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All finitely generated 3-manifold groups are
Grothendieck rigid

Hongbin Sun

Abstract. In this paper, we prove that all finitely generated 3-manifold groups are Grothendieck
rigid. More precisely, for any finitely generated 3-manifold group G and any finitely generated
proper subgroupH <G, we show that the inclusion induced homomorphism yi W yH ! yG on profinite
completions is not an isomorphism.

1. Introduction

For a group G, its profinite completion is the inverse limit of the direct system of its finite
quotients (see Section 2 for definition) and is denoted by yG. There is always a natural
homomorphism G ! yG, and it is injective if and only if G is residually finite.

A group homomorphism uWH ! G induces a homomorphism yuW yH ! yG on their
profinite completions (see Section 2 for definition). During his study of linear representa-
tions of groups, Grothendieck asked the following question in [5].

Problem 1.1. Let uWH ! G be a homomorphism of finitely presented residually finite
groups such that yuW yH ! yG is an isomorphism. Is u an isomorphism?

For Problem 1.1, it suffices to consider the case where u is injective, since any non-
trivial element in the kernel of u gives a nontrivial element in the kernel of yu (since H
is residually finite). So we can assume that H is a subgroup of G, and u is the inclu-
sion homomorphism. According to convention, we rewrite the inclusion homomorphism
as i WH ! G, and we may simply write it as H ! G when no confusion is caused.
Similarly, we use yH ! yG to denote the inclusion induced homomorphism on profinite
completions when it causes no confusion.

Now we review some terminologies introduced by Long and Reid in [8]. We assume
all groups are finitely generated and residually finite unless otherwise stated. Let G be
a group and let H < G be a subgroup. We say that .G;H/ is a Grothendieck pair if H is
a proper subgroup of G, and the inclusion induced homomorphism yH ! yG on profinite
completions is an isomorphism. Thus, it provides a negative answer to Problem 1.1 if
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both G andH are finitely presented. Moreover, we say that G is Grothendieck rigid if for
any finitely generated proper subgroupH <G, .G;H/ is not a Grothendieck pair. In other
words, G is Grothendieck rigid if for any finitely generated proper subgroup H < G, the
inclusion induced homomorphism yH ! yG is not an isomorphism.

In [10], Platonov and Tavgen’ constructed Grothendieck pairs .G; H/ consisting of
finitely generated (but infinitely presented) residually finite groups, thus giving a partial
negative answer to Problem 1.1. Then in [3], Bridson and Grunewald generalized the work
in [10] to construct Grothendieck pairs .G;H/ consisting of finitely presented residually
finite groups, thus answering Problem 1.1 negatively.

Now we restrict to the category of finitely generated 3-manifold groups and their
finitely generated subgroups. Note that all these groups are automatically finitely presen-
ted (by [13]) and residually finite (by [7] and the geometrization).

In [8], Long and Reid gave the first result on Grothendieck rigidity of 3-manifold
groups. They proved that groups of all closed geometric 3-manifolds and all finite volume
hyperbolic 3-manifold groups are Grothendieck rigid. Moreover, in [2], Boileau and Friedl
proved that groups of all compact, connected, orientable, irreducible 3-manifolds with
empty or tori boundary are Grothendieck rigid.

In this paper, we generalize the results in [8] and [2] to prove that all finitely generated
3-manifold groups are Grothendieck rigid.

Theorem 1.2. Let M be a 3-manifold with finitely generated fundamental group G D
�1.M/. Then, for any finitely generated proper subgroup H < G, the inclusion induced
homomorphism yH ! yG on profinite completions is not an isomorphism. In other words,
�1.M/ is Grothendieck rigid.

Note that our proof of Theorem 1.2 is independent of the proofs in [8] and [2]. The
new ingredient is the author’s work in [15], which characterizes separability of subgroups
of 3-manifold groups (see Sections 2 and 3 for more details).

The starting point of our proof of Theorem 1.2 is a fundamental observation of Long
and Reid in [8] (Lemma 2.2 in the present paper): if H < G is a proper subgroup that is
separable in G, then .G;H/ is not a Grothendieck pair. So we only need to consider non-
separable subgroups H < G D �1.M/. By the author’s characterization of nonseparable
subgroups of 3-manifold groups [15], there exists a subgroup H0 < H < G, such that
the normalizer of H0 in H (denoted by NH .H0/) contains H0 as a finite index subgroup,
i.e., ŒNH .H0/ WH0� <1, while the normalizer ofH0 inG satisfies ŒNG.H0/ WH0�D1.
Then we use tools in profinite groups and profinite graphs to prove that the above behavior
of normalizers passes to the profinite completion, which implies that yH ! yG is not an
isomorphism.

The organization of this paper is summarized as follows. In Section 2, we review
basic concepts on profinite completions of groups and subgroup separability, in particular,
we recall Long and Reid’s observation that separable subgroups do not give Grothen-
dieck pairs. In Section 3, we consider a graph of group structure on H and the author’s
characterization of separability of H < �1.M/. Then we construct the desired subgroup
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H0 <H , which is contained in a vertex groupH v <H as a finite index subgroup. In Sec-
tion 4, we review basic concepts on graphs of profinite groups and the associated actions
on profinite Bass–Serre trees. Then we use the graph of profinite group structure on yH
to prove that ŒN yH . yH0/ W yH0� < 1. Actually, in Sections 3 and 4, we need some mild
assumptions on the 3-manifold M (Conditions 3.1), so that the characterization in [15]
is applicable. In Section 5, we first prove the Grothendieck rigidity for groups of 3-
manifolds satisfying Conditions 3.1, then we prove it for all finitely generated 3-manifold
groups.

2. Preliminaries on profinite completions and subgroup separability

In this section, we first review some basic concepts on profinite completions of groups,
then we review subgroup separability and prove the fundamental observation (Lemma 2.2)
for the proof of Theorem 1.2.

2.1. Profinite completions of groups

All the following material on profinite groups can be found in Ribes and Zalesskii’s
book [12]. In the current paper, when we talk about groups, we mean abstract groups,
and we will emphasize profinite groups when we mean it. The notation of any profinite
group has a hat y on it, even if the profinite group is not the profinite completion of an
abstract group.

Let G be a finitely generated group, and let N be the set of all finite index normal
subgroups ofG. ForN1;N2 2N withN1 <N2, there is a natural quotient homomorphism
G=N1 ! G=N2. Then the profinite completion of G is defined to be the inverse limit of
the family of finite quotients ¹G=N ºN2N :

yG D lim
 �
N2N

G=N:

For each N 2 N , there is a natural surjective homomorphism �N W yG ! G=N .
We also have a compatible family of quotient homomorphisms ¹G!G=N ºN2N , and

it induces a homomorphism G ! yG. This homomorphism is injective if and only if G is
residually finite.

The profinite completion yG D lim
 �N2N

G=N is a subset of the compact topological
space …N2NG=N . Under the subspace topology, yG is a compact Hausdorff totally-dis-
connected topological group, and the image of the natural homomorphism G ! yG is
dense in yG.

Let uWH ! G be a group homomorphism. For any finite index normal subgroup
N C G, we have a homomorphismH

u
�! G! G=N , which factors throughH=u�1.N /.

Since u�1.N / is a finite index normal subgroup ofH , we have an induced homomorphism

uN W yH
�u�1.N/
�����! H=u�1.N /! G=N:
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The family of homomorphisms ¹uN W yH ! G=N ºN2N gives rise to a homomorphism

yuW yH ! yG D lim
 �
N2N

G=N;

which is the induced homomorphism of uWH ! G on their profinite completions.
If the homomorphism H ! G is an inclusion, the image of the induced homomorph-

ism yH ! yG is the closure of H � G � yG in yG. Moreover, yH ! yG is injective if and
only if for any finite index subgroupH 0 <H , there exists a finite index subgroupG0 <G,
such that G0 \H < H 0.

Here is a lemma that allows us to prove Grothendieck rigidity by passing to finite
index normal subgroups.

Lemma 2.1. Let G be a group and let G0 C G be a finite index normal subgroup. If G0

is Grothendieck rigid, then G is Grothendieck rigid.

Proof. Let H < G be a finitely generated subgroup with inclusion homomorphism
i WH ! G. Let ˇWG ! G=G0 be the quotient homomorphism (to a finite group).

Suppose that yi W yH ! yG is an isomorphism, then [2, Lemma 2.8] implies that the inclu-
sion induced homomorphism 2H \G0! yG0 is an isomorphism. SinceG0 is Grothendieck
rigid, we must have H \G0 D G0, i.e., G0 < H holds.

Since ŒG W G0� < 1, H must be a finite index subgroup of G. Then the image of
yi W yH ! yG is an open subgroup of yG with finite index ŒG WH�, by the fundamental corres-
pondence between finite index subgroups of G and yG, see [12, Proposition 3.2.2]. So we
must have H D G.

It is not hard to prove that Lemma 2.1 still holds if G0 is only a finite index subgroup
of G, but Lemma 2.1 is good enough for proving Theorem 1.2.

2.2. Subgroup separability

Now we turn to the concept of subgroup separability. For a group G and a subgroup
H < G, we say thatH is separable inG if for any g 2G nH , there exists a homomorph-
ism �WG ! Q to a finite group, such that �.g/ … �.H/. Moreover, we say a group G
is LERF (locally extended residually finite) if all finitely generated subgroups of G are
separable in G.

The starting point of our proof of Theorem 1.2 is the lemma below. It is essentially the
result [8, Lemma 2.5], and we state it in a slightly weaker form. Although this lemma was
already proved in [8], we still prove it here, since the proof is simple and this result plays
a fundamental role in this paper.

Lemma 2.2. Let G be a group, and let H < G be a proper subgroup that is separable
in G. Then .G;H/ is not a Grothendieck pair.
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Proof. Since H < G is a proper subgroup, there exists an element g 2 G nH . Since H
is separable in G, there exists a finite index normal subgroup N C G such that for the
quotient homomorphism �WG ! G=N , �.g/ … �.H/ holds.

Let i WH !G be the inclusion, let Ni WH=N \H !G=N be the induced homomorph-
ism on quotient groups, and let yi W yH ! yG be the induced homomorphism on profinite
completions. Then we have the following commutative diagram:

yH
yi - yG

H=N \H
?

�N\H

Ni - G=N:
?

�N

Suppose that yi W yH ! yG is an isomorphism. Since �N W yG ! G=N is surjective, �N ı
yi W yH ! G=N is surjective. However, by our construction of N , gN does not lie in the
image of Ni WH=N \H ! G=N , so Ni ı �N\H W yH ! G=N is not surjective.

So we get a contradiction, thus .G;H/ is not a Grothendieck pair.

Lemma 2.2 immediately implies the following corollary, since both LERFness and
Grothendieck rigidity only concern finitely generated subgroups.

Corollary 2.3. Let G be a LERF group, then it is Grothendieck rigid.

Obviously, Corollary 2.3 implies that all LERF 3-manifold groups are Grothendieck
rigid. In particular, Agol’s celebrated result [1] that all hyperbolic 3-manifold groups
are LERF implies that all hyperbolic 3-manifold groups are Grothendieck rigid. This
is actually the main result of [8], while Agol’s result was not available when [8] was
written.

Unfortunately, there are a number of 3-manifold groups that are not LERF. To prove
the Grothendieck rigidity of these groups, it remains to prove that any nonseparable sub-
group does not give a Grothendieck pair.

3. A graph of group structure onH < �1.M/ and the construction
ofH0 < H for nonseparableH < �1.M/

In this section, we first describe a graph of group structure onH <�1.M/, then we review
the author’s characterization of separability ofH < �1.M/ and construct the desired sub-
group H0 < H for a nonseparable H < �1.M/.

In this and the next section, we restrict to 3-manifolds satisfying the following condi-
tions, which form the essential case towards the proof of Theorem 1.2.
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Conditions 3.1. (1) M is compact, orientable, irreducible and @-irreducible (may
have some boundary component of genus at least 2).

(2) M has nontrivial torus decomposition and does not support the Sol geometry.

(3) Under the torus decomposition ofM , no Seifert piece is the twisted I -bundle over
Klein bottle.

For a 3-manifold M satisfying Condition 3.1 (1), it has a canonical torus decomposi-
tion (see [6, Theorem 1.9]): there exists a finite collection T �M of disjoint incompress-
ible tori such that each component of M n T is either atoroidal or a Seifert manifold, and
a minimal such collection T is unique up to isotopy. Note that we do not take the torus-
annulus decomposition (the theory of characteristic submanifolds) here. This is because
of the fact that each decomposition annulus is contained in an atoroidal piece of M n T .
Such a piece admits a complete hyperbolic structure (possibly of infinite volume) and is
known to have a LERF group (by [1]).

By Condition 3.1 (2), T is not empty. Moreover, by Conditions 3.1 (2), (3) and the
classification of Seifert fibering structures (see [6, Theorem 2.3]), each component of
M n T has a unique Seifert fibering structure, and its base orbifold has negative Euler
characteristic.

Note that Conditions 3.1 (1) and (2) are assumed in [15, Theorem 1.3], which gives
the characterization of separability of H < �1.M/. Condition 3.1 (3) is a mild condition,
and it is for convenience of our proof.

3.1. A graph of group structure onH < �1.M/

Now we suppose that M is a 3-manifold satisfying Conditions 3.1 and describe a graph
of group structure on a finitely generated subgroup H < �1.M/. Given the (nonempty)
torus decomposition T of M , M has a graph of space structure, and we denote the dual
graph by � . Here each component M v of M n T (called a piece of M ) corresponds to
a vertex v of � , and each component T e of T corresponds to an edge e of � . Then the
fundamental group �1.M/ has a graph of group structure with dual graph � . Here the
vertex group corresponding to vertex v is �1.M v/, and the edge group corresponding to
edge e is �1.T e/. We will review the profinite counterpart of graph of groups in Section 4.

For any finitely generated subgroupH < �1.M/, we take the corresponding covering
space � WMH !M . Then ��1.T / induces a graph of space structure onMH in the same
manner as onM . Here each component of ��1.T / is either a torus, a cylinder, or a plane.

SinceH is finitely generated, by [15, Lemma 3.1], there is a unique minimal codimen-
sion-0 connected submanifold M c

H � MH , such that it is a union of finitely many pieces
of MH , contains all pieces of MH with nontrivial �1, and the inclusion M c

H ! MH

induces an isomorphism of fundamental groups. Since H is isomorphic to �1.M c
H /, the

graph of space structure onM c
H (induced fromMH ) gives a graph of group structure onH

with finite dual graph �H .
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For the above graph of group structure on H , H acts naturally on the corresponding
Bass–Serre tree TH . Basically, the Bass–Serre tree TH is the dual graph of the universal
cover zM c

H of M c
H , and the H -action on TH is induced by its action on zM c

H . The vertex
(edge) stabilizers of this H -action on TH are conjugations of vertex (edge) groups of H ,
and the quotient of TH by thisH -action is isomorphic to �H . We will review the profinite
counterpart of Bass–Serre theory in Section 4.

3.2. The construction ofH0 < H for nonseparableH < �1.M/

We continue to use notations from the previous subsection. Each piece M v
H of M c

H with
nontrivial fundamental group covers a pieceM v ofM . We are interested in the piecesM v

H

such that one of the following holds:

(1) M v is a finite volume hyperbolic 3-manifold (i.e., an atoroidal manifold with tori
boundary), and M v

H corresponds to a virtual fiber surface subgroup of �1.M v/.

(2) M v is a Seifert manifold, and the S1-bundle (over 2-orbifold) structure on M v

lifts to an R-bundle structure on M v
H .

More precisely, in case (1), there is a compact surface †v such that M v
H is equal to

†v � R (†v is orientable) or †v z�R (†v is nonorientable). Moreover, the covering map
M v
H !M v factors through a finite cover N v !M v , such that N v has a surface bundle

over circle structure (with orientable fiber surface †v) or a semi-bundle structure (a union
of two twisted I -bundles over nonorientable surface †v).

In case (2), M v
H is homeomorphic to Sv � R or Sv z�R for some surface Sv . If Sv

is compact, a similar description as in case (1) holds, and we take †v D Sv . If Sv is
not compact, we take a compact connected subsurface †v � Sv such that the inclusion
†v ! Sv induces an isomorphism of fundamental groups, each boundary component
of †v either lies in @Sv or lies in the interior of Sv , and no component of Sv n †v is
a disc or an annulus.

When M v
H D †v � R or †v z�R (case (1) and the first subcase of case (2)), †v is

called a virtual fiber surface. WhenM v
H D S

v �R or Sv z�R for a noncompact surface Sv
(the second subcase of case (2)), the compact subsurface †v � Sv is called a partial fiber
surface.

We consider each virtual fiber or partial fiber surface †v constructed above as a (pos-
sibly nonproper) subsurface ofM v

H , then the inclusion†v !M v
H is a homotopy equival-

ence. Since we assumed thatM v
H has nontrivial fundamental group and†v has boundary,

†v has nonpositive Euler characteristic.
If there is a component C � ��1.T / that intersects with two such subsurfaces †v

and †w (on their boundaries), then C must be a cylinder, while †v \ C and †w \ C
are isotopic curves on C . Then we isotopy †v and †w so that they intersect with C
along the same curve, and we paste them together along this curve. By doing such pasting
procedure along all cylinder components of ��1.T /, whenever possible, we get the almost
fiber surface ˆ.H/ defined in [15]. We can consider ˆ.H/ as a (possibly disconnected
and nonproper) compact subsurface of M c

H �MH . By construction, ˆ.H/ has a natural
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graph of space structure. We denote the dual graph of ˆ.H/ by �ˆ.H/, then it is naturally
a subgraph of �H (the dual graph of M c

H ).
In [15], the author proved the following characterization of separability ofH <�1.M/

(see [15, Theorem 1.3 and Remark 3.5]).

Theorem 3.2. Let M be a 3-manifold satisfying Conditions 3.1, and let H < �1.M/ be
a finitely generated subgroup. Then there is a canonically defined group homomorphism
sWH1.ˆ.H/IZ/ ! Q�C that factors through H1.�ˆ.H/IZ/, such that H is separable
in �1.M/ if and only if s is the trivial homomorphism. In particular, ifH is not separable
in �1.M/, then �ˆ.H/ contains a simple cycle.

Here Q�C denotes the group of positive rationals with the multiplicative operation. The
homomorphism s is called the generalized spirality character of H , and its definition is
not important for this paper. We will only use the “in particular” part of Theorem 3.2 in
this paper.

At first, we prove the following lemma that provides many separable subgroups in
�1.M/.

Lemma 3.3. LetM be a 3-manifold satisfying Conditions 3.1, and letM v �M be a piece
ofM under the torus decomposition. Then any finitely generated subgroupH<�1.M v/<

�1.M/ is separable in �1.M/.

Proof. We take the covering spaceMH !M corresponding to the subgroupH <�1.M/.
For the graph of space structure on MH , its dual graph is a tree.

Then the dual graph �ˆ.H/ of the almost fiber surface ˆ.H/ is a subgraph of the dual
graph of MH . So �ˆ.H/ is a union of trees (actually, a tree), and H1.�ˆ.H/IZ/ is trivial.
Then Theorem 3.2 implies that H is separable in �1.M/.

Now we construct the desired subgroup H0 < H for a nonseparable subgroup H <

�1.M/.

Proposition 3.4. Let M be a 3-manifold satisfying Conditions 3.1, and let H < �1.M/

be a finitely generated nonseparable subgroup. Under the graph of group structure onH ,
there is a vertex group H v < H and a subgroup H0 < H v such that the following holds:

(1) The index of H0 in H v is either 1 or 2.

(2) H0 is a non-abelian free group.

(3) Any finitely generated subgroup of H v is separable in �1.M/.

(4) The normalizer of H0 in H is H v , i.e., NH .H0/ D H v .

(5) The normalizer of H0 in �1.M/ satisfies ŒN�1.M/.H0/ W H0� D1.

Proof. By Theorem 3.2, the nonseparability of H in �1.M/ implies that �ˆ.H/ contains
a simple cycle. Take any vertex v in this simple cycle, then it has degree at least 2 in �ˆ.H/.
This vertex v corresponds to a piece †v � ˆ.H/, and †v is contained in a piece M v

H

of MH . We first claim that †v is neither an annulus nor a Möbius band.
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If †v is a virtual fiber surface and M v
H covers a hyperbolic piece M v �M of a finite

volume, then such a virtual fiber surface cannot be an annulus or a Möbius band. If †v is
a virtual fiber surface and M v

H covers a Seifert piece M v � M , then †v is a finite cover
of the base orbifold of M v . By Conditions 3.1 (2) and (3), the base orbifold of M v has
negative Euler characteristic, so †v is neither an annulus nor a Möbius band. If †v is
a partial fiber surface, then it is a nonproper subsurface of M v

H , thus at least one bound-
ary component of †v is contained in the interior of M v

H . Since v has degree at least 2,
†v \ @M v

H has at least two components. Thus, †v has at least 3 boundary components,
which makes it neither an annulus nor a Möbius band.

Since†v is neither an annulus nor a Möbius band, �1.†v/ is a non-abelian free group.
By our construction, the inclusion †v ! M v

H is a homotopy equivalence. We take the
vertex subgroup H v < H to be �1.M v

H / Š �1.†
v/, which is a non-abelian free group.

If †v is an orientable surface, we simply take H0 D H v . If †v is nonorientable, we
take H0 to be the group of the orientable double cover z†v ! †v , then H0 is an index-2
(normal) subgroup of H v . So H0 and H v satisfy conditions (1) and (2).

SinceH v is contained in a vertex subgroup �1.M v/ of �1.M/, any finitely generated
subgroup ofH v is also contained in �1.M v/. By Lemma 3.3, such a subgroup is separable
in �1.M/, thus condition (3) holds.

At first, it is clear thatH v is contained in the normalizer ofH0. For theH -action on its
Bass–Serre tree TH , H v < H is the stabilizer of a vertex yv 2 TH . For any h 2 NH .H0/,
we have h�1H0h D H0. Since H0 < H v stabilizes yv, H0 also lies in the stabilizer of
h.yv/2 TH . Suppose that h.yv/¤ yv, thenH0 stabilizes the nontrivial subtree of TH spanned
by yv and h.yv/, and in particular H0 stabilizes an edge of TH . So H0 is contained in
a conjugation ofH e <H for some edge e 2 �H . Since each edge groupH e is a subgroup
of Z2 Š �1.T 2/, H0 is isomorphic to a subgroup of Z2. It contradicts condition (2) that
H0 is a non-abelian free group, so we must have h.yv/ D yv. Then h lies in the stabilizer
of yv, thus h 2 H v . So we have NH .H0/ D H v , thus condition (4) holds.

If M v
H covers a finite volume hyperbolic piece M v � M , then the covering map

factors through a finite cover N v of M v , such that M v
H corresponds to a fiber sub-

group of �1.N v/. More precisely, if †v is orientable, then M v
H D †v � R and N v D

†v � I=.x; 0/ � .�v.x/; 1/ for some pseudo-Anosov map �vW†v ! †v . So �1.N v/ is
contained in the normalizer of H0 D �1.†v/ in �1.M/. If †v is nonorientable, then N v

is a union of two twisted I -bundles over †v and the normalizer of �1.†v/ in �1.N v/ is
actually �1.†v/. Recall that z†v is the orientable double cover of†v , andH0 D �1.z†v/ <
�1.†

v/ D H v . We take the double cover zN v of N v such that it is a z†v-bundle over the
circle. Then �1. zN v/ < �1.M/ is contained in the normalizer ofH0 D �1.z†v/ in �1.M/.

If M v
H covers a Seifert piece M v � M , then the fiber subgroup of �1.M v/ (iso-

morphic to Z) intersects with H v D �1.†
v/ trivially. If †v is orientable, then the fiber

subgroup commutes with H0 D �1.†v/; if †v is nonorientable, then the fiber subgroup
does not commute with H v D �1.†

v/, but it commutes with H0 D �1.z†v/.
In all these cases, we have checked that the normalizer of H0 in �1.M/ always con-

tains H0 as an infinite index subgroup, thus condition (5) holds.
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4. The graph of profinite group structure on yH and the normalizer
of yH0 in yH

In this section, we still assume that the 3-manifoldM satisfies Conditions 3.1. We will first
review basic concepts on graphs of profinite groups and the profinite Bass–Serre theory,
then we will apply the theory to H < �1.M/ and prove that the normalizer of yH0 in yH
contains yH0 as a finite index subgroup (for H0 < H < �1.M/ constructed in Section 3).

4.1. Graph of profinite groups

In this section, we review basic concepts on graphs of profinite groups and the profinite
Bass–Serre theory. The readers can find more details on this topic in Ribes’ book [11].

Definition 4.1. A profinite graph is a quadruple .�; V .�/; d0; d1/ such that the following
holds:

(1) � is a nonempty profinite space (an inverse limit of finite discrete spaces).

(2) V.�/ � � is a nonempty closed subset.

(3) d0; d1W� ! V.�/ are two continuous functions such that d0jV.�/ and d1jV.�/ are
both identity on V.�/.

The edge set of this profinite graph is E.�/ D � n V.�/, which may not be a closed
subset of � . In the case where � is a finite set, this notion of profinite graphs coincides
with the notion of directed graphs in the usual sense, and we will also use the notion in
Definition 4.1 for (directed) finite graphs.

Now we give the definition of graph of profinite groups over finite graphs. The theory
of graph of profinite groups over infinite profinite graphs is more complicated and will not
be used in this paper.

Definition 4.2. A graph . yG ; �/ of profinite groups yG over a finite connected graph �
consists of the following data:

(1) For any vertex v 2 V.�/ and edge e 2 E.�/, there are associated profinite groups
yG v (vertex group) and yG e (edge group), respectively.

(2) For each edge e 2 E.�/, there are injective homomorphisms @e0W yG
e! yG d0.e/ and

@e1W
yG e ! yG d1.e/. Here d0.e/ and d1.e/ are the two vertices of � adjacent to e.

For convenience, we assume that all vertex and edge groups yG v and yG e are finitely
generated, so all their finite index subgroups are open due to [9]. The profinite fun-
damental group …1. yG ; �/ of . yG ; �/ is defined to be the profinite completion of the
abstract fundamental group �1. yG ; �/ of . yG ; �/ (with yG v and yG e considered as abstract
groups).

Recall that the abstract fundamental group �1. yG ;�/ of . yG ;�/ is defined by the follow-
ing process. One first fix a maximal spanning tree T � � , then take te D 1 for each edge
e 2 E.T / and take a stable letter te for each edge e 2 E.�/ n E.T /. Then the abstract
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fundamental group �1. yG ; �/ is defined to be the quotient of the free product of all vertex
groups and a free group by the following relations:

.�v2V.�/ yG
v/ � .�e2E.�/nE.T /Zht

e
i/=hh.te/�1@e0.g/t

e.@e1.g//
�1
W e 2 E.�/; g 2 yG eii:

Here Zhtei denotes an infinite cyclic group generated by te .
Given the maximal spanning tree T � � , we have natural homomorphisms

yG v ! …1. yG ; �/ and yG e
@e0
�! yG d0.e/ ! …1. yG ; �/

to the profinite fundamental group …1. yG ; �/. In contrast with the case of abstract groups,
the homomorphisms yG v!…1. yG ;�/ and yG e!…1. yG ;�/may not be injective in general.

Now we work on a graph of abstract groups .G ; �/ over finite graph � . Given .G ; �/,
we have the following two sequences of constructions. One can first take profinite com-
pletions of vertex and edge groups of .G ; �/ to get a graph of profinite groups . yG ; �/
(assuming each homomorphism yG e! yG v is injective), then take the profinite fundamental
group…1. yG ;�/. Alternatively, one can first take the abstract fundamental group �1.G ;�/,
then take its profinite completion y�1.G ; �/.

In general, these two sequences of constructions do not give isomorphic profinite
groups, and it requires the following condition of efficiency on .G ; �/.

Definition 4.3. A finite graph of abstract groups .G ; �/ is efficient if the following holds:

(1) The abstract fundamental group �1.G ; �/ is residually finite.

(2) For any m 2 � (a vertex or an edge), Gm is separable in �1.G ; �/.

(3) For any m 2 � and any finite index subgroup K < Gm, there is a finite index
subgroup N < �1.G ; �/ such that N \ Gm < K.

A generalization of [12, Exercise 9.2.7] gives the following result, see also [16, Theo-
rem 5.6].

Theorem 4.4. Let .G ; �/ be a finite graph of abstract groups that is efficient. Then there
is a natural isomorphism

y�1.G ; �/
Š
�! …1. yG ; �/:

Moreover, for any m 2 � , the natural homomorphism yGm ! …1. yG ; �/ is injective.

Next, for a graph of profinite groups . yG ;�/, we assume that yGm!…1. yG ;�/ is inject-
ive for any m 2 � , and we still use yGm to denote the image.

For a graph of profinite groups . yG ; �/, its profinite Bass–Serre tree T
. yG ;�/

is defined
as follows.

Definition 4.5. (1) The profinite set T
. yG ;�/

is the disjoint union of left cosets of vertex
and edge groups

T
. yG ;�/

D

[
m2�

…1. yG ; �/= yG
m;
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and the vertex set V.T
. yG ;�/

/ is the disjoint union of left cosets of vertex groups

V.T
. yG ;�/

/ D
[

v2V.�/

…1. yG ; �/= yG
v:

(2) We only need to define maps d0; d1WT. yG ;�/! V.T
. yG ;�/

/ on the edge setE.T
. yG ;�/

/

(which is closed in T
. yG ;�/

). For any edge e 2 � , we define

d0.g yG
e/ D g yG d0.e/; d1.g yG

e/ D gte yG d1.e/:

It is routine to check that d0 and d1 are well-defined.

The profinite graph T
. yG ;�/

is actually a profinite tree. The reader can find the definition
of profinite trees in [11, Section 2.4] and the proof that T

. yG ;�/
is a profinite tree in [11,

Section 6.3].
We also have a natural…1. yG ; �/-action on the profinite Bass–Serre tree T

. yG ;�/
, which

is defined by g.h yGm/ D .gh/ yGm for any g; h 2 …1. yG ; �/ and m 2 � . It is obvious that
the stabilizer of any element g yGm 2 T

. yG ;�/
is g yGmg�1 < …1. yG ; �/.

Now we give an application of the profinite Bass–Serre theory. This lemma is useful
for proving Theorem 1.2 for reducible 3-manifolds.

Lemma 4.6. Let yG1; : : : ; yGk be profinite groups, let …k
iD1
yGi be their profinite free prod-

uct, and let yH < yG1 be a nontrivial closed subgroup. Then the normalizer of yH in…k
iD1
yGi

equals the normalizer of yH in yG1.

Proof. We take a finite connected graph � that is a chain of k vertices v1; : : : ; vk and k � 1
edges e1; : : : ; ek�1. For any vertex vi , we take yG vi D yGi ; for any edge ej , we take yG ej

to be the trivial group. Then each homomorphism yGe ! yGv is injective since all edge
groups are trivial.

By [11, Proposition 5.1.6], the profinite free product …k
iD1
yGi is isomorphic to the

profinite fundamental group of . yG ; �/, and each yGi injects into …k
iD1
yGi . Then …k

iD1
yGi

acts on the profinite Bass–Serre tree T
. yG ;�/

.

Since yH < yG1, yH lies in the stabilizer of the vertex yv D yG1 2 T
. yG ;�/

. For any g 2
…k
iD1
yGi that normalizes yH , we have g�1 yHg D yH . By considering the action of…k

iD1
yGi

on T
. yG ;�/

, yH also lies in the stabilizer of g.yv/ 2 T
. yG ;�/

.

We suppose that g.yv/ ¤ yv. Since yH stabilizes both yv and g.yv/, it stabilizes the min-
imal subtree Œyv; g.yv/� of T

. yG ;�/
spanned by yv and g.yv/ of [11, Theorem 4.1.5]. Since yv

and g.yv/ are two different vertices of T
. yG ;�/

, the subtree Œyv; g.yv/� contains an edge Oe (by

the definition of profinite trees), and yH stabilizes Oe. However, this is impossible, since the
stabilizer of any edge in T

. yG ;�/
is the trivial group, while yH is nontrivial.

Then we must have yG1 D yv D g.yv/ D g yG1, thus g 2 yG1. So the normalizer of yH
in …k

iD1
yGi is contained in the normalizer of yH in yG1, and they must be equal to each

other.
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4.2. Normalizer of yH0 in yH

For a finitely generated subgroup of a 3-manifold group H < �1.M/, we first prove that
the graph of group structure onH < �1.M/ is efficient. Then we prove that, for any non-
abelian subgroup H0 < H v of a vertex group H v < H , the normalizer of yH0 in yH is
contained in yH v .

We first prove that the graph of group structure on H is efficient, thus this graph of
group structure on H behaves nicely when passing to profinite completion.

Proposition 4.7. Let M be a 3-manifold satisfying Conditions 3.1, and let H < �1.M/

be a finitely generated subgroup. Then the graph of group structure on H is efficient.

Proof. We need to check the three conditions in Definition 4.3.
Condition (1) follows from the fact that all finitely generated 3-manifold groups are

residually finite, see [7].
Since each vertex or edge group Hm is contained in a vertex group of �1.M/, by

Lemma 3.3, it is separable in �1.M/. Then by a simple algebraic argument, each Hm is
separable in H , thus condition (2) holds.

Let K < Hm be a finite index subgroup, then K is contained in a vertex subgroup
of �1.M/. By the argument for condition (2), K is separable in H . We take a finite left
transversal h0 D e; h1; : : : ; hk of K in Hm. Then since K is separable in H , there is
a finite index subgroup N < H such that K < N , and h1; : : : ; hk … N . Then we must
have N \Hm D K, thus condition (3) holds.

For a 3-manifold M , a finitely generated subgroup H < �1.M/ and a non-abelian
subgroupH0 < H v of a vertex groupH v < H , we prove that the normalizer of yH0 in yH
is contained in yH v . (We are aiming to apply this result to the subgroups H0 < H v < H

constructed in Proposition 3.4.) The proof is parallel to the proof of Proposition 3.4 (3).

Proposition 4.8. LetM be a 3-manifold satisfying Conditions 3.1, and letH <�1.M/ be
a finitely generated subgroup. LetH0 < H v be a finitely generated non-abelian subgroup
of a vertex group H v < H . Then the inclusion induced homomorphisms yH0 ! yH and
yH v ! yH are both injective. By denoting the images of these two embeddings by yH0 and
yH v respectively, the normalizer of yH0 in yH satisfies N yH . yH0/ < yH

v .

Proof. By Lemma 3.3 and the proof of Proposition 4.7, the inclusions H0 ! H and
H v ! H satisfy the injectivity criterion in Section 2.1, so both yH0 ! yH and yH v ! yH

are injective.
At first, the graph of group structure .H ; �/ on H gives rise to a graph of profinite

groups . yH ; �/ over the same finite graph � . Here each vertex (edge) group of . yH ; �/ is
the profinite completion of the corresponding vertex (edge) group of .H ; �/.

By Theorem 4.4 and Proposition 4.7, yH is isomorphic to the profinite fundamental
group…1. yH ; �/ of the graph of profinite group . yH ; �/. So yH acts on the profinite Bass–
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Serre tree T
. yH ;�/

, such that each vertex (edge) stabilizer is conjugate to a vertex (edge)
subgroup of . yH ; �/. In particular, yH0 < yH v stabilizes the vertex yv D yH v 2 T

. yH ;�/
.

For any h 2 N yH . yH0/, we have h�1 yH0h D yH0. By considering the action of yH on
T
. yH ;�/

, yH0 also stabilizes the vertex h.yv/ 2 T
. yH ;�/

.
We suppose that yv and h.yv/ are two different vertices of T

. yH ;�/
. Then they span a min-

imal subtree Œyv; h.yv/� in T
. yH ;�/

, and yH0 stabilizes this subtree. Since the subtree Œyv; h.yv/�
is not trivial, it contains an edge Oe 2 T

. yH ;�/
. Then yH0 is contained in the stabilizer of Oe.

However, it is impossible, since any edge group yH e is abelian (the profinite completion
of a subgroup of Z2), but yH0 is not abelian.

We must have yH v D yv D h.yv/ D h yH v , thus h 2 yH v . So N yH . yH0/ < yH
v holds.

5. Proof of the Grothendieck rigidity

We will prove Theorem 1.2 in this section. To prove Theorem 1.2, we first prove the
following proposition, which covers the crucial case for Theorem 1.2.

Proposition 5.1. Let M be a 3-manifold satisfying Conditions 3.1 with G D �1.M/.
Then G is Grothendieck rigid.

Proof. Let H < G be a finitely generated proper subgroup of G. We need to prove that
the inclusion induced homomorphism Oi W yH ! yG is not an isomorphism.

If H is separable in G, then by Lemma 2.2, the inclusion induced homomorphism
yH ! yG is not an isomorphism.

If H is not separable in G, then by Proposition 3.4, there exists a finite index (index 1
or 2) non-abelian subgroupH0<H v of a vertex groupH v <H , such thatNH .H0/DH v

and ŒNG.H0/ W H0� D1. Then by Proposition 4.8, we have N yH . yH0/ < yH
v , and

ŒN yH .
yH0/ W yH0� � Œ yH

v
W yH0� D ŒH

v
W H0� <1:

Here the equality follows from the correspondence between finite index subgroups of
a group and its profinite completion.

For the inclusion homomorphisms

H0 ! H v
! H

i
�! G;

we have induced homomorphisms on profinite completions

yH0 ! yH v
! yH

yi
�! yG:

By Proposition 4.8, the first two homomorphisms on profinite completions are injective,
so we can consider yH0 and yH v as subgroups of yH .
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By Proposition 3.4 (3), H0 < G is separable, so yi. yH0/ \G D H0 holds. By Proposi-
tion 3.4 (5), we have ŒNG.H0/ W H0� D 1. Since H0 is dense in yi. yH0/ < yG, NG.H0/ <
N yG.
yi. yH0// holds. Therefore,

ŒN yG.
yi. yH0// W yi. yH0/� � ŒN yG.

yi. yH0// \G W yi. yH0/ \G� � ŒNG.H0/ W H0� D1:

Suppose that yi W yH ! yG is an isomorphism. Then we have

1D ŒN yG.
yi. yH0// W yi. yH0/� D ŒNyi. yH/.

yi. yH0// W yi. yH0/� D ŒN yH .
yH0/ W yH0� <1:

It is impossible, so yi W yH ! yG is not an isomorphism.

Proposition 5.1 covers the crucial case of Theorem 1.2, and we are ready to prove
Theorem 1.2 now.

Proof of Theorem 1.2. Step I. We suppose that M is compact, orientable, irreducible and
@-irreducible.

IfM has trivial torus decomposition, thenM is either a Seifert manifold or a (possibly
infinite volume) hyperbolic 3-manifold. By [14] and [1], respectively, �1.M/ is LERF,
so �1.M/ is Grothendieck rigid.

If M supports the Sol geometry, since �1.M/ is LERF, �1.M/ is Grothendieck rigid.
IfM has nontrivial torus decomposition and does not support the Sol geometry, thenM

has a double cover M 0 !M that satisfies Conditions 3.1. To get such a double cover, for
each piece of M homeomorphic to the twisted I -bundle over Klein bottle, we take its
double cover homeomorphic to T 2 � I ; for any other piece, we take two copies of the
same piece. Then we can paste all these pieces together to get a desired double cover
M 0 ! M . By Proposition 5.1, �1.M 0/ is Grothendieck rigid. Then Lemma 2.1 implies
that �1.M/ is Grothendieck rigid.

Step II. We suppose that M is compact and orientable.
We take the sphere-disc decomposition of M , then �1.M/ is a free product of groups

of compact, orientable, irreducible, @-irreducible 3-manifolds G1 D �1.M1/, . . ., Gn D
�1.Mn/ and a free group Fr .

By the argument as in Step I, we can take a double cover M 0 ! M , if necessary,
such that no piece of Mi (under the torus decomposition) is homeomorphic to the twis-
ted I -bundle over Klein bottle. Then by Lemma 2.1, it suffices to prove that �1.M 0/ is
Grothendieck rigid. By abusing notation, we still use M to denote this double cover.

By the Kurosh subgroup theorem, for any finitely generated subgroupH < �1.M/ Š

.�niD1Gi /�Fr , it has an induced free product structureHD .�mjD1Hj /�Fs . Here eachHj
is a finitely generated nontrivial group, and it equalsH \ gjGij g

�1
j for some gj 2 G and

ij 2 ¹1; : : : ; nº.
If H is separable in G, by Lemma 2.2, .G; H/ is not a Grothendieck pair. So we

suppose that H is not separable in G. By [4], we know that some Hj is not separable
in gjGij g

�1
j . Up to conjugation and permuting indices, we can assume thatH1DH \G1

is not separable in G1 D �1.M1/.
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Since geometric 3-manifolds and infinite volume hyperbolic 3-manifolds (with finitely
generated groups) have LERF groups, as in Step I,M1 has nontrivial torus decomposition
and does not support the Sol geometry, so M1 satisfies Conditions 3.1. By applying Pro-
positions 3.4 and 4.8 to H1 < G1 D �1.M1/, there is a finitely generated non-abelian
subgroup H1;0 < H1 such that the following hold:

(1) Any finitely generated subgroup of H1;0 is separable in G1.

(2) ŒN yH1.
yH1;0/ W yH1;0� <1.

(3) ŒNG1.H1;0/ W H1;0� D1.

Then we have the following commutative diagram:

yH1;0
yj1 - yH1

yi1 - yG1

yH

ykH

?
yi - yG:

ykG

?

Here the horizontal homomorphisms are induced by inclusions j1WH1;0!H1, i1WH1!
G1 and i WH ! G, as subgroups. The vertical homomorphisms are induced by inclusions
kH WH1 ! H and kG WG1 ! G as free factors.

SinceH1 andG1 are free factors ofH andG, respectively, ykH and ykG are both inject-
ive. By condition (1), all finitely generated subgroups ofH1;0 are separable in G1, so they
are all separable in H1, and yj1W yH1;0 ! yH1 is injective. Then we have the following
sequences of subgroups: yH1;0 < yH1 < yH and yG1 < yG. We will drop off the homomorph-
isms yj1, ykH , ykG , and yi1 is simply the restriction of yi on yH1 < yH .

Since H1;0 is separable in G1, then yi. yH1;0/\G1 D H1;0. Since yG1 is a profinite free
factor of yG, by Lemma 4.6, we have N yG.yi. yH1;0// D N yG1.

yi. yH1;0//. Hence,

ŒN yG.
yi. yH1;0// W yi. yH1;0/� D ŒN yG1.

yi. yH1;0// W yi. yH1;0/�

� ŒN yG1.
yi. yH1;0// \G1 W yi. yH1;0/ \G1�

� ŒNG1.H1;0/ W H1;0� D1:

Here the last equality follows from condition (3) above.
On the other hand, since H1 is a free factor of H , by applying Lemma 4.6 again, we

have N yH . yH1;0/ D N yH1.
yH1;0/. Therefore,

ŒN yH .
yH1;0/ W yH1;0� D ŒN yH1.

yH1;0/ W yH1;0� <1:

Here the last inequality follows from condition (2) above.
Suppose that yi W yH ! yG is an isomorphism. Then we have

1D ŒN yG.
yi. yH1;0// W yi. yH1;0/� D ŒNyi. yH/.

yi. yH1;0// W yi. yH1;0/�

D ŒN yH .
yH1;0/ W yH1;0� <1:
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We obtained a contradiction, so yi W yH ! yG is not an isomorphism.
Step III. General case. If M is compact and orientable, then the Grothendieck rigidity

follows from Step II.
If M is orientable but not compact, then we take a Scott core C � M [13]. Here C

is a compact connected codimension-0 submanifold of M such that the inclusion map
induces an isomorphism on fundamental groups. Then Step II implies that �1.C / is
Grothendieck rigid, and so is �1.M/.

If M is nonorientable (either compact or noncompact), then we take the orientable
double cover M 0 !M . By the previous case, �1.M 0/ is Grothendieck rigid. Then Lem-
ma 2.1 implies that �1.M/ is Grothendieck rigid.

This completes the proof of Theorem 1.2.
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