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On the Basilica operation

Jan Moritz Petschick and Karthika Rajeev

Abstract. Inspired by the Basilica group B, we describe a general construction which allows us to
associate to any group of automorphismsG � Aut.T / of a rooted tree T a family of Basilica groups
Bass.G/, s 2NC. For the dyadic odometer O2, one has B D Bas2.O2/. We study which properties
of groups acting on rooted trees are preserved under this operation. Introducing some techniques
for handling Bass.G/, in case G fulfills some branching conditions, we are able to calculate the
Hausdorff dimension of the Basilica groups associated to certain GGS-groups and of generalisations
of the odometer, Odm. Furthermore, we study the structure of groups of type Bass.Odm/ and prove
an analogue of the congruence subgroup property in the case m D p, a prime.

1. Introduction

Groups acting on rooted trees play an important role in various areas of group theory, for
example in the study of groups of intermediate growth, just infinite groups and groups
related to the Burnside problem. Over the years, many groups of automorphisms of rooted
trees have been defined and studied. Often they can be regarded as generalisations of early
constructions to wider families of groups with similar properties.

In this paper, we consider an operation on the subgroups of the automorphism group
Aut.T / of a rooted tree T with degree m � 2. It is inspired by the Basilica group B,
a group acting on the binary rooted tree, which was introduced by Grigorchuk and Żuk
in [21] and [22]. The Basilica group B is a particularly interesting example in its own
right: it is a self-similar torsion-free weakly branch group, just-(non-soluble) and of expo-
nential word growth. It was the first group known to be not sub-exponentially amen-
able [21], but amenable [7,11]. Furthermore, it is the iterated monodromy group of z2 � 1
[22, 26], and it has the 2-congruence subgroup property [18].

The Basilica group B is usually defined as the group generated by two automorphisms

a D .b; id/ and b D .0 1/.a; id/;

acting on the binary rooted tree (in [21] the elements are defined with id on the left, which
is merely notational). We point out the similarities between these two generators and the
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single automorphism generating the dyadic odometer. The latter provides an embedding
of the infinite cyclic group into the automorphism group Aut.T / of the binary rooted
tree T , given by

c D .0 1/.c; id/:

We can regard b as a delayed version of c, that takes an intermediate step acting as a,
before returning to itself. Considering the automata defining the generators of both groups
(cf. Figure 2), the relationship is even more apparent. We obtain the automaton defining b
from the automaton defining c by replacing every edge that does not point to the state of
the trivial element with an edge pointing to a new state, which in turn points to the old
state upon reading 0 and to the state of the trivial element upon reading any other letter.
See Figure 1 for an illustration of this replacement rule.

id

x W y

replaced by

id

x W y 0 W 0

xWx;
x¤0

Figure 1. Replacement rule for edges.

The same can be done for any automorphism of T and any number s of interme-
diate states. For any group of automorphisms G, this operation yields a new group of
tree automorphisms defined by the automaton with s intermediate steps, which we call
Bass.G/, the s-th Basilica group of G. A precise, algebraic definition that does not refer
to automata will be given in Definition 2.3. For example, Figure 2 depicts the automaton
defining Bas8.O2/, while Figure 3 depicts the automaton defining the generators of the
Gupta–Sidki 3-group R� and the corresponding automaton obtained by the operation Bas2.

id c0 W 1
1 W 0

id ba

0 W 1

0 W 0

1 W 01 W 1
id

1 W 0

1 W 11 W 1

1 W 1

1 W 1

1 W 1 1 W 1

1 W 1

0 W 1

0 W 00 W 0

0 W 0

0 W 0

0 W 0 0 W 0

0 W 0

Figure 2. Automata for the dyadic odometer O2, the Basilica group B D Bas2.O2/, and Bas8.O2/.
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id

x W �2.x/

x W �.x/

2 W 2

1 W 1

0 W 0 id

2 W 2

1 W 1

0 W 0

0 W 0

x¤0;

xWx

x¤0;
xWx

x W �2.x/

x¤0;
xWx

x W �.x/

0 W 0

0 W 0

Figure 3. Automata for the Gupta–Sidki 3-group R� and Bas2. R�/, where � is a cyclic permutation.

We prove that many of the desirable properties of the original Basilica group B are
a consequence of the fact that the binary odometer O2 has those properties and that the
properties are preserved under the Basilica operation. We summarise results of this kind
for the general Basilica operation in the following theorem.

Theorem 1.1. Let G be a group of automorphisms of a regular rooted tree. Let P be
a property from the following list:

(1) spherically transitive,

(2) self-similar,

(3) (strongly) fractal,

(4) contracting,

(5) weakly branch,

(6) generated by finite-state bounded automorphisms.

Then, if G has P , the s-th Basilica group Bass.G/ of G has P for all s 2 NC.

As a consequence, we derive conditions for Bass.G/ to have solvable word problem
and to be amenable. Furthermore, we provide a condition for Bass.G/ to be a weakly reg-
ular branch group given thatG satisfies a group law. This enables us to construct a weakly
regular branch group branching over a prescribed verbal subgroup.

The class of spinal groups, defined in [12], is another important class of groups acting
on T ; it contains the Grigorchuk group and all GGS-groups, see Definition 3.7. It is not true
that the Basilica operation preserves being spinal, however, groups obtained from spinal
groups act as spinal groups on another tree ısT , obtained by deleting layers from T .

Theorem 1.2. Let G be a spinal group (resp. a GGS-group) acting on T . Then Bass G is
a spinal (resp. a GGS-group) acting on ısT for all s 2 NC.

In contrast to Theorem 1.1, the exponential word growth of the original Basilica
group B is not a general feature of groups obtained by the Basilica operation. In fact,
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the situation appears to be chaotic, for which we provide some examples, see Proposi-
tions 3.17 and 3.18.

Next we turn our attention to a class of groups G whose Basilica groups Bass.G/
more closely resemble the original Basilica group. For this, we introduce the concept of
the group G being s-split (see Definition 4.1). An s-split group decomposes by definition
as a semi-direct product, algebraically modelling the property that the image of a delayed
automorphism can be detected by observing the layers on which it has trivial labels.
We prove that all abelian groups acting locally regular are s-split for all s 2 NC, and
that conversely, all s-split groups acting spherically transitive are abelian. Furthermore,
we obtain the following.

Theorem 1.3. Let s > 1 and let G be an s-split self-similar group of automorphisms of
a regular rooted tree acting spherically transitively. If G is torsion-free, then Bass.G/ is
torsion-free. Furthermore, Bass.G/ab Š Gs .

The .s � 1/-th splitting kernel Ks�1 is a normal subgroup of G measuring the failure
of G to be s-split. A rigorous definition is found in Definition 4.1. If G is weakly reg-
ular branch over Ks�1 (allowing Ks�1 to be trivial, hence including s-split groups), we
obtain a strong structural description of the layer stabilisers of Bass.G/. The maps ˇi are
the algebraic analogues of the various added steps delaying an automorphism, defined in
Definition 2.2.

Theorem 1.4. Let G be a self-similar and very strongly fractal group of automorphisms
of a regular rooted tree. Assume that G is weakly regular branch over Ks�1. Let n 2 N0.
Write n D sq C r with q � 0 and 0 � r � s � 1. Then for all s > 1

StBass.G/.n/ D
˝
ˇi .StG.q C 1//; ǰ .StG.q// j 0 � i < r � j < s

˛Bass.G/
:

This description allows us to provide an exact relationship between the Hausdorff
dimension of a group G fulfilling the conditions of Theorem 1.4 and its Basilica groups
Bass.G/. The precise description makes use of the series of obstructions of G, a tailor-
made technical construction, see Section 4.2 for details. Observing this series, we prove
that the Hausdorff dimension of Bass.G/ is bounded below by the Hausdorff dimension
of G for all s > 1.

Corollary 1.5. LetG �AutT be very strongly fractal, self-similar, weakly regular branch
over Ks�1, with dimHG < 1. Then for all s > 1

dimHG < dimH Bass.G/:

Here we define the Hausdorff dimension of G � � as the Hausdorff dimension of its
closure in � , where � is the subgroup of all automorphisms acting locally by a power of
a fixed m-cycle. This subgroup is isomorphic to

� Š lim
 �
n2NC

Cm o
n
� � � o Cm:
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IfmD p, a prime, then � is a Sylow pro-p subgroup of Aut.T /. The notion of Hausdorff
dimension in the profinite setting as above was initially studied by Abercrombie [1] and
subsequently by Barnea and Shalev [2]. It is analogous to the Hausdorff dimension defined
as usual over R.

In the second half of this paper we study the class of generalised Basilica groups
Bass.Od

m/, for d;m; s 2 NC with m; s � 2, defined by applying Bass to the free abelian
group of rank d with a self-similar action derived from the m-adic odometer. We remark
that the above generalisation of the original Basilica group B is different from the one
given in [8], but it includes the class of p-Basilica groups, where p is a prime, studied
recently in [13]. For every odd prime p, we obtain the p-Basilica group by setting d D 1,
m D p and s D 2 in Bass.Od

m/. Our construction also includes special cases, d D 1 and
m D s D p, studied by Hanna Sasse in her Master’s thesis [29] supervised by Benjamin
Klopsch. We record the properties of the generalised Basilica groups in the following
theorem.

Theorem 1.6. Let d; m; s 2 NC with m; s � 2. Let B D Bass.Od
m/ be the generalised

Basilica group. The following assertions hold:

(i) B acts spherically transitively on the corresponding m-regular rooted tree,

(ii) B is self-similar and strongly fractal,

(iii) B is contracting, and has solvable word problem,

(iv) the group Od
m is s-split, and Bab Š Zds ,

(v) B is torsion-free,

(vi) B is weakly regular branch over its commutator subgroup,

(vii) B has exponential word growth.

Assertions (i)–(vi) of Theorem 1.6 are obtained by direct application of Theorems 1.1
and 1.3. The proof of Theorem1.6 (vii) is analogous to that of the original Basilica group B

and can easily be generalised from [21, Proposition 4]. Nevertheless, one can prove The-
orem 1.6 directly by considering the action of the group on the corresponding rooted tree,
see [29].

We explicitly compute the Hausdorff dimension of Bass.Od
m/, which turns out to be

independent of the rank d of the free abelian group Od
m:

Theorem 1.7. For all d;m; s 2 NC with m; s � 2

dimH.Bass.Od
m// D

m.ms�1 � 1/

ms � 1
:

The above equality agrees with the formula of the Hausdorff dimension of p-Basilica
groups given by [13], and also with the Hausdorff dimension of the original Basilica
group B given in [4].
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Theorem 1.8. Let d;m; s 2NC withm; s � 2. The generalised Basilica group Bass.Od
m/

admits an L-presentation
L D hY j Q j ˆ j Ri;

where the data Y , Q, R and ˆ are specified in Section 6.

The concrete L-presentation requires unwieldy notation, whence it is not given here.
It is analogous to the L-presentation of the original Basilica group B, see [21]. The name
L-presentation stands as a tribute to Igor Lysenok who obtained such a presentation for
the Grigorchuk group in [23]. It is now known that, every finitely generated, contract-
ing, regular branch group admits a finite L-presentation but it is not finitely presentable
(cf. [3]). Unfortunately, this result is not applicable to generalised Basilica groups as they
are merely weakly branch. Also, the L-presentation of the generalised Basilica group is
not finite as the set of relations is infinite. Nonetheless, akin to [21, Proposition 11], we can
introduce a set of endomorphisms of the free group on the set of generators of the gen-
eralised Basilica group and obtain a finite L-presentation, see Definition 6.1, as defined
in [3].

Using the concrete L-presentation of a generalised Basilica group, we obtain the fol-
lowing structural result.

Theorem 1.9. Let d;m; s 2NC withm;s � 2 and letB be the generalised Basilica group
Bass.Od

m/. We have:

(i) For s D 2, the quotient group 2.B/=3.B/ Š Zd
2
.

(ii) For s > 2, the quotient group 2.B/=3.B/ Š Cds�2m � Cm2 .

This implies that the quotients i .B/=iC1.B/ of consecutive terms of the lower cent-
ral series of a generalised Basilica group for s > 2 are finite for all i � 2, whereas a similar
behaviour happens for the original Basilica group B from i � 3, see [5] for details.

For a group G of automorphisms of an m-regular rooted tree, we say that G has the
congruence subgroup property (CSP) if every subgroup of finite index inG contains some
layer stabiliser inG. The congruence subgroup property of branch groups has been studied
comprehensively over the years, see [10,15,17]. The generalised Basilica group Bass.Od

m/

does not have the CSP as its abelianisation is isomorphic to Zds (Theorem 1.6). How-
ever, the quotients of Bass.Od

m/ by the layer stabilisers are isomorphic to subgroups of
Cm o

n
� � � o Cm, for suitable n 2 N0. If m D p, a prime, then these quotients are, in par-

ticular, finite p-groups. The class of all finite p-groups is a well-behaved class, i.e., it is
closed under taking subgroups, quotients, extensions and direct limits. In light of this, we
prove that Bass.Od

p / has the p-congruence subgroup property (p-CSP), a weaker version
of CSP introduced by Garrido and Uria-Albizuri in [18]. The group G has the p-CSP if
every subgroup of index a power of p in G contains some layer stabiliser in G. In [18]
one finds a sufficient condition for a weakly branch group to have the p-CSP and it is
also proved that the original Basilica group B has the 2-CSP. This argument is general-
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ised by Di Domenico, Fernández-Alcober, Noce and Thillaisundaram [13] to see that the
p-Basilica groups have the p-CSP. We further generalise these result.

Theorem 1.10. For all d; s 2 NC with s > 2, and all primes p, the generalised Basilica
group Bass.Od

p / has the p-congruence subgroup property.

Even though we follow the same strategy as in [18], the arguments differ significantly
because of Theorem 1.9. Here we make use of Theorem 1.4 to obtain a normal generating
set for the layer stabilisers of the generalised Basilica groups (Theorem 5.1). We remark
that the result of [13] on p-Basilica groups can be generalised to all d � 2 with additional
work.

The organisation of the paper is as follows: In Section 2, we introduce the basic theory
of groups acting on rooted trees and give the formal definition of the Basilica operation,
together with important examples. The proofs of Theorems 1.1 and 1.2 are given in Sec-
tion 3. Theorem 1.3 and related results for s-split groups are contained in Section 4, as
well as the proofs of Theorems 1.4 and 1.7. Section 6 contains the proof of Theorem 1.8,
while Sections 7 and 8 contain the proofs of Theorems 1.9 and 1.10, respectively.

2. Preliminaries and main definitions

For any two integers i , j , let Œi; j � denote the interval in Z. From here on, Tm D T denotes
the m-regular rooted tree for an arbitrary but fixed integer m > 1. The vertices of T are
identified with the elements of the free monoid X� on X D Œ0;m � 1� by labeling the
vertices from left-to-right. We denote the empty word by ". For n 2 N0, the n-th layer
of T is the set Xn of vertices represented by words of length n.

Every (graph) automorphism of T fixes " and moreover maps the n-th layer to itself
for all n 2 N0. The action of the full group of automorphisms Aut.T / on each layer
is transitive. A subgroup of Aut.T / with this property is called spherically transitive.
The stabiliser of a word u under the action of a groupG of automorphisms of T is denoted
by stG.u/ and the intersection of all stabilisers of words of length n is called the n-th layer
stabiliser, denoted StG.n/.

Let a 2 Aut.T / and let u, v be words. Since layers are invariant under a, the equation

a.uv/ D a.u/aju.v/

defines a unique automorphism aju of T called the section of a at u. This automorphism
can be thought of as the automorphism induced by a by identifying the subtrees of T
rooted at the vertices u and a.u/ with the tree T . If G is a group of automorphisms, Gju
will denote the set of all sections of group elements at u. The restriction of the action of
the section aju to X1 D X is called the label of a at u and it will be written as aju.

The following holds for all words u, v and all automorphisms a, b:

.aju/jv D ajuv; .ab/ju D ajb.u/bju:
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The analogous identities hold for the labels aju, so the action of a on any word x0 : : : xn�1
of length n is given by

a.x0 : : : xn�1/ D aj
".x0/ajx0.x1 : : : xn�1/ D aj

".x0/aj
x0.x1/ : : : aj

x0:::xn�2.xn�1/:

Hence every automorphism a is completely described by the label map X� ! Sym.X/,
u 7! aju, called the portrait of a.

For n 2 N0, the isomorphism

 nW St.n/! .Aut.T //m
n

; g 7! .gjx/x2Xn ;

is called the n-th layer section decomposition. We will shorten the notation of big tuples
arising for example in this way by writing g�k for a sequence of k identical entries g in
a tuple, implicitly ordering the vertices lexicographically.

We can uniquely describe an automorphism g 2 Aut.T / by its label at " and the first
layer section decomposition of .gj"/�1g, i.e., by

g D gj".gjx/x2X :

Let H � Sym.X/ be any subgroup of the symmetric group on X . Then denote by
�.H/ the subgroup of Aut.T / defined as

�.H/ D ha 2 Aut.T / j 8u 2 T; aju 2 H i:

IfH is a Sylow p-subgroup of Sym.X/, then �.H/ is a Sylow pro-p-subgroup of Aut.T /.
We further fix � D .0 1 : : : m � 1/ 2 Sym.X/ and write � for �.h�i/.

A groupG � Aut.T / is called self-similar if it is closed under taking sections at every
vertex, i.e., if Gjv � G for all v 2 T . Self-similar groups correspond to certain automata
modelling the behaviour of the section map: there is a state for every element g 2 G, and
an arrow g! gjx labelled x W g.x/ for every x 2 X (for details see [24]).

We follow [30] in the terminology for the first three of the following self-referential
properties, and add a fourth one: A group G � Aut.T / acting spherically transitively is
called

(1) fractal if stG.u/ju D G for all u 2 T ,

(2) strongly fractal if StG.1/jx D G for all x 2 X ,

(3) super strongly fractal if StG.n/ju D G for all n 2 N0 and u 2 Xn,

(4) very strongly fractal if StG.nC 1/jx D StG.n/ for all n 2 N0 and x 2 X .

Notice that for every groupH acting regularly onX andG � �.H/ the properties .1/
and .2/ coincide. The following lemma will be of great use.

Lemma 2.1. Let G � Aut.T / be fractal and self-similar, and let x; y 2 X . For every
g 2 G there exists an element zg 2 G such that zg.x/ D y and zgjx D g. Furthermore, if
H � G is any subgroup of G such that H � ¹idº � � � � � ¹idº �  1.K/ for some normal
subgroup K E G, then .HG/m �  1.K/.
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Proof. Since G is fractal, it is spherically transitive and in particular it is transitive on the
first layer of T . Hence there exists some element h 2 G mapping x to y. Also because G
is fractal and hjx 2G by self-similarity, there is some element k 2 stG.x/ such that kjx D
.hjx/

�1g. Now zg D hk fulfills both zg.x/ D y and zgjx D hjxkjx D g.
Assume further thatH �G andH � ¹idº � � � � � ¹idº � 1.K/ forK EG. Let g 2G.

Choose an element zg 2 G such that zg.x/ D 0 and zgjx D g. Then for every h 2 H

.id�x ; hg ; id�.m�x�1// D  1..zg/�1 �11 .h; id; : : : ; id/zg/ 2  1..zg/�1Kzg/ D  1.K/:

From this point on, we fix a positive integer s.

Definition 2.2. There is a set of s interdependent monomorphisms ˇsi WAut.T /! Aut.T /
defined by

ˇsi .g/ D .ˇ
s
i�1.g/; id; : : : ; id/ for i 2 Œ1; s � 1�;

ˇs0.g/ D gj
".ˇss�1.gj0/; : : : ; ˇ

s
s�1.gjm�1//:

We adopt the convention that the subscript for these maps is taken modulo s, whence
ˇsi .g/jx 2 ˇ

s
i�1.Aut.T // for all i 2 Œ0; s � 1� and g 2Aut.T /. Whenever there is no reason

for confusion, we drop the superscript s.

Definition 2.3. Let G � Aut.T /. The s-th Basilica group of G is defined by

Bass.G/ D hˇsi .g/ j g 2 G; i 2 Œ0; s � 1�i:

Clearly, for s D 1 the homomorphism ˇ10 is the identity map and Bas1.G/D G. In the
case of a self-similar group G, the s-th Basilica group of G can be equivalently defined as
the self-similar closure of the group ˇs0.G/, i.e., the smallest self-similar group contain-
ing ˇs0.G/. If G is finitely generated by g1; : : : ; gr , then Bass.G/ is generated by ˇsi .gj /
with i 2 Œ0; s � 1� and j 2 Œ1; r�.

The operation Bass is multiplicative in s, i.e., for s; t 2 NC and G � Aut.T / we have
Bass.Bast .G// D Basst .G/. This is a consequence of

ˇsi .ˇ
t
j .g// D ˇ

st
iCsj .g/;

which is an easy consequence of Definition 2.2.
We now describe the monomorphisms ˇsi for i 2 Œ0; s � 1� in terms of their portraits.

We define a map !i W T ! T . For every k 2 N0 and every vertex u 2 Xk , write u D
x0 : : : xk�1 2 X

k , and define

!i .u/
..D 0i

k�2Y
jD0

.xj 0
s�1/xk�1:

Writing !i .T / for the subgraph of T induced by the image of !i , with edges inherited
from paths in T , we again obtain an m-regular rooted tree.
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Lemma 2.4. Let g 2 Aut.T / and i 2 Œ0; s � 1�. Then the portrait of ˇsi .g/ is given by

ˇsi .g/j
u
D

´
gjv if u D !i .v/;

id if u 62 !i .T /:

In particular, Bass.G/ � �.H/, if G � �.H/ for some H � Sym.X/.

Proof. First suppose that u D !i .v/ for v D x0 : : : xk�1. From Definition 2.2 it follows

ˇsi .g/j
!i .x0:::xk�1/ D ˇs0.g/j

!0.x0:::xk�1/ D ˇss�1.gjx0/j
!s�1.x1:::xk�1/;

and iteration establishes ˇsi .g/j
u D gjv . Now, if u D u0 : : : uk�1 62 !i .T /, there is some

minimal number n 6�s i such that un ¤ 0. Thus u D !i .v/0tun : : : uk�1 for n �s t < i
and some vertex v, hence

ˇsi .g/j
u
D ˇsi .gjv/j

0tun:::uk D ˇsi�t .gjv/j
un:::uk D id:

It is interesting to compare the effect of the Basilica operation with another method of
deriving new self-similar groups from given ones, described by Nekrashevych.

Proposition 2.5 ([24, Proposition 2.3.9]). LetG � Aut.T / be a group and let d be a pos-
itive integer. There is a set of d injective endomorphisms of Aut.T / given by

�0.g/
..D gj" .�d�1.gjx//x2X ;

�i .g/
..D .�i�1.g//x2X for i 2 Œ1; d � 1�:

The group Dd .G/ ..D h�i .G/ j i 2 Œ0; d � 1�i is isomorphic to the direct product Gd .

We combine both constructions to define a class of groups very closely resembling the
original Basilica group B.

Definition 2.6. Let d; m; s 2 NC with m � 2. The m-adic odometer Om is the infinite
cyclic group generated by

a D �.a; id; : : : ; id/;

where � is the m-cycle .m � 1 m � 2 : : : 1 0/. Write Od
m for Dd .Om/, the d -fold direct

product of Om embedded into Aut.T / by the construction described in Proposition 2.5.
We call the group Bass.Od

m/ the generalised Basilica group.

Clearly, B D Bas2.O2/ is the original Basilica group introduced by Grigorchuk and
Żuk in [21].

For illustration, we depict explicitly the automaton defining the self-similar action of
the dyadic odometer O2, the automaton defining the action of D8.O2/ described above
and the automaton defining Bas8.O2/ in Figure 4.

We shall prove in the following that generalised Basilica groups resemble the original
Basilica group in many ways, justifying the terminology (cf. Sections 6, 7 and 8).
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id a
1 W 0

0 W 1

id ˇ0.a/

ˇ7.a/

ˇ6.a/

ˇ5.a/

ˇ4.a/

ˇ3.a/

ˇ2.a/

ˇ1.a/

1 W 0

1 W 11 W 1

1 W 1

1 W 1

1 W 1 1 W 1

1 W 1

0 W 1

0 W 00 W 0

0 W 0

0 W 0

0 W 0 0 W 0

0 W 0

id �0.a/

�7.a/

�6.a/

�5.a/

�4.a/

�3.a/

�2.a/

�1.a/

1 W 0

1 W 11 W 1

1 W 1

1 W 1

1 W 1 1 W 1

1 W 1

0 W 1

0 W 00 W 0

0 W 0

0 W 0

0 W 0 0 W 0

0 W 0

Figure 4. The automata defining the generators of O2, D8.O2/ and Bas8.O2/.

Proposition 2.7. Let Autfin.T / be the group of all finitary automorphisms, i.e., the group
generated by all automorphisms g�;v for v 2 T , � 2 Sym.X/ that have label � at v and
trivial label everywhere else. For any s 2 NC,

Bass.Autfin.T // D Autfin.T /:

On the other hand, Bass.Aut.T // is not of finite index in Aut.T / for all s > 1.

Proof. Define for every n 2 N0 a map �nWAut.T /! N0 by

�n.g/ D j¹u 2 X
n
j gju ¤ idºj:

Lemma 2.4 shows that g�;v D ˇi .g�;!�1i .v// 2 Bass.Autfin.T // for every v 2
Ss�1
iD0!i .T /.

Conjugation with suitable elements produces all other generators, hence Autfin.T / is con-
tained in Bass.Autfin.T //. On the other hand,

P
n2N0

�n.g/ <1 for any g 2 Autfin.T /

implying that the same holds for all generators (hence, all elements) of Bass.Autfin.T //.
Thus, Bass.Autfin.T // D Autfin.T /.
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For any g 2 Aut.T /, we have �n.g/ � jXnj D mn. But for all generators ˇi .g/ of
Bass.Aut.T // the stronger inequality �snCi .ˇi .g// � mn holds, since ˇi .g/ has trivial
label at all vertices outside of !i .T /. Let g 2 Aut.T / and q.g/ 2 QC be the infimum of
all numbers r such that

lim sup
n!1

�sn.g/

m.1Cr/n
D1:

Then g cannot be in Bass.Aut.T //, since the inequality �n.ab/ � �n.a/ C �n.b/ for
a; b 2 Aut.T / implies that it cannot be a finite product of the generators of Bass.Aut.T //.
By the same reason, all elements with different q.g/ are in different cosets. Because
q.Aut.T // D .0; s � 1/ \Q, the second statement follows.

Question 2.8. In view of Proposition 2.7 and the original Basilica group B, it seems
plausible that the operation Bass makes (in some vague sense) big groups smaller and
small groups bigger. Let H � Sym.X/ be a transitive subgroup. Write

�fin.H/ D Autfin.T / \ �.H/:

After replacing Autfin.T / by �fin.H/ in the proof of Proposition 2.7, we obtain that
Bass.�fin.H// D �fin.H/. We ask: Is there a group G not of the form �fin.H/ such that
Bass.G/ D G?

3. Properties inherited by Basilica groups

We recall our standing assumptions: m and s are positive integers with m ¤ 1, X D
Œ0;m � 1�, and T the m-regular rooted tree. The subscript of the maps ˇsi is taken mod-
ulo s, and we will drop the superscript s from now on.

3.1. Self-similarity and fractalness

Lemma 3.1. LetG �Aut.T / act spherically transitively on T . Then Bass.G/ acts spher-
ically transitively on T .

Proof. It is enough to prove that for any number nD qsC r 2NC with r 2 Œ0; s � 1� and
q � 0, and y 2 X there is an element b 2 Bass.G/ such that b.0n0/D 0ny. Let g 2 G be
such that g.0q0/ D 0qy and observe that ˇr .g/ stabilises 0n. By Lemma 2.4, it follows

ˇr .g/.0
n0/ D 0nˇ0.gj0q /.0/ D 0

ny:

Lemma 3.2. Let G � Aut.T / be self-similar. Then Bass.G/ � Aut.T / is self-similar.

Proof. We check that ˇi .g/jv is a member of Bass.G/ for all v 2 T . This holds by Defin-
ition 2.2 for words v of length 1, and follows from gjxjy D gjxy by induction for words
of any length.
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Lemma 3.3. LetG � Aut.T / be self-similar, and fractal (resp. strongly fractal). Then we
have:

(i) The group B D Bass.G/ � Aut.T / is fractal (resp. strongly fractal).

(ii) For all b 2 B there is an element c 2 stB.0/ (resp. c 2 StB.1/) such that cj0 D b
and cjx 2 ˇs�1.G/ for all x 2 Œ1;m � 1�.

Proof. Lemma 3.1 shows that B acts spherically transitively, and by Lemma 3.2 the
group B is self-similar. First suppose that G is fractal. Since statement (ii) implies state-
ment (i), it is enough to prove (ii).

Observe that

H D ¹g 2 stB.0/ j gjx 2 ˇs�1.G/ for all x 2 Œ1;m � 1�º

is a subgroup since h.x/ ¤ 0 and .gh/jx D gjh.x/hjx 2 ˇs�1.G/ for all g; h 2 H; x 2
Œ1;m � 1�. Thus it is enough to show that ˇi .G/ � H j0 for all i 2 Œ0; s � 1�.

It is easy to see that ˇi .G/ � H for i ¤ 0, hence since ˇi .G/j0 D ˇi�1.G/, we have
ˇi .G/ � H j0 for i ¤ s � 1. But also ˇ0.stG.0// � H . Note that, since G is fractal, we
have stG.0/j0 D G. Hence ˇs�1.G/ � ˇ0.stG.0//j0 � H j0.

If G is strongly fractal, we may replace H by its intersection with StB.1/ and stG.0/
by StG.1/ to obtain a proof for the analogous statement.

Lemmas 3.1, 3.3 and 3.2 yield proofs for statements .1/, .2/ and .3/ of Theorem 1.1.

3.2. Amenability

The original Basilica group B was the first example of an amenable, but not subexpo-
nentially amenable group. This had been conjectured already in [21], where non-subexpo-
nentially amenability of B was proven. Amenability was proven by Bartholdi and Virág
in [11]. Later, Bartholdi, Kaimanovich and Nekrashevych proved that all groups gen-
erated from bounded finite-state automorphisms are amenable [7], which includes B.
We recall the relevant definitions and then apply the result of Bartholdi, Kaimanovich
and Nekrashevych to a wider class of groups produced by the Basilica operation.

Definition 3.4. An automorphism f 2 Aut.T / is called

(1) finite-state if the set ¹f ju j u 2 T º is finite, and

(2) bounded if the sequence �n.f / ..D j¹u 2 Xn j f ju ¤ idºj is bounded.

Proposition 3.5. LetG �Aut.T / be generated from finite-state bounded automorphisms.
Then Bass.G/ is also generated from finite-state bounded automorphisms.

Proof. It is enough to prove that for every finite-state bounded f 2 Aut.T / and i 2
Œ0; s � 1� the element ˇi .f / is again finite-state and bounded. Notice that all sections
of f are of the form ǰ .f ju/ for some u 2 T , hence there are only finitely many can-
didates and ˇi .f / is finite-state. Moreover, by Definition 2.2, �n.ˇi .f // D �b n�is c.f /,
bounding �n.ˇi .f //.
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This proves statement .6/ of Theorem 1.1, and we use [7] for the following conclusion.

Corollary 3.6. Let G � Aut.T / be generated by finite-state bounded automorphisms.
Then Bass.G/ is amenable.

3.3. Spinal groups

A well-known class of subgroups of Aut.T / containing most known branch groups is the
class of spinal groups, containing both the first and the second Grigorchuk group, and all
GGS-groups. We use, with modifications for GGS-groups, the definition given in [6].

Definition 3.7 (cf. [6, Definition 2.1]). Let R � Sym.X/, let D be a finite group and let

! D .!i;j /i2NC;j2Œ1;m�1�

be a family of homomorphisms !i;j WD ! Sym.X/. Identify R with ¹r.id; : : : ; id/ j
r 2 Rº � Aut.T / and identify each d 2 D with the automorphism of T given by

d jw ..D

´
!i;j .d/ if w D 0i�1j for i 2 NC; j 2 Œ1;m � 1�;

id otherwise:

Suppose that the following holds:

(1) The groupR and all groups h!n;j .D/ j j 2 Œ1;m � 1�i, for n2NC, act transitively
on X .

(2) For all n 2 NC,
1\
iDn

m�1\
jD1

ker!i;j D ¹1º:

Then the subgroup of Aut.T / generated by R and D is called the spinal group acting
on T with defining triple .R; D; !/. The spinal group with defining triple .R; D; !/ is
called a GGS-group acting on T if !n;j D !k;j for all n; k 2 NC and j 2 Œ1;m � 1�.

We now describe the Basilica groups of spinal groups. For this, we record the follow-
ing lemma.

Lemma 3.8. Let i; j 2 Œ0; s � 1� with i ¤ j . Denote by st.x0/ the stabiliser of the infinite
ray x0 ..D ¹0i j i 2 N0º in Aut.T / (a so-called parabolic subgroup). Then

Œˇi .st.x0//; ǰ .st.x0//� D 1:

Proof. We prove that for all g0; g1 2 st.x0/ the images b0 D ˇi .g0/ and b1 D ǰ .g1/

commute, using the fact that st.x0/j0 D st.x0/. Assume without loss of generality that either
j > i > 0 or i D 0. In the first case both b0 and b1 stabilise the i -th layer, we can consider

 i .Œb0; b1�/ D .Œb0j0i ; b1j0i �; id
�.mi�1// D .Œˇ0.g0/; ǰ�i .g1/�; id�.m

i�1//;
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and thus reduce to the second case. Suppose now that i D 0. Since the only non-trivial
first layer section of b1 is at the vertex 0 and by assumption b0 fixes this vertex,

 1.Œb0; b1�/ D .Œb0j0; b1j0�; id�.m�1//:

Since b0j0; b1j0 2 st.x0/, we conclude by infinite descent that Œb0; b1� fixes all vertices
outside the ray x0, thus acts trivially on the entire tree T .

The elements d 2 D of a spinal group defined by .R;D; !/ can be characterised by
the fact that they stabilise the infinite ray (or “spine”) x0 and d jx ¤ id implies that x has
distance precisely 1 from x0. Therefore it is easy to see that a Basilica group B D Bass.G/
of a spinal group G acting on T cannot act as a spinal group on T , as the elements ˇsi .d/
have non-trivial labels at vertices of distance s from the ray x0. However, the group B acts
as a spinal group on a tree obtained from T by deletion of layers.

Motivated from Examples 3.10 and 3.11 below, we introduce the following notations.
There is an injection �s W .X s/� ! X� given by

.x0;0 � � � x0;s�1/ � � � .xn�1;0 � � � xn�1;s�1/ 7! x0;0 � � � xn�1;s�1;

whose image is the union
S
n2N0

X sn. The restriction map induces an injection

��s W Aut.X�/! Aut..X s/�/;

and clearly the image ��s .Aut.T // is

�.Sym.X/ o � � � o Sym.X// � Aut..X s/�/;

where the permutational wreath product is iterated s times. Recall that �.H/ for a per-
mutation group H denotes the subgroup of Aut.T / with every local action a member
of H . Define for i 2 Œ0; s � 1�

�i W Sym.X/! Sym.X/ o � � � o Sym.X/; � 7! ��s .g�;0i /j
";

where g�;0i is the automorphism with gj0
i
D � and gjx D id everywhere else. It is easy

to see that for every transitive permutation group H � Sym.X/ the group h�k.H/ j k 2
Œ0; s � 1�i is isomorphic to the s-fold iterated permutational wreath product H o � � � oH .

Now given a family of homomorphisms .!i;j WD! Sym.X//i2NC;j2Xn¹0º, we define
a new family z! D .z!i;j WDs ! Sym.X s//i2NC;j2Xsn¹0sº by

z!n;j D

´
�i ı !n;x ı �i if j D 0ix0s�i�1 for some x2 Œ1;m � 1� and i 2 Œ0; s � 1�;

d 7! id; d 2 Ds otherwise,

where �i WDs ! D denotes the projection to the .i C 1/-th factor.

Proposition 3.9. Let G be a spinal group on T with defining triple .R; D; !/. Then
��s .Bass.G// is the spinal group on .X s/� with defining triple .R o � � � o R; Ds; z!/, by
the action of Bass.G/ on the ms-regular tree ısT defined by the deletion of layers.

If, furthermore, G is a GGS-group on T , ��s .Bass.G// is a GGS-group on .X s/�.
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Proof. First consider the elements of the form ˇk.a/, for a 2 R, k 2 Œ0; s � 1�. On .X s/�

this element acts as �k.a/. Since R is transitive, the images of R generate R o � � � oR, and
the first entry of the defining triple is described.

We deal in a similar way with the sections ˇi .d j0ky/ of a directed element for every
d 2 D, i 2 Œ0; s � 1�, k 2 N0, y 2 X n ¹0º. To obtain the first section decomposition of
the action of ˇi .d j0k / on ısT (which stabilises the first layer) we have to take sections
of ˇi .d j0k / at words x D x0 : : : xs�1 of length s in T . Now, by Lemma 2.4,

ˇi .d j0k /jx D

8̂̂<̂
:̂
ˇi .d j0kC1/ if x D 0s;

ˇi .!kC1;xi .d// D �i!kC1;xi .d/ if x D 0ixi0s�i�1; xi ¤ 0;

id otherwise:

By Lemma 3.8, all pairs ˇi .d1/, ǰ .d2/ with d1; d2 2 D, i; j 2 Œ0; s � 1� and i ¤ j

commute. We identify ˇi .D/with the .i C 1/-th direct factor ofDs . Thus Bass.G/ is gen-
erated byR o � � � oR, and hˇi .D/ j i 2 Œ0; s � 1�i ŠDs , where .id; : : : ; id; di ; id; : : : ; id/ 2
Ds acts on ısT by

.id; : : : ; id; di ; id; : : : ; id/j0ksx D ˇi .d j0k /jx :

Thus, the elements of Ds are defined by the family z! of homomorphisms.
It remains to establish the two defining properties of spinal groups. Property (1) holds

by the observation that
h z!i;j .D

s/ j j 2 Œ1;ms � 1�i

acts as h�k.!i;j .D// j j 2 Œ1;m � 1�; k 2 Œ0; s � 1�i, hence h z!i;j .Ds/ j j 2 Œ1;ms � 1�i

acts as the s-fold wreath product of h!i;j .D/ j j 2 Œ1;m � 1�i, in particular, transitively
on the first layer of ısT .

For (2), consider

ker z!n;j D

´
ker.!n;x ı �i / if j D 0ix0s�i�1; for some x 2 Œ1;m � 1�; i 2 Œ0; s � 1�;

Ds otherwise;

hence \
j2Xsn¹0sº

ker z!n;j D
� \
j2Xn¹0º

ker!n;j
�
� � � � �

� \
j2Xn¹0º

ker!n;j
�
:

Therefore, we see that since (2) holds for G, (2) holds for Bass.G/.
The statement regarding GGS-groups follows directly from the description of the defin-

ing triple of Bass.G/.

Proposition 3.9 yields Theorem 1.2.
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Example 3.10. One of the eponymous examples of a GGS-group is the family of the
Gupta–Sidki p-groups acting on the p-adic tree. In the language of spinal groups, they
are defined by the triple

.h�i; h�i; .� 7! �; � 7! ��1; � 7! id; : : : ; � 7! id/i2NC/;

or in usual notation by the generators aD �.id; : : : ; id/, b D .b;a;a�1; id; : : : ; id/. We can
describe the generators of the second Basilica group of the Gupta–Sidki 3-group R� by

ˇ20.a/ D �.id; id; id/ D a; ˇ20.b/ D .ˇ
2
1.b/; ˇ

2
1.a/; ˇ

2
1.a
�1//;

ˇ21.a/ D .a; id; id/; ˇ21.b/ D .ˇ
2
0.b/; id; id/:

The automaton describing these generators is given explicitly in Figure 3. By orderingX2

reverse lexicographically, the action of the generators on .X2/� is

ˇ20.a/ D .00 10 20/.01 11 21/.02 12 22/;

ˇ20.b/ D .ˇ
2
0.b/; ˇ

2
0.a/; ˇ

2
0.a/

�1; id; : : : ; id/;

ˇ21.a/ D .00 01 02/;

ˇ21.b/ D .ˇ
2
1.b/; id; id; ˇ

2
1.a/; id; id; ˇ

2
1.a/

�1; id; id/:

Example 3.11. The first Grigorchuk group G is the spinal group acting on the binary tree
defined by C2, C22 and the sequence !i;1 of (the three) monomorphisms C2 ! C22, where
!i;1 D !j;1 holds if and only if i �3 j . Writing a for the non-trivial rooted element and b,
c, d for the non-trivial directed elements, one has the descriptions

a D .0 1/.id; id/; b D .c; a/; c D .d; a/; d D bc D .b; id/:

By Proposition 3.9, Bas2.G / is a spinal group on the 4-adic tree .X2/�, generated by the
elements

˛ ..D ˇ20.a/ D .0 2/.1 3/; A ..D ˇ21.a/ D .0 1/;

ˇ ..D ˇ20.b/ D .�; ˛; id; id/; B ..D ˇ21.b/ D .K; id;A; id/;

� ..D ˇ20.c/ D .ı; ˛; id; id/; K ..D ˇ21.c/ D .�; id;A; id/;

ı ..D ˇ�; � ..D BK;

where we identify Œ0; 3� with X2 by the reverse lexicographic ordering.

3.4. Contracting groups

For this subsection, we fix a self-similar group G � Aut.T / and some generating set S
of G, which yields a natural generating set

S
i2Œ0;s�1� ˇi .S/ for B ..D Bass.G/.

The group G � Aut.T / is said to be contracting, if there exists a finite set N � G

(called a nucleus of G) such that for all g 2 G there is an integer k.g/ such that gjv 2 N

for all v 2 T with jvj > k.g/, where j � j denotes the word norm.



J. M. Petschick and K. Rajeev 348

In this section, we prove that a contracting group G has contracting Basilica groups
B D Bass.G/, considering the natural generating set for B . For this we define yet another
length function, the syllable length, denoted by syl.b/, of an element b 2 B as the word
length w.r.t. the infinite generating set

S
i2Œ0;s�1� ˇi .G/, i.e., as

syl.b/ ..D min
²
` 2 N0 j b D

`�1Y
jD0

ˇij .gj /; with suitable ij 2 Œ0; s � 1�; gj 2 G
³
;

where
Q`�1
jD0 ˇij .gj / is a word representing b in B with respect to the generating set

¹ˇi .g/ j i 2 Œ0; s � 1�; g 2 Gº. Consequently, we will call a non-trivial element of the
given generating set a syllable and the corresponding index i its type. Since for every non-
trivial element b 2 ˇi .G/ there is some u 2 XnsCi for some n 2 N0 such that bju ¤ id,
while there is no u 2 T n

S
n2N0

XnsCi such that bju ¤ id, the type of a syllable is unique.
Since all sections of a syllable are either trivial or a syllable itself, the syllable length of
a section of b is at most syl.b/.

We further define for every g 2 Aut.T /,

r.g/ ..D

´
min¹n 2 N0 j gj

0n.0/ ¤ 0º if g does not stabilise x0 D ¹0n j n 2 N0º;

1 otherwise.

Lemma 3.12. Let r 2 N0. Define

Dr
..D
®
ˇa1.h1/ˇa2.h2/ˇa3.h3/ j h1; h2; h3 2 G n ¹1º;

a1; a2; a3 2 Œ0; s � 1� such that a1 ¤ a2 ¤ a3;

r.ˇa2.h2// D r
¯
:

Then syl.cju/ < 3 for c 2 Dr and all u with juj > r .

Proof. Let c D ˇa1.h1/ˇa2.h2/ˇa3.h3/ 2 Dr , where a1, a2, a3, h1, h2, h3 satisfy the
conditions stated above. We use induction on r . First consider the case r D 0. From
ˇa2.h2/.0/ ¤ 0 we deduce that a2 D 0. Calculate, for x 2 Œ0;m � 1�,

cjx D

8̂̂<̂
:̂
ˇs�1.h2j0/ˇa3�1.h3/ if x D 0;

ˇa1�1.h1/ˇs�1.h2jx/ if x D h�12 .0/;

ˇs�1.h2jx/ otherwise:

This shows that cjx and, by recursion, cju for all u with juj � 1 have syllable length at
most 2. Now we assume that r > 0. We may reduce to the case that 0 2 ¹a1; a2; a3º.
If 0 … ¹a1; a2; a3º, cj0 2Dr�1 and cjx D id for all x 2 X , x ¤ 0. Therefore, by induction
syl.cjxu/ < 3 for x 2 X and juj > r � 1, hence syl.xju/ < 3 for all juj > r .

If a3 D 0 ¤ a1, respectively, a1 D 0 ¤ a3, we have

cjx D

´
ˇa1�1.h1/ˇa2�1.h2/ˇs�1.h3jx/ 2 Dr�1 if x D h�13 .0/;

ˇs�1.h3jx/ otherwise;
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respectively,

cjx D

´
ˇs�1.h1j0/ˇa2�1.h2/ˇa3�1.h3/ 2 Dr�1 if x D 0;

ˇs�1.h1jx/ otherwise:

Finally, if a1 D a3 D 0, we find

cjx D

´
ˇs�1.h1j0/ˇa2�1.h2/ˇs�1.h3jx/ 2 Dr�1 if x D h�13 .0/;

ˇs�1..h1h3/jx/ otherwise.

In all three cases all but at most one section have length < 3 and the remaining section is
contained in Dr�1, hence by induction syl.cjxu/ < 3 for all x 2 X , juj > r � 1.

The case a2D 0 remains. Now r > 0 implies h�12 .0/D 0 and we have r.ˇs�1.h2j0//D

r � 1. Thus

cjx D

´
ˇa1�1.h1/ˇs�1.h2j0/ˇa3�1.h3/ 2 Dr�1 if x D 0;

ˇs�1.h2jx/ otherwise:

Hence we conclude that syl.cjxu/ < 3 for all u with juj � 1 by induction as before.

Lemma 3.13. For every element b 2 B with syl.b/ > s C 1, there is a number r 2 N0

such that for all sections bju with juj > r ,

syl.bju/ < syl.b/:

Proof. Let b 2 B be an element with syl.b/ > s C 1. If b is minimally represented by
a word w, it suffices to prove that there is a subword of w representing an element which
has a reduction of the syllable length upon taking sections.

Since syl.b/ > s C 1, there must be at least one syllable type appearing twice, and
there is a subword of w that can be written in the form

ˇi .zg1/b0ˇi .zg2/b1 or b1ˇi .zg1/b0ˇi .zg2/;

where b0, b1 are non-trivial and contain neither two syllables of the same type nor a syl-
lable of type i . Passing to the inverse if necessary, we restrict to the first case.

Under the assumption of w being minimal, it is impossible that both b0 and ˇi .zg2/ fix
the infinite ray x0, since if they did, they would commute by Lemma 3.8, and consequently
it would be possible to reduce the number of syllables.

Thus there are syllables in b0ˇi .zg2/ that do not stabilise the ray x0. Among these we
choose k such that r ..D r. ǰk .gk// is minimal.

Let us apply Lemma 3.12 to the subword ǰk�1.gk�1/ ǰk .gk/ ǰkC1.gkC1/ of the word
ˇi .zg1/b0ˇi .zg2/b1, consisting only of the syllable ǰk .gk/ and its direct neighbours, and
obtain for all u 2 T , juj > r

syl.bju/ < syl.b/:
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Although interesting in its own right, we use Lemma 3.13 solely to prove the following
proposition.

Proposition 3.14. Let G � Aut.T / be contracting. Then B D Bass.G/ is contracting.

Proof. Let N .G/ be a nucleus of G. Define

N .B/ ..D

² Ỳ
iD0

ǰi .gi / j ` � s C 1; ji 2 Œ0; s � 1�; gi 2 N .G/

³
:

Since N .G/ is a finite set, N .B/ is finite as well. We will prove that it is a nucleus of B .
Let b 2 B . If syl.b/ > s C 1, by Lemma 3.13 there is a layer, from which onwards all
sections of b have syllable length s C 1 or smaller.

Hence we can assume, that syl.b/ � s C 1. Write b D
Qsyl.b/�1
iD0 ǰi .gi /. Since G is

contracting, for every gi there is a number k.gi / such that gi ju 2N .G/ for all juj � k.gi /.
SetK ..Dmax¹k.gi / j i 2 Œ0; syl.b/ � 1�º, and observe that for uwith juj � sK the section
bju is a product of at most syl.b/ � s C 1 syllables of the form ˇi .g/ with g 2 N .G/.
Thus bju is in N .B/ and B is contracting.

Proposition 3.14 proves statement .4/ of Theorem 1.1.
As a consequence, the word problem for Basilica groups of self-similar and contract-

ing groups is solvable, since it is solvable for self-similar and contracting groups [24,
Proposition 2.13.8].

Corollary 3.15. Let G be self-similar and contracting. Then Bass.G/ has solvable word
problem.

Question 3.16. Let G � Aut.T / be contracting. The fact that Bass.G/ is contracting
implies the existence of constants � < 1, L;C 2 RC such that for every g 2 G, u 2 Xn

with n > L it holds
jgjuj < �jgj C C:

In [21], one set of constants is given for the original Basilica group B, namely � D 2
3

and L D C D 1. We ask: Is there a general formula for the above constants valid for all
contracting groups and their Basilica groups, yielding � D 2

3
for B?

3.5. Word growth

We now provide some examples of the possible growth types of Basilica groups. It is
known that the original Basilica group B has exponential word growth, cf. [21, Proposi-
tion 4]. The same proof as the one given there also shows that Bas2.Om/ is of exponential
growth for all m � 2. This, however, is not a general phenomenon.

Proposition 3.17. Let a D .0 1/.a; id/ be the generator of the dyadic odometer acting on
the binary rooted tree. Then Bass.h.id; a/i/ is a free abelian group of rank s, and is of
polynomial growth in particular.
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Proof. The element .id; a/ stabilises the ray x0, thus by Lemma 3.8, we have

Œˇi .h.id; a/i/; ǰ .h.id; a/i/� D id

for distinct i; j 2 Œ0; s � 1�. Also ˇi .h.id; a/i/ Š Z for all i 2 Œ0; s � 1�.

As another example, we prove that there is a group of intermediate word growth such
that its second Basilica group has exponential word growth.

Proposition 3.18. Let G D ha D .1 2 3/; b D .a; 1; b/i be the Fabrykowski–Gupta group
[14] acting on the ternary rooted tree, which is of intermediate growth according to [9].
Then there exists an element f 2 Aut.T / such that the group Bas2.Gf / is of exponential
growth.

Proof. The Fabrykowski–Gupta group is a GGS-group. In contrast to the Gupta–Sidki 3-
group it is not periodic: an example for an element of infinite order is ab, for which the
relation

.ab/3 D .ab; ba; ba/

holds. In view of the decomposition, it is clear that ab acts spherically transitively on T
and thus by a result of Gawron, Nekrashevych and Sushchansky [19], it is Aut.T /-conju-
gate to the 3-adic odometer group. Let f 2 Aut.T / be an element such that

.ab/f D .1 2 3/..ab/f ; 1; 1/:

Then the subgroup generated by ˇ0..ab/f / and ˇ1..ab/f / in Bas2.Gf / is isomorphic to
the generalised Basilica group Bas2.O3/, which is of exponential growth by following the
proof of [21, Proposition 4] (which is the same result for B) replacing the 2-cycle with
a 3-cycle corresponding to aj".

The same idea can be used to obtain the following proposition.

Proposition 3.19. Let G � Aut.T / be a group containing an element acting spherically
transitively on T . Then there is an Aut.T /-conjugate Gf of G such that Bass.Gf / has
exponential word growth.

3.6. Weakly branch groups

For every vertex v 2 T , the rigid vertex stabiliser of v inG is the subgroup of all elements
that fix all vertices outside the subtree rooted at v. For every n 2 N0 the n-th rigid layer
stabiliser RistG.n/ is the normal subgroup generated by all rigid vertex stabilisers of n-th
layer vertices. A group G � Aut.T / is called a weakly branch group, if G acts spherically
transitively and all rigid layer stabilisers RistG.n/ are non-trivial. If there is a subgroup
H � G such that  1.StH .1// � H � � � � �H , the group G is said to be weakly regular
branch over H . Clearly, a group that is weakly regular branch group over a non-trivial
subgroup is a weakly branch group.
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From Lemma 2.4, it follows that elements of the rigid layer stabilisers of G translate
to elements of rigid layer stabilisers of Bass.G/.

Lemma 3.20. Let n D qs C r 2 N0, with r 2 Œ0; s � 1� and q � 0. Let B D Bass.G/ for
G � Aut.T /. Then RistB.n/ contains ˇi .RistG.q C 1// and ǰ .RistG.q// for 0 � i < r
and for r � j < s.

We immediately obtain the following proposition.

Proposition 3.21. LetG �Aut.T / be a weakly branch group. ThenB ..D Bass.G/ is also
weakly branch.

This proves statement .5/ of Theorem 1.1.
The group Bass.G/ can be weakly branch even when G is not weakly branch. We

recall that for any group G and an abstract word ! on k letters, the set of !-elements and
the verbal subgroup associated to ! are

G!
..D ¹!.h0; : : : ; hk�1/ j h0; : : : ; hk�1 2 Gº and !.G/ ..D hG!i;

respectively.

Proposition 3.22. Let G � Aut.T / be a self-similar strongly fractal group and let B ..D

Bass.G/. Let ! be a law in G, i.e., a word ! such that !.G/ D 1, but let ! not be a law
in B . Then B is weakly regular branch over !.B/.

Proof. Let b D !.b0; : : : ; bk�1/¤ id with bi 2 B for i 2 Œ0; k � 1�. By Lemma 3.3, there
are elements ci 2 StB.1/ such that ci j0 D bi and ci jx 2 ˇs�1.G/ for all x 2 X n ¹0º.

For every x 2 X , let dx 2 B be an element such that dxjx D id and dx.x/ D 0

(cf. Lemma 2.1). Then cdxi stabilises the first layer and has sections cdxi jx D bi and
c
dx
i jy D .ci jdx.y//

dx jy 2 ˇs�1.G/
dx jy for y ¤ x.

Since cdxi stabilises the first layer, the section maps are homomorphisms and

!.c
dx
0 ; : : : ; c

dx
k�1

/jy D !.c
dx
0 jy ; : : : ; c

dx
k�1
jy/ D

´
b if y D x;

id otherwise;

because in the second case we are evaluating ! in a group isomorphic to G. This shows
that B! � � � � � B! is geometrically contained in B! , and thus the same holds for the
verbal subgroups that are generated by these sets.

We point out that, if ! is a law in B , then B cannot be weakly branch as it satisfies
an identity. Proposition 3.22 allows to obtain examples of groups that are weakly branch
over some prescribed verbal subgroup. We provide an easy example:

Example 3.23. The groupD ..D h�;bi, with � D .0 1/ and bD .b;�/, acting on the binary
tree is isomorphic to the infinite dihedral group (hence metabelian). It is self-similar and
strongly fractal. Considering

ŒŒˇ1.�/; ˇ0.�/�; Œˇ0.�/; ˇ0.�b/�� D .Œˇ0.�/; ˇ1.�b/�; Œˇ0.�/; ˇ1.b
�1�/�/ ¤ id;
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we see that the second Basilica Bas2.D/ is not metabelian, and thus it is weakly branch
over the second derived subgroup of Bas2.D/.

4. Split groups, layer stabilisers and Hausdorff dimension

The subgroup ˇi .G/ � Bass.G/, for i 2 Œ0; s � 1�, has the property that its elements have
non-trivial portrait only at vertices at levels n �s i for n 2 N0.

We consider an algebraic analogue of this property that will be used to determine the
structure of the stabilisers of Bass.G/.

Definition 4.1. Let G � Aut.T / and B ..D Bass.G/. Define:

Si
..D h ǰ .G/ j j ¤ ii � B and Ni

..D .Si /
B E B:

We write �i WB ! B=Ni for the canonical epimorphism with kernel Ni . The quotient
B=Ni is isomorphic to the quotient ofG by the normal subgroupKi ..D ˇ�1i .ˇi .G/\Ni /.
We call Ki the i -th splitting kernel of G. The group G is called s-split if its s-th Basilica
group B is a split extension of Ni by ˇi .G/ for all i 2 Œ0; s � 1�, or equivalently if all
splitting kernels of G are trivial.

Proposition 4.2. Let G � Aut.T / be a group that does not stabilise the vertex 0. Then
ˇi .ŒG;G�/ � Ni for i 2 Œ1; s � 1�. In particular, an s-split group (for s > 1) is abelian.

Proof. Let g;h 2G, k 2G n st.0/ and let i 2 Œ1; s � 1�. Write  D ˇi�1.g/, �D ˇi�1.h/,
x D ˇi .g/, x� D ˇi .h/ and � D ˇ0.k/. Then

��1.�/x
�1

.��1/x
�1x�.�/x�jx D �

�1
j�.x/x j�.x/�jx.x

�1
x��1x/jx�

�1
j�.x/x

�1
j�.x/�jxx�jx

D �j�1x x j�.x/�jx.x
�1
x��1x/jx�j

�1
x x j

�1
�.x/�jxx�jx

D

´
Œ; �� if x D 0;

id otherwise:

Thus, ��1.�/x
�1
.��1/x

�1x�.�/x� D .Œ; ��; id; : : : ; id/D Œx; x�� is an element of the intersec-
tion Ni \ ˇi .G/.

We remark that ŒG;G� �K0 does not necessarily hold. For example, consider a group
G such that ŒG;G� 6� StG.1/. Since N0 � StBass.G/.1/, the zero-th splitting kernel cannot
contain ŒG;G�.

Definition 4.3. We call a subgroup H of a group G non-absorbing in G if for all h0; : : : ;
hm�1 2 H such that  �11 .h0; : : : ; hm�1/ 2 G, it holds  �11 .h0; : : : ; hm�1/ 2 H . If G is
weakly branch over H , then H is non-absorbing in G.

Proposition 4.4. Let G � Aut.T / be self-similar and such that Gj" acts regularly on X .
Assume that ŒG;G� is non-absorbing in G. Then for i 2 Œ1; s � 1� we have Ki D ŒG;G�,
and K0 � ŒG;G�. In particular, if G is abelian, it is s-split for all s 2 NC.
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Proof. The inclusion ŒG;G� � Ki for i 2 Œ1; s � 1� is proven in Proposition 4.2. Thus we
prove Ki � ŒG;G� for i 2 Œ0; s � 1�.

SetB ..DBass.G/ and define N ..D
Ss�1
iD0.ˇi .G/\Ni /. We employ the decomposition

in syllables, cf. Section 3.4. For every b 2 N there is an index i 2 Œ0; s � 1� such that b
can be written both as an element of the image of some ˇi and a word in Ni , i.e.,

b D ˇi .g0/ D

`.b/Y
jD1

.hj /
ˇi .gj / (4.1)

for suitable `.b/ 2 N0, gj 2 G and hj 2 Si . The minimal possible value of `.b/ is called
the restricted syllable length, and from here onwards we use the symbol ` for this invari-
ant. Write C D

Ss�1
iD0 ˇi .ŒG;G�/ (notice that this a union of subsets with pairwise trivial

intersection), and define

M ..D ¹b 2 N n C j `.b/ � `.c/ for all c 2 N n Cº;

the set of all non-commutator elements with minimal restricted syllable length.
We shall prove that for every b 2M there exists a first level vertex xi 2 X such that:

(1) bjxi 2M and

(2) bjx D id for all x 2 X n ¹xiº.

Furthermore, we prove that

(3) b 2 StB.1/, i.e., M � StB.1/.

Every subset M � Aut.T / with these properties is empty. Indeed, if b 2M, there is some
vertex u 2 T such that bju ¤ id, since b is not trivial. But, by properties .1/ and .2/,
bju is either trivial or a member of M, hence, by property .3/, stabilises the first layer,
a contradiction.

But if M is empty, N is contained in C , hence all splitting kernels are subgroups of
ŒG;G�, finishing the proof.

Assume that there is some b 2 M. We fix the decomposition and the type given
by (4.1), but write ` for `.b/ to shorten the notation.

We first observe that ` ¤ 1. If ` D 1, we have ˇi .g0/ D h
ˇi .g1/
1 , consequently h1 2

ˇi .G/ \ Si . But h1ju D id for all u with juj �s i , while ˇi .G/ju D ¹idº for u … !i .T /
by Lemma 2.4. Thus h1 D id D b …M, which is a contradiction.

We split the proof of statements .1/ to .3/ into two cases: i D 0 and i ¤ 0.

Case i D 0. Since N0 � StB.1/, statement .3/ is fulfilled. We have S0j0 D Ss�1 and
S0jx D ¹idº for x 2 X n ¹0º. Also ˇ0.G/jx � ˇs�1.Gjx/ for x 2 X , hence N0jx � Ns�1.
Thus all sections bjx are members of ˇs�1.G/ \Ns�1 � N .

The first layer sections of b are given by

bjx D ˇs�1.g0jx/ D
Y
j2Lx

.hj j0/
ˇs�1.gj jx/ for x 2 X;
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where Lx D ¹j j 1 � j � ` and gj .x/ D 0º. The sum
P
x2X jLxj equals `. By the min-

imality of `, either all sections of b are contained in ˇs�1.ŒG;G�/, or there is some xi 2X
such that `.bjxi / D jLxi j D `. In the first case, since ŒG; G� is non-absorbing in G, this
implies b 2 ˇ0.ŒG; G�/, a contradiction. In the second case, Lx D ; for x ¤ xi , i.e.,
bjx D id for x ¤ xi . This proves statement (2). Furthermore, if bjxi …M, it is contained
in ˇs�1.ŒG;G�/. Since ŒG;G� is non-absorbing overG, this implies b 2 ˇ0.ŒG;G�/. Thus,
bjxi 2M, and statement (1) is true.

Case i ¤ 0. Recall that bjx D ˇi .g0/jx D id for x ¤ 0. This is statement .2/ with xi D 0.
We consider the first layer sections of b. For x 2 X and 1 � j � `,

h
ˇi .gj /

j jx D

8̂̂̂̂
<̂
ˆ̂̂:
.hj jx/

ˇi�1.gj / if x D 0 and hj 2 stB.0/;

hj jxˇi�1.gj / if x D 0 and hj … stB.0/;

ˇi�1.g
�1
j /hj jx if hj 62 stB.0/ and x D h�1j .0/;

hj jx otherwise:

(4.2)

Since Gj" acts regularly, stB.0/ D StB.1/. We divide the long product in (4.1) into seg-
ments that stabilise the first layer: Let x 2 X , and consider the subsequence .j .k/x /k2Œ1;tx �

of Œ1; `� consisting of all indices j .k/x such that .
Q`

jDj
.k/
x
hj /.x/D 0. Clearly,

P
x2X txD `.

Set j .0/x D 1 and j .txC1/x D `C 1. Then
Qj

.kC1/
x �1

jDj
.k/
x

hj 2 StB.1/ for all k 2 Œ1; tx �, and
one may write

b D

txY
kD0

j
.kC1/
x �1Y
jDj

.k/
x

.hj /
ˇi .gj /: (4.3)

We now make another case distinction.

Subcase tx D ` for some x 2 X n ¹0º. We will prove that this case cannot occur. The
equation tx D ` implies h`.x/D 0 and hj 2 StB.1/ for all j 2 Œ1; ` � 1�. We may assume
g` D id, by passing to a conjugate if necessary. Looking at the second and fourth case
of (4.2), we obtain

ˇi�1.g0/ D bj0 D

`�1Y
jD1

.hj jh`.0// � h`j0 2 Ni�1:

Thus ˇi�1.g0/ is an element of N of restricted syllable length at most 1, hence trivial.
Consequently, g0 and b are trivial, a contradiction.

Subcase t0D `. This implies hj 2 StB.1/ for all j 2 Œ1; `�, and statement (3) holds. By the
first case of (4.2),

bj0 D

`.b/Y
jD1

hj j0
ˇi�1.gj / 2 Ni�1 \ ˇi�1.G/;
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which is of restricted syllable length at most `. As we previously argued in the case i D 0,
we have bj0 … ˇi�1.ŒG; G�/ and consequently statement (1) holds, since otherwise b 2
ˇi .ŒG;G�/ because ŒG;G� is non-absorbing over G.

Subcase tx < ` for all x 2X . We shall prove that this case cannot occur. Combining (4.3)
with (4.2) for x 2 X , we calculate

bjx D

tx�1Y
kD0

�� j .kC1/x �1Y
jDj

.k/
x

.hj /
ˇi .gj /

�ˇ̌̌̌
0

�� `.b/Y
jDj

.tx /
x

.hj /
ˇi .gj /

�ˇ̌̌̌
x

and for k 2 Œ1; tx � 1�

j
.kC1/
x �1Y
jDj

.k/
x

.hj /
ˇi .gj /j0 D ˇi�1.g

�1

j
.k/
x

/

� j .kC1/x �1Y
jDj

.k/
x

hj jQj .kC1/x �1

iDjC1 hi .0/

�
ˇi�1.gj .kC1/x �1

/

D ˇi�1.g
�1

j
.k/
x

g
j
.kC1/
x �1

/

� j .kC1/x �1Y
jDj

.k/
x

hj jQj .kC1/x �1

iDjC1 hi .0/

�ˇi�1.g
j
.kC1/
x �1

/

:

Consequently, every segment
Qj

.kC1/
x �1

jDj
.k/
x

.hj /
ˇi .gj / of b contributes at most one syllable

of Ni�1 and a member of ˇi�1.G/ to bjx . We obtain

bjx �Ni�1

8<:ˇi�1
�
g�11

Qtx
kD1

.g
j
.k/
x �1

g�1
j
.k/
x

/g`
�

if x D 0;

ˇi�1
�Qtx

kD1
.g
j
.k/
x �1

g�1
j
.k/
x

/
�

otherwise:

Write bjx D ˇi�1.fx/nx with nx 2 Ni and fx equal to the corresponding product in G
in the last equation. Since the subsequences form a partition, every ˇi�1.gj .k/x

/ and its
inverse appear in precisely one section of b, and we have

Y
x2X

bjx �Ni�1

Y
x2X

ˇi�1.fx/ �ˇi�1.ŒG;G�/
Ỳ
jD1

ˇi�1.gjg
�1
j / D 1:

Now we look at nx . Since every segment
Qj

.kC1/
x �1

jDj
.k/
x

.hj /
ˇi .gj / contributes at most one

syllable, and hj … StB.1/ for some j 2 Œ1; `�, we have `.nx/� tx < `. Also ˇi�1.fx/nx D
bjx D id for x ¤ 0, hence nx D ˇi�1.f �1x / 2 N . By minimality, fx 2 ŒG;G�. Then also
f0 �ŒG;G�

Q
x2X fx �ŒG;G� id, and ˇi�1.f �10 g0/D ˇi�1.f

�1
0 /bj0 D n0 2N . Again, by

minimality, f �10 g0 2 ŒG;G�, thus g0 2 ŒG;G�, a contradiction.
This completes the proof.

Example 4.5. Let Bass.Od
m/ be a generalised Basilica group (cf. Definition 2.6). Since

Od
m is free abelian and self-similar, and Od

mj
" is cyclic of order m, by Proposition 4.4, the

group Od
m is s-split.
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Question 4.6. Motivated by the small gap between Propositions 4.4 and 4.2, we ask: Is
every abelian group G � Aut.T / acting spherically transitive s-split for all s > 1?

Corollary 4.7. Let G � Aut.T / be a self-similar s-split group. Then the abelianisation
of Bass.G/ is

Bass.G/ab
Š Gs :

Proof. Consider the normal subgroup

H ..D hŒˇi .G/; ǰ .G/� j i; j 2 Œ0; s � 1�; i ¤ j i
Bass.G/

and observe that H � Ni for all i 2 Œ0; s � 1�. We obtain an epimorphism

Gs ! Bass.G/=H;

mapping the i -th component of Gs to ˇi .G/.H/, for i 2 Œ0; s � 1�. This map is also
injective. Let

Q
i2Œ0;s�1� ˇi .gi / �H

Q
i2Œ0;s�1� ˇi .hi / for some gi ; hi 2 G. Then for all

x 2 X ,
ˇx.gxh

�1
x / �H

Y
i2Œ0;s�1�n¹xº

ˇi .g
�1
i hi / 2 Nx

and ˇx.gxh�1x / 2 Nx . Since G is s-split, this implies gx D hx . Thus Bass.G/=H Š Gs .
But from Proposition 4.2 G is abelian and consequently H D ŒBass.G/;Bass.G/�.

Proposition 4.8. Let G � Aut.T / be a torsion-free self-similar group such that the quo-
tient G=K with K D ˇ�10 .ˇ0.G/ \ N0/ is again torsion-free. Then Bass.G/ is torsion-
free.

Proof. Let b 2 Bass.G/ be a torsion element. Since G=K is torsion-free, we obtain b 2
ker �0 D N0 � StBass.G/.1/. Thus the first layer sections of b are again torsion elements
of Bass.G/, because Bass.G/ is self-similar by Lemma 3.2. Hence an iteration of the
argument yields b D id.

Question 4.9. On the other end of the spectrum, the group Bas2.G / (cf. Example 3.11)
is periodic as is G , which can be proven analogous to [6, Theorem 6.1], and the second
Basilica groups of the periodic Gupta–Sidki p-groups (cf. Example 3.10) are periodic
by [25]. Motivated by this observation, we ask: Is there a periodic group G � Aut.T /
acting spherically transitive such that Bass.G/ is not periodic for some s 2 NC?

Proposition 4.8 and Corollary 4.7 prove Theorem 1.3.

4.1. Layer stabilisers

For an s-split group G � Aut.T / the s-th Basilica group decomposes as Bass.G/ D Ni Ì
ˇi .G/. Recall from Definition 4.1 that �i denotes the map to Bass.G/=Ni , identified with
the quotient G=Ki , such that �i .nˇi .g// D gKi for all g 2 G, n 2 Ni .
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Lemma 4.10. Let G � Aut.T / be a strongly fractal group and let B D Bass.G/. Let
b0; : : : ; bm�1 2 B . Then  �11 .b0; : : : ; bm�1/ is an element of StB.1/ if and only if there is
an element g 2 StG.1/ such that for all x 2 X

�s�1.bx/ D gjxKs�1:

Proof. If there is some element g 2 StG.1/ of the required form, clearly

ˇ0.g/ � �11 .Nm
s�1/

.b0; : : : ; bm�1/:

Now we claim that  1.N0/ � Nm
s�1. Let

b D

`�1Y
jD0

h
ˇs�1.gj /

j 2 Ns�1;

with hj 2 Ss�1. Then there are elements yhj D .hj ; id; : : : ; id/ 2 S0 by the definition
of Ss�1. Furthermore, since G is strongly fractal, there are elements ygj 2 StG.1/ such
that ˇ0.ygj /j0 D ˇs�1.gj /, yielding

`�1Y
jD0

yh
ˇ0.ygj /

j D .b; id; : : : ; id/:

Since G acts spherically transitively, the claim follows by Lemma 2.1. Thus there is an
element in N0ˇ0.g/ � StB.1/ with sections .b0; : : : ; bm�1/.

Let now b D  �11 .b0; : : : ; bm�1/ 2 StB.1/. Then b decomposes as a product nˇ0.g/
with n 2 N0 and g 2 StG.1/. This implies, for any x 2 X ,

�s�1.bx/ D �s�1..nˇ0.g//jx/ D �s�1.ˇs�1.gjx// D gjxKs�1:

Lemma 4.11. Let G be fractal and self-similar and let B D Bass.G/. Let n 2 N0, then

(i)  1.ˇi .StG.n//B/ D .ˇi�1.StG.n//B/m for all i ¤ 0.

Assuming further that G is very strongly fractal, we have

(ii)  1.Œˇ0.StG.nC 1//; N0�B/ D .Œˇs�1.StG.n//; Ns�1�B/m.

Proof. (i) The inclusion  1.ˇi .StG.n//B/ � .ˇi�1.StG.n//B/m is obvious. We prove the
other direction. Let g 2 StG.n/ and b 2 B . Since B is fractal by Lemma 3.3, there is an
element c 2 stB.0/ such that cj0 D b. Now

.ˇi .g//
c
D .ˇi�1.g/; id; : : : ; id/c D .ˇi�1.g/b; id; : : : ; id/;

yielding statement (i), by Lemma 2.1.
(ii) The inclusion  1.Œˇ0.StG.nC 1//; N0�B/ � .Œˇs�1.StG.n//; Ns�1�B/m follows

directly fromN0jx �Ns�1 and ˇ0.StG.nC 1//jx � ˇs�1.StG.n//, where x 2X . Thanks
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to Lemma 2.1, for the other inclusion it is enough to prove that .Œˇs�1.g/; k�; id; : : : ; id/
is contained in  1.Œˇ0.StG.nC 1//; N0�B/ for all g 2 StG.n/ and k 2 Ns�1. Let

k D
Ỳ
jD0

.ˇij .kj //
ˇs�1.k

0
j / 2 Ns�1:

Since G is strongly fractal, there are elements tj 2 StG.1/ such that tj j0 D k0j . Further-
more, since G is very strongly fractal, there is an element h 2 StG.n C 1/ such that
hj0 D g. Then �

ˇ0.h/;
Ỳ
jD0

.ˇijC1.kj //
ˇ0.tj /

�
2 Œˇ0.StG.nC 1//; N0�B

and�
ˇ0.h/;

Ỳ
jD0

.ˇijC1.kj //
ˇ0.tj /

�ˇ̌̌̌
x

D

�
.ˇ0.h//jx ;

Ỳ
jD0

..ˇijC1.kj //jx/
.ˇ0.tj //jx

�

D

´
Œˇs�1.g/; k� if x D 0;�
ˇs�1.hjx/;

Q`
jD0 idˇs�1.tj jx/

�
D id otherwise.

This completes the proof.

Proof of Theorem 1.4. Let B D Bass.G/. For any n 2 N0, write n D sq C r with q � 0
and r 2 Œ0; s � 1�. We have to prove

StB.n/ D hˇi .StG.q C 1//; ǰ .StG.q// j 0 � i < r � j < siB :

For convenience, we will denote the right-hand side of this equation byHn. It is clear that
Hn � StB.n/ for all n 2 N0. It remains to establish the other inclusion. For n D 0, the
statement is clearly true, so we proceed by induction and assume that the statement is true
for some fixed n D sq C r with q � 0 and r 2 Œ0; s � 1�. Define

J ..D

�
ˇi .StG.q C 1//; ǰ .StG.q//;

ˇ̌̌̌
0 � i � r � 1 < j < s � 1

Œˇs�1.StG.q//; Ns�1�B

�B
;

and observe that by Lemma 4.11 we find Jm �  1.HnC1/, which yields

.StB.n//m= 1.HnC1/ D .ˇs�1.StG.q///m 1.HnC1/= 1.HnC1/:

Hence for every g 2 StB.nC 1/, there are elements t0; : : : ; tm�1 2 StG.q/ such that

 1.g/ � 1.HnC1/ .ˇs�1.t0/; : : : ; ˇs�1.tm�1//:

Since �s�1ˇs�1.tx/ D txKS�1 for all x 2 X , g 2 StB.1/ and HnC1 � StB.1/, by Lem-
ma 4.10, there are elements k0; : : : ; km�1 2 Ks�1 and h 2 StG.1/ such that

 �11 .hj0k0; : : : ; hjm�1km�1/ D  
�1
1 .t0; : : : ; tm�1/:
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Define zh D h �11 .k0; : : : ; km�1/. Now, G is weakly regular branch over Ks�1, hence
 �11 .Kms�1/� StKs�1.1/, and consequently, zh 2 StG.1/. But zhjx D tx 2 StG.q/ for x 2X ,
whence zh 2 StG.q C 1/ and

.ˇs�1.t0/; : : : ; ˇs�1.tm�1// D  1.ˇ0.zh// 2  1.ˇ0.StG.q C 1/// �  1.HnC1/;

implying g 2 HnC1. This completes the proof.

4.2. Hausdorff dimension

We remind the reader that � is the subgroup of Aut.T / consisting of all automorphisms
whose labels are elements of h�i, with � being a fixed m-cycle in Sym.X/.

Definition 4.12. Let G � � . The Hausdorff dimension of G relative to � is defined by

dimHG
..D lim inf

n!1

logm jG=StG.n/j
logm j�=St�.n/j

D .m � 1/ lim inf
n!1

logm jG=StG.n/j
mn

:

This relates to the usual definition of Hausdorff dimension over arbitrary spaces by taking
the closure, i.e., using this definition, the group G has the same Hausdorff dimension as
its closure xG in � , cf. [2]. We drop the base m in logm from now on. Denote the quotient
StG.n/=StG.nC 1/ by LG.n/. The integer series (for n > 0) obtained by

oG.n/
..D log.jLG.n � 1/jm/ � log jLG.n/j

is called the series of obstructions of G. We set oG.0/ D �1 for convenience.

The series of obstructions of a group G determines its Hausdorff dimension, precisely
how we will see in Lemma 4.13. Nevertheless, one might wonder why it is necessary to
define this seemingly impractical invariant. We will demonstrate in Proposition 4.16 that
it is (to some degree) preserved under G 7! Bass.G/. Furthermore, many well-studied
subgroups of � have a well-behaved series of obstructions. For example, it is easy to see
that � itself has

o�.n/ D log j on Cm= on�1 Cmjm � log j onC1 Cm= on Cmj

D m logmm
n

� logmm
nC1

D 0;

for n 2 NC, where onA is the n-times iterated wreath product of A, with the convention
that o0A is the trivial group. On the other hand, since the layer stabilisers of Od

m are
the subgroups generated by h�0.a/m

kC1
; : : : ; �l�1.a/

mkC1 ; �l .a/
mk ; : : : ; �d�1.a/

mk i, the
quotients L

Od
m
.n/ are all cyclic of order m, and

o
Od
m
.n/ D m � 1:

A Gupta–Sidki p-group G has precisely two terms unequal to 0, a consequence of StG.n/
D StG.n � 1/p for n � 3, cf. [16]. Similarly, the series of obstructions of the Grigorchuk
group has only one non-zero term.
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Lemma 4.13. Let G � � act spherically transitive. Then

dimHG D 1 � lim sup
n!1

nX
iD1

.m�i �m�.nC1//oG.i/:

Proof. By definition, log jLG.0/j D 1 and log jLG.n/j D m log jLG.n� 1/j � oG.n/ for
n � 1. An inductive argument yields

log jG=StG.nC 1/j D log jG=StG.n/j �
nX
kD0

mn�koG.k/

D �

nX
kD0

mkC1 � 1

m � 1
oG.n � k/:

This gives

lim inf
n!1

.m � 1/

mnC1
log jG=StG.nC 1/j D � lim sup

n!1

nX
iD0

.mi�n �m�.nC1//oG.n � i/

D 1 � lim sup
n!1

nX
iD1

.m�i �m�.nC1//oG.i/:

Lemma 4.14. Let G � � be self-similar. Then for all n > 0

oG.n/ D logŒStG.n � 1/m W  1.StG.n//� � logŒStG.n/m W  1.StG.nC 1//�:

Proof. We have, for n > 0,

jStG.n � 1/m= 1.StG.n//j D
jStG.n � 1/m= 1.StG.nC 1//j

jLG.n/j

D
jLG.n � 1/j

m

jLG.n/j
jStG.n/m= 1.StG.nC 1//j;

hence

oG.n/ D logŒStG.n � 1/m W  1.StG.n//� � logŒStG.n/m W  1.StG.nC 1//�:

Lemma 4.15. LetG be very strongly fractal, self-similar and weakly regular branch over
the splitting kernel Ks�1. Then for all `; n 2 NC

 1.ˇ0.StG.`C 1// \ Œˇ0.StG.nC 1//; N0�B/

D .ˇs�1.StG.`// \ Œˇs�1.StG.n//; Ns�1�B/m:

Proof. The left-hand set is clearly contained in the right-hand set. We prove the other
inclusion. Let .b0; : : : ; bm�1/ 2 .ˇs�1.StG.`// \ Œˇs�1.StG.n//; Ns�1�B/m. According
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to Lemma 4.11 (ii), there exists b 2 Œˇ0.StG.nC 1//; N0�B � StB.1/ such that  1.b/ D
.b0; : : : ; bm�1/. It remains to prove that b 2 ˇ0.StG.`C 1//.

Since the set ˇs�1.StG.`// \ Œˇs�1.StG.n//; Ns�1�B is contained in ˇs�1.StKs�1.1//
and since G weakly regular branch over Ks�1, there is an element g 2 Ks�1 such that

 1.g/ D .ˇ
�1
s�1.b0/; : : : ; ˇ

�1
s�1.bm�1// 2 StG.`/m:

Consequently,  1.ˇ0.g// D .b0; : : : ; bm�1/ D  1.b/, and b D ˇ0.g/ is a member of
 1.ˇ0.StG.`C 1// \ Œˇ0.StG.nC 1//; N0�B/.

Proposition 4.16. Let G � � be very strongly fractal, self-similar and weakly regular
branch over the splitting kernel Ks�1. Then the series of obstructions for B D Bass.G/
fulfills

oB.n/ D

´
0 if n 6�s 0;

oG.
n
s
/ otherwise:

Proof. Consider first the case n �s k ¤ 0. By Theorem 1.4, the quotient LB.n/ is nor-
mally generated in B by images of elements of ˇk.StG.bn=sc//. Similarly the images of
ˇk�1.StG.bn=sc// are the normal generators of LB.n � 1/. Thus Lemma 4.11 (i) shows
that oB.n/ D 0.

Now consider the case n D qs. To shorten the notation, we abbreviate

Rq
..D ˇ0.StG.q// for q 2 N0 and Tq

..D ˇs�1.StG.q// for q 2 N0:

Define the normal subgroups

U D hStB.nC 1/ [ ŒRq; N0�Bi E B and V D hStB.n/ [ ŒTq�1; Ns�1�Bi E B:

Using Theorem 1.4, we see that U and V , respectively, are normally generated by the sets

RqC1 [

s�1[
iD1

.ˇi .StG.q/// [ ŒRq; N0� and Tq [

s�2[
iD0

.ˇi .StG.q/// [ ŒTq�1; Ns�1�:

Let g 2 StG.q C 1/ and b 2 B . We write b D ˇ0.gb/nb for gb 2 G and nb 2 N0. Then

ˇ0.g/
b
D ˇ0.g

gb /nb D ˇ0.g
gb /Œˇ0.g

gb /; nb� 2 RqC1ŒRqC1; N0�:

Consequently, we drop the conjugates of RqC1 in our generating set for U , and write

U D
D
RqC1 [

s�1[
iD1

�
ˇi .StG.q//B

�
[ ŒRq; N0�

B
E
:

Similarly, the subgroup V is generated by

Tq [

s�2[
iD0

�
ˇi .StG.q//B

�
[ ŒTq�1; Ns�1�

B :
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Using Theorem 1.4, it is now easy to see that

StB.n/=U Š Rq=.Rq \ U/:

Since ˇi .StG.q// � StB.nC 1/ for i ¤ 0, we see that the intersection

hˇ1.StG.q// [ � � � [ ˇs�2.StG.q// [ TqiB \Rq

is contained in RqC1. We conclude Rq \ U D Rq \RqC1ŒRq; N0�B . Now

Rq \RqC1ŒRq; N0�
B
D RqC1.Rq \ ŒRq; N0�

B/

and

ŒRq \RqC1ŒRq; N0�
B
W RqC1� D ŒRq \ ŒRq; N0�

B
W RqC1 \ ŒRq; N0�

B �:

Consequently, the order of StB.n/=U equals

jLG.q/j � ŒRq \ ŒRq; N0�
B
W RqC1 \ ŒRq; N0�

B ��1:

A similar computation shows that the order of StB.n � 1/=V is

jLG.q � 1/j � ŒTq�1 \ ŒTq�1; Ns�1�
B
W Tq \ ŒTq�1; Ns�1�

B ��1:

We now apply Lemma 4.15 in the cases ` D n D q � 1 and ` D nC 1 D q, i.e., we have

 1.Rq \ ŒRq; N0�
B/ D .Tq�1 \ ŒTq�1; Ns�1�

B/m;

 1.RqC1 \ ŒRq; N0�
B/ D .Tq \ ŒTq�1; Ns�1�

B/m:

We see that the second factor in the formula for the order of StB.n/=U is the m-th power
of the corresponding factor for StB.n � 1/=V , and obtain

jStB.n � 1/=V jm

jStB.n/=U j
D
jLG.q � 1/j

m

jLG.q/j
D moG.q/:

Now we compare V m and  1.U /. By Lemma 4.11 (i) and (ii),  1.U / is generated by

 1.RqC1/ [

s�2[
iD0

�
..ˇi .StG.q///B/m

�
[ .ŒTq�1; Ns�1�

B/m:

We define yet another subgroup

W D
D s�2[
iD0

�
..ˇi .StG.q///B/m

�
[ .ŒTq�1; Ns�1�

B/m
E
�  1.U / � B

m:

Evidently, W E Bm, W � Nm
s�1, and W E  1.U / � V

m. We have

 1.U /=W Š  1.RqC1/=. 1.RqC1/ \W /;

V m=W Š Tmq =.T
m
q \W /:
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The two divisors are equal: clearly,  1.RqC1/ \W is contained in Tmq \W . Let

.ˇs�1.g0/; : : : ; ˇs�1.gm�1// 2 T
m
q \W � .Tq \Ns�1/

m:

Since Tq \ Ns�1 � ˇs�1.Ks�1/, the elements g0; : : : ; gm�1 are members of Ks�1 \
StG.q/. Now sinceG is weakly regular branch overKs�1, there is an element k 2Ks�1 \
StG.q C 1/ such that  1.k/ D .g0; : : : ; gm�1/, and consequently ˇ0.k/ 2 RqC1 fulfills

 1.ˇ0.k// D .ˇs�1.g0/; : : : ; ˇs�1.gm�1// 2  1.RqC1/ \W:

We compute

ŒV m W  1.U /� D ŒV
m=W W  1.U /=W � D ŒT

m
q W  1.RqC1/�

D Œ.ˇs�1 � � � � � ˇs�1/.StG.q/m/ W.ˇs�1 � � � � � ˇs�1/. 1.StG.q C 1///�

D ŒStG.q/m W  1.StG.q C 1//�:

This implies

ŒStB.n � 1/m W  1.StB.n//� D ŒStB.n � 1/m= 1.U / W  1.StB.n//= 1.U /�

D
ŒStB.n � 1/m W V m�ŒV m W  1.U /�

Œ 1.StB.n// W  1.U /�

D
jLG.q � 1/j

m

jLG.q/j
� ŒStG.q/m W  1.StG.q C 1//�:

Since oB.k/ D 0 for k 6�s 0, by Lemma 4.14,

logŒStB.n/m W  1.StB.nC 1//� D logŒStB.nC s � 1/m W  1.StB.nC s/�;

hence

oB.n/ D logŒStB.n � 1/m W  1.StB.n//� � logŒStB.nC s � 1/m W  1.StB.nC s//�

DoG.q/C log
ˇ̌̌ StG.q/m

 1.StG.q C 1//

ˇ̌̌
� oG.q C 1/ � log

ˇ̌̌ StG.q C 1/m

 1.StG.q C 2//

ˇ̌̌
DoG.q/ � oG.q C 1/C oG.q C 1/

DoG.q/:

Proof of Corollary 1.5. By Lemma 4.13 and Proposition 4.16,

dimHG D 1 � lim sup
n!1

nX
iD1

.m�i �m�.nC1//oG.i/;

dimH Bass.G/ D 1 � lim sup
n!1

nX
iD1

.m�i �m�.nC1//oBass.G/.i/

D 1 � lim sup
n!1

nX
iD1

.m�si �m�.snC1//oG.i/:
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We prove m�i �m�.nC1/ > m�si �m�.snC1/, equivalently

msnC1�i C 1 > ms.n�i/C1 Cm.s�1/n:

This is a consequence of

snC 1� i � .s.n� i/C 1/D .s � 1/i � 1 and snC 1� i � .s � 1/nD n� i C 1� 1;

with equality precisely when i D 1, s D 2, resp. n D i . Therefore, at least one of the
differences is greater than 1, and the limit of

Pn
iD1.m

�si � m�.snC1//oG.i/ is strictly
greater than the limit of

Pn
iD1.m

�i �m�.nC1//oG.i/. The statement follows.

Example 4.17. Let G � Aut.Tp/, p a prime, be a GGS-group which is defined by the
triple .Cp; Cp; !/, cf. Definition 3.7, where Cp denotes the cyclic group of order p acting
regularly on X . To be a GGS-group means !i D !j for i; j 2 N0, thus we write ! for !1.
This is a .p � 1/-tuple of endomorphisms of Cp . Every such endomorphism is a power
map, hence we may identify ! with an element .e1; : : : ; ep�1/ of Fp�1p . Assume that

e1 C � � � C ep�1 �p 0 (4.4)

and that there is some i 2 Œ1; p � 1�

ei ¤ ep�i : (4.5)

In [16], the order of the congruence quotientsG=StG.n/ is explicitly calculated in terms of
the rank t of the circulant matrix associated to the vector .0; e1; : : : ; ep�1/, i.e., the matrix
with rows being all cyclic permutations of the given vector. Under our assumptions (4.4)
and (4.5), for all n 2 NC,

logp.G=StG.nC 1// D tpn�1 C 1;

and logp.G=StG.1// D 1. Additionally, (4.4) is equivalent to t < p. By Lemma 4.14, for
n > 2,

oG.n/ D p � logp.jLG.n � 1/j/ � logp.jLG.n/j/

D p � logp
pt �p

n�2C1

pt �p
n�3C1

� log
pt �p

n�1C1

pt �p
n�2C1

D 0;

oG.2/ D p � log
ptC1

p
� log

pt �pC1

ptC1
D tp � t .p � 1/ D t;

oG.1/ D p � logp � log
ptC1

p
D p � t:

Consequently, dimHG D t .p � 1/=p
2 (cf. [16] for a more general formula).

We aim to apply Proposition 4.16. Condition (4.5) is equivalent to G being weakly
regular branch (in fact, regular branch) over ŒG; G� by [16, Lemma 3.4]. More precisely,
we have

 1.ŒStG.1/;StG.1/�/ D ŒG;G�p:
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By Proposition 4.4, this implies thatKs�1 D ŒG;G�. We now prove thatG is very strongly
fractal. It is easy to see that StG.1/jx D G for all x 2 X , and, by [16, Lemma 3.3],
 1.StG.n// D StG.n � 1/p for all n � 3. Thus it remains to check if StG.2/jx D StG.1/
for all x 2 X . By the fact that ŒStG.1/; StG.1/�jx D ŒG; G� for all x 2 X and ŒStG.2/ W
ŒStG.1/;StG.1/�� D pp�t � p (see again [16]), we see that StG.2/ contains an element g
such that  1.g/ 2 StG.1/p n ŒG;G�p . Hence at least for one x 2 X

StG.1/ � StG.2/jx > ŒG;G�:

But since ŒStG.1/ W ŒG; G�� D p by [16, Theorem 2.1], this implies StG.2/jx D StG.1/,
and since G is spherically transitive, this holds for all x 2 X , and G is very strongly
fractal. We remark that by [30, Proposition 5.1] the condition (4.4) alone implies that
G is super strongly fractal, but our argument additionally needs (4.5), since otherwise
ŒŒG;G�p W  1.ŒStG.1/;StG.1/�/� D p (cf. [16, Lemma 3.5]).

Now, we may apply Proposition 4.16 to calculate the Hausdorff dimension of Bass.G/:

oBass.G/.s/ D p � t and oBass.G/.2s/ D t

and oBass.G/.n/ D 0 for all other values n 2 NC, hence

dimH Bass.G/ D 1 � lim sup
n!1

nX
iD1

� 1
pi
�

1

pnC1

�
oBass.G/.i/

D 1 � lim sup
n!1

�p � t
ps
C

t

p2s
�
p � t C t

pnC1

�
D 1 �

�p � t
ps
C

t

p2s

�
D
ps�1 � 1

ps�1
C
t .ps � 1/

p2s
:

5. The generalised Basilica groups

Let d; m; s 2 NC with m; s � 2. In the subsequent Sections 5, 6, 7 and 8, we study the
generalised Basilica groups Bass.Od

m/, where Od
m D Dd .Om/ D h�i .a/ j i 2 Œ0; d � 1�i

(cf. Proposition 2.5 and Definition 2.6). For convenience, we use the following notation
for the generators of Bass.Od

m/: let i 2 Œ0; d � 1� and j 2 Œ0; s � 1�, and

ai;j
..D ǰ .�i .a// D .ai;j�1; id; : : : ; id/; for j ¤ 0;

ai;0
..D ˇ0.�i .a// D .ai�1;s�1; : : : ; ai�1;s�1/; for i ¤ 0;

a0;0
..D ˇ0.�0.a// D �.ad�1;s�1; id; : : : ; id/;

where � is the m-cycle .0 1 : : : m � 1/. For any fixed j , the elements ai;j commute and
are of infinite order.

Now, we prove Theorem 1.6, which is obtained as corollaries of results from Sections 3
and 4.
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Proof of Theorem 1.6. Statements (i) and (ii) follow directly from Lemmas 3.1–3.3. Pro-
position 3.5 together with Corollary 3.6 imply statement (ii). Statement (iii) is a con-
sequence of Proposition 3.14 and Corollary 3.15. Thanks to Proposition 4.4, the group Od

m

is s-split. Therefore, statements (iv), (v) and (vi) follow from Corollary 4.7 and Proposi-
tions 4.8 and 3.22. The proof of (vii) can easily be generalised from [21, Proposition 4].
For the special case Basp.Op/, where p is a prime, see [29].

We use Theorem 1.4 to provide a normal generating set for the layer stabilisers of the
generalised Basilica groups. This description of layer stabilisers is crucial in proving the
p-congruence subgroup property of the generalised Basilica groups (see Section 8).

Theorem 5.1. Let n 2N0. Write nD sqC r with r 2 Œ0; s � 1� and q D dkC l � 0 with
l 2 Œ0; d � 1�. Then the n-th layer stabiliser of B D Bass.Od

m/ is given by

StB.n/ D ham
kC1

i;j ; am
k

i 0;j 0 j 0 � is C j � ls C r � 1 < i
0s C j 0 � ds � 1iB :

Proof. Let a be the generator of the m-adic odometer Om. Set G D Dd .Om/ Š Zd .
For every i 2 Œ0; d � 1�, denote by ai D �i .a/ the generators of G. Since powers of the
elements a0; : : : ; ad�1 act on vertices of disjoint levels of them-regular rooted tree T and
they commute with each other, we have

StG.q/ D ham
kC1

0 ; : : : ; am
kC1

l�1 ; am
k

l ; : : : ; am
k

d�1i:

Now observe that for every vertex x 2 X , i 2 Œ0; d � and k 2 N0,

am
k

i jx D a
mk

i�1; am
k

0 jx D a
mk�1

d�1 :

Therefore, StG.q/jx D StG.q � 1/ and henceG is very strongly fractal. A straightforward
calculation using Theorem 1.4 yields the result.

Using the description of the layer stabilisers of G, we obtain Theorem 1.7 as a direct
application of Lemma 4.13 and Proposition 4.16.

Proof of Theorem 1.7. The series of obstructions of G D Od
m is constant m � 1 for all

n 2 NC, signifying Hausdorff dimension 0 (cf. Lemma 4.13). We have seen in the proof
of Theorem 5.1 that Bass.G/ is very strongly fractal. Therefore, by Proposition 4.16 one
has oBass.G/.qs/ D m � 1 for all q 2 NC and oBass.G/.n/ D 0 for all other levels.

According to Lemma 4.13, it is

dimH Bass.G/ D 1 � lim sup
n!1

nX
iD1

.m�i �m�.nC1//oBass.G/.i/

D 1 � .m � 1/ lim sup
n!1

�
m�s

1 �m�sbn=sc

1 �m�s
� bn=scm�.nC1/

�
D 1 � .m � 1/

m�s

1 �m�s
D
ms �m

ms � 1
:

In particular, the Hausdorff dimension is independent of d .
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6. An L-presentation for the generalised Basilica group

Let d;m; s 2NC withm; s � 2. In this section, we will provide a concrete L-presentation
for the generalised Basilica group Bass.Od

m/, hence proving Theorem 1.8. We will later
use this presentation to prove that all generalised Basilica groups Bass.Od

p /with p a prime
have the p-congruence subgroup property.

Definition 6.1 ([3, Definition 1.2]). An L-presentation (or an endomorphic presentation)
is an expression of the form

L D hY j Q j ˆ j Ri;

where Y is an alphabet, Q;R � FY are sets of reduced words in the free group FY on Y
and ˆ is a set of endomorphisms of FY . The expression L gives rise to a group GL
defined as

GL D FY =hQ [ hˆi.R/i
FY ;

where hˆi.R/ denotes the union of the images of R under every endomorphism in the
monoid hˆi generated from ˆ. An L-presentation is finite if Y , Q, ˆ, R are finite.

We now set out to prove Theorem 1.8. To do this, we follow the strategy from [21]
which is motivated from [20]: let

Y D ¹ai;j j i 2 Œ0; d � 1�; j 2 Œ0; s � 1�º: (6.1)

For convenience, we do not distinguish notationally between the generators of Bass.Od
m/

and the free generators for the presentation. Observe that for a fixed j the generators ai;j
and ai 0;j of Bass.Od

m/ commute for all i; i 0 2 Œ0; d � 1�. Write

Q D ¹Œai;j ; ai 0;j � j i; i
0
2 Œ0; d � 1�; j 2 Œ0; s � 1�º � FY (6.2)

and denote by F the quotient of FY by the normal closure of Q in FY . We identify F
with a free product of free abelian groups

F D
©

j2Œ0;s�1�

hai;j j i 2 Œ0; d � 1�i Š Zd � � � � � Zd :

The group Bass.Od
m/ is a quotient of F . Let projWF ! Bass.Od

m/ be the canonical epi-
morphism. Now observe that the subgroup

� D
˝
a
ak0;0
i;j ; a

m
0;0 j .i; j / 2 Œ0; d � 1� � Œ0; s � 1� n ¹.0; 0/º; k 2 Œ0;m � 1�

˛
(6.3)

is normal of index m in F and it is the full preimage of StBass.Od
m/
.1/ under the epi-

morphism proj (cf. Theorem 5.1). We define a homomorphism ‰W�! Fm modelling
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the process of taking sections as follows:

‰.am0;0/ D .ad�1;s�1; : : : ; ad�1;s�1/ D
.. z0;

‰.a
ak0;0
i;0 / D ‰.ai;0/ D .ai�1;s�1; : : : ; ai�1;s�1/ D

.. zi for i ¤ 0;

‰.a
ak0;0
i;j / D .id

�k ; ai;j�1; id�.m�k�1// D.. xi;j;k for j ¤ 0;

‰.a
a�k0;0
i;j / D .id

�.m�k/; a
a�1
d�1;s�1

i;j�1 ; id�.k�1//;

where the ranges of i , j and k are as in (6.3). Clearly, ker.‰/ � ker.proj/. Define

˛.v; k/ D a
mv0Ck
0;0 a

v1
1;0 � � � a

vd�1
d�1;0

(6.4)

for v D .v0; : : : ; vd�1/ 2 Zd and k 2 Œ0;m � 1�,

R D
®
Œai;j ; a

˛.v;k/
i 0;j 0 � j i; i

0
2 Œ0; d � 1�; j; j 0 2 Œ1; s � 1�; k 2 Œ1;m � 1�; v 2 Zd

¯
; (6.5)

where by abuse of notation we interpret ˛.v;k/ and r 2R both as elements of FY and their
images in F . We will prove in Proposition 6.3 that the kernel of ‰ is normally generated
from the image of R in F , implying that the set R belongs to the set of defining relators of
Bass.Od

m/. By definition of the elements ai;j , we may obtain the elements of the set R as
vertex sections. To incorporate these elements to the set of defining relators, we introduce
the following endomorphism of FY defined as

ˆ W

8̂̂<̂
:̂
ai;j 7! ai;jC1 for j ¤ s � 1;

ai;s�1 7! aiC1;0 for i ¤ d � 1;

ad�1;s�1 7! am0;0;

(6.6)

where i 2 Œ0; d � 1� and j 2 Œ0; s � 1�.

Theorem 6.2. The generalised Basilica group admits the L-presentation

L D hY j Q j ˆ j Ri;

where Y , Q, R and ˆ are given by (6.1), (6.2), (6.5) and (6.6).

Observe that for any g 2 Q and r 2 N0, it holds that ˆr .g/ 2 hQFY i. Considering
the presentation defining F we may assume that ˆ is an endomorphism of F and R
is a subset of F . To prove Theorem 6.2, it is enough to show that ker.‰/ D hRF i and
ker.proj/ D

S
r2N0

ˆr .R/. We will obtain the first part from Proposition 6.3 and the
latter from Lemmas 6.5, 6.6 and 6.7.

Proposition 6.3. Let z� be the image of� under‰. Let zv be the product zv00 � � � z
vd�1
d�1

for
every v D .v0; : : : ; vd�1/ 2 Zd . Then z� admits the presentation

h� j Ri;
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where � D ¹xi;j;k ; zi j i 2 Œ0; d � 1�; j 2 Œ1; s � 1�; k 2 Œ0;m � 1�º and

R D

�
Œxi;j;k ; xi 0;j;k �; Œxi;j;k ; x

zv

i 0;j 0;k0
�;
ˇ̌̌̌
i; i 0 2 Œ0; d � 1�; j; j 0 2 Œ1; s � 1�;

Œzi ; zi 0 � k; k0 2 Œ0;m � 1� with k ¤ k0; v 2 Zd

�
:

As a consequence, we obtain that

ker.‰/D
˝
¹Œai;j ; a

˛.v;k/
i 0;j 0 � j i; i

0
2 Œ0; d � 1�; j; j 0 2 Œ1; s � 1�; k 2 Œ1;m � 1�; v 2 Zd º

˛F
;

where ˛.v; k/ is given by (6.4).

Proof. Let A D hai;j j i 2 Œ0; d � 1�; j 2 Œ0; s � 2�iF and Z D hz0; : : : ; zd�1i Š Zd be
subgroups of F and z�, respectively. Notice that z� is a sub-direct product of m copies
of F and the elements xi;j;k and xi 0;j 0;k0 commute if k ¤ k0 or if k D k0 and j D j 0. It
follows from the definition of ‰ that

Am D
˝
xi;j;k j i 2 Œ0; d � 1�; j 2 Œ1; s � 1�; k 2 Œ0;m � 1�

˛z�
� z�:

Hence z� D AmZ, yielding z� D Am ÌZ. Now, since F is a free product of free abelian
groups, the group A is freely generated from the elements of the form

a
a
v0
d�1;s�1

a
v1
0;s�1���a

vd�1
d�2;s�1

i;j ;

where vi 2Z, i 2 Œ0; d � 1� and j 2 Œ0; s � 2�. Therefore, the groupAm is generated from
the elements

xz
v

i;j;k D .id
�k ; a

a
v0
d�1;s�1

a
v1
0;s�1���a

vd�1
d�2;s�1

i;j�1 ; id�.m�k�1//;

where i 2 Œ0; s � 1�, j 2 Œ1; s � 1�, k 2 Œ0;m � 1� and

zv D z
v0
0 � � � z

vd�1
d�1
D .a

v0
d�1;s�1

a
v1
0;s�1 � � � a

vd�1
d�2;s�1

; : : : ; a
v0
d�1;s�1

a
v1
0;s�1 � � � a

vd�1
d�2;s�1

/;

with vi 2 Z. We obtain a presentation of Am as�
xz

v

i;j;k

ˇ̌̌̌
Œxi;j;k ; xi 0;j;k � D Œx

zv

i;j;k
; xz

v0

i 0;j 0;k0
� D id; i; i 0 2 Œ0; d � 1�; j; j 0 2 Œ1; s � 1�;

k; k0 2 Œ0;m � 1� with k ¤ k0; v; v0 2 Zd

�
:

Hence z�, being a semi-direct product, admits the presentation h� j Ri, since conjugating
an element xi;j;k by zi does not yield a new relation. Therefore, the kernel of‰ is normally
generated from the preimage of the set of defining relators for z�. Notice that the preimages
of the elements Œzi ; zi 0 � and Œxi;j;k ; xi 0;j;k � are trivial in �. Hence,

ker.‰/ D
�
Œa
˛.v;k/
i;j ; a

˛.v0;k0/
i 0;j 0 �

ˇ̌̌̌
i; i 0 2 Œ0; d � 1�; j; j 0 2 Œ1; s � 1�;

k; k0 2 Œ0;m � 1� with k ¤ k0; v; v0 2 Zd

��
:
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Indeed, ker.‰/ is normal in F . Given v 2 Zd and k 2 Œ0;m � 1�, define

v D .b.mv0 C k C 1/=mc; v1; : : : ; vd�1/ 2 Zd ;

k D k C 1 .mod m/ 2 Œ0;m � 1�:

Then

˛.v; k/a0;0 D a
mv0CkC1
0;0 a

v1
1;0 � � � a

vd�1
d�1;0

D ˛.v; k/;

˛.v0; k0/a0;0 D a
mv00Ck

0C1

0;0 a
v01
1;0 � � � a

v0
d�1

d�1;0
D ˛.v0; k0/

implies

Œa
˛.v;k/
i;j ; a

˛.v0;k0/
i 0;j 0 �a0;0 D Œa

˛.v;k/a0;0
i;j ; a

˛.v0;k0/a0;0
i 0;j 0 � D Œa

˛.v;k/

i;j ; a
˛.v0;k0/

i 0;j 0 � 2 ker.‰/:

A similar calculation shows Œa˛.v;k/i;j ; a
˛.v0;k0/
i 0;j 0 �a

�1
0;0 2 ker.‰/. We get

ker.‰/D
˝
Œai;j ; a

˛.v;k/
i 0;j 0 � j i; i

0
2 Œ0; d � 1�; j; j 0 2 Œ1; s � 1�; k 2 Œ1;m � 1�; v 2Zd

˛F
:

Notation 6.4. Let i; i 0 2 Œ0; d � 1�, j; j 0 2 Œ1; s � 1�, k 2 Œ1;m � 1�, v 2 Zd and n 2 N0.
Define

�0
..D ker.‰/; �n

..D ‰�1.�mn�1/ for n � 1;

�v;k.i; j; i
0; j 0/ ..D Œai;j ; a

˛.v;k/
i 0;j 0 �; Xn

..D hˆr .�v;k.i; j; i
0; j 0// j r 2 Œ0; n�iF ;

where ˛.v; k/ is given by (6.4). Denote by � the kernel of the epimorphism projWF !
Bass.Od

m/. We will prove �n D Xn and � D
S1
nD0�n, proving Theorem 6.2.

Lemma 6.5. For w 2 F 0, the equality ‰.ˆ.w/a
k
0;0/ D .id�k ; w; id�.m�k�1// holds for

every k 2 Œ0;m � 1�.

Proof. Observe from the definition of ˆ that

ˆ.F / D hai;j ; a
m
0;0 j .i; j / 2 Œ0; d � 1� � Œ0; s � 1� n ¹.0; 0/ºi � �:

Then by direct calculation using the definition of the homomorphism ‰ and ˆ, we get the
desired identity.

Lemma 6.6. The equality �n D Xn holds for all n 2 N0.

Proof. It follows from Proposition 6.3 that �0 D ker.‰/ D X0. The proof proceeds by
induction on n. Since ˆ.F / � �, for every r 2 N0, we have ˆr .�/ � �. Hence Xn � �
for all n 2 N0. Assume for some n � 1 that �n�1 D Xn�1. We will prove that

‰.Xn/ D �
m
n�1 D ‰.�n/:
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Let i; i 0 2 Œ0; d � 1�, j; j 0 2 Œ1; s � 1�, k 2 Œ1;m � 1�, r 2 Œ1; n� and v 2 Zd . For every
ˆr .�v;k.i; j; i

0; j 0// 2 Xn and for every ` 2 Œ0;m � 1�, sinceˆr�1.�v;k.i; j; i 0; j 0// 2 F 0,
we obtain from Lemma 6.5 that

‰..ˆr .�v;k.i; j; i
0; j 0///a

`
0;0/ D .id�`; ˆr�1.�v;k.i; j; i 0; j 0//; id�.m�`�1//:

Since z� is a sub-direct product of m copies of F and Xn�1 is normally generated from
the elements of the form ˆr�1.�v;k.i; j; i

0; j 0//, we obtain that

‰.Xn/ D �
m
n�1 D ‰.�n/:

But since ker.‰j�n/ D ker.‰/ \�n D �0 D X0 D ker.‰/ \ Xn D ker.‰jXn/, we
get �n D Xn, and the result follows by induction.

Lemma 6.7. We have � D
S1
nD0�n.

Proof. Write B for Bass.Od
m/ and recall that projWF ! B is the canonical epimorphism.

Notice that StB.1/ is a quotient of � and further �0 D ker.‰/ � ker.proj/ D �. Pro-
ceeding by induction on n, we will prove that

S1
nD0�n � �. Assume that�n�1 � � for

some n � 1. Let w 2 �n and let wk be the k-th component of ‰.w/. Then wk 2 �n�1
for all k 2 Œ0;m � 1�. Then the first layer sections of proj.w/ 2 StB.1/ act trivially on
the subtrees hanging from the vertices of level one of the m-regular rooted tree. Hence
proj.w/ acts trivially and proj.w/ D id in B . It follows by induction that �n � � for all
n 2 N0. Since �n�1 � �n for all n 2 NC, we obtain

S1
nD0�n � �.

Now, to see the converse choose an arbitrary element w 2 F such that proj.w/ D id
in B . Then by Theorem 5.1 proj.w/ 2 StB.1/ and hence w 2 �. Denote by wk the k-th
component of‰.w/. Then proj.w/D id if and only if proj.wk/D id for all k 2 Œ0;m � 1�,
implying that wk 2 � for all k 2 Œ0;m � 1�. Now repeat this process of taking sections
by replacing w with wk . This process is equivalent to the algorithm solving the word
problem for B , cf. [21, Proposition 5]. Thanks to Corollary 3.15, the word problem for B
is solvable and hence this process terminates in a finite number of steps. This implies the
existence of an element n 2 N0 such that w 2 �n, completing the proof.

To conclude this section, we want to point out that, akin to [21, Proposition 11], one
can introduce a set of d endomorphisms, each corresponding to a generator ai;0, and
obtain a finite L-presentation for Bass.Od

m/. We omit the proof of Theorem 6.8 below
due to its technicality, but a rigorous proof can be found in the PhD thesis of the second
author [27].

Theorem 6.8. The group Bass.Od
m/ admits the following L-presentation:* ai;j ; ˇ̌̌̌

ˇ
Œai;j ; ai 0;j �;

ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ
Œai;j ; a

˛.v;k/
i 0;j 0 �; i; i

02 Œ0; d � 1�;

i 2 Œ0; d � 1�; i; i 02 Œ0; d � 1�; ˆ;‚0; : : : ; ‚d�1 j; j 02 Œ1; s � 1�; k2 Œ1;m � 1�;

j 2 Œ0; s � 1� j 2 Œ0; s � 1� v2 ¹0º � ¹0; 1ºd�1

+
;
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where ˛.v;k/ andˆ are given by (6.4) and (6.6), respectively, and‚i 0 are endomorphisms
of the free group on the set of generators defined as

‚i 0 W

8̂̂<̂
:̂
ai;j 7! ai;ja

ai 0;0
i;j for j ¤ 0; i 0 ¤ 0;

ai;j 7! ai;ja
am0;0
i;j for j ¤ 0; i 0 D 0;

ai;0 7! ai;0:

7. Structural properties of the generalised Basilica groups

Let d;m; s 2 NC with m; s � 2. Here we prove some structural properties of the general-
ised Basilica groups Bas2.Od

m/. These results reflect a significant structural dissimilarity
between Bas2.Od

m/ and Bass.Od
m/ for s > 2. This structural dissimilarity plays a vital role

when we consider the p-congruence subgroup property of the generalised Basilica groups,
see Figure 5, which is treated in Section 8.

For convenience, we omit the subscript from  1 and identify an element g 2 StB.1/
with its image under the map  1.

Proposition 7.1. Let B be the generalised Basilica group Bass.Od
m/. Then  �1..B 0/m/

is a subgroup of B 0 and

B 0= �1..B 0/m/ D
˝
ci;j;k 

�1..B 0/m/ j i 2 Œ0; d � 1�; j 2 Œ1; s � 1�; k 2 Œ1;m � 1�
˛

Š Zd.m�1/.s�1/;

where ci;j;k D Œai;j ; ak0;0�. In particular, it holds that  �1..B 0/m/ � B 00.

Proof. Notice that B 0 D hŒai;j ; ai 0;j 0 � j i; i 0 2 Œ0; d � 1�; j; j 0 2 Œ0; s � 1�iB . For i; i 0 2
Œ0; d � 1� and j; j 0 2 Œ1; s � 1�, we have Œai;j ; ai 0;j � D id and for j ¤ j 0

Œai;j ; ai 0;j 0 � D .Œai;j�1; ai 0;j 0�1�; id�.m�1//;

Œai;j ; ai 0;0� D .Œai;j�1; ai 0�1;s�1�; id�.m�1// for i 0 ¤ 0;

Œai;j ; a
m
0;0� D .Œai;j�1; ad�1;s�1�; id

�.m�1//:

Therefore, we obtain

hŒai;j ; ai 0;j 0 � j i; i
0
2 Œ0; d � 1�; j; j 0 2 Œ0; s � 1�i � ¹idº � � � � � ¹idº �  .B 0/;

yielding that .B 0/m �  .B 0/ by Lemma 2.1.
Now, recall our definition ci;j;k D Œai;j ; ak0;0� and

C D hci;j;k j i 2 Œ0; d � 1�; j 2 Œ1; s � 1�; k 2 Œ1;m � 1�i:

We claim that B 0= �1..B 0/m/ D xC , where xC denotes the image of C in the quotient
group. For convenience, we will write the equivalence � �1..B 0/m/ without the subscript.
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Observe that, for i; i 0 2 Œ0; d � 1�, j; j 0 2 Œ1; s � 1� and k 2 Œ1;m � 1�,

Œai;j ; ai 0;j 0 � � id; Œai;j ; ai 0;0� � id for i 0 ¤ 0; Œai;j ; a0;0� D ci;j;1;

and

ci;j;k D Œai;j ; a
k
0;0� � .a

�1
i;j�1; id

�.k�1/; ai;j�1; id�.m�k�1//:

Therefore, to prove the claim, it suffices to show that xC is normal in B= �1..B 0/m/. Let
i; i 0 2 Œ0; d � 1�, j; j 0 2 Œ1; s � 1� and k 2 Œ1;m � 1�. An easy calculation yields

c
a˙1
i 0;j 0

i;j;k
� ci;j;k and c

a˙1
i 0;0

i;j;k
� ci;j;k for i 0 ¤ 0:

Furthermore,

c
a0;0
i;j;k
� .id; a�1i;j�1; id

�.k�1/; ai;j�1; id�.m�k�2// � c�1i;j;1ci;j;kC1 if k ¤ m � 1;

c
a0;0
i;j;k
� .ai;j�1; a

�1
i;j�1; id

�.m�2// � c�1i;j;1 if k D m � 1;

c
a�10;0
i;j;k
� .id�.k�1/; ai;j�1; id�.m�k�1/; a�1i;j�1/ �

´
c�1i;j;m�1ci;j;k�1 if k ¤ 1;

c�1i;j;m�1 if k D 1;

implying that B 0= �1..B 0/m/ D xC . Observe that, for a fixed i 2 Œ0; d � 1� and j 2
Œ1; s � 1�,

Zm�1 Š

²
.a
x1
i;j�1; : : : ; a

xm
i;j�1/

ˇ̌̌
xr 2 Z;

mX
rD1

xr D 0

³
D hxci;j;k j k 2 Œ1;m � 1�i � xC :

Since B=B 0 Š Zds (Theorem 1.6 (iv)), this yields

B 0= �1..B 0/m/ D xC D
Y

.i;j /2Œ0;d�1��Œ1;s�1�

hxci;j;k j k 2 Œ1;m � 1�i Š Zd.m�1/.s�1/:

Now we prove Theorem 1.9. In addition, we provide a generating set for the quotient
group 2.Bass.Od

m//=3.Bass.Od
m//.

Theorem 7.2. Let B be the generalised Basilica group Bass.Od
m/. We have:

(i) For s D 2, B 0=3.B/ D hŒai;0; ai 0;1� 3.B/ j i; i 0 2 Œ0; d � 1�i Š Zd
2
.

(ii) For s > 2, the quotient groupB 0=3.B/ŠCds�2m �Cm2 . Moreover, it is generated
from the set®
Œai;j ; a0;0�3.B/; Œa0;1; ai 0;0�3.B/ j i 2 Œ0; d � 1�; i

0
2 Œ1; d � 1�; j 2 Œ1; s � 1�

¯
:

Proof. (i) We use Theorem 6.2 to obtain a presentation forB=3.B/. Take Y ,Q,ˆ andR
as given in Theorem 6.2 and set Q0 D Q [ 3.FY /, where FY is the free group on Y .
If s D 2, the set R becomes

R D
®
Œai;1; a

˛.v;k/
i 0;1 � j i; i 0 2 Œ0; d � 1�; k 2 Œ1;m � 1�; v 2 Zd

¯
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and for every Œai;1; a
˛.v;k/
i 0;1 � 2 R,

Œai;1; a
˛.v;k/
i 0;1 � �3.FY / Œai;1; ai 0;1� 2 hQ

0
i
FY ;

where ˛.v; k/ is given by (6.4). Since hQ0i is invariant underˆ, the presentation hY jQ0i
defines the group B=3.B/, yielding that

B 0=3.B/ D hŒai;0; ai 0;1� j i; i
0
2 Œ0; d � 1�i Š Zd

2

:

(ii) Consider again Y , Q, ˆ and R as given in Theorem 6.2 and Q0 D Q [ 3.FY /.
First observe that the element

Œai;j ; a
˛.v;k/
i 0;j 0 � �3.FY / Œai;j ; ai 0;j 0 �

belongs to hQ0iFY if and only if j D j 0. Setting

S D ¹Œai;j ; ai 0;j 0 � j i; i
0
2 Œ0; d � 1�; j; j 0 2 Œ1; s � 1� with j ¤ j 0º � FY ;

we notice that the groupB=3.B/ admits theL-presentation hY jQ0 jˆ j Si. Now, define

T D

´ Œai;j ; ai 0;0�; Œai 00;1; ai 0;0�; ˇ̌̌̌
ˇ i 2 Œ0; d � 1�;Œai;j ; a0;0�

m; Œai 0;1; a0;0�
m; Œa0;1; ai 0;0�

m; i 0; i 00 2 Œ1; d � 1�;

Œa0;1; a0;0�
m2 j 2 Œ2; s � 1�

µ
;

and N D Q0 [ S [ T as subsets of FY . We claim that ˆr .S/ � NFY for all r 2 N0, and
hence the presentation hY j N i defines the group B=3.B/. Therefore, the commutator
subgroup of B=3.B/ is generated from the set²

Œai;j ; a0;0�; Œai 0;1; a0;0�;
ˇ̌̌̌
i 2 Œ0; d � 1�; i 0 2 Œ1; d � 1�;

Œa0;1; ai 0;0�; Œa0;1; a0;0� j 2 Œ2; s � 1�

³
;

yielding that

B 0=3.B/ Š Cd.s�2/m � Cd�1m � Cd�1m � Cm2 D Cds�2m � Cm2 :

Now, let i; i 0 2 Œ0; d � 1�. Observe first that, for j; j 0 2 Œ1; s � 2�,

ˆ.Œai;j ; ai 0;j 0 �/ D Œai;jC1; ai 0;j 0C1� 2 S:

To prove the claim, it is enough to consider the elements of the form ˆr .Œai;j ; ai 0;j 0 �/

with either j or j 0, but not both, equal to s � 1. Without loss of generality suppose that
1 � j � s � 2 and j 0 D s � 1. Since 3.FY / � NFY , we work modulo 3.FY /. We have

ˆ.Œai;j ; ai 0;s�1�/ �

´
Œai;jC1; ai 0C1;0�

m if i 0 D d � 1;

Œai;jC1; ai 0C1;0� otherwise.

For convenience, the images of ˆ2.Œai;j ; ai 0;s�1�/ and ˆ3.Œai;j ; ai 0;s�1�/ are given in the
tabular form, see Tables 1 and 2.

Observe that ˆr .Œai;j ; ai 0;s�1�/ 2 NFY for r 2 Œ1; 3�. By iterating the process, we see
that ˆr .Œai;j ; ai 0;j 0 �/ 2 NFY for all r 2 N0 and Œai;j ; ai 0;j 0 � 2 S .
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j ¤ s � 2 j D s � 2

i 0 ¤ d � 1
i ¤ d � 1

Œai;jC2; ai 0C1;1�
ŒaiC1;0; ai 0C1;1�

i D d � 1 Œa0;0; ai 0C1;1�
m

i 0 D d � 1
i ¤ d � 1

Œai;jC2; a0;1�
m

ŒaiC1;0; a0;1�
m

i D d � 1 Œa0;0; a0;1�
m2

Table 1. Images of ˆ2.Œai;j ; ai 0;s�1�/.

j … ¹s � 3; s � 2º j D s � 2 j D s � 3

i 0 ¤ d � 1
i ¤ d � 1

Œai;jC3; ai 0C1;2�
ŒaiC1;1; ai 0C1;2� ŒaiC1;0; ai 0C1;2�

i D d � 1 Œa0;1; ai 0C1;2�
m Œa0;0; ai 0C1;2�

m

i 0 D d � 1
i ¤ d � 1

Œai;jC3; a0;2�
m

ŒaiC1;1; a0;2�
m ŒaiC1;0; a0;2�

m

i D d � 1 Œa0;1; a0;2�
m2 Œa0;0; a0;2�

m2

Table 2. Images of ˆ3.Œai;j ; ai 0;s�1�/.

Lemma 7.3. LetB be the generalised Basilica group Bass.Od
m/. The following assertions

hold:

(i) For s D 2, B 00 D  �1.3.B/m/.

(ii) For s > 2, B 00 �  �1.3.B/
m/.

Proof. We first prove that 3.B/m �  .B 00/ for all s � 2. From Lemma 2.1, since

3.B/ D hŒŒai1;j1 ; ai2;j2 �; ai3;j3 � j i1; i2; i3 2 Œ0; d � 1�; j1; j2; j3 2 Œ0; s � 1�i
B ;

and B is self-similar and fractal (Theorem 1.6 (ii)), it is enough to prove that the set

¹.ŒŒai1;j1 ; ai2;j2 �; ai3;j3 �; id
�.m�1// j i1; i2; i3 2 Œ0; d � 1�; j1; j2; j3 2 Œ0; s � 1�º (7.1)

is contained in  .B 00/. Let i1; i2; i3 2 Œ0; d � 1� and j1; j2; j3 2 Œ0; s � 1�. We split the
proof into four cases.

Case 1: j1 D j2 D j3 D s � 1. Clearly, ŒŒai1;s�1; ai2;s�1�; ai3;s�1� D id.
Case 2: j3 ¤ s � 1. In light of Proposition 7.1, the elements .Œai1;j1 ; ai2;j2 �; id

�.m�1//

and .ai3;j3 ; a
�1
i3;j3

; id�.m�2// D Œai3;j3C1; a0;0�
�1 belong to  .B 0/, implying that

.ŒŒai1;j1 ; ai2;j2 �; ai3;j3 �; id
�.m�1// 2  .B 00/:

Now, observe from Proposition 7.1 that  .B 00/ � .B 00/m. Therefore, if there exist
g D .g0; : : : ; gm�1/; h D .h0; : : : ; hm�1/ 2 B such that gi �B 00 hi for all i 2 Œ0;m � 1�
then g � .B 00/ h.
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Case 3: j3 D s � 1, j1 ¤ s � 1 and j2 ¤ s � 1. Now, from the Hall–Witt identity
(see [28, p. 123]), we can easily derive that

ŒŒy; x�; z�ŒŒz; y�; x�ŒŒx; z�; y� �B 00 ŒŒy; x�; z
y �ŒŒz; y�; xz �ŒŒx; z�; yx � D id;

for all x; y; z 2 B . Setting x D ai1;j1 , y D ai2;j2 and z D ai3;j3 , we get that the element

.ŒŒy; x�; z�; id�.m�1//�1 � .B 00/ .ŒŒz; y�; x�ŒŒx; z�; y�; id�.m�1//

belongs to  .B 00/, as the right-hand side product belongs to  .B 00/ by Case 2.
Case 4: j3 D s � 1 D j1, j2 ¤ s � 1 or j3 D s � 1 D j2, j1 ¤ s � 1. Notice that

ŒŒai1;j1 ; ai2;s�1�; ai3;s�1� �B 00 ŒŒai2;s�1; ai1;j1 �; ai3;s�1�
�1;

thus, it is enough to consider the first case. We claim that, for every j 2 Œ0; s � 1�, it
holds ŒŒai1;j ; ai2;0�; ai3;j � �B 00 id. Then, by taking the j2-th projection of the element
ŒŒai1;s�1; ai2;j2 �; ai3;s�1�, we obtain

 j2.ŒŒai1;s�1; ai2;j2 �; ai3;s�1�/ D .ŒŒai1;.s�1�j2/; ai2;0�; ai3;.s�1�j2/�; id
�.mj2�1//

� j2 .B
00/ id;

implying ŒŒai1;s�1; ai2;j2 �; ai3;s�1� �B 00 id, and hence (7.1) follows.
If i2 D 0 or j D 0, it is then immediate that ŒŒai1;j ; ai2;0�; ai3;j � D id. Assume that

i2 ¤ 0 and j ¤ 0. From the presentation of B given in Theorem 6.2, we have

ŒŒai1;j ; ˛.v; k/�; ai3;j � D Œa
�1
i1;j
a
˛.v;k/
i1;j

; ai3;j � D Œa
�1
i1;j
; ai3;j �

a
˛.v;k/
i1;j Œa

˛.v;k/
i1;j

; ai3;j � D id;

where ˛.v; k/ is given by (6.4). Now, by setting v D .0�.i2�1/; 1; 0�.m�i2�1// and k D 1,
we get ˛.v; k/ D a0;0ai2;0 and consequently

id D ŒŒai1;j ; a0;0ai2;0�; ai3;j � D ŒŒai1;j ; ai2;0�Œai1;j ; a0;0�
ai2;0 ; ai3;j �

�B 00 ŒŒai1;j ; ai2;0�; ai3;j �ŒŒai1;j ; a0;0�
ai2;0 ; ai3;j � �B 00 ŒŒai1;j ; ai2;0�; ai3;j �:

Next we prove (i). Let s D 2, and note that it suffices to prove that B 0= �1.3.B/m/
is abelian. We use the fact that the commutator subgroup can be described by B 0 D
hŒai1;1; ai2;0� j i1; i2 2 Œ0; d � 1�i

B as s D 2.
Looking at the section decomposition of these generators,

Œai1;1; ai2;0� D . Œai1;0; ai2�1;1�; id
�.m�1// for i2 ¤ 0;

Œai1;1; a0;0� D .a
�1
i1;0
; ai1;0; id

�.m�2//;

we immediately see that they commute modulo 3.B/m. Therefore, B 0= �1.3.B/m/ is
abelian.
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(ii) The inclusion  �1.3.B/m/ � B 00 has been already proven above. We prove that
 �1.3.B/

m/ is a proper subgroup of B 00, by showing that B 0= �1.3.B/m/ is non-
abelian. Suppose to the contrary that B 0= �1.3.B/m/ is abelian. Then, for every i 2
Œ0; d � 1� and j 2 Œ2; s � 1�

id � �1.3.B/m/ ŒŒai;j ; a0;0�; Œa0;1; a0;0�� D .Œa
�1
i;j�1; a

�1
0;0�; Œai;j�1; a0;0�; id

�.m�2//:

This implies Œai;j�1; a0;0� �3.B/ id, which is a contradiction to Theorem 7.2 (ii).

8. Congruence properties of the generalised Basilica groups

Here we prove that the generalised Basilica group Bass.Od
p / has the p-CSP for d; s 2NC

with s > 2 and p a prime. We follow the strategy from [18], where it is proved that the
original Basilica group B D Bas2.O2/ has the 2-congruence subgroup property. However,
on account of Theorem 7.2 and Lemma 7.3, our reasoning must be different, and we will
use Theorem 5.1.

Let G be a subgroup of the automorphism group of the p-regular rooted tree T and
let C be the class of all finite p-groups.

Definition 8.1 ([18, Definition 5]). A subgroup G of Aut.T / has the p-congruence sub-
group property (p-CSP) if every normal subgroup N E G satisfying G=N 2 C contains
some layer stabiliser inG. The groupG has the p-CSP modulo a normal subgroupM EG

if every normal subgroup N E G satisfying G=N 2 C and M � N contains some layer
stabiliser in G.

By setting C as the class of all finite p-groups in [18, Lemma 6], we obtain the fol-
lowing result:

Lemma 8.2. Let G be a subgroup of Aut.T / and N E M E G. If G has the p-CSP
modulo M and M has the p-CSP modulo N then G has the p-CSP modulo N .

Let d; s 2 NC with s > 2 and let p be a prime. Set B D Bass.Od
p /. From Theo-

rem 1.6 (vi), B is weakly regular branch over its commutator subgroup B 0 and, from
Lemma 7.3, we obtain

B 0 � 3.B/ � B
00 >  �1.3.B/

p/:

We will prove that

(1) B has the p-CSP modulo 3.B/,

(2) 3.G/ has the p-CSP modulo  �1.3.B/p/.

Then Theorem 1.10 follows by a direct application of [18, Theorem 1]. Applying Lem-
ma 8.2 to Propositions 8.3 and 8.4, we will obtain step (1). Similarly, applying Lem-
ma 8.2 to Propositions 8.7 and 8.8, yields step (2). Now, set M ..D  �1..B 0/p/ and N ..D
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B

B 0

3.B/M

3.B/ M

3.B/ \M

 �1.3.B/
p/

Proposition 8.3

Proposition 8.4

Proposition 8.8

Proposition 8.7

Figure 5. The steps of the proof of Theorem 1.10, where M WD  �1..B 0/p/.

 �1.3.B/
p/. Considering Proposition 7.1, Theorem 7.2 and Lemma 7.3, we summarise

the proof of Theorem 1.10 in Figure 5.

Proposition 8.3. The group B has the p-CSP modulo B 0.

Proof. Set bisCj D ai;j for all i 2 Œ0; d � 1� and j 2 Œ0; s � 1�. Define, for r 2 Œ0; ds � 1�,
Ar D hbr ; : : : ; bds�1iB

0 and set Ads D B 0. We will prove that Ar has the p-CSP modulo
ArC1 for all r 2 Œ0; ds � 1�. Then the result follows from Lemma 8.2.

Clearly,Ar=ArC1 StAr .n/ 2 C and, by Theorem 1.6 (iv),Ar=ArC1 D hbri Š Z. In Z,
the subgroups of index a power of p are totally ordered, whence it suffices to prove
that jAr W ArC1 StAr .n/j tends to infinity when n tends to infinity. In fact, we prove
that bp

n

r … ArC1 StAr .nds C r C 1/ for n 2 N0. Assume to the contrary that bp
n

r 2

ArC1 StAr .nds C r C 1/. In particular, bp
n

r 2 ArC1 StB.nds C r C 1/. Thanks to Theo-
rem 5.1, we have StB.ndsC r C 1/D hb

pnC1

0 ; : : : ; b
pnC1

r ; b
pn

rC1; : : : ; b
pn

ds�1
iB : Thus, there

exists x0; : : : ; xds�1 2 Z such that

bp
n

r �B 0 b
x0p

nC1

0 � � � bxrp
nC1

r b
xrC1
rC1 � � � b

xds�1
ds�1

;

contradicting Theorem 1.6 (iv).

Proposition 8.4. The group B 0 has the p-CSP modulo 3.B/.

Proof. Notice from Theorem 7.2 (ii) that 3.B/ is a subgroup of index a power of p in B 0

and hence it suffices to prove that StB 0.n/ is contained in 3.B/ for some n, equivalently
jB 0=3.G/StB 0.n/j D jB 0=3.B/j. Observe that

B 0=3.B/StB 0.n/ Š B 0 StB.n/=3.B/StB.n/:
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Now, in light of Theorem 7.2 (ii), we choose n 2 NC such that the set

¹Œai;j ; a0;0� j i2 Œ0; d � 1�; j 2 Œ1; s � 1�º [ ¹Œa0;1; ai 0;0� j i
0
2 Œ1; d � 1�º [ ¹Œa0;1; a0;0�

p
º

has trivial intersection with StB.n/. One can easily compute from the description of the
stabilisers in Theorem 5.1 that n D ds C 2 is the smallest number with this property. We
construct a groupH which admits an epimorphism from the group B=3.B/StB.dsC 2/
and see that commutator subgroup H 0 has the desired size.

Now, fix n D ds C 2 and set � D B=3.B/ StB.n/. Again, from Theorem 5.1, we
have StB.n/D hb

p2

0 ; b
p2

1 ; b
p
2 ; : : : ; b

p

ds�1
iB , where bisCj D ai;j as in the proof of Propos-

ition 8.3. By a straightforward calculation using the presentation of B=3.B/, given in the
proof of Theorem 7.2 (ii), we obtain the following presentation for �:

h� j Ri; (8.1)

where � D ¹br j r 2 Œ0; ds � 1�º and

R D

*
b
p2

0 ; b
p2

1 ; b
p
t ; Œbt ; bt 0 �;

ˇ̌̌̌
ˇ t; t

0 2 Œ2; ds � 1�

Œb1; bt 00 �; t 00 2 Œ2; ds � 1�; not a multiple of s
Œb0; bis�; 3.F / i 2 Œ1; d � 1�

+
;

where F is the free group on the set of generators of � .
Let R be the ring Z=p2Z. Let UTdsC1.R/ � GLdsC1.R/ be the group of all upper

triangular matrices over R with entries 1 along the diagonal. Denote by Ei;j .`/ the ele-
ment of UTdsC1.R/ with the entry ` 2 R at the position .i; j /. For i 2 Œ1; d.s � 1/ � 1�
and j 2 Œ1; d � 1�, define

xi D Ei;ds�1.p/; yj D Ed.s�1/Cj;ds.p/;

y D Eds�1;ds.1/; z D Eds;dsC1.1/;

and define H to be the subgroup of UTdsC1.R/ generated by the set ¹xi ; yj ; y; zº. By
abuse of notation denote the image of the set of generators of H in the quotient group
H=3.H / by the same symbols and set H D H=3.H /. By an easy computation, we
obtain

x
p
i D y

p
j D y

p2
D zp

2

D Œxi ; xi 0 � D Œyj ; yj 0 � D Œy; yj � D Œxi ; yj � D Œxi ; z� D id;

for all i; i 0 2 Œ1; d.s � 1/ � 1� and j; j 0 2 Œ1; d � 1�. Now, fix a bijection ˛ from the set
¹br j r 2 Œ2; ds � 1� n ¹s; 2s; : : : ; .d � 1/sº to the set ¹xi j i 2 Œ1; d.s � 1/ � 1�º. Define
a map ' from the set of generators of � to the set of generators of H by

'.b0/ D y; '.b1/ D z;

'.bjs/ D yj for j 2 Œ1; d � 1�; '.br / D ˛.br / otherwise:
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Then ' extends to an epimorphism � ! H , since as seen above, '.br / satisfies all the
relations of the given presentation (8.1) of the group � . Furthermore, observe that the
commutator subgroup of H is generated by the union of the sets

¹Œxi ; y� j i 2 Œ1; d.s � 1/ � 1�º [ ¹Œyj ; z� j j 2 Œ1; d � 1�º [ ¹Œy; z�º:

Hence,

j� 0j � j'.� 0/j D jH 0j D pd.s�1/�1pd�1p2 D pds :

Indeed, j� 0j � jB 0=3.B/j D pds , and thus j� 0j D pds , completing the proof.

We now need two general lemmas.

Lemma 8.5. Let H � Aut.T / and L;K E H with L � K and let C be the class of all
finite p-groups. Assume further that H=K 2 C and H=L is abelian. If H has the p-CSP
modulo L, then K has the p-CSP property modulo L.

Proof. Let zK be a normal subgroup ofK satisfying L � zK andK= zK 2 C . SinceH=L is
abelian, zK=L is normal inH=L and hence zK is normal inH . Also notice thatH= zK 2 C .
As H has the p-CSP, there exists n 2 N0 such that StH .n/ � zK. In particular, StK.n/ D
StH .n/ \K � StH .n/ � zK, completing the proof.

Lemma 8.6. Let H � Aut.T / and L;K E H . If KL has the p-CSP modulo L, then K
has the p-CSP property modulo K \ L.

Proof. Choose zK EK withK \L� zK andK= zK 2C . Then, zKLEKL andKL= zKLŠ
K= zK 2 C : As KL has the p-CSP property modulo L, it holds that StKL.n/ � zKL for
some n. Thus, StK.n/ D StKL.n/ \K � zKL \K D zK.

Proposition 8.7. The group 3.B/ has the p-CSP modulo 3.B/ \M .

Proof. We prove that 3.B/M has the p-CSP moduloM . Then by Lemma 8.6 we obtain
the result. It follows from Proposition 7.1 and Theorem 7.2 (ii) that B 0=M is abelian and
that B 0=3.B/M 2 C , respectively. Thanks to Lemma 8.5, it is enough to prove that B 0

has the p-CSP modulo M .
Let i 2 Œ0; d � 1�, j 2 Œ1; s � 1� and k 2 Œ1; p � 1�. Define ci.s�1/Cj ..D bisCj

..D ai;j .
Set t D i.s � 1/C j and r D is C j and note that ct is a relabeling of the elements br
(defined in the proof of Proposition 8.3) by excluding the elements of the form bis for
i 2 Œ0; d � 1�. From Proposition 7.1, we have

B 0=M D hŒai;j ; a
k
0;0� j i 2 Œ0; d � 1�; j 2 Œ1; s � 1�; k 2 Œ1; p � 1�i:

Set ` D .k � 1/.ds � d/C t and e` D Œct ; ak0;0�. Then,

 .e`/ D  .Œct ; a
k
0;0�/ D  .Œbr ; a

k
0;0�/ D .b

�1
r�1; id

�.k�1/; br�1; id�.p�k�1//:
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Set M` D he`; : : : ; e.p�1/.ds�d/iM , M.p�1/.ds�d/C1 DM for ` 2 Œ1; .p � 1/.ds � d/�.
It follows from Theorem 1.6 (iv) that M`=M`C1 D he`i Š Z. Further, we will prove
that jM` W M`C1 StM`

.n/j tends to infinity as n tends to infinity. Assume to the con-
trary that there are n; n0 2 NC such that for all zn � n0, ep

n

`
2M`C1 StM`

.zn/. There exist
x`C1; : : : ; x.p�1/.ds�d/ 2 Z such that

e
pn

`
e
x1
`C1
� � � e

x.p�1/.ds�d/
.p�1/.ds�d/

2M StM`
.zn/ �M StB.zn/;

hence

 .e
pn

`
e
x1
`C1
� � � e

x.p�1/.ds�d/
.p�1/.ds�d/

/ 2 .B 0/p � .StB.zn � 1//p:

Consider the k-th coordinate, xbp
n

r�1 2 B
0 StB.zn � 1/, where x is a product of elements

of the form br 0 such that r 0 > r � 1. Then x 2 Ar , where Ar is defined as in the proof
of Proposition 8.3. This implies bp

n

r�1 2 Ar StB.zn/ for all zn � n0 � 1; which contradicts
Proposition 8.3.

Proposition 8.8. The group 3.B/ \M has the p-CSP modulo N .

Proof. It is straightforward from Theorem 7.2 (ii) that the group M=N is a finite abelian
and M=N 2 C . By Lemma 8.5, it suffices to prove that M has the p-CSP modulo N .
From Proposition 8.4, it follows that StB 0.n/ � 3.B/ for some n. Therefore,

 .StM .nC 1// � .StB 0.n//p � 3.B/p;

and hence StM .nC 1/ �  �1..StB 0.n//p/ � N .

Proof of Theorem 1.10. By applying Lemma 8.2 to Propositions 8.3 and 8.4, we obtain
that the group B has the p-CSP modulo 3.B/. Further application of Lemma 8.2 to
Propositions 8.7 and 8.8 yields that 3.G/ has the p-CSP modulo N . Now, the result
follows by [18, Theorem 1].
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