mK.Ln0 n Sh/ D 0 for all h 2 M \ Ln1 . In particular, we have that '.xh/ D '.x/ for
almost every x 2 Ln1 and all h 2 M \ Ln1 . Thus, the restriction of ' to Ln1 factors
through the quotient map Ln1 ! Ln1=.M \ Ln1/. Using the identification Ln1=.M \
Ln1/� Ln1M=M , it follows that we can find a measurable map  WLn1M=M ! � such
that '.x/ D  .xM/ for almost every x 2 Ln1 . By equation (4.1), we thus have that

w.g; xM/ D  .gxM/ı.g/ .xM/�1 (4.2)

for all g 2 �.mn1/ and almost every x 2 Ln1 . This implies that w is cohomologous to
a cocycle vW � � K=M ! � satisfying v.g; x/ D ı.g/ for all g 2 �.mn1/ and almost
every x 2 Ln1M=M .

We are now in position to apply an argument from the proof of [17, Theorem B]. Let
� Õ .X;�/ be an ergodic profinite p.m.p. action, � 0 < � a finite index subgroup,X 0 � X
a � 0-ergodic component, vW� �X ! � a cocycle and ıW� 0 ! � a homomorphism such
that v.g; x/ D ı.g/ for all g 2 � 0 and almost every x 2 X 0. Then parts 5 and 6 from the
proof of [17, Theorem B] show that there exists a finite �-invariant measurable partition
¹Aiº

`
iD1 of X such that the map v.g; �/WAi ! � is constant for all g 2 � and 1 � i � `.

Since �.mn1/ <Ln1 is a dense subgroup,Ln1M=M �K=M is an ergodic component
of the left translation action of �.mn1/. The previous paragraph thus implies the existence
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of a finite �-invariant measurable partition ¹Aiº`iD1 of X D K=M such that the map
v.g; �/WAi ! � is constant for all g 2 � and 1 � i � `. Moreover, [17, Lemma 1.4]
implies that we can find a positive integer n such that Ai is of the form r�1n .Y / for some
subset Y � Xn and every 1 � i � `. This means that v factors through the map id� � rn,
which finishes the proof.

Proof of Theorem 4.1. We will deduce this result from [15] by following closely the pro-
cedure from [25, Section 6.3]. Denote by P the set of all primes. Let H D SL2.R/ �
.
Q0
p2P SL2.Qp//, where

Q0
p2P SL2.Qp/D ¹.xp/ 2

Q
p2P SL2.Qp/ j xp 2 SL2.Zp/ for

all but finitely many primes pº denotes the restricted product of SL2.Qp/, p 2 P . Note
that H coincides with SL2.A/, where A is the Adèle ring of Q. Consider the diagonal
embedding of ƒ D SL2.Q/ into H . Then ƒ < H is a lattice. Consider the left trans-
lation action H Õ .H=ƒ; �ƒ/, where �ƒ is the unique H -invariant Borel probability
measure on H=ƒ, and denote by � the associated Koopman unitary representation of H
on L20.H=ƒ/.

Let m be a positive integer with no prime factors from S . Write m D p
t1
1 � � � p

tk
k

,
where p1; : : : ; pk 2 P n S and t1; : : : ; tk � 1. For every p 2 P n S , we define an open
subgroup Kp < SL2.Zp/ as follows. If p … ¹p1; : : : ; pkº, let Kp D SL2.Zp/. If p D pi ,
for 1 � i � k, let Kp D ker.SL2.Zp/! SL2.Zp=p

ti
i Zp//. Then Km WD

Q
p2PnS Kp is

an open compact subgroup of
Q0
p2PnS SL2.Qp/.

We claim that GKmƒ D H . By the strong approximation theorem (see, e.g., [26]),
the diagonal embedding of ƒ into

Q0
p2P SL2.Qp/ is dense. This implies that SL2.R/ƒ

is dense in H . Since GKm is an open subgroup of H which contains SL2.R/, it follows
that GKmƒ D .GKm/.SL2.R/ƒ/ D H .

Since G and Km commute, the subspace L20.H=ƒ/
Km � L20.H=ƒ/ of �.Km/-in-

variant vectors is �.G/-invariant. On the other hand, L20.H=ƒ/
Km can be identified with

L20.Km nH=ƒ/. Since we have H D GKmƒ, the G-space Km nH=ƒ is isomorphic to
theG-spaceG=.G \Kmƒ/. Now, it is easy to see thatG \KmƒD �.m/. By combining
these facts, it follows that �m, the Koopman representation of G on L20.G=�.m//, is
isomorphic to the restriction of �jG to L20.H=ƒ/

Km .
In conclusion, �m is isomorphic to a subrepresentation of �jG for every positive inte-

ger m having no prime factors from S . Thus, � is isomorphic to a subrepresentation
of ˚11 �jG . Now, by [15, Theorem 1.11], there is some s <1 such that the positive defi-
nite functionH 3 g 7! h�.g/�; �i 2 C belongs to Ls.H/ for all �, � belonging to a dense
subspace of L20.H=ƒ/. Hence, if N � s=2 is an integer, then �˝N is contained is a mul-
tiple of the left regular representation of H . In combination with the above, we conclude
that �˝N is contained is a multiple of the left regular representation of G. Hence, the
restriction of � to any non-amenable subgroup of G has spectral gap. Since G1 and G2
are non-amenable, this implies the conclusion.

Proof of Corollary C. Let � Õ .X; �/ be a free ergodic profinite p.m.p. action of � D
SL2.ZŒS�1�/. As is well known, � is measure equivalent to a direct product of jS j
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non-abelian free groups (see, e.g., [6, Remark 1.2] and the references therein). By [38,
Theorem 1.3], we get that � is Cartan rigid. Thus, if�Õ .Y; �/ is any free ergodic p.m.p.
action such that L1.X/Ì � Š L1.Y /Ì�, then the actions � Õ .X;�/ and�Õ .Y; �/

are orbit equivalent. The conclusion of Corollary C now follows from Corollary B through
standard arguments (see the proofs of [17, Theorem A] and [12, Corollary C]).
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