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Iterated Minkowski sums, horoballs and
north-south dynamics

Jeremias Epperlein and Tom Meyerovitch

Abstract. Given a finite generating set A for a group � , we study the map W 7! WA as a topolo-
gical dynamical system – a continuous self-map of the compact metrizable space of subsets of � . If
the set A generates � as a semigroup and contains the identity, there are precisely two fixed points,
one of which is attracting. This supports the initial impression that the dynamics of this map is rather
trivial. Indeed, at least when � D Zd and A � Zd is a finite positively generating set containing
the identity, the natural invertible extension of the map W 7! W C A is always topologically con-
jugate to the unique “north-south” dynamics on the Cantor set. In contrast to this, we show that
various natural “geometric” properties of the finitely generated group .�; A/ can be recovered from
the dynamics of this map, in particular, the growth type and amenability of � . When � D Zd , we
show that the volume of the convex hull of the generating set A is also an invariant of topological
conjugacy. Our study introduces, utilizes and develops a certain convexity structure on subsets of
the group � , related to a new concept which we call the sheltered hull of a set. We also relate this
study to the structure of horoballs in finitely generated groups, focusing on the abelian case.

1. Introduction

In this paper we study the topological dynamical system associated to a finitely generated
group via the “Minkowski product”. We denote the collection of subsets of a countably
infinite group � by P .�/. This space is naturally identifiable with the space ¹0; 1º� , thus
naturally equipped with a topology turning it into a topological Cantor set.

Any finite subset A � � defines a continuous map 'A W P .�/ ! P .�/ given by
'A.W / WD WA, where

WA WD
®
wa W w 2 W; a 2 A

¯
:

The set WA is often called the Minkowski product of W and A.
Most instances in the literature deal with the abelian case, where the group operation

is usually denoted byC and the set

W C A WD
®
w C a W w 2 W; a 2 A

¯
is called the Minkowski sum.
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Our point of view here is to study .P .�/; 'A/ as a dynamical system. We ask how
dynamical properties of 'A relate to algebraic properties of � and more specifically to
geometric properties of the Cayley graph of � with respect to the set A. We focus on the
case where A is positively generating, i.e. � D

S1
nD1A

n and 1� 2 A. We call such a pair
.�; A/ as above simply a finitely generated group.

In this case limn!1'
n
A.W /D� for any non-empty setW �� , so � and ; are the only

fixed point for 'A, and the forward orbit of any set in P .�/ n ¹;º converges to the fixed
point � . Thus, the only ergodic 'A-invariant probability measures on P .�/ are the delta
measures ı� and ı;. So from the ergodic theory viewpoint, the maps 'A are completely
trivial. Nevertheless, from the point of view of topological dynamics it turns out that the
system .P .�/; 'A/ encodes non-trivial properties of the finitely generated group .�; A/.

Call a property P of finitely generated groups dynamically recognizable (among a
family G of finitely generated groups) if for any pair of finitely generated groups .�1; A1/
and .�2; A2/ (in the family G ) such that .P .�1/; 'A1/ Š .P .�2/; 'A2/, .�1; A1/ has the
property P if and only if .�2; A2/ has the property P . This approach is analogous to the
study of group properties only depending on the Cayley graph in geometric group theory.

We show that the following properties are dynamically recognizable:

• Growth type (polynomial, exponential, . . .), see Corollary 4.9.

• Rank and volume of the convex hull of the generating set, among ¹Zd W d 2 Nº, see
Corollary 4.10.

• The exponential growth rate among e.g. free groups, Corollary 4.12.

• Amenability, see Corollary 5.8.

From the geometric point of view, the dynamical invariants underlying the above res-
ults are related to a certain convexity structure we introduce on subsets of an arbitrary
finitely generated group .�; A/, and to a new concept which we call the sheltered hull.
This is introduced in Section 3. The convexity structure given by the sheltered hull is
related to the notion of a horoball, which we recall and discuss in Section 2.

The dynamical system .P .�/; 'A/ only depends on the directed Cayley graph
Cayley.�; A/. One can easily generalize the map 'A to general countable, locally finite,
directed graphs (see Section 2), and for many results we do not actually need that this
graph is a Cayley graph. Hence this is the level of generality we assume if it does not add
further complications.

The dynamically recognizable properties above, captured by the sheltered hull, are in
some sense based on “quantifying non-invertibility” of the map 'A in a manner which
is invariant under topological conjugacy. It is thus natural to ask if there are dynamic-
ally recognizable properties that can be “detected disregarding non-invertibility”. Thus, in
Section 7 we consider “the invertible analog” of 'A: Namely, the natural extension of the
restriction of 'A to its eventual image (for brevity we refer to this as “the natural extension
of 'A”). This is a homeomorphism with “north-south dynamics”, which we discuss and
recall in Section 6. In Section 10 we show that, at least for � D Zd , the natural extensions
are all topologically conjugate to one another.
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The first part of the paper, up to Section 7, deals with results about general finitely
generated groups (in some cases these are general results about locally finite graphs). In
the second part of the paper, from Section 8 onwards, we specialize to the case � DZd . In
Section 8 we discuss the structure of horoballs in Zd with respect to a generating setA and
show that up to translation these are in a natural bijection with the faces of the convex hull
of A (viewed as a subset of Rd ). En route we recall some old results about the structure
of iterated Minkowski sums in Zd . In Section 9, still working with � D Zd , we consider
the space of horoballs (and its closure) as a topological space and a Zd -dynamical sys-
tem. In particular, we observe that its homeomorphism type is uniquely determined by the
rank d (Corollary 9.7). We also provide an explicitly checkable characterization of the
topological conjugacy class of the associated dynamical system (Theorem 9.8). Our proof
in Section 10 that the natural extension of .P .Zd /; 'A/ is perfect, thus topologically con-
jugate to the unique north-south dynamics on the Cantor set, is contrasted in Section 11,
where we show that the topological structure of the eventual image is sensitive to the spe-
cific generating set A � Zd , already when d D 2. In Section 12 we discuss the problem
of when .P .�1/; 'A1/ factors onto .P .�2/; 'A2/, a problem which for the most part we
have not been able to resolve.

Currently we do not have a reasonable necessary and sufficient condition for the exist-
ence of a conjugacy between .P .�1/; 'A1/ and .P .�2/; 'A2/, even in the case �1 D �2 D
Zd . This remains an open problem for future work.

2. Horoballs in directed graphs and finitely generated groups

2.1. Quasi-metrics on directed graphs

Let G D .V .G/; E.G// be a countably infinite, locally finite directed graph. We assume
throughout that G is strongly connected, meaning that for every v; w 2 V.G/ there is a
directed path in G from v to w.

Let P .V .G// denote the collection of subsets of V.G/, which we identify with
¹0; 1ºV.G/, equipped with the product topology. Consider the continuous self-map

'G W P .V .G//! P .V .G//;

'G.W / WD W [
®
v 2 V.G/ W 9w 2 W s.t. .w; v/ 2 E.G/

¯
:

Via the identification of subsets of V.G/ with their characteristic functions this can be
rewritten as follows:

1'G.W /.w/ D max
®
1W .v/ W .v; w/ 2 E.G/ or w D v

¯
:

Under the assumption that the graph G is strongly connected, there are precisely two
fixed points for 'G , namely V.G/ and ;. Also, for any W 2 P .V .G// n ¹;º, we have
limn!1 '

n
G.W / D V.G/. For v;w 2 V.G/ define

d.w; v/ D min
®
n 2 N0 W v 2 '

n
G.¹wº/

¯
:
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The function d W V.G/� V.G/!N0 is a quasi-metric, meaning it satisfies the axioms of
a metric, apart from symmetry. For w;v 2 V.G/, d.w; v/ is the minimal number of edges
in a directed path from w to v. For background on quasi-metrics, sometimes also called
“non-symmetric metrics”, see for instance [11, 30]. In the case where G is an undirected
graph (which we think of as a directed graph with edges going both ways), d is called
the graph metric. The reason we allow for directed graphs is to handle non-symmetric
generating sets in finitely generated groups. We can also express 'nG directly in terms of
the quasi-metric as 'nG.W / D ¹v 2 V.G/ W 9w 2 W s.t. d.w; v/ � nº. Many notions in
metric geometry still make sense in our setting:

We define a geodesic ray in a graph G as a sequence of vertices .
n/n2N0 in V.G/
such that the shortest directed path from 
i to 
j for i > j has length i � j . In particular,
this means that .
nC1; 
n/n2N0 2 E.G/ for every n.

For a vertex v 2 V , we refer to 'nG.¹vº/ as the ball of radius n centered at v. In the case
where the graph G is undirected, this is actually a ball with respect to the graph metric. In
general, for W � V.G/ one can think of 'nG.W / as ‘the set of elements accessible from
W in n steps’.

The space of balls is clearly invariant under 'G but it is not a closed subset of P.V .G//.
The new elements arising in the closure are called horoballs.

Definition 2.1. Let G be a locally finite graph. A limit point in P .V .G// of a sequence
of balls .'niG .¹viº//i2N with radii .ni /i2N tending to infinity is called a horoball in G if
it is non-empty and has non-empty complement. Let Hor.G/ be the set of all horoballs
in G.

The definition of horoballs is due to Gromov [10] and comes from hyperbolic geo-
metry. It makes sense in any quasi-metric space. Gromov’s definition is slightly different
from ours, but we will see later in this section that they are equivalent. For the definition
in terms of limits of balls, see for instance [17]. See also [1], where horoballs “tangent to a
base point” are called “cones” (in the context of finitely generated groups, where the base
point is the identity element of the group).

2.2. Busemann balls and Gromov’s horofunction boundary

Busemann balls are horoballs coming from geodesic rays:

Definition 2.2. A Busemann ball in G is a set H 2 P .V .G// n ¹;; V .G/º of the formS1
rD0 '

r
G.¹
rº/, where .
n/n2N0 2 V.G/

N0 is a geodesic ray. Note that this is an increas-
ing union, so H is indeed a limit of balls.

There is a slightly more classical approach to horoballs via Gromov’s horofunction
boundary [10], which we now recall (restricting to the case where the underlying quasi-
metric space is a locally finite directed graph). See [26] and references therein for back-
ground and further details. Fix a base vertex v0 in V.G/ and consider the space
C.V.G/;Z/ of integer-valued continuous functions on V.G/ with the topology of point-
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wise convergence (in a more general setting one needs to consider real-valued functions,
with the topology of uniform convergence on compact sets). We have an embedding
% W V.G/! C.V.G/;Z/ via w 7! %w with %w.v/ D d.w; v/ � d.w; v0/. The elements
of C.V.G/;Z/ which are in the closure of %.V .G// but not in %.V .G// are called horo-
functions. By definition, for every x 2 V.G/, the sublevel sets of the function %x are balls
around x. As in [26], horoballs are sometimes defined as sublevel sets of horofunctions.
The following proposition verifies that in our setting sublevel sets of horofunctions are
exactly accumulation points of balls (one implication follows directly from [26, Proposi-
tion 2:8]).

Proposition 2.3. Let F be a horofunction onG. For every r 2Z the sublevel setHF;R WD
¹v 2 V.G/ W F.v/ � Rº is either a horoball or equal to V.G/. Conversely, if H is a
horoball, then there is R 2 Z and a horofunction F such that H D HF;R.

Proof. Let .%wk /k2N be a sequence of functions as above converging to a horofunction F .
Then

Bk WD
®
v 2 V.G/ W %wk .v/ � R

¯
D
®
v 2 V.G/ W d.wk ; v/ � d.wk ; v0/CR

¯
D '

d.wk ;v0/CR

G .¹wkº/

is a sequence of balls converging to HF;R.
The set HF;R is non-empty because for non-negative R every Bk contains v0 and for

negative R it has non-empty intersection with ¹v 2 V.G/ W d.v; v0/ D jRjº. Thus, HF;R
is either a horoball or equal to V.G/.

Conversely, let .'rkG .¹wkº//k2N be a sequence of balls converging to the horoball H .
We will show that rk � d.wk ; v0/ is bounded. Let u be a point on the ‘boundary of H ’,
namely u 2 'G.H/ nH . For sufficiently large k we have d.wk ; u/ D rk C 1 and hence
(keeping in mind that d is not necessarily symmetric),

jrk � d.wk ; v0/j D jd.wk ; u/ � 1 � d.wk ; v0/j � d.v0; u/C 1C d.u; v0/:

Therefore we can find a subsequence of balls 'rkG .¹wkº/ converging to H with rk �
d.wk ; v0/ constant equal to R 2 Z.

Next we will show that the corresponding functions %wk are uniformly bounded.
Namely for v 2 V.G/ we have j%wk .v/j D jd.wk ; v/� d.wk ; v0/j � d.v; v0/C d.v0; v/
by the triangle inequality. Therefore we can select a subsequence of .wk/k2N such that
%wk converges to a horofunction F . But then HF;R is the limit of the sequence of sets®

v 2 V.G/ W %wk .v/ � R D rk � d.wk ; v0/
¯
D
®
v 2 V.G/ W d.wk ; v/ � rk

¯
D '

rk
G .¹wkº/

and hence HF;R D H .
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Thus, for fixed R 2 Z, the map F 7! HF;R from the horofunction boundary to the
space of horoballs (and possibly the whole vertex set) is surjective. It is natural to ask the
following.

Question 2.4. When is the map F 7!HF;R from the horofunction boundary to the space
of horoballs (and possibly the whole vertex set) injective for fixed R 2 Z?

If we take the limit along a geodesic ray 
 starting in x0 2 V.G/, the functions %
k
converge to a special kind of horofunction, called a Busemann function, see [18, 25]. The
sublevel sets of Busemann functions are precisely the Busemann balls. There are known
examples of Cayley graphs with horofunctions which are not Busemann functions, see
[24,25,28]. In response to a question raised in a preliminary version of this work, Salo [19]
provided various examples of Cayley graphs with non-Busemann horoballs and showed
that connectedness of every horoball is equivalent to “almost-convexity” as introduced
by Cannon [3]. Furthermore, Salo shows that the lamplighter group has horoballs which
are not even coarsely connected. The following observation shows that horoballs that are
minimal with respect to inclusion are Busemann.

Proposition 2.5. Let H be a horoball and v 2 H . There is a Busemann ball B such that
v 2 B � H .

Proof. Let 'rkG .¹wkº/ be a sequence of balls converging to H . For each k, let 
k D
.
k
`k
; 
k
`k�1

; : : : ; 
k0 / be a shortest path in G starting in wk D 
k`k and ending in v D 
k0 .
Because G is locally finite, and in particular has finite in-degrees, we can assume that for
every ` 2 N0 the sequence .
k

`
/k2N0

stabilizes, hence we can assume that the sequences

k converge to a geodesic ray 
 D .
k/k2N0

with 
0 D v. The Busemann ball correspond-
ing to the geodesic ray 
 is contained in H and contains v.

Since unions of horoballs will play the role of the eventual image for the dynamical
systems .P .V .G//; 'G/, we mention the following conclusion of Proposition 2.5.

Corollary 2.6. Every set which is a union of horoballs is also a union of Busemann balls.

As we will see in Section 8, in every Cayley graph of Zn there are only finitely many
horoballs up to translation. It is thus natural to ask:

Question 2.7. Which Cayley graphs allow for finitely many horoballs up to translation?

Tointon and Yadin [22, Conjecture 1:3] ask if groups of polynomial growth admit
finitely many horofunctions, and recall an observation of Karlsson that an affirmative
solution would yield an alternate proof of Gromov’s theorem on groups of polynomial
growth.

2.3. Iterated Minkowski products, positively generating sets and Cayley graphs

Recall that a subset A in a group � is called positively generating if � D
S1
nD1 A

n. This
means that A is a generating set for � considered as a semigroup. Throughout the paper
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when we consider a finitely generated group .�;A/, we will assume A is a finite positively
generating set which contains the identity, although we will not necessarily assume A is
symmetric. The Cayley graph Cayley.�; A/ for the finitely generated group .�; A/ has
vertex set � and edges of the form .g; ga/ with g 2 � and a 2 A. In this case the map
'Cayley.�;A/ coincides with the Minkowski product maps 'A given by

'A.W / WD WA:

Note that 'A is a cellular automaton over the group � , in the sense that it is a continuous
map that commutes with the � action of translation from the left.

Definition 2.8. For a finitely generated group .�;A/ an A-horoball is a non-empty subset
of � that is the limit of balls ¹gnArnº that is neither a ball itself nor the whole set � . We
abbreviate Hor.Cayley.�; A// by Hor.�; A/.

Example 2.9. Consider � D Z2 with the generating set A D ¹�1; 0; 1º2. Then horoballs
are either translated vertical or horizontal halfspaces or translated quadrants. As we will
show, up to translation there are therefore eight of them, corresponding to the 4 edges and
4 vertices of the convex hull of A, which is a square.

We note that Hor.�; A/ D Hor.�;A/[ ¹;; �º is a closed �-invariant subset of P .�/.
It is natural to wonder what properties of the group � or of the generating set A can
be extracted from the topology of Hor.�; A/ or from the dynamics of the � action on
Hor.�; A/.

Question 2.10. Let A1; A2 be two positively generating sets for � . Is it the case that
Hor.�; A1/ and Hor.�; A2/ are homeomorphic?

We will later provide an affirmative answer in the particular case � D Zd (see Corol-
lary 9.7 below).

3. The sheltered hull

From now on letG be a locally finite strongly connected directed graph. Our next goal is to
introduce a convexity structure on the vertices ofG. We will use this convexity structure in
later sections to extract an invariant of topological conjugacy. This new convexity structure
might also be of independent interest from the point of view of geometric group theory.

Definition 3.1. Given W � V.G/ and r > 0 we define the r-sheltered hull of W to be

S rG.W / WD
®
v 2 V.G/ W 'rG.¹vº/ � '

r
G.W /

¯
:

The G-sheltered hull of W is then given by

SG.W / WD

1[
rD1

S rG.W /:
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We call a set W � V.G/ G-sheltered if it agrees with its G-sheltered hull. When G is
clear from the context, we omit it and write “sheltered” instead of G-sheltered.

Remark 3.2. In ‘mathematical morphology’, a subfield of image analysis, the operation
W 7! S rG.W / is called closing, see e.g. [20].

Remark 3.3. The definition of the sheltered hull naturally extends to general metric and
quasi-metric spaces. In Euclidean space, the interior of the sheltered hull of a set agrees
with the interior of the convex hull.

We denote by xG the graph with the same vertex set as G and the directions of edges
in G reversed, that is, E. xG/ D ¹.w; v/ W .v; w/ 2 E.G/º.

There is an interesting characterization of the complement of S rG.W / in terms of r-
balls of xG:

Proposition 3.4. A vertex v 2 V.G/ is contained in the complement of S rG.W / if and only
if it is covered by an r-ball in xG which is disjoint from W . More precisely,

V.G/ n S rG.W / D
[®

'rxG.¹uº/ W u 2 V.G/; '
r
xG
.¹uº/ \W D ;

¯
:

Proof. Suppose u 2 V.G/ and 'r
xG
.¹uº/ \ W D ; or, in other words, u 62 'rG.W /. Let

v 2 'r
xG
.¹uº/. Then u 2 'rG.¹vº/ and therefore 'rG.¹vº/ 6� '

r
G.W /. Thus v 62 S rG.W /.

Now let v 2 V.G/ n S rG.W /. Then 'rG.¹vº/ contains at least one element u not con-
tained in 'rG.W /. This implies 'r

xG
.¹uº/ \W D ;.

In analogy to Proposition 3.4 we can characterize the complement of SG.W / as the
union of all horoballs in xG disjoint from W . See Figure 1 for an illustration.

Figure 1. The sheltered hull of three elements (depicted by little guards providing shelter from the
evil horoballs) of Z2 with generator ¹�1; 0; 1º2 and the horoballs covering the complement.
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Proposition 3.5. For every non-empty subset of W � � we have

V.G/ n SG.W / D
[®

H 2 Hor. xG/ W H \W D ;
¯
:

Proof. Let v 2 V.G/ n SG.W /. By Proposition 3.4 for every r 2 N there is a vertex
ur 2V.G/ such that 'r

xG
.¹urº/ is disjoint fromW but contains v. Let .rk/k2N be a growing

sequence of radii such that 'rk
xG
.¹urk º/ converges to a limit H . Since v is contained in H

and H \W D ;, this limit H is neither empty nor the whole of V.G/. Hence we found
a horoball H with v 2 H and H \W D ;.

Now let v be in SG.W /. By definition there is r 2 N with 'rG.¹vº/ � '
r
G.W /. Since

'rG.¹vº/ is finite, there is a finite subset zW ofW such that already 'rG.¹vº/ � '
r
G.
zW / and

thus v 2 SRG . zW / for all R � r . In particular, every ball in xG with radius R � r containing
v has non-trivial intersection with zW by Proposition 3.4. Since zW is finite, this also means
that every horoball in xG containing v must intersect zW �W . Therefore v is not contained
in
S
¹H 2 Hor. xG/ W H \W D ;º.

There is an analogy between sheltered sets in graphs and convex subsets of Rd , as
sheltered sets actually form an abstract convexity structure in the sense of [23]:

Proposition 3.6. For any directed graph G the sheltered sets in G fulfill the following
axioms:

(a) ;; V .G/ are both sheltered.

(b) The family of sheltered sets is closed under arbitrary intersections.

(c) The union of an increasing chain of sheltered sets is sheltered.

Furthermore, for any W � V.G/ the sheltered hull SG.W / is equal to the intersection of
all sheltered sets containing W .

Proof. (a) This is clear by definition.
(b) Let M be a family of sheltered sets. By Proposition 3.5 we know that a set W is

sheltered if and only if every element in its complement is contained in a horoball in xG
disjoint from W . For every v 2 V.G/ n

T
M there is W 2 M with v 2 V.G/ nW and

hence there is a horoballH disjoint fromW with v 2H . But thenH is also disjoint fromT
M, and thus

T
M is sheltered.

(c) Let W1 � W2 � W3 � � � � be an increasing chain of sheltered sets with W DS1
kD1Wk . Let v 2 V.G/ nW and hence v 2 V.G/ nWk for all k 2 N. We want to find

a horoball in xG disjoint from W containing v. By Proposition 3.4 we know that for each
k 2 N we can find a ball 'rk

xG
.¹vkº/ which contains v and which is disjoint from Wk . By

compactness we can take a subsequence of these balls converging to a horoball H in xG.
Clearly v 2 H and if there would be u 2 H \W , then for sufficiently large k we would
have u 2 'rk

xG
.¹vkº/ and u 2 Wk , since the later sets are monotonically increasing. But the

set Wk and 'rk
xG
.¹vkº/ are disjoint, thus H \W D ;. Therefore W is sheltered.
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Remark 3.7. By Proposition 3.5 and Proposition 3.6 given a directed graph G, the shel-
tered sets form a convexity structure generated by the complements of xG-horoballs in the
sense that they are the smallest family of sets closed under intersections and unions of
increasing chains which contains xG-horoball complements. Notice the analogy with the
situation in Rn where the usual convexity structure is generated by the set of all half spaces
(or equivalently the complements of half spaces). A similar concept of convex hull was
considered in [7], but there the convexity structure is generated by the horoballs instead
of their complements.

Remark 3.8. Since every xG-horoball is the union of xG-Busemann balls by Proposi-
tion 2.5, a set M is G-sheltered if and only if every point in its complements is contained
in a xG-Busemann ball disjoint from M . In other words, the convexity structure of xG-
sheltered sets is also generated by the complements of xG-Busemann balls.

Let us now turn our attention back to Cayley graphs. Let � be a finitely generated
group and let A be a positively generating set containing the unit. For g 2 � we denote

jgjA D d.1� ; g/ D min
®
n 2 N0 W g 2 A

n
¯
:

To simplify notation we denote S rCayley.G;A/ and SCayley.G;A/ by S rA and SA.
A dead end for .�; A/ is an element g from which no element of word length larger

than jgjA can be reached via one of the generators. Equivalently, g is a dead end if and
only if 'A.¹gº/ � AjgjA . This notion is due to Bogopolskii, see [2].

Proposition 3.9. For every n 2 N with SA.An/ n An ¤ ;, there is at least one dead end
in � n An.

Proof. Letw 2 SA.An/ nAn. Letm� 1 be the minimal positive integer such thatwAm �
AnCm. Then m is finite by the definition of SA.An/. Since m was chosen minimal, there
must be v 2 wAm�1 n AnCm�1. Hence jvjA � n C m and therefore vA � wAm �

AnCm � AjvjA . This shows that v is a dead end outside of An.

Corollary 3.10. If .�; A/ has only finitely many dead ends, then SA.An/ D An for suffi-
ciently large n.

Proof. If .�; A/ has only finitely many dead ends, then there is n 2 N such that all dead
ends are contained in An and then SA.An/ D An by Proposition 3.9.

Remark 3.11. While some groups have “very few” dead ends, Šunić shows in [21, The-
orem A.1 3] that every group has a generating set with respect to which it has at least one
dead end.

Another bound on the size of the sheltered hull can be given in groups with more
than one end. The number of ends of a finitely generated group .�; A/ with a symmetric
generating set is the minimal number n in N [ ¹1º such that the removal of every finite
vertex set from Cayley.�;A/ leaves at most n infinite connected components. The number
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of ends of a group is independent of the generating set and is contained in ¹0; 1; 2;1º by
a result of Freudenthal.

Proposition 3.12. If � is a group with more than one end andA is a symmetric generating
set, then there is C 2 N such that SA.An/ � AnCC for any sufficiently large n.

Proof. The proof is an adaption of an argument of Lehnert [13, Theorem 2] showing that
groups with more than one end have bounded dead end depth. The idea behind the proof
is to find a uniform bound on the distance from group elements to their closest geodesic
ray. Since � has more than one end, there must be k 2 N such that removing Ak from
Cayley.�;A/ generates at least two infinite connected components. Set C WD 2k, consider
n > k and let u 2 � n AnCC . Let m 2 N be arbitrary. Since Cayley.�; A/ is invariant
under translation by u, the removal of uAk from Cayley.�; A/ also generates at least two
infinite connected components.

Take a geodesic ray 
 starting at 1� which eventually stays in a connected component
not containing 1� . This ray must cross uAk . Let v be the last vertex on 
 in uAk . Let w
be the .m � k/-th vertex on this ray after v. Then

d.1� ; w/ D d.1� ; v/C .m � k/

� d.1� ; u/ � k Cm � k

> nC C � 2k Cm D nCm;

d.u;w/ � d.u; v/C d.v;w/ � k C .m � k/ D m;

hence w 2 uAm n AnCm. Since m was arbitrary, this shows that uAm is not contained in
AnCm for all m so u 62 SA.An/.

Question 3.13. Which finitely generated groups � have the property that for some finite
positively generating set A the sheltered hull SA.W / is finite for any finite W � �? Does
this depend on the positive generating set A?

Example 3.14. Consider the Heisenberg group H , given by the standard presentation

H D
˝
a; b j Œa; Œa; b��; Œb; Œa; b��

˛
:

This is the simplest example of a non-abelian finitely generated nilpotent group. With
respect to the generating set A D ¹a; b; a�1; b�1; eº, there are finite sets whose sheltered
hull is infinite. More precisely, any subsets of H which contains A2 has an infinite shel-
tered hull. This is a consequence of the following result: If we abbreviate the commutator
of a and b by c WD Œa; b�, then for anym 2 N there exists n 2 N such that cmAn � AnC2.
This last result can be extracted (with some additional arguments) for instance using [27,
Proposition 5.3], which involves a certain “normal form” for elements of H .

On a first glance, there seems to be a strong resemblance between the infiniteness
of SA.An/ and unbounded dead end depth: If w 2 SA.An/, then there is m 2 N such
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that wAm � AnCm. If w has dead end depth at least m, then wAm � Ajwj. The next
example shows at least that these conditions are not equivalent. We currently do not know,
if bounded dead end depth implies finiteness of SA.An/. In a preprint of this paper, we
claimed to show that, but the alleged proof contained an error.

More precisely, we show that while the standard lamplighter group with standard
generators has dead ends of unbounded depth, the sheltered hull of every finite set is
nevertheless finite.

Example 3.15. The lamplighter group L WD Z2 o Z is given by the presentation

L D
˝
a; t j a2; Œa; t�natn�

˛
:

This is a finitely generated solvable group of exponential growth. The generator “a” cor-
responds to “switching a light”, “t” corresponds to “moving the lamplighter”. With respect
to the generating set A D ¹a; t˙1; eº, L has dead ends of unbounded depth. Indeed, the
element

w D a.t
�n/
� : : : � a.t

�1/
� a � a.t/ � a.t

n/;

where a.t
i / D t�iat i , is a dead end of depth at least nC 1. The element w is depicted in

Figure 2.

Figure 2. A dead end in the lamplighter group of depth n.

The element w corresponds to “the lamplighter standing at zero with lamps from �n
to n switched on”. Note that w has length 6n C 1 with respect to the generating set A
because one needs n steps to move from the origin to position n, 2n steps to move to �n,
and n steps to move back to the origin, and additionally there are 2nC 1 lamps to switch
on. Moving the lamplighter within the range from �n to n only decreases the length of w,
as we do not have to move the lamplighter back to the origin at the end of the movement.
Switching lights off also decreases the length of w, hence wAn � Ajwj and w is a dead
end of depth at least nC 1.

Nevertheless, the sheltered hull of every finite subset of the lamplighter group L with
respect to the generating set A is finite, as shown by the following proposition.

Proposition 3.16. The sheltered hull of every finite subset of the lamplighter group L D
Z2 o Z D ha; t j a2; Œa; t�natn�i with respect to the generators ¹a; t˙1; eº is finite.
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Proof. More precisely we will show that for every m 2 N if w 2 SA.Am/ then the lamp-
lighter in w is positioned within �m; : : : ; m and there is no lamp switched on outside of
¹�m; : : : ; mº.

Assume the lamplighter inw is positioned at k 2Z with jkj>m. Assume without loss
of generality that k >m. The elementwan has the lamplighter at position kC n >mC n,
hence wan 62 AmCn for every n. Thus w 62 SA.Am/.

Now assume the lamplighter inw is positioned at k 2 ¹�m; : : : ;mº and there is a light
switched on in w at position ` outside of ¹�m; : : : ; mº. If ` > 0, consider the element
wa�n. It still has a light switched on at ` and the lamplighter is positioned at k � n �
m < `. Hence wa�n has length at least ` C ` � .k � n/, since the lamplighter has to
get to ` and then back to k � n. But 2` � k C n > 2m � m C n D m C n. Therefore
wa�n 62 AmCn and w 62 SA.Am/. If on the other hand ` < 0, the same reasoning for wan

leads to w 62 SA.Am/. Therefore jSA.Am/j < .2mC 1/22mC1 <1. Now every finite set
M � L is contained in Am for some m and SA.M/ � SA.A

m/.

4. Growth related conjugacy invariants for 'G

In this section we will show that we can recover some “coarse geometric” properties of a
graph G from the dynamics of the map 'G . We begin by showing how to characterize the
finite vertex sets “dynamically”.

Definition 4.1. Suppose ' W X ! X is a function. Define

Fin.'/ WD
®
x 2 X W j'�r .¹'rCn.x/º/j <1 for all r; n 2 N

¯
:

Lemma 4.2. Let G be a countable, strongly connected locally finite directed graph. Then
Fin.'G/ D ¹M � V.G/ W jM j <1º.

Proof. Let M be finite. Then 'rCnG .M/ is also finite for every r; n 2 N. Every subset
N � V.G/ with 'rG.N / D '

rCn
G .M/ must be a subset of 'rCnG .M/, hence there are only

finitely many such sets. This shows M 2 Fin.'G/.
Now let M � V.G/ be infinite. We will show that j'�1G .'3G.M//j D 1, and so M 62

Fin.'G/. Since M is infinite and G is locally finite, we can choose an infinite 1-separated
set N � M . By this we mean that N is an infinite subset of M such that v1 62 'G.¹v2º/
for all v1; v2 2 N with v1 ¤ v2. Define

M 0 WD
�
'2G.M/ n 'G.N /

�
[N;

M 00 WD '2G.M/ nM 0 D 'G.N / nN:

The sets M 0 and M 00 are clearly disjoint. From the fact that N is infinite and 1-separated,
it follows that both M 0 and M 00 are infinite. We will show that U [M 0 2 '�1G .'3G.M//

for every U �M 00. Since ¹U [M 0 W U �M 00º is infinite, this will complete the proof.
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Let U �M 00. Clearly 'G.U [M 0/ � '3G.M/. On the other hand

'3G.M/ D 'G
�
.'2G.M/ n 'G.N // [ 'G.N /

�
� 'G.M

0/ [ '2G.N /

� 'G.M
0/ [M 0 [ 'G.N /

� 'G.M
0/ � 'G.M

0
[ U/:

Definition 4.3. Let .�; A/ be a finitely generated group. Define

Lk
A.M/ WD

®
N � � W 'kA.N / D '

k
A.M/

¯
D '�kA .¹'kA.M/º/;

LkA.M/ WD log2 jL
k
A.M/j:

We cannot access the size of subset M � V.G/ via the dynamics of 'A and therefore
will use LkA.M/ as a substitute. The next two lemmas show that this might be feasible.
We start by showing that the map M 7! LkA.M/ is monotonous for fixed k.

Lemma 4.4. Let k 2 N and letM;M 0 � V.G/ withM �M 0. Then LkA.M/ � LkA.M
0/.

Proof. Define a map‰ WLk
A.M/! V.G/ byN 7!N [ .M 0 n SkA .M//. ForN 2Lk

A.M/

we have 'kA.N / D '
k
A.M/, hence N � SkA .M/. Therefore ‰.N/ \ SkA .M/ D N . This

shows that the map is injective. To prove our claim, it is now enough to show that the image
of ‰ is contained in Lk

A.M
0/, or in other words, that 'kA.‰.N // D '

k
A.M

0/. Since N �
‰.N/ and 'kA.N / D '

k
A.M/, it is enough to show that 'kA.M

0/ n 'kA.M/ � 'kA.‰.N //.
Let y 2 'kA.M

0/ n 'kA.M/. There must be x 2 M 0 with y 2 'kA.¹xº/. Since y 62 'kA.M/,
this implies 'kA.¹xº/ 6� '

k
A.M/, hence x 62 SkA .M/. Together this shows

y 2 'kA.¹xº/ � '
k
A.M

0
n SkA .M// � 'kA.‰.N //:

Recall that A is positively generating and contains the identity, hence there exists
q 2 N such A�1 � Aq .

Lemma 4.5. Let .�; A/ be a finitely generated group and let q 2 N be as above. Let M
be a finite non-empty subset of � and let k be a positive integer such that M � Ak . The
following inequalities hold for every r 2 N:

j'r�1A .M/j � L
.qC1/.rCk/
A .'rA.M// � jS

.qC1/.rCk/
A .'rA.M//j:

Proof. If '.qC1/.rCk/A .¹vº/ � '
.qC1/.rCk/
A .'rA.M//, then by definition

v 2 S
.qC1/.rCk/
A .'rA.M//:

This establishes the upper bound on L
.qC1/.rCk/
A .M/. To prove the lower bound on

L
.qC1/.rCk/
A .M/, we verify the identity

'
.qC1/.rCk/
A .'rA.M// D '

.qC1/.rCk/
A .'rA.M/ n 'r�1A .M//:
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Clearly the set on the right-hand side is contained in the set appearing on the left-
hand side of the identity we wish to check. Since � is infinite, there is a point y 2M 0 WD
'rA.M/ n 'r�1A .M/. Hence 1� 2 'rCkA�1

.¹yº/ � '
q.rCk/
A .M 0/ and so

'r�1A .M/ � '
kCr�1Cq.rCk/
A .M 0/ � '

.qC1/.rCk/
A .M 0/:

Thus

'
.qC1/.rCk/
A .'rA.M// D

�
'
.qC1/.rCk/Cr
A .M/ n 'r�1A .M/

�
[ 'r�1A .M/

� '
.qC1/.rCk/
A .'rA.M/ n 'r�1A .M//:

We recall notions of strong domination and strong equivalence for functions on the
integers, following [6, Chapter VI]:

Definition 4.6. A function f1 WN!N is said to strongly dominate a function f2 WN!N
if there is a constant C > 0 such that f2.n/ � f1.Cn/ for all n 2 N. Two functions f1
and f2 are said to be strongly equivalent if they strongly dominate each other.

It is easily verified that strong equivalence is indeed an equivalence relation.

Definition 4.7. The growth function of a finitely generated group .�; A/ is given by

r 7! jAr j:

Theorem 4.8. Let .�;A/ be a finitely generated group and let q 2 N be such that A�1 �
Aq . LetM � Fin.'A/ be non-empty and let k and q be such thatM � Ak and A�1 � Aq .
Then the growth function of .�; A/ is strongly equivalent to the function

r 7! L
.qC1/rk
A .'rA.M//:

Proof. Using the left inequality in Lemma 4.5, we have

j'2r�1A .M/j � L
2.qC1/rk
A .'2rA .M//:

SinceM is non-empty, we have jA2r�1j � j'2r�1A .M/j, and as r � 2r � 1, it follows that

jAr j � L
2.qC1/rk
A .'2rA .M//:

On the other hand, using the right inequality in Lemma 4.5 and

S
.qC1/rk
A .M/ � S

.qC1/rk
A .ArCk/ � A.qC1/rkCrCk ;

we conclude that L.qC1/rkA .'rA.M// � jA.qC3/kr j.

Corollary 4.9. Let .�1;A1/ and .�2;A2/ be finitely generated groups. If 'A1 and 'A2 are
topologically conjugate, then �1 and �2 have strongly equivalent growth functions.
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Proof. Suppose ˆ W P .�1/! P .�2/ is a topological conjugacy between 'A1 and 'A2 .
Take a non-empty M1 2 Fin.'A1/, and let M2 D ˆ.M1/. Clearly M2 2 Fin.'A2/ is non-
empty. Also, for any r; q; k 2 N,

L
.qC1/rk
A1

.'rA1.M1// D L
.qC1/rk
A2

.ˆ.'rA1.M1/// D L
.qC1/rk
A2

.'rA2.M2//:

Choosing k and q large enough to apply Theorem 4.8, it follows that the growth functions
of .�1; A1/ and .�2; A2/ are equivalent.

When � D Zd , we can say more:

Corollary 4.10. Let A1 and A2 be positively generating sets of Zd1 and Zd2 respectively,
both containing 0. If 'A1 and 'A2 are conjugate, then d1 D d2 and vold1.conv.A1// D
vold2.conv.A2//.

Proof. The growth type of Zd is n 7! nd and these growth types are different for pairwise
different d . Recall that by [13] .Zd ; A/ has only finitely many dead ends (the statement
in [13] is only for symmetric generating sets, but the proof goes through for positively
generating sets). By Corollary 3.10, we have SA.An/ D An for sufficiently large n (we
use multiplicative notation here for the group operation, even though the group is Zd ).

Therefore, for M 2 Fin.'A/, q so that A�1 � Aq , k so that M � Ak and large r ,

1

rd
jAr�1j �

1

rd
L
.qC1/rk
A .'rA.M// �

1

rd
jArCkj:

Sending r to infinity, the left and the right side of this inequality both converge to
vol.conv.A//, a fact which follows directly from Proposition 8.1 below. Therefore

lim
r!1

1

rd
log2

ˇ̌
'
�.qC1/rk
A

�
¹'
.qC1/rk
A .'rA.M//º

�ˇ̌
D vol.conv.A//:

Definition 4.11. For f WN!N we call !.f /D limn!1
n
p
f .n/ the exponential growth

rate of f if this limit exists.

An argument very similar to that in the proof of Corollary 4.10 shows that for free
groups of rank at least 2 the exponential growth is also “dynamically recognizable”.

Corollary 4.12. Let .�1; A1/ and .�2; A2/ be two finitely generated groups with infin-
itely many ends. If 'A1 and 'A2 are topologically conjugate, then Cayley.�1; A1/ and
Cayley.�2; A2/ have the same exponential growth rate.

5. Amenability

Throughout this section .�; A/ will be a finitely generated group, and q 2 N will be a
constant such that A�1 � Aq . The aim of this section is to show that amenability of .�;A/
can be characterized in terms of the dynamics of 'A.
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Recall that a sequence .Mn/n2N of finite subsets of � is called a (right) Følner
sequence if for any g 2 � , jMng nMnj=jMnj ! 0 as n ! 1. Existence of a Følner
sequence is one of many equivalent conditions for amenability of a group [8]. The follow-
ing lemma states two of many well-known equivalent conditions for a sequence of subsets
to be a Følner sequence. See for instance [5, Chapter 4] for details.

Lemma 5.1. For an increasing sequence .Mn/n2N of finite subsets of � the following are
equivalent:

(1) Mn is a Følner sequence.

(2) There is ` � 1 with j'`A.Mn/j=jMnj ! 1.

(3) There is ` � 1 with j'`A.Mn/ nMnj=jMnj ! 0.

Lemma 5.2. Let k 2 N and let M;N � � with 'kA.M/ � 'kA.N /. Then

'kA
�
.N \M/ [ .'

.qC1/k
A .M/ nM/

�
D 'kA.'

.qC1/k
A .M//:

Proof. Clearly

'kA
�
.N \M/ [ .'

.qC1/k
A .M/ nM/

�
� 'kA.'

.qC1/k
A .M//:

Let us show the other inclusion. Suppose u 2 'kA.'
.qC1/k
A .M//. We need to show that

u 2 'kA
�
.N \M/ [ .'

.qC1/k
A .M/ nM/

�
:

If u 2 'kA.'
.qC1/k
A .M/ nM/, we are done. So assume that u 62 'kA.'

.qC1/k
A .M/ nM/.

Thus,
u 2 'kA.M/ n

�
'kA.'

.qC1/k
A .M/ nM/

�
:

In particular, because 'kA.M/� 'kA.N /, we have u 2 'kA.N /, so there exists v 2N so that
u 2 'kA.¹vº/. Hence

v 2 '
qk
A .¹uº/ � '

.qC1/k
A .M/:

But the assumption u 62 'kA.'
.qC1/k
A .M/ nM/ together with u 2 'kA.¹vº/ implies that

v 2M . We conclude that u 2 'kA.N \M/. This completes the proof.

Lemma 5.3. Let M � Fin.'A/ and k 2 N. If ` � .q C 1/k, then

LkA.'
`
A.M// � LkA.'

.qC1/k
A .M//C j'`CkA .M/ nM j:

Proof. Consider the map

‰ W Lk
A.'

.qC1/k
A .M// �P .'`CkA .M/ nM/! '`CkA .M/;

‰.W1; W2/ WD W14W2:
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'
.qC1/k
A .M/

M

W

W1

'
.qC1/k
A .M/

M

W

W2

Figure 3. Illustration of the decomposition of W in the proof of Lemma 5.3.

We have to show that Lk
A.'

`
A.M// is contained in the image of ‰. Let W 2 Lk

A.'
`
A.M//.

Then (see Figure 3)

W D W14W2 with

W1 WD
�
.W \M/ [ .'

.qC1/k
A .M/ nM/

�
;

W2 WD
�
'
.qC1/k
A .M/4.M [W /

�
:

By Lemma 5.2 the set W1 is contained in Lk
A.'

.qC1/k
A .M//. Since W 2 Lk

A.'
`
A.M// �

P .'`CkA .M// and W2 \M D ;, we also have W2 � '`CkA .M/ nM .

Lemma 5.4. Let H be a finite undirected graph such that every connected component
contains at least two vertices. Then H has a vertex cover of size at most jV.H/j=2.

Proof. Choose a spanning tree in every connected component. Since every one of these
spanning trees is bipartite, we can pick the smaller of the two partition classes in each of
them. Since all our spanning trees contain at least two vertices, the picked vertices form a
vertex cover and we picked at most half of the vertices.

Lemma 5.5. Let M � Fin.'A/. Then for all k � q, ` > 1 we have LkA.'
`
A.M// � 1

2
jM j.

Proof. Form the following graphH . The vertices ofH are the elements of 'A.M/ and we
add an edge between u and v in 'A.M/ if u 2 'qA.¹vº/ and v 2 'qA.¹uº/. Since for every
a 2A and u 2M we have uD uaa�1 2 'A�1.¹uaº/� '

q
A.¹uaº/ and ua 2 'A.¹uº/, every

connected component of H contains at least two vertices. Hence by Lemma 5.4 we can
find a subset W � 'A.M/ with jW j � 1

2
j'A.M/j such that for all elements v 2 'A.M/

there is a vertex w 2 W with v 2 'qA.¹wº/, hence 'A.M/ � 'kA.W /. Thus for every set
N � '`A.M/ with .'`A.M/ n 'A.M// [ W � N we have 'kA.N / D 'kA.'

`
A.M//. Since

there are 2j'A.M/j�jW j such sets, we have LkA.'
`
A.M// � 1

2
j'A.M/j � 1

2
jM j.



Iterated Minkowski sums, horoballs and north-south dynamics 263

Lemma 5.6. Let k 2 N and let M � Fin.'A/. If ` � .q C 2/k C 3, then

LkA.'
`
A.M// � LkA.'

.qC1/k
A .M//C j'`�1A .M/ n '`�2A .M/j:

Proof. By definition of LkA, we need to prove that

jLk.'`A.M//j �
ˇ̌
Lk
A.'

.qC1/k
A .M// �P .'`�1A .M/ n '`�2A .M//

ˇ̌
:

We prove this by constructing an injective function

‰ W Lk
A.'

.qC1/k
A .M// �P .'`�1A .M/ n '`�2A .M//! Lk

A.'
`
A.M//:

This is given by

‰.Q;P / WD .'`A.M/ n '`�1A .M// [ P [ .'`�2A .M/ n '
.qC2/k
A .M// [Q:

First we check that the image of this map lies indeed in Lk
A.'

`
A.M//. Let

.Q;P / 2 Lk
A.'

.qC1/k
A .M// �P .'`�1A .M/ n '`�2A .M//:

It is clear that 'kA.‰.Q;P // � '
kC`
A .M/. We also have

.'`CkA .M/ n '`�1A .M// [ .'`�2CkA .M/ n '
.qC2/k
A .M//

D '`CkA .M/ n '
.qC2/k
A .M/ � 'kA.‰.Q;P //:

Finally, 'kA.Q/ D '
.qC2/k
A .M/, hence 'kC`A .M/ � 'kA.‰.Q;P //.

It is now enough to check that ‰ is injective. This follows from

P D ‰.Q;P / \ .'`�1A .M/ n '`�2A .M//;

Q D ‰.Q;P / \ '
.qC2/k
A .M/:

Theorem 5.7. Let .�;A/ be a finitely generated group and let q 2 N be such that A�1 �
Aq . Then � is amenable if and only if there is a sequence of finite sets .Mn/n2N in Fin.'A/
such that

lim
n!1

L
q
A.'

.qC5/q
A .Mn//

L
q
A.'

.qC1/q
A .Mn//

D 1: (5.1)

Proof. Let � be amenable and let .Mn/n2N be a Følner sequence. By Lemmas 4.4, 5.3
and 5.5 we have

1 �
L
q
A.'

.qC5/q
A .Mn//

L
q
A.'

.qC1/q
A .Mn//

� 1C
j'
.qC6/q
A .Mn/ nMnj

L
q
A.'

.qC1/q
A .Mn//

� 1C
2j'

.qC6/q
A .Mn/ nMnj

jMnj
;
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where the last inequity follows from Lemma 5.5. By Lemma 5.1 the right-hand side con-
verges to one and therefore (5.1) is satisfied.

On the other hand assume that .Mn/n2N is a sequence in Fin.'A/ satisfying (5.1). By
Lemma 5.6 we have

L
q
A.'

.qC5/q
A .Mn//

L
q
A.'

.qC1/q
A .Mn//

� 1C
j'
q.qC5/�1
A .Mn/ n '

q.qC5/�2
A .Mn/j

L
q
A.'

.qC1/q
A .Mn//

� 1C
j'
q.qC5/�1
A .Mn/ n '

q.qC5/�2
A .Mn/j

j'
.qC2/q
A .Mn/j

� 1C
j'
q.qC5/�1
A .Mn/ n '

q.qC5/�2
A .Mn/j

j'
.qC5/q�2
A .Mn/j

� 1:

Since we assumed that the left side of this inequality converges to one, this shows that

j'A.'
.qC5/q�2
A .Mn// n '

.qC5/q�2
A .Mn/j

j'
.qC5/q�2
A .Mn/j

! 0:

Hence by Lemma 5.1 the sequence .'.qC5/q�2A .Mn//n2N is a Følner sequence and � is
amenable.

Corollary 5.8. Let .�1; A1/ and .�2; A2/ be finitely generated groups such that 'A1 and
'A2 are topologically conjugate. If �1 is amenable, then �2 is amenable too.

6. North-south dynamics

Definition 6.1. A homeomorphism T W X ! X of a compact metric space X is said to
have north-south dynamics if there are precisely two fixed points xC; x� 2 X for T such
that limn!1 T

n.y/ D xC for every y 2 X n ¹x�º and limn!1 T
�n.y/ D x� for every

y 2 X n ¹xCº.

Two simple examples of homeomorphisms with north-south dynamics are the map
t 7!
p
t on the interval Œ0; 1� and the map n 7! nC 1 on the two-point compactification

Z˙1 D Z [ ¹C1;�1º.
For any homeomorphism T W X ! X the map S.T / W S.X/! S.X/ given by

S.T /.x; t/ D .T .x/;
p
t /

has north-south dynamics. Here S.X/ is the suspension of the topological space X given
by

S.X/ D .X � Œ0; 1�/=�;

.x1; t1/ � .x2; t2/ ” t1 D t2 D 0 or t1 D t2 D 1 or .x1; t1/ D .x2; t2/:
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So for instance the suspension of the d -dimensional sphere is the .d C 1/-dimensional
sphere.

In a similar way we can define SZ.T / W SZ.X/! SZ.X/ by

SZ.T /.x; n/ D .T .x/; nC 1/;

where SZ.X/ is a disconnected analog of the suspension given by

SZ.X/ D .X � Z˙1/=�;

.x1; n1/ � .x2; n2/ ” n1 D n2 D C1 or n1 D n2 D �1 or .x1; n1/ D .x2; n2/:

A complete characterization of north-south systems was obtained for many spaces, see
[15] for a survey of known results. This includes the Cantor set for which the following
uniqueness result was obtained in [14]. We include a short proof for self-containment.

Proposition 6.2. Up to topological conjugacy there is a unique homeomorphism with
north-south dynamics on the Cantor space ¹0; 1ºN .

Proof. We will show that any north-south dynamics on a Cantor space is topologically
conjugate to the “standard” north-south dynamics '.x; n/ D .x; n C 1/, ' W SZ.C / !

SZ.C / where C is a Cantor space and SZ.C / is the “disconnected suspension” defined
above. It is easy to check that SZ.C / is compact, totally disconnected, second countable
and has no isolated points, so it is a Cantor space.

Let X be a Cantor space and T W X ! X be any homeomorphism with north-south
dynamics. LetD be an clopen neighborhood of the unique positively attracting fixed point
xC such that X nD is a neighborhood of the unique negatively attracting fixed point x�.
For every point x 2 X n ¹xC; x�º the expression nD.x/ D sup¹n 2 Z W T n.x/ 2 X nDº
is a well defined integer. We want to show that

C WD
®
x 2 X n ¹xC; x�º W nD.x/ D 0

¯
D .X nD/ \

1\
kD1

T �k.D/

is a clopen set in X . For every point x 2 X n ¹xCº there is k > 0 such that T �k.x/ 2
X nD, hence

T1
kD1 T

k.D/ \ .X nD/ is empty. By compactness there must be N 2 N
such that already the finite intersection

TN
kD1 T

k.D/\ .X nD/ is empty. In other words,TN
kD1 T

k.D/ � D and therefore

N\
kD1

T �k.D/ � T �.NC1/.D/:

Thus
N\
kD1

T �k.D/ D

NC1\
kD1

T �k.D/ � T �.NC2/.D/:
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By induction we obtain
N\
kD1

T �k.D/ D

1\
kD1

T �k.D/:

This shows that C D .X nD/ \
T1
kD1 T

�k.D/ is indeed a clopen subset of X hence a
Cantor space itself. Notice that the orbit of every non-fixed point x of T intersects C in
precisely one point, namely T nD.x/.x/, since nD.T .x// D nD.x/ � 1.

Let yC be the attracting and y� the repelling fixed point of '. We define

ˆ W X ! SZ.C /; ˆ.x/ D

8̂̂<̂
:̂
yC if x D xC;

y� if x D x�;

.T nD.x/.x/;�nD.x// otherwise:

It is clear that ˆ intertwines ' and T and that it is bijective. To complete the proof, we
check that ˆ is continuous.

Let .xn/n2N be a sequence of points inX so that limn!1xnD x 2X . If x 62 ¹x�;xCº,
then x 2 T �nD.x/.C /. Since T �nD.x/.C / is open, it also contains xn for sufficiently
large n. For these n we have

ˆ.xn/ D .T
�nD.xn/.xn/;�nD.xn// D .T

�nD.x/.xn/;�nD.x//! ˆ.x/:

If xD xC, then nD.xn/!�1 andˆ.xn/! yC. Similarly, if xD x�, then nD.xn/!1
and ˆ.xn/! y�.

7. The eventual image and the natural extension of 'G

Let .X; '/ be a topological dynamical system, not necessarily invertible. Namely X is a
compact topological space and ' W X ! X is a continuous self-map. The eventual image
(also called the maximal attractor) is given by Evt.'/ WD

T1
nD1 '

n.X/.

Proposition 7.1. For a non-empty set M � V.G/ with M ¤ V.G/ the following are
equivalent:

(1) M is in the eventual image
T1
nD1 '

n
G.P .V .G///.

(2) M is the union of arbitrary large balls, i.e. for every r there isM 0 �M such that
M D 'rG.M

0/.

(3) M is a union of horoballs.

(4) M is the union of Busemann balls.

Proof. Conditions (1) and (2) are obviously equivalent as for any M 0 � V.G/ and n > 0
we have 'nG.M

0/ D
S
w2M 0 '

n
G.¹wº/. Assume now that M is a union of arbitrary large

balls. For every v 2M there is a sequence of points wk and increasing radii rk such that
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v 2 '
rk
G .¹wkº/ � M . Taking a limit along a subsequence, one obtains a horoball in M

containing v. That every union of horoballs is a union of Busemann balls and vice versa
follows directly from Proposition 2.5. Condition (4) implies (2) because every Busemann
ball is an increasing union of arbitrary large balls.

In view of the above proposition, we call elements of Evt.'G/ horoballunions.
The natural extension of a dynamical system .X;'/ (which is not necessarily injective

nor surjective) is the dynamical system . OX' ; O'/ where

OX' WD
®
Ox 2 XZ

W OxnC1 D '. Oxn/ for all n 2 Z
¯
;

and O' W OX' ! OX' is the shift given by

O'. Ox/n D '. Oxn/:

Note that O'. Ox/n D OxnC1 for every x 2 OX' and n 2 Z. It follows that O' W OX' ! OX' is a
homeomorphism. The natural extension factors onto the eventual image via the projection
Ox 7! Ox0. Every morphism from an invertible system factors through the natural exten-
sion. In particular, any other invertible extension of the eventual image factors through the
natural extension.

For a countably infinite graph G, the natural extension of .P .V .G//; 'G/ is topolo-
gically conjugate to the map .xv/v2V.G/ 7! .xv C 1/v2V.G/ on the space zXG � ZV.G/

˙1
,

consisting of the two points xC WD .C1/V.G/ and x� WD .�1/V.G/ and all the points
x 2 ZV.G/ that satisfy:

• For every v 2 V.G/ there existsw 2 V.G/ such that .w;v/ 2E.G/ and xw D xv C 1.

• For every .v; w/ 2 E.G/ one has xv � xw C 1.

In the case of an undirected graph, we can say that the natural extension of 'G W
P .V .G// ! P .V .G// is “pointwise incrementing by 1 on the two-point compactific-
ation of the integer-valued 1-Lipschitz functions on V.G/ without local maxima”. With
this identification, the natural extension of the subsystem corresponding to the closure of
the horoballs consists of Z-valued functions which are vertical translations of horofunc-
tions (with the two additional points x� and xC “at infinity”), see Proposition 2.3.

Proposition 7.2. SupposeG1,G2 are both countable, strongly connected locally finite dir-
ected graphs. Let . OXGi ; O'Gi / denote the natural extensions of 'Gi for i D 1; 2. If OXG1 and
OXG2 have no isolated points, then . OXG1 ; O'G1/ is topologically conjugate to . OXG2 ; O'G2/.

Proof. For any strongly connected, countable graph G the natural extension of 'G has
a unique attracting fixed point xC given by xCn D V.G/ for every n 2 Z, and a unique
repelling fixed point x� given by x�n D ;. The natural extension of 'G acts on a closed
subspace of P .V .G//Z, so under the assumption of no isolated points it has north-south
dynamics on the Cantor set. The result follows by Proposition 6.2.
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8. The geometry of horoballs in Zd

In the following sections we will exclusively consider abelian groups (.Zd ;C/ and
.Rd ;C/), so we switch to additive notation. For B; C � Zd or B; C � Rd we write
B C C for the Minkowski sum

B C C D
®
b C c W b 2 B; c 2 C

¯
:

For B � Zd or B �Rd and n 2N we abbreviate the n-fold Minkowski sum of B by nB:

nB D B C � � � C B„ ƒ‚ …
n

D
®
b1 C � � � C bn W b1; : : : ; bn 2 B

¯
:

Note that whenever B � Rd is convex, the n-fold Minkowski sum coincides with n-
dilation, meaning nB D ¹nb W b 2 Bº for n 2 N. We denote the closed ball of radius R in
Rn around v by BR.v/. We denote the convex hull of a subset B � Rd by conv.B/, and
by Ext.B/ the extremal points (or vertices) of conv.B/. Whenever we write conv.B/ for
a set B � Zd , we mean the convex hull of B in Rd .

In the following,Awill be a positively generating set of the additive group Zd . The set
A will not necessarily be symmetric, but it will always contain 0. This last assumption is
mostly for convenience, because for any positively generating set A, there exists a positive
integer n0 such that 0 2 nA for every n which is a positive integer multiple of n0.

Iterated Minkowski sums of a finite positively generating set of Zd are “roughly” equal
to the integer points in the dilated convex hull. A proof of this fact appears in [12]. For
completeness, we include a precise statement and a short proof based on the well-known
Shapley–Folkman lemma (see for instance [4]). See [29] for a similar convexity-based
proof of a closely related result, and also [9].

Proposition 8.1. Let A � Zd be a finite positively generating set with 0 2 A. Then for
any n 2 N

nA � n conv.A/ \ Zd ;

and there exists N 2 N so that for every n > N

.n �N/ conv.A/ \ Zd � nA:

Proof. By definition of the convex hull,A� conv.A/, so nA� nconv.A/\Zd . To prove
the second part we apply the Shapley–Folkman lemma which implies that for any compact
B � Rd and m � d

conv.mB/ D .m � d/B C d conv.B/:

Since A � Zd , it follows that

conv.mA/ \ Zd D .m � d/AC .d conv.A/ \ Zd /:
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Since A is positively generating and contains the identity, the sequence kAmonotonically
increases to Zd as k !1. Since d conv.A/ \ Zd is a finite subset of Zd , it follows that
there exists k 2 N so that d conv.A/ \ Zd � kA. Together this implies

m conv.A/ \ Zd D conv.mA/ \ Zd � .m � d/AC kA:

Definition 8.2. For a face F of conv.A/ let MF denote the collection of .d � 1/-dimen-
sional faces F 0 of conv.A/ that contain F .

Definition 8.3. For a .d � 1/-dimensional face F of conv.A/ let `F denote the inward
facing unit normal vector of F , namely the unique `F 2 Rd satisfying

• k`F k D 1,

• h`F ; u � vi D 0 for all u; v 2 F ,

• h`F ; u � vi � 0 for all u 2 conv.A/, v 2 F .

Given a face F of conv.A/, we define the envelope of A with respect to F to be

EnvF D EnvF;A WD
\

F 02MF

®
v 2 Rd W h`F 0 ; vi � 0

¯
:

It follows from the definition that

EnvF D
° X
v2Ext.F /

X
u2A

˛u;v.u � v/ W ˛u;v 2 Œ0;1/ for all u 2 A; v 2 Ext.F /
±
: (8.1)

In particular, if F D ¹vº is a zero-dimensional face of conv.A/, then

EnvF D
°X
u2A

tu.u � v/ W t 2 Œ0;1/
±
:

Also, if F is a .d � 1/-dimensional face of conv.A/, then EnvF is a translation of the
unique half-space containing A whose boundary is the affine hull of F .

In Zd the structure ofA-horoballs is essentially given by the convex hull ofA. There is
a one-to-one correspondence between faces of conv.A/ and A-horoballs up to translation.
The following theorem makes this precise.

Theorem 8.4. Let A � Zd be a finite generating set. For any face F of conv.A/ there
exists a unique A-horoball HF � Zd with the property that 0 2 HF and

EnvF D conv.HF /:

The horoball HF is given by

HF D
X

w2Ext.F /

1[
jD0

j.A � w/: (8.2)

Conversely, any A-horoball is of the form v CHF for some v 2 Zd and a face F of
conv.A/. This face is uniquely determined.
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Note thatHF is precisely the semigroup generated by ¹.u� v/ W u 2 A; v 2 Ext.F /º.
We split the proof into a number of simple lemmas.

Lemma 8.5. For any face F of conv.A/ we have

conv.HF / D EnvF :

Proof. For any finite set B � Rd ,

conv
�°X

v2B

avv W av 2 ZC
±�
D

°X
v2B

˛vv W ˛v 2 Œ0;1/
±
:

The result follows immediately from the expression (8.2) forHF and the expression (8.1)
for EnvF .

Lemma 8.6. Let F be a face of conv.A/. Then the setHF given by (8.2) is anA-horoball.

Proof. Let m D jExt.F /j. For any j 2 N let

Bj WD
X

w2Ext.F /

j.A � w/:

Then
Bj D

�
�j

X
w2Ext.F /

w
�
C jmA

is a translate of jmA. Since Bj � BjC1 for every j ,

lim
j!1

Bj D

1[
jD1

Bj D

1[
jD1

X
w2Ext.F /

j.A � w/ D HF :

This shows HF is an increasing union of translates of iterated sums of A. It is clearly
non-empty and by Lemma 8.5 it is contained in a half-space, so HF ¤ Zd . This proves
HF is indeed a horoball.

We will need the following lemma only later but we prove it here since it is very close
in spirit to the previous one.

Lemma 8.7. For any face F of conv.A/ there exists v 2 Zd so that

EnvF \Zd � v CHF :

Proof. As in the proof of Lemma 8.6, for every N 2 N we have

HF D

1[
jDN

��
�j

X
w2Ext.F /

w
�
C jmA

�
; (8.3)

where m D jExt.F /j. By Proposition 8.1 there exists N 2 N so that for any j � N

.j �N/ conv.A/ \ Zd � jA:
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From this it follows that for every j � N�
�j

X
w2Ext.F /

w
�
C .mj �N/ conv.A/ \ Zd � jmAC

�
�j

X
w2Ext.F /

w
�
:

Taking the union over j � N , using (8.3), it follows that

1[
jDN

� �
�j

X
w2Ext.F /

w
�
C .mj �N/ conv.A/

„ ƒ‚ …
DWWj

\ Zd
�
� HF :

For each j the setWj consists precisely of vectors u 2Rd of the form uD
P
v2Ext.A/ avv

so that
P
v2Ext.A/ av D �N , av � 0 for v 2 Ext.A/ n Ext.F /, and aw � �j for w 2

Ext.F /. Moreover, u 2 EnvF if and only if it is of the form u D
P
v2Ext.A/ avv withP

v2Ext.A/ av D 0 and av � 0 for any v 2 Ext.A/ nExt.F /. It follows that for v0 2 Ext.F /,[
j

Wj D EnvF �Nv0:

Thus
EnvF \Zd � Nv0 CHF :

Here is a simple criterion for a semigroup in Zd to be a group:

Lemma 8.8. Let S � Zd be a semigroup. Then S is a group if and only if the convex hull
of S is equal to the linear span of S . Equivalently, a semigroup S � Zd is a group if and
only if it is not contained in a proper half-space of its linear span.

Proof. Any subgroup of Zd is a lattice in its linear span, and thus its convex hull is equal
to its linear span. Conversely, suppose S � Zd is a semigroup and that the convex hull
of S is equal to the linear span of S . Then the rational convex hull of S is equal to the
rational span of S . Now fix a 2 S . Then in particular, �a is in the rational convex hull
of S , so there exist q1; : : : ; qn 2 Q \ Œ0;1/ and v1; : : : ; vm 2 S so that

�a D

mX
iD1

qivi :

Multiplying by the common denominator of the qi ’s, we see that for some positive integer
N and positive integers n1; : : : ; nm we have �Na D

Pm
iD1 nivi . This shows that �Na

is in the semigroup. Thus �a D �Na C .N � 1/a is also in the semigroup S . So the
semigroup S is closed under inverses, thus it is a group.

For a set L � Zd we denote the stabilizer of L by

stab.L/ WD
®
v 2 Zd W LC v D L

¯
:
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The set stab.L/ is always a subgroup of Zd .
Also, for a face F of conv.A/ let LF denote the linear span of ¹u� v W u; v 2 F \Aº.

Equivalently,
LF D

\
F 02MF

®
v 2 Rd W h`F 0 ; vi D 0

¯
:

The following lemma identifies the stabilizers of horoballs in Zd .

Lemma 8.9. For any face F of conv.A/,

stab.HF / D HF \ LF :

Equivalently, stab.HF / is equal to the group generated by ¹u � v W u; v 2 F \ Aº. In
particular, stab.HF / is a finite index subgroup of LF \ Zd .

Proof. Set GF WD HF \ LF . From (8.2) and the fact that F is a face of the convex hull
of A,

GF D
X

v2Ext.A/\F

1[
jD0

j..A \ F / � v/:

In particular, GF is a semigroup. Also since any vector of the form v � w with v; w 2
Ext.A \ F / is in GF , the convex hull of GF is equal to LF , which contains the linear
span of GF . Thus by Lemma 8.8, GF is a group and therefore contains any vector of the
form u � v with u; v 2 A \ F .

Now since 0 2 HF , for any v 2 stab.HF /, v 2 v C HF D HF . If v 2 HF n LF ,
then the convex hull of HF C v is contained in the interior of the convex hull of HF , so
v 62 stab.HF /. It follows that stab.HF /�HF \LF . Conversely, it follows directly from
(8.2) that u� v 2 HF for every u; v 2 A\ F . Since stab.HF / is a group, this completes
the proof.

The following result, which will be used in Section 10, expresses the dynamics of 'A
on horoballs HF .

Lemma 8.10. For any face F of conv.A/ and any v 2 Ext.F / we have

'A.HF / D HF C v:

Proof. Let F be a face of conv.A/ and let v 2 Ext.F /. Since v 2 A, we have

HF C v � HF C A D 'A.HF /:

On the other hand, suppose u 2 'A.HF / D HF C A. Then by definition of HF , there
exist w;w1; : : : ; wj 2 A and v1; : : : ; vj 2 Ext.F / so that u D

Pj

kD1
.wk � vk/C w. It

follows that

u D

jX
kD1

.wk � vk/C .w � v/C v 2 HF C v:

This shows that 'A.HF / � HF C v.
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Lemma 8.11. LetW �Ext.A/ be a non-empty subset. If F is the minimal face of conv.A/
that contains W , then

HF D
X
v2W

1[
jD0

j.A � v/:

Proof. The point 1
jW j

P
w2W w is contained in the relative interior of F . Therefore we

can represent it as the rational convex combination of the extremal points of F with all
coefficients positive. Multiplying by the common denominator, we obtain m 2 N and
positive integer coefficients .ˇv/v2Ext.F / such that

m
X
w2W

w D
X

v2Ext.F /

ˇvv and
X

v2Ext.F /

ˇv D mjW j:

Note that for any w 2 W ,
S1
jD0 j.A � w/ D

S1
jD0 jm.A � w/. Therefore

X
w2W

1[
jD0

j.A � w/ D

1[
jD0

jmjW jA � jm
X
w2W

w

D

1[
jD0

jmjW jA � j
X

v2Ext.F /

ˇvv

D

X
v2Ext.F /

1[
jD0

jˇv.A � v/

D

X
v2Ext.F /

1[
jD0

j.A � v/

D HF :

Proof of Theorem 8.4. We first show that any A-horoball is of the form vCHF for some
v 2 Zd and a face F of conv.A/. By Lemma 8.11 it suffices to show that any A-horoball
is a translate of a set of the form

P
w2W

S1
jD1 j.A � w/ for some W � Ext.V /. Let

L be a horoball containing 0. There is a sequence of sets of the form �bk C nkA with
increasing nk and bk 2 nkA converging to L. By the Shapley–Folkman lemma as in the
proof of Proposition 8.1, passing to a subsequence, we can ensure that there are r 2 N
and s 2 rA such that bk 2 s C .nk � r/Ext.A/. Hence we can find tuples .˛v;k/v2Ext.A/

of non-negative integers such that

bk D s C
X

v2Ext.A/

˛v;kv and
X

v2Ext.A/

˛v;k D nk � r:

Again passing to a subsequence, we may assume that for every v 2 Ext.A/ the sequence
.˛v;k/k2N is non-decreasing and that therefore the limit

˛v WD lim
k!1

˛v;k 2 N0 [ ¹C1º
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exists. Let
W D

®
v 2 Ext.A/ W ˛v D C1

¯
be the set of vertices v for which .˛v;k/k2N tends to C1. We may assume without loss
of generality that ˛v;k D 0 for all v 62 W and k 2 N as this merely translates L. With this
assumption, we claim that L is a translate of

P
w2W

S1
jD1 j.A � w/.

First of all we have

�bk C nkA D �s �
� X
v2W

˛v;kv
�
C nkA

D �s C rAC
X
v2W

˛v;k.A � v/:

Hence L is the increasing union of the sets �bk C nkA. Now

L D
[
k2N

�bk C nkA D �s C rAC
[
k2N

X
v2W

˛v;k.A � v/

D �s C rAC
X
v2W

[
k2N

˛v;k.A � v/

D �s C rAC
X
v2W

[
k2N

k.A � v/:

Now choose w 2 W . Then rA D r.A � w/ C rw. Since .A � w/ is contained in the
semigroup

P
v2W

S
k2N k.A � v/ and contains 0, we have

r.A � w/C
X
v2W

[
k2N

k.A � v/ D
X
v2W

[
k2N

k.A � v/:

It follows that
L D �s C rw C

X
v2W

[
k2N

k.A � v/:

This completes the proof that any A-horoball is a translate of some HF . Let v CHF be
an A-horoball for some face F of conv.A/ and v 2 Zd such that 0 2 v C HF and so
that conv.v C HF / D EnvF . By Lemma 8.5, conv.v C HF / D v C EnvF . Thus, v C
EnvF D EnvF , so v 2 LF . But 0 2 v CHF , so �v 2 HF . By Lemma 8.9 it follows that
v CHF D HF .

9. Horoballs in Zd as a topological space and a topological dynamical
system

In this section we make a brief digression from the study of 'A in order to study the space
Hor.Zd ; A/ as a compact totally disconnected topological space and as Zd -topological
dynamical system.

For u 2 Rd and R > 0 we let BR.u/ denote the Euclidean ball of radius R centered
at u.
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Lemma 9.1. There exists R > 0 such that for any face F of conv.A/, if u 2 conv.HF /,
then u 2 conv.HF \ BR.u//.

Proof. Choose u 2 conv.HF /. Then u is of the form

u D
X

v2Ext.F /

X
w2A

˛v;w.w � v/;

with ˛v;w 2 Œ0;1/. For ˛ 2 R let Œ˛�0 D b˛c and Œ˛�1 D d˛e. Then u is in the convex
hull of the set

Au D
° X
v2Ext.F /

X
w2A

Œ˛v;w �f .v;w/.w � v/ W f 2 ¹0; 1º
Ext.F /�A

±
:

Let
A0 D

° X
v2Ext.F /

X
w2A

bv;w.w � v/ W b 2 Œ�1; 1�
Ext.F /�A

±
:

Then Au � HF \ .uC A0/. Choose R > 0 sufficiently large so that A0 is contained in
BR.0/. Then u 2 conv.HF \ BR.u//.

Recall that for a face F of conv.A/, MF has been defined in Definition 8.2.

Lemma 9.2. Suppose F1; F2 are faces of conv.A/, and that .vi /i2N is a sequence of
points in Zd . Then vnC EnvF1 ! EnvF2 as n!1 (with respect to the product topology
on ¹0; 1ºR

d
) if and only if F1 � F2 and for every F 0 2MF1 we have

lim
n!1
h`F 0 ; vni D

´
�1 if F 0 2MF1 nMF2 ;

0 if F 0 2MF2 :
(9.1)

Proof. Note that F1 � F2 implies MF2 �MF1 . If h`F 0 ; vni < �R for every F 0 2MF1 n

MF2 and h`F 0 ; vni D 0 for every .d � 1/-dimensional face F 0 of conv.A/ which contains
F2, then

.vn C EnvF1/ \ BR.0/ D EnvF2 \BR.0/:

This proves that the conditions F1 � F2 together with (9.1) imply that vn C EnvF1 !
EnvF2 as n!1.

Conversely, suppose that vnC EnvF1! EnvF2 as n!1. Since 0 2 EnvF2 , it follows
that 0 2 vn C EnvF1 and thus �vn 2 EnvF1 for all sufficiently large n. This implies that
EnvF1 � vn C EnvF1 for all sufficiently large n. Taking n!1, we deduce that EnvF1 �
EnvF2 , which implies F1 � F2. Let F 0 2MF1 . Define points

mF1 WD
1

jExt.F1/j

X
w2Ext.F1/

w 2 F1 � F
0;

u WD
X

v2Ext.F 0/

.v �mF1/:
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Suppose F 0 2MF2 . Let " > 0. We have hu; `F 0i D 0. For F 00 2MF1 n ¹F
0º we have

hu; `F 00i > 0. We thus can choose ˛ > 0 large enough such that for all these F 00 we have
h˛u � "`F 0 ; `F 00i > 0. Since h˛u � "`F 0 ; `F 0i D �" < 0, our point ˛u � "`F 0 is not
contained in EnvF2 , and hence also not in vn C EnvF1 for sufficiently large n 2 N. As
shown above, we may also assume that �vn 2 EnvF1 . Therefore there must be F 00 2MF1

with h˛u� "`F 0 � vn; `F 00i< 0. Since h�vn; `F 00i � 0, this implies h˛u� "`F 0 ; `F 00i< 0.
By our choice of ˛ this can only happen for F 00 D F 0. But then h˛u� "`F 0 � vn; `F 0i< 0,
thus �" D h˛u � "`F 0 ; `F 0i < hvn; `F 0i � 0. Hence limn!1hvn; `F 0i D 0.

Suppose F 0 2MF1 nMF2 . For every F 00 2MF2 we have hu; `F 00i > 0. It follows that
for everyR > 0, there existsQ> 0 such thatQu�R`F 0 2 vnC EnvF1 for all sufficiently
large n. So there is wn 2 EnvF1 such that vn D Qu �R`F 0 � wn. This implies that

h`F 0 ; vni D h`F 0 ;Qu �R`F 0 � wni D �R � h`F 0 ; wni � �R

and thus
lim
n!1
h`F 0 ; vni D �1;

completing the proof.

Lemma 9.3. Let F be a face of conv.A/ and let .vn/n2N be a sequence of points in Zd .
If

lim
n!1

max
F 02MF

h`F 0 ; vni D C1; (9.2)

then .vn CHF /! ; as n!1.

Proof. For any R > 0 there exists Q > 0 such that maxF 02MF
h`F 0 ; vi < Q for every

v 2 BR.0/. It follows that whenever maxF 02MF
h`F 0 ; vni � Q, we have .vn C HF / \

BR.0/ D ;. Thus condition (9.2) implies that .vn CHF /! ; as n!1.

Lemma 9.4. SupposeF1;F2 are faces of conv.A/ and that .vi /i2N is a sequence of points
in Zd . For ease of notation we allow F2 D conv.A/ (considered as a “d -dimensional
face”), in which case we denote HF2 D Zd . Then .vn C HF1/ ! HF2 as n ! 1 if
and only if .vn C conv.HF1//! conv.HF2/ as n!1 and there exists N 2 N so that
vn 2 stab.HF2/ for all n > N .

Proof. Suppose .vnCHF1/!HF2 . LetR > 0 be as in Lemma 9.1. Recall that EnvF1 D
conv.HF1/ and EnvF2 D conv.HF2/. Let u 2 Rn. Since .vn CHF1/! HF2 , it follows
that there exists N 2 N such that HF2 \ BR.u/ D .vn CHF1/ \ BR.u/ for all n > N .
Thus, for all n > N , conv.HF2 \BR.u//D conv..vnCHF1/\BR.u//. By Lemma 9.1,
u 2 conv.HF2/ if and only if

u 2 conv.HF2 \ BR.u// D conv..HF1 C vn/ \ BR.u//

D vn C conv.HF1 \ BR.u � vn//

and this is the case if and only if u 2 vn C conv.HF1/. Hence

.vn C conv.HF1//! conv.HF2/:
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By Lemma 9.2 this implies that vn is in the linear span of ¹.v �w/ W v;w 2 Ext.F2/º
for sufficiently large n and that F1 � F2. Since vn C HF1 ! HF2 , it follows that 0 2
vn CHF1 for large n. So �vn 2 HF1 . By Lemma 8.9, the intersection of the linear span
of ¹.v �w/ W v;w 2 Ext.F2/º withHF1 is contained in stab.HF2/. We conclude that there
exists N 2 N so that vn 2 stab.HF2/ for all n > N .

Conversely, suppose that vn C conv.HF1/! conv.HF2/ as n!1 and there exists
N 2 N so that vn 2 stab.HF2/ for all n > N . By compactness, it suffices to show that
for any converging subsequence .vnk CHF1/k2N , we have .vnk CHF1/! HF2 as k !
1. Let .vnk CHF1/k2N be a converging subsequence, so .vnk CHF1/! W for some
W � Zd . By Lemma 9.2, vn C conv.HF1/! conv.HF2/ implies F1 � F2. Since vn 2
stab.HF2/�HF2 , andHF2 is a semigroup, it follows that vnCHF1 �HF2 for all n >N .
This implies that W � HF2 . By Theorem 8.4 the limit W must either be of the form
vCHF for some face F of conv.A/, or Zd or ;. But the first part of the proof shows that
conv.W /D conv.HF2/. It follows thatW D vCHF2 for some v 2 Zd in the linear span
of ¹.u � w/ W u; w 2 Ext.F2/º. We have already concluded that v CHF2 D W � HF2 .
Using Lemma 8.9, the conditions v C HF2 � HF2 and v C conv.HF2/ D conv.HF2/
together imply that v 2 stab.HF2/ and .vnk CHF1/! HF2 .

Lemma 9.5. Let F be a face of conv.A/ and let .vi /i2N be a sequence of points in Zd .
Then:

(1) Suppose limn!1maxF 02MF
h`F 0 ; vni D C1. Then .vn CHF /! ; as n!1.

(2) Suppose that limn!1h`F 0 ; vni D �1 for every .d � 1/-dimensional face F 0 of
conv.A/ containing F . Then .vn CHF /! Zd as n!1.

(3) Otherwise, suppose that the limit limn!1h`F 0 ; vni 2 Œ�1;C1/ exists for every
F 0 2 MF and let F 00 denote the face of conv.A/ which is the intersection of all
F 0 2MF such that limn!1h`F 0 ;vni is finite. Furthermore, suppose all but finitely
many elements of .vn/n2N belong to a fixed coset of stab.HF 00/. Then there exists
v 2 Zd so that vn CHF ! v CHF 00 as n!1.

(4) In all other cases, the sequence vn CHF does not converge.

Proof. (1) If limn!1maxF 02MF
h`F 0 ; vni D C1, then .vn CHF /! ; by Lemma 9.3.

(2) & (3) Note that .2/ is essentially a particular case of .3/ if we agree that F 00 D
conv.A/ when limn!1h`F 0 ; vni D �1 for all F 0 2MF . By Lemma 9.2,

vn C conv.HF /! v C conv.HF 00/:

Using the fact that vn � v 2 stab.HF 00/ for all n � N , by Lemma 9.4, it follows that
vn CHF ! v CHF 00 .

(4) Let .vi /i2N be a sequence of points in Zd , and let us suppose that the sequence
.vn CHF /n2N converges. By compactness this sequence converges if and only if all of
its converging subsequences have the same limit. Then by Theorem 8.4 the possible limit
points are ;, Zd and v CHF 00 for faces F 00 of conv.A/ and v 2 Zd .
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If limn!1maxF 02MF
h`F 0 ; vni D C1, we are in case .1/. Otherwise we know from

Lemma 9.4 that .vn C conv.HF //! .v C conv.HF 00// and that vn 2 .v C stab.HF 00//
for all sufficiently large n 2 N. By Lemma 9.2 we can conclude that if .vn CHF /n2N

converges, we are either in case .1/, case .2/ or case .3/.

For a topological space X let X 0 denote the set of accumulation points of X . The k-th
Cantor–Bendixson derivative is inductively defined as

X .0/ D X and X .kC1/ D .X .k//0:

Later in Section 11 we will also need the ˛-th Cantor–Bendixson derivative for an ordinal
number ˛. For successor ordinals the same definition as above holds and for limit ordinals
˛ it is defined as

X .˛/ D
\
ˇ<˛

X .ˇ/:

A topological spaceX has Cantor–Bendixson rank ˛ if and only if ˛ is the smallest ordinal
with X .˛/ D X .˛C1/.

Using Theorem 8.4 and Lemma 9.5, we can summarize the topological structure of
Hor.Zd ; A/ as follows:

Theorem 9.6. Let A � Zd be a finite positively generating set. Then the closure of
Hor.Zd ;A/ in P .Zd / is a countable compact subset of P .Zd / having Cantor–Bendixson
rank d C 1. Furthermore,

Hor.Zd ; A/
.d/
D ¹;;Zd º;

and for 0 � k < d the isolated points of Hor.Zd ; A/.k/ are precisely®
v CHF W F is a k-dimensional face of conv.A/ and v 2 Zd

¯
:

Proof. Let F; F 0 be faces of conv.A/. By Lemma 9.5, the horoball HF 0 is a limit point
of the orbit of HF under translations if and only if F � F 0. This show that v CHF is an
isolated point of Hor.Zd ; A/.k/ if and only if F is a k-dimensional face of conv.A/.

Corollary 9.7. Let d1; d2 2 N. Suppose Ai � Zdi are finite positively generating sets for
i D 1; 2. Then Hor.Zd1 ; A1/ is homeomorphic to Hor.Zd2 ; A2/ if and only if d1 D d2.

Proof. Lemma 9.5 shows that for any finite positively generating set A of Zd , if XA D
Hor.Zd ; A/, then X .d/A D ¹;; Zd º consists of 2 points. It follows from a theorem of
Mazurkiewicz and Sierpiński [16] that any such countable compact metrizable topolo-
gical space of Cantor–Bendixson rank d C 1 is homeomorphic to the ordinal 2!d C 1,
with the order topology.

Theorem 9.8. Suppose A1; A2 � Zd are finite positively generating sets. Then the Zd

actions by translations on Hor.Zd ; A1/ and Hor.Zd ; A2/ are topologically conjugate if
and only if there is a bijectionˆ between the faces of conv.A1/ and the faces of conv.A2/
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such that for every face F of conv.A1/, the following two conditions hold:X
u;v2F\A1

Z.u � v/ D
X

u0;v02ˆ.F /\A2

Z.u0 � v0/

(in other words, the group generated by differences of elements in F \ A1 is equal to the
group generated by differences of elements in ˆ.F / \ A2) and

EnvF;A1 D Envˆ.F /;A2 :

Proof. The case d D 1 is somewhat degenerate as the convex hull of any finite set is an
interval. We leave it for the reader to check that for any finite positively generating set
A � Z, the shift action on Hor.Z; A/ is topologically conjugate to the action of the shift
on Hor.Z; ¹�1; 0; 1º/. So from now on we assume d � 2.

By Theorem 9.6, the orbits of the Zd action on Hor.Zd ; Ai / are the two fixed points
;;Zd together with the orbits of HF where F runs over the faces of conv.Ai /. Suppose
� W Hor.Zd ; A1/! Hor.Zd ; A2/ is a topological conjugacy of the Zd actions. By The-
orem 9.6, the Zd -orbits of Hor.Zd ; Ai / which are isolated points in Hor.Zd ; A/.k/ (with
0 � k < d ) are in bijection with the k-dimensional faces of conv.Ai /. Thus, for each k-
dimensional face F of conv.A1/ there exist vF 2 Zd and a k-dimensional face ˆ.F / of
conv.F2/ such that �.HF / D vF C Hˆ.F /. Clearly ˆ is a bijection between the faces
of conv.A1/ and the faces of conv.A2/. Furthermore, by Lemma 9.5 for faces F; F 0 of
conv.A1/,HF 0 is an accumulation point of the orbit ofHF if and only if F �F 0. Thus the
bijection ˆ respects the incidence relations between the faces of the polytopes conv.A1/
and conv.A2/. In other words, the polytopes conv.A1/ and conv.A2/ are combinatorially
isomorphic. Since � is a topological conjugacy, we must have stab.HF / D stab.�.HF //.
By Lemma 8.9, the stabilizer of HF is equal to the group generated by differences of
elements in F \ A1. This shows that the group generated by differences of elements in
F \ A1 is equal to the group generated by differences of elements in ˆ.F / \ A2. The
set of two fixed points ¹;;Zd º is obviously mapped bijectively into itself via ˆ. Using
Lemma 9.5, we conclude that Zd has the property that for any H 2 Hor.Zd ; Ai / the set
of directions v in which H tends to Zd is convex, whereas (for d � 2) the set of direc-
tions v in which a vertex horoball tends to ; is not convex. This implies (for d � 2) that
ˆ.Zd /D Zd and so ˆ.;/D ;. By Lemma 9.3, vn CHF ! ; if and only if the distance
between �vn and conv.HF / tends to1. This shows that conv.HF / D conv.Hˆ.F //. By
Lemma 8.5 this implies that EnvF;A1 D Envˆ.F /;A2 .

Conversely, suppose that there is a bijection ˆ between the faces F of conv.A1/ and
the faces of conv.A2/ as above. Define � W Hor.Zd ; A1/! Hor.Zd ; A2/ by �.;/ D ;,
�.Zd / D Zd and �.v CHF / D v CHˆ.F / for v 2 Zd and F a face of conv.A1/. By
the assumption that the group generated by differences of elements in F \ A1 is equal to
the group generated by differences of elements in ˆ.F / \ A2 and using Lemma 8.9, we
get that v1 CHF D v2 CHF if and only if v1 CHˆ.F / D v2 CHˆ.F /, so the map � is
well defined and it is a bijection (here we also use Theorem 9.6). It is clear that the map
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� is equivariant. Combining Lemma 9.5 with the assumption that EnvF;A1 D Envˆ.F /;A2
for every face F of conv.A1/, it follows that .vn C HF / ! .v C HF 0/ if and only if
.vn C Hˆ.F // ! .v C Hˆ.F 0//. The analogous statements for Zd and ; hold as well.
This shows that � is a homeomorphism.

Example 9.9. Consider the generating set depicted on the left side of Figure 4. Rota-
tion by 90ı gives a generating set whose space of horoballs together with the action by
translation is conjugate to the original one, but none of the horoballs agree.

Figure 4. A generating set A of Z2, whose convex hull is a centered square, and the ball A3.

From Theorem 9.8 it follows that there is an algorithm to decide given two finite pos-
itively generating sets A1; A2 � Zd if the Zd actions by translation on Hor.Zd ; A1/ and
Hor.Zd ; A2/ are topologically conjugate, as one can reduce this to several applications of
the following problems:

• Given v 2 Zd and a finite set C � Zd , decide if v is in the convex cone generated by
C (this is a linear programming problem).

• Given v 2 Zd and a finite set C � Zd , decide if v is in the group generated by C (this
amounts to solving a system of linear Diophantine equations).

10. The natural extension of 'A, A � Zd

Our next goal is to show that for G D Cayley.Zd ; A/ with d � 2 the natural extension of
'A is perfect. This will take the remainder of this section.

Lemma 10.1. For every finite positively generating set A � Zd the set

zXA D
° m[
iD1

.wi CH¹vi º/ W m � jExt.A/j; w1; : : : ; wm 2 Zd ; ¹v1; : : : ; vmº D Ext.A/
±

is dense in the eventual image of 'A.

Proof. It is clear that zXA consists of horoballunions and hence is a subset of the eventual
image of 'A. LetR>0. There is n2N such that .�nvCH¹vº/\BR.0/D; for every v 2
Ext.A/. Let M be a set in the eventual image of 'A, hence M is the union of translates of
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horoballs of the form H¹vº for v 2 Ext.A/. The unions of finitely many of these horoballs
cover M \ BR.0/. Denote this union by M1. Then M2 WD M1 [

S
v2V .�nv CH¹vº/ 2

zXA. Furthermore, M2 \ BR.0/ D M \ BR.0/. Therefore zXA is dense in the eventual
image of 'A.

Definition 10.2. For a finite positively generating set A � Zd define LA by

LA WD
[

v2Ext.A/

.�v C Env¹vº;A/;

see Figure 5 for an illustration.

(a) A generating set A of Z2. (b) � conv.A/ together with LA.

Figure 5. Illustration of the proof of Lemma 10.3.

Lemma 10.3. LetA�Zd be a finite positively generating set. Letm� jExt.A/j,w1; : : : ;
wm 2 Zd and ¹v1; : : : ; vmº D Ext.A/. Set Mn WD

Sm
iD1.wi � nvi CH¹vi º/ 2

zXA. Then
Mn 2 '

�n
A .¹M0º/ and 1

n
Mn converges to LA with respect to the Hausdorff metric, i.e. for

all " and n large enough we have 1
n
Mn � LAC B".0/ and LA � 1

n
Mn C B".0/.

Proof. From Lemma 8.10 it follows thatMn 2 '
�n
A .¹M0º/. Also there isN > 0 such that

Env¹vº�B"=2.0/C .Env¹vº\ 1nZd / for every n>N and every v 2Ext.A/. By Lemma 8.7
this implies that for every v 2 Ext.A/ there exists uv 2 Zd such that

Env¹vº\Zd � uv CH¹vº;

hence
Env¹vº � B"=2.0/C

�1
n
uv C

1

n
H¹vº

�
:

Finally, for large enough n we have

m[
iD1

�1
n
wi � vi C

1

n
Hvi

�
C B"=2.0/ �

m[
iD1

�1
n
uv � vi C

1

n
Hvi

�



J. Epperlein and T. Meyerovitch 282

and

1

n
Mn C B".0/ D

m[
iD1

�1
n
wi � vi C

1

n
Hvi

�
C B".0/

�

m[
iD1

�1
n
uv � vi C

1

n
Hvi

�
C B"=2.0/

� LA:

On the other hand Env¹vº � H¹vº for every v 2 Ext.A/ and for sufficiently large n

1

n
Mn D

m[
iD1

�1
n
wi � vi C

1

n
Hvi

�
� LAC B".0/:

Lemma 10.4. Let d � 2 and let A � Zd be a finite positively generating set and let
v 2 Ext.A/. Then there is a point p 2 Rd and an " > 0 such that B".p/ \ LA D ; and
.B".p/CH¹vº/ \ conv.�A/ D ;.

Proof. Let F be a .d � 1/-dimensional face of conv.A/ containing v. Set

pı WD
1

jExt.F /j

X
w2Ext.F /

�w C ı`F :

For all w 2 B".pı/CH¹vº we have h`F ; wi � h`F ;�vi � "C ı but for w 2 conv.�A/
we have h`F ; wi � h`F ;�vi. Hence for " < ı we have

.B".pı/CH¹vº/ \ conv.�A/ D ;:

To show that B".pı/ \ LA D ; for sufficiently small ı, we have to show that pı is not
contained in �Qv C Env¹Qvº for every point Qv 2 Ext.A/. In other words, we have to show
that pı C Qv 62 Env¹Qvº. Let zF ¤ F be a .d � 1/-dimensional face of A containing Qv. Then
all points u 2 Env¹Qvº have h` zF ; ui � 0 but

h` zF ; pı C Qvi D
1

jExt.F /j

X
w2Ext.F /

h` zF ; Qv � wi C ıh` zF ; `F i

which is negative for small ı because h` zF ; Qv � wi is non-positive for all w 2 Ext.F / and
negative for at least one w 2 Ext.F /.

Proposition 10.5. For any finite positively generating set A � Zd , d � 2, the natural
extension of 'A is perfect.

Proof. By Lemma 10.1 it suffices to show that for any M 2 zXA and R > 0 there exist
n 2 N, W1; W2 2 '�nA .¹M º/ and W2 ¤ W1, both in the eventual image of 'A, such that

M \ BR.0/ D '
n
A.W1/ \ BR.0/ D '

n
A.W2/ \ BR.0/:
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Let M D
Sm
iD1.wi C Hvi / with w1; : : : ; wm 2 Zd and ¹v1; : : : ; vmº D Ext.A/. If we

define, as in Lemma 10.3,

Mn WD

m[
iD1

.wi � nvi CH¹vi º/;

for any n 2 N, then Mn 2 '
�n
A .¹M º/. By Lemma 10.4 there are " > 0, a point p 2 Rd

and a point v 2 Ext.A/ such that

B".p/ \ LA D ; and .B".p/C Env¹vº/ \ conv.�A/ D ;:

Since 1
n
Mn converges to LA by Lemma 10.3, we can choose n large enough such that

1

n
Mn \ B"=2.p/ D ;;

1

n
Zd \ B"=2.p/ ¤ ;;

R

n
<
"

2
:

Let w 2 Bn"=2.p/ \ Zd and set W1 WD Mn, W2 WD Mn [ .w C H¹vº/. Since W1 \
Bn"=2.p/ D ; and w 2 W2 \ Bn"=2.p/, we have W2 ¤ W1. We also have

'nA.W2/ DM [ .w C nv CH¹vº/:

It remains to show that .w C nv CH¹vº/ \ BR.0/ D ;. We know that

.B"=2.p/C Env¹vº/ \ .B"=2.0/C conv.�A// D ;:

Hence

.Bn"=2.np/C Env¹vº/ \ .n conv.�A/C Bn"=2.0// D ;;

.w CH¹vº/ \ .�nv C BR.0// D ;;

.w C nv CH¹vº/ \ BR.0/ D ;:

Combining Proposition 7.2 and Proposition 10.5, we conclude:

Corollary 10.6. For any d > 1 and any finite positively generating set A � Zd that
contains 0, the natural extension of 'A is topologically conjugate to the (unique) north-
south system on the Cantor set.

11. The eventual image of 'A, A � Zd

In this section we still consider the dynamics of 'A W P .Zd / ! P .Zd / where A is a
positive generating set of Zd containing 0. Our goal is to show that the Cantor–Bendixson
rank of the eventual image is a non-trivial invariant. More precisely, we show by examples
that for A � Z2, the Cantor–Bendixson rank of Evt.'A/ can be 0; 1 or !. We suspect that
these are the only possibilities, at least for d D 2. Recall that we call elements of Evt.'A/
horoballunions.
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(a) A1 (b) A2 (c) A3

Figure 6. Three generating sets whose eventual images have different Cantor–Bendixson rank,
together with the envelopes corresponding to the extremal points of the convex hull, moved slightly
outward for greater clarity.

Example 11.1. Consider the positive generating sets A1; A2 and A3 of Z2 depicted in
Figure 6. The eventual image of 'Ai has the following structure.

(1) Evt.'A1/ is perfect by Proposition 11.5 below.

(2) Evt.'A2/ has Cantor–Bendixson rank 1 by Proposition 11.6 below.

(3) Evt.'A3/ has Cantor–Bendixson rank ! by Proposition 11.7 below.

We now turn to prove the statement claimed regarding the example above.
Here is some ad-hoc terminology:

Definition 11.2. Let W � Zd be finite and M 2 Evt.'A/. We call zM 2 Evt.'A/ a W -
approximation of M if zM \W DM \W .

Definition 11.3. A horoballunion M 2 Evt.'A/ is called deficient, if there is a finite set
of horoballs ui CH¹vi º; i 2 I such thatM D

S
i2I .ui CH¹vi º/ and

S
i2I Env¹vi º ¤Rd .

Denote the set of deficient horoballunions by DA.

Lemma 11.4. The set of all deficient horoballunions has no isolated points.

Proof. Let M D
S
i2I .ui CH¹vi º/ be a finite deficient union of horoballs. Set

U WD
°
w 2

[
i2I

Env¹vi º W kwk D 1
±
:

Let u be an element in the boundary of U considered as a subset of Sd�1 D ¹w 2 Rd W
kwk D 1º. We can find v 2 ¹vi W i 2 I º such that u 2 Env¹vº. Then �u 62 Env¹vº and
we can find Qu 2 Zd n

S
i2I Env¹vi º such that still �Qu 62 Env¹vº. Hence, for every finite

W � Zd we can find t0 > 0 such that for all t > t0 we have .t Qu C Env¹vº/ \ W D ;.
Since M D

S
i2I .ui CH¹vi º/, by our choice of Qu we can find t1 2 N, t1 > t0 such that

t1 Qu 62 M , hence M [ .t1 QuCH¹vº/ is a W -approximation of M which is different from
M but still deficient.
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The following results will show that there are cases where the Cantor–Bendixson rank
is 0 or 1.

Proposition 11.5. If A � Z2 is a positively generating set with 0 2 A and conv.A/ is a
triangle, then Evt.'A/ is perfect.

Proof. LetA be as above. Because the sum of the angles of a triangle is � , which is strictly
less than 2� , every finite union of A-horoballs is deficient. Hence by Lemma 11.4, DA is
a dense subset of Evt.'A/ without isolated points.

Proposition 11.6. Suppose A � Z2 is a positively generating set with 0 2 A that satisfies
the following properties:

(1) For every w 2 R2 n ¹0º there exists v 2 Ext.A/ so that w is contained in the
interior of Env¹vº.

(2) For every v 2 Ext.A/ there exists w 2 R2 n ¹0º which is not contained in[
v02Ext.A/n¹vº

Env¹v0º :

Then the Cantor–Bendixson rank of Evt.'A/ is equal to 1.

Proof. Let A be as above. We will prove the result by showing that any horoballunion M
which is not in the closure of DA is isolated in Evt.'A/. Let M be such a horoballunion.
There exists a finite set W � Z2 such that all W -approximations of M are non-deficient.
Consider the horoballunions of the form

S
w2.M\W /.w CH¹vw º/ with ¹vw W w 2 M \

W º D Ext.A/. There are only finitely many of them, they are all cofinite by (1), and by (2)
every W -approximation of M contains one of them. Therefore we can find a finite set zW
such that all zW -approximations of M contain the complement of zW . Thus M is isolated.
This shows that the isolated points of Evt.'A/ are precisely all points not in DA.

The following result demonstrates the case of Cantor–Bendixson rank !.

Proposition 11.7. Suppose n 2 N and let A D ¹�1; 0; 1º2 � Z2. Then Evt.'A/ has
Cantor–Bendixson rank !.

Proof. Let A D ¹�1; 0; 1º2 � Z2. Denote

B D
®
.�1; 0/; .1; 0/; .0;�1/; .0; 1/

¯
� Z2:

Let a ray be a set of the form ¹.x; y/ C tv W t 2 Nº with .x; y/ 2 Z2 and v 2 B . For
M 2 Evt.'A/ define the rank of M as follows. If M is in the closure of DA, the rank
of M is 1. If M is not in the closure of DA, the rank of M is the maximal number of
pairwise disjoint rays contained in the complement of M .

Let us first establish that for M 62 DA, the rank is indeed finite. Let M 62 DA, hence
there is a finite set W such that all W -approximations of M are non-deficient. Hence
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there must be wv 2 Z2 for v 2 Ext.A/ such that all W -approximations of M containS
v2Ext.A/.wv CH¹vº/. But no ray contained in ¹.0; y/C t .1; 0/ W t � 0º with y between

the y-coordinates of w.�1;�1/ and w.�1;1/ can be contained in the complement of M .
Hence there can be only finitely many pairwise disjoint rays with direction .1; 0/ in the
complement of M . Similarly for the other directions.

Now we want to show that the set of all horoballunions having rank k or larger is
closed. Let M 62 DA. We have to show that every sufficiently good approximation of M
has rank at most that of M . As above there is a finite set W and there are wv 2 Z2 for
v 2 Ext.A/ such that all W -approximations of M contain

zM WD
[

v2Ext.A/

.wv CH¹vº/:

Therefore zM has finite rank larger than or equal to the rank of M . Let

R D
®
.x; y/C t .1; 0/ W t 2 N

¯
be a ray contained in M but disjoint from zM . It is now enough to show that every suffi-
ciently good approximation of M also contains R. Set

L WD
®
.x; y/C t .1; 0/ W t 2 Z

¯
:

If L\ .X nM/ ¤ ;, then every sufficiently good approximation of M by a horoball-
union will also contain the ray R.

If, on the other hand,L�M , we will show that every sufficiently good approximation
ofM by horoballunions must contain L. Assume there are arbitrary good approximations
ofM by horoballunions not containing L. It is easy to see that in this case either the upper
or lower half space defined by L is contained in M . Without loss of generality assume it
is the lower half space, call it S , and that S is the maximal one contained in M . Every
sufficiently good approximation of M must contain ..x1; y1/CH.1;1// [ ..x�1; y�1/C
H.�1;1// for points .x1;y1/2Z2 and .x�1;y�1/2Z2 with y1 >y, y�1 >y and x1 <x�1.
This is due to the fact that M is not contained in DA and that S is the maximal lower half
space contained in M . Consider a vertical line

V D
®
.a; 0/C t .0;�1/ W t 2 Z

¯
with x1 < a < x�1. It is now enough to show that S \ V is contained in every sufficiently
good approximation of M . We have to treat two cases.

(1) The left or the right half space defined by V is contained in M . Assume it is the
left one and call it zS . As discussed above, since M is not in the closure of DA,
there must be a point Qw 2 Z2 n .S [ zS/ such that Qw CH¹.1;1/º is contained in
every sufficiently good approximation of M . But then V \ S � Qw CH¹.1;1/º is
also contained in every sufficiently good approximation ofM . A similar argument
works if the right half space defined by V is contained in M .



Iterated Minkowski sums, horoballs and north-south dynamics 287

.x; y/

.x; n/

Figure 7. Approximating a horoballunion of
rank k C 1 by one of rank k.

k

Figure 8. An element of Evt.'A/ with rank k.

(2) Neither the left nor the right half space defined by V is contained in M . Hence
V \ .Z2 nM/¤;, as discussed above, so V \S is contained in every sufficiently
good approximation of M .

This shows that the whole of S is contained in every sufficiently good approximation of
M . All in all we thus showed that the horoballunions having rank k or larger form a closed
subset of Evt.'A/.

Now we have to show that every horoballunion of rank k C 1 can be arbitrarily
well approximated by a horoballunion of rank k. Assume that Z2 nM contains a ray
with direction .0; 1/ and let ¹.x; y/ C t .0; 1/ W t 2 Nº be the rightmost of them. Then
.M [ ..x; n/ C H.�1;�1///n2N is sequence of horoballunions converging to M whose
rank is k for sufficiently large n. See Figure 7 for an illustration.

By induction this shows that Evt.'A/.k/ consists of all horoballunions of rank at least k
and the isolated points in this set are those of rank precisely k. We also saw that\

k2N0

.Evt.'A//.k/ D DA:

Finally, see Figure 8 for an element in Evt.'A/.k/, so all these sets are non-empty.
All in all we therefore showed that Evt.'A/ has rank !.

12. Factoring and non-factoring results for 'A, A � Zd

So far we presented several invariants for topological conjugacy for systems of the form
.P .�/; 'A/, but we do not have a complete solution for this isomorphism problem, even
for the case � D Zd . The following is another seemingly innocent question, which we
have been unable to resolve.



J. Epperlein and T. Meyerovitch 288

Question 12.1. Given two finite positively generating setsA1 �Zd1 andA2 �Zd2 , when
does .P .Zd1/; 'A1/ factor onto .P .Zd2/; 'A2/?

In fact, apart from the case d1 D 1 and d2 > 1, we do not know of any example where
the answer is false. On the other hand, we know very few examples of non-trivial factor
maps between such systems.

The rest of the section presents feeble partial results on the above question.
It is a folklore result that any factor map between topological dynamical systems

induces a factor map between the eventual images and between the natural extensions.
The simple proof (below) is a compactness argument.

Lemma 12.2. Let X; Y be compact Hausdorff topological spaces and f W X ! X and
g W Y ! Y be continuous maps, and let � W X ! Y be a continuous surjective map such
that � ı f D g ı � . Then:

(1) The restriction of � to Evt.f / is onto Evt.g/.

(2) Let O� W OXf ! OXg be given by O�..xn/n2Z/k D �.xk/. Then O� is a factor map from
. OXf ; Of / onto . OXg ; Og/.

Proof. For every y 2 Evt.g/ we can find .yn/n2Z 2 OXg with y0 D y by compactness. It
is therefore enough to show that O� is surjective. Let .yn/n2Z 2 OXg . For every k 2N there
is xk 2 X with y�k D �.xk/. Set

xkn WD

´
xk if n < �k;

f kCn.xk/ if n � �k:

Let x be a limit of some subsequence of ..xkn /n2Z/k2N . Then x 2 OXf and .yn/n2Z D

O�..xn/n2Z/.

Proposition 12.3. There is no factor map from .P .Z/;'¹�1;0;1º/ onto .P .Z2/;'¹�1;0;1º2/.

Proof. By Lemma 12.2 it suffices to show that the eventual image of .P .Z/; '¹�1;0;1º/
does not factor onto the eventual image of .P .Z2/; '¹�1;0;1º2/. This follows from the fact
that the eventual image of .P .Z/; '¹�1;0;1º/ is countable, whereas the eventual image of
.P .Z2/; '¹�1;0;1º2/ is not:

The eventual image of .P .Z/; '¹�1;0;1º/ consists of elements of the form®
Z n .s; t/ W s � t

¯
with s; t 2 Z [ ¹�1;1º. In particular, it is countable.

On the other hand the eventual image of .P .Z/; '¹�1;0;1º/ is uncountable, as it con-
tains the pairwise different elements

S
i2I ..i;�i/CH¹.1;1/º/ for I � Z.

We finish with some easy cases where there is a factor map.
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Proposition 12.4. There is a factor map from

.Evt.'¹�1;0;1º2/; '¹�1;0;1º2/ onto .Evt.'¹�1;0;1º/; '¹�1;0;1º/:

Proof. Define a map � from .Evt.'¹�1;0;1º2/; '¹�1;0;1º2/ to P .Z/ by

�.M/ WD
®
k 2 Z W .k; k/ 2M or M 62 Xjkj

¯
where

Xk WD
®
M 2 P .Z/ W 9s; t 2 Z s.t. M \ ¹�k; : : : ; kº2

D
�
..s; s/CH¹.�1;�1/º/ [ ..t; t/CH¹.1;1/º/

�
\ ¹�k; : : : ; kº2

¯
:

Let us check that � indeed defines a factor map from .Evt.'¹�1;0;1º/; '¹�1;0;1º/: The map
� is continuous, because whether k 2 �.M/ depends only on M \ ¹�k; : : : ; kº2. Recall
that

Evt.'¹�1;0;1º/ D
®
Z n .s; t/ W s < t

¯
[
®
Z n .s;C1/ W s 2 Z

¯
[
®
Z n .�1; t / W t 2 Z

¯
[
®
Z;;

¯
:

Now for any s < t ,

�
�
..s; s/CH¹.�1;�1/º/ [ ..t; t/CH¹.1;1/º/

�
D Z n .s; t/;

�..s; s/CH¹.�1;�1/º/ D Z n .s;C1/;

�..t; t/CH¹.1;1/º/ D Z n .�1; t /;

�.Z2/ D Z; �.;/ D ;:

Thus the image of � contains Evt.'¹�1;0;1º/. It remains to show that � intertwines the
dynamics. For this we record the following easy facts about the sets Xk ; k 2 N.

(1) XkC1 � Xk .

(2) If M 2 XkC1, then '¹�1;0;1º2.M/ 2 Xk .

(3) If '¹�1;0;1º2.M/ 2 Xk and there is ` 2 ¹�k; : : : ; kº with .`; `/ 62 '¹�1;0;1º2.M/,
then M 2 XkC1.

We first show that '¹�1;0;1º.�.M// � �.'¹�1;0;1º2.M//. Let k 2 '¹�1;0;1º.�.M//, so we
must have ¹k � 1; k; k C 1º \ �.M/ ¤ ;. Therefore either®

.k � 1; k � 1/; .k; k/; .k C 1; k C 1/
¯
\M ¤ ;

or
M 62 Xjk�1j \Xjkj \XjkC1j:

In the first case, .k; k/ 2 '¹�1;0;1º2.M/ and k 2 �.'¹�1;0;1º2.M//. In the second case,
by (1),M 62 XjkjC1 and thus by (3) either '¹�1;0;1º2.M/ 62 Xjkj or .k; k/ 2 '¹�1;0;1º2.M/.
In both cases we have k 2 �.'¹�1;0;1º2.M//.
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Now we show '¹�1;0;1º.�.M// � �.'¹�1;0;1º2.M//. Let k 2 �.'¹�1;0;1º2.M//, so
.k; k/ 2 '¹�1;0;1º2.M/ or '¹�1;0;1º2.M/ 62 Xjkj. In the first case®

.k � 1; k � 1/; .k; k/; .k C 1; k C 1/
¯
\M ¤ ;;

hence ¹k � 1; k; k C 1º \ �.M/ ¤ ; and thus k 2 '¹�1;0;1º.�.M//. In the second case
'¹�1;0;1º2.M/ 62Xjkj henceM 62XjkjC1. Therefore either kC 12�.M/ or k � 12�.M/,
depending on the sign of k, and thus finally k 2 '¹�1;0;1º.�.M//.

Let GN denote the subgraph of Cayley.Z; ¹�1; 0; 1º/ induced by N, i.e.,

V.GN/ D N;

E.GN/ D
®
.n; nC 1/ W n 2 N

¯
[
®
.nC 1; n/ W n 2 N

¯
[
®
.n; n/ W n 2 N

¯
:

Proposition 12.5. Let .�; A/ be a finitely generated group without dead ends and with
A D A�1. Then .P .�/; 'A/ factors onto .P .N/; 'GN /.

Proof. The factor map is given by � W P .�/! P .N/ with

0 2 �.M/ ” 1� 2M and

k 2 �.M/ ” .Ak n Ak�1/ \M ¤ ; for k > 0:

Proposition 12.6. Let A D ¹�1; 0; 1º � Z. There is factor map from .P .Z/; 'An/ to
.P .Z/; 'A/ for all n 2 N.

Proof. The factor map is given by � W P .Z/! P .Z/ with

�.M/ D
®
k 2 Z W ¹kn; : : : ; knC .n � 1/º \M ¤ ;

¯
:

More generally, with A D ¹�1; 0; 1º � Z, as pointed out by the anonymous referee in
response to a question posed in a preliminary version, for every i < j , i; j 2 N there is a
factor map � from .P .Z/; 'Aj / to .P .Z/; 'Ai / which is given by

.ki C r/ 2 �.M/ ” .kj C .r C j � i// 2M whenever k 2 Z; 0 < r < i;

and
ki 2 �.M/ ” ¹kj; : : : ; kj C .j � i/º \M ¤ ; for every k 2 Z:
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