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Formal conjugacy growth in graph products I

Laura Ciobanu, Susan Hermiller, and Valentin Mercier

Abstract. In this paper we give a recursive formula for the conjugacy growth series of a graph
product in terms of the conjugacy growth and standard growth series of subgraph products. We
also show that the conjugacy and standard growth rates in a graph product are equal provided that
this property holds for each vertex group. All results are obtained for the standard generating set
consisting of the union of generating sets of the vertex groups.

1. Introduction

In this paper we obtain several results on conjugacy growth and languages in graph prod-
ucts with respect to their standard generating set: foremost, we find a formula for the
conjugacy growth series for a graph product of groups as a function of the standard and
conjugacy growth series of subgraph products, and in parallel we establish the equality of
the standard and conjugacy growth rates if the same holds in each vertex group. En route
to proving these results, we also study the shortlex conjugacy language for graph products.

The graph product construction generalizes both direct and free products. Given a fi-
nite simplicial graph with vertex set V and for each vertex v 2 V an associated group Gv ,
the associated graph product GV is the group generated by the vertex groups with the
added relations that elements of groups attached to adjacent vertices commute. Right-
angled Artin groups (RAAGs) and Coxeter groups (RACGs) arise in this way as the graph
products of infinite cyclic groups and cyclic groups of order two, respectively, and have
been widely studied. Graph products were introduced by Green in her PhD thesis [12]
and their (standard) growth series, based on the growth series of the vertex groups, were
subsequently computed by Chiswell [4]. In particular, Chiswell showed that rationality of
the standard growth series is preserved by the graph product construction.

The first conjugacy growth series computations appeared in the work of Rivin [18,19]
on free groups, and it is striking that, even for free groups with standard generating sets,
the series are transcendental, and their formulas rather complicated. More generally and
systematically, conjugacy growth series and languages featured in [2, 3, 5–7, 9, 17], where
virtually abelian groups, Baumslag–Solitar groups, acylindrically hyperbolic groups, free
and wreath products, and more, were explored. Except for virtually abelian groups, all
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the conjugacy growth series studied so far were shown to be transcendental. In contrast to
Rivin’s result for the standard conjugacy growth series for free groups, we note that the
conjugacy geodesic growth series, which counts all the geodesics shortest with respect to
conjugacy, is rational in free groups with respect to standard generating sets. Moreover,
in the case of graph products, regularity of the pair consisting of the set of conjugacy
geodesics and the set of geodesics is preserved by the graph product construction [6].

All groups in this paper are finitely generated, and all generating sets finite and inverse-
closed. The spherical, or standard, growth function of a group G with respect to a gen-
erating set X records the size of the sphere of radius n in the Cayley graph of G with
respect to X for each n � 0, and the spherical conjugacy growth function counts the
number of conjugacy classes intersecting the sphere of radius n but not the ball of radius
n � 1. Taking the growth rate of the values given by the above functions produces the
spherical growth rate and spherical conjugacy growth rate of G with respect to X . Fur-
thermore, the spherical standard growth and conjugacy growth series are those generating
functions whose coefficients are the spherical growth function and spherical conjugacy
growth function values, respectively. The exact meaning of the terminology used below
and all necessary notation is given in Section 2.1.

The first main result of the paper gives a recursive formula for the spherical conjugacy
growth series of a graph product based on the spherical growth and conjugacy growth
series of the vertex groups.

Theorem A. Let GV be a graph product group over a graph with vertex set V and let
v 2 V be a vertex. For each v0 2 V let Xv0 be an inverse-closed generating set for the
vertex groupGv0 . For each subset S � V letXS D

S
v02S Xv0 be the generating set for the

subgraph product GS on the subgraph induced by S . Let z�S be the spherical conjugacy
growth series and let �S be the spherical growth series of GS with respect to XS .

Then the conjugacy growth series of GV is given by

z�V D z�V n¹vº C z�Lk.v/.z�¹vº � 1/C
X

S�Lk.v/

z�M
S N

�� �Lk.S/n¹vº
�Lk.v/\Lk.S/

� 1
�
.�¹vº � 1/

�
;

where Lk.v/ is the set of vertices adjacent to v, z�M
S D

P
S 0�S .�1/

jS j�jS 0jz�S 0 , and for any
complex power series f .z/,

N.f /.z/ WD
1X
kD1

1X
lD1

�.k/

kl
.f .zk//l

in which � is the Euler totient function.
Moreover, if ¹vº [ Lk.v/ D V , then z�V D z�Lk.v/z�¹vº.

The proof of Theorem A employs the use of Möbius inversion formulas applied to
languages of conjugacy representatives that arise from the amalgamated free product
decomposition of a graph product. The second main result of the paper follows from
many of the same techniques and shows that equality of the spherical growth and con-
jugacy growth rates is preserved by the graph product construction.



Formal conjugacy growth in graph products I 429

Theorem B. LetGV be a graph product group over a graph with vertex set V and assume
that for each vertex v 2 V the spherical growth rate and spherical conjugacy growth rate
ofGv , over a generating setXv , are equal. LetXV D

S
v2V Xv . Then the spherical growth

rate and spherical conjugacy growth rate ofGV with respect to XV are equal. Hence also
the radii of convergence of the spherical and spherical conjugacy growth series of GV
over XV are equal.

It is interesting that many infinite discrete groups display the same behaviour as that
in Theorem B, that is, the standard and conjugacy growth rates are equal. This is the case
for hyperbolic [2] and relatively hyperbolic [11] groups, the wreath products (including
lamplighter groups) in [17], and soluble Baumslag–Solitar groups BS.1; k/ [5]. It is an
intriguing question whether the equality of growth rates holds for larger classes of groups
(such as acylindrically hyperbolic), or if there exists a common thread in the proofs of this
equality for the different classes of groups mentioned above.

The proofs of the two main theorems revolve around methods that come from analytic
combinatorics, such as the ‘necklace’ series associated to a language. Since these tools
are not standard in group theory, we begin in Section 2 with a discussion of these tools.
In Section 3 we provide background information as well as new results on languages
associated to graph products of groups, including conjugacy and cyclic geodesics, and
shortlex normal forms for conjugacy classes, that are used in the rest of the paper.

In Section 4.1 we establish in Proposition 4.3 a set of conjugacy geodesics (minimal
length representatives, over the generators, for conjugacy classes) for a graph product
group that contains at least one representative for each conjugacy class, and we determine
when two elements of this set represent conjugate elements. The remainder of Section 4
contains the proofs of Theorems A and B, as well as Example 4.10, where the conjugacy
growth series of a right-angled Coxeter group is computed using the formulas in the paper.

Further types of formulas for the spherical conjugacy growth series of graph products
and an analysis of their algebraic complexity will be the subject of a subsequent paper.

2. Preliminaries and necklace languages

2.1. Notation and terminology

We use standard notation from formal language theory: where X is a finite set, we denote
by X� the set of all words over X , and call a subset of X� a language. We write � for
the empty word, and denote by XC the set of all nonempty words over X (so X� D
XC [ ¹�º). For each letter a 2 X , we write a� and aC to denote the sets ¹aº� and ¹aºC,
respectively. For each word w 2 X�, let l.w/ D lX .w/ D jwj denote its length over X .

For a group G with inverse-closed generating set X , let � WX� ! G be the natural
projection onto G, and let D denote equality between words and DG equality between
group elements (so w DG v means �.w/ D �.v/). For g 2 G, the length of g, denoted
kgk .D kgkX /, is the length of a shortest representative word for g over X . A geodesic
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is a word w 2 X� with l.w/ D k�.w/k; we denote the set of all geodesics for G with
respect to X by Geo.G;X/.

Let �, or �G , denote the equivalence relation on G given by conjugacy, and G=� its
set of equivalence classes. Let Œg�� denote the conjugacy class of g 2 G and kgk� denote
its length up to conjugacy, that is,

kgk� WD min¹khk j h 2 Œg��º:

We say that g has minimal length up to conjugacy if kgk D kgk�. A conjugacy geodesic
is a word w 2 X� with l.w/D k�.w/k�; we denote the set of all conjugacy geodesics by
ConjGeo.G;X/.

Fix a total ordering ofX , and let�sl be the induced shortlex ordering ofX� (for which
u <sl w if either l.u/ < l.w/ or l.u/D l.w/ but u precedesw lexicographically). For each
g 2 G, the shortlex normal form of g is the unique word yg 2 X� with �.yg/ D g such
that yg �sl w for all w 2 X� with �.w/ D g. For each conjugacy class c 2 G=�, the
shortlex conjugacy normal form of c is the shortlex least word zc over X representing an
element of c; that is, �.zc/ 2 c, and zc �sl w for all w 2 X� with �.w/ 2 c. The shortlex
language and shortlex conjugacy language for G over X are defined as

SL D SL.G;X/ WD ¹yg j g 2 Gº;

ConjSL D ConjSL.G;X/ WD ¹zc j c 2 G=�º:

Any language L over X gives rise to a strict growth function �LWN [ ¹0º ! N [ ¹0º,
defined by �L.n/ WD j¹w 2 L j l.w/ D nºj; an associated generating function, called the
strict growth series, given by FL.z/ WD

P1
nD0 �L.n/z

n; and an exponential growth rate
grL D limn!1.�L.n//

1=n.
For the two languages above, the coefficient �SL.n/ is the number of elements of G of

length n, and �ConjSL.n/ is the number of conjugacy classes of G whose shortest elements
have length n. As in [6], we refer to the strict growth series of SL below as the standard or
spherical growth series

�.z/ D �.G;X/.z/ WD FSL.G;X/.z/ D

1X
nD0

�SL.G;X/.n/z
n

and the strict growth series

z�.z/ D z�.G;X/.z/ WD FConjSL.G;X/.z/ D

1X
nD0

�ConjSL.G;X/.n/z
n

of ConjSL as the spherical conjugacy growth series.

Remark 2.1. Note that the growth series in the paper will be often denoted as � and z�
instead of �.z/ or z�.z/ due to the length of some of the formulas.
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For the groupG and generating setX , the exponential growth rates of these two series
give the standard or spherical growth rate of a group G over X , namely

� D �.G;X/ WD grSL.G;X/ D lim
n!1

.�SL.G;X/.n//
1=n;

and the spherical conjugacy growth rate given by

z� D z�.G;X/ WD grConjSL.G;X/ D lim sup
n!1

.�ConjSL.G;X/.n//
1=n:

2.2. Complex power series

In this section we recall some basic facts about power series in complex analysis (see for
example [8, Chapter III, Sections 1 and 2]).

We denote the open disk of radius r > 0 centered at c 2 C by B.c; r/ WD ¹z 2
CW jz � cj < rº. A complex power series is a function f W B.0; r/ ! C of the form
f .z/ D

P1
nD0 anz

n, where an 2 C for all n. We express the fact that an is the coeffi-
cient of zn in f by writing

Œzn�f .z/ WD an:

The radius of convergence RC.f / of f can be defined as

RC.f / D sup¹r 2 RWf .z/ converges for all z 2 B.0; r/º;

or equivalently as

RC.f / D
1

lim supn!1
n
p
janj

: (2.1)

If lim supn!1
n
p
janj D 0 then RC.f / D C1. If RC.f / > 0, then f is defined and con-

verges absolutely at every point in the open disk B.0; RC.f //.

Proposition 2.2. Let f ¤ 0 be a complex power series such that RC.f / > 0, Œzn�f .z/� 0
for all n 2 N, and Œz0�f .z/ D 0. Then there exists a unique positive number t > 0 such
that f .t/ D 1; moreover,

t D inf¹jzjW z 2 C; jf .z/j D 1º D sup¹r > 0W jf .z/j � 1 for all z 2 B.0; r/º;

and the infimum and supremum are attained.

Proof. Write f D
P1
nD1 anz

n, where an � 0 for all n and am ¤ 0 for at least one index
m. For any complex number z we have

jf .z/j D

ˇ̌̌̌ 1X
nD1

anz
n

ˇ̌̌̌
�

1X
nD1

anjzj
n
D f .jzj/;

hence if the series f .z/ diverges, then so does the series f .jzj/. Moreover, f .jzj/ �
amjzj

m is unbounded as jzj increases. Thus on the real interval Œ0;RC.f // the function f is
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continuous, strictly increasing, and unbounded, and so there exists a unique t 2 Œ0;RC.f //
such that f .t/D 1. Now for any complex number z satisfying jzj � t the following holds:

jf .z/j �

1X
nD1

anjzj
n
�

1X
nD1

ant
n
D f .t/ D 1:

2.3. Necklace set associated to a language

LetX be a finite alphabet and L be a language overX . Let N denote the positive integers,
and N0 denote the nonnegative integers. For n 2 N, let Ln denote the Cartesian product
of n copies of L. For .l1; : : : ; ln/ 2 Ln, the elements lj with j 2 ¹1; : : : ; nº are called the
components, and the length of this n-tuple is defined to be j.l1; : : : ; ln/j WD

Pn
jD1 jlj j.

Let Cn WD Z=nZ. The group Cn acts on Ln by cyclically permuting the entries of tup-
les inLn, that is, g � .u1; : : : ; un/ WD .u1Cg ; : : : ; unCg/ for all g 2 Cn and u1; : : : ; un 2 L,
where the index i C g of uiCg is taken modulo n. Let Ln=Cn denote the quotient by this
action, and define the set of necklaces over L as

Necklaces.L/ WD
1G
nD1

�
Ln=Cn

�
:

Since the length of an element inLn is preserved by cyclic permutation of its components,
we extend the definition of length on Ln to Necklaces.L/.

In analogy with the growth of languages over an alphabet, any set S together with
a length function j � jW S ! N0, satisfying the property that for each nonnegative integer
the number of elements of that length is finite, has a strict growth function �S WN0 ! N0,
defined by �S .n/ WD j¹s 2 S j jsj D nºj, and a strict growth series given by FS .z/ WDP1
nD0 �S .n/z

n.
Next we collect some identities among several strict growth series. Given u 2 L,

let diag.u/ denote the diagonal element diagn.u/ WD .u; u; : : : ; u/ in Ln. Similarly, for
v D .v1; : : : ; vd / 2 L

d and m 2 N, let diagm.v/ denote the element

diagm.v/ WD .v1; : : : ; vd ; : : : ; v1; : : : ; vd /

of Lmd . Note that whenever n ¤ n0, the sets Ln=Cn and Ln
0

=Cn0 are disjoint.

Lemma 2.3. Let L be a language and let n 2 N. Then the following hold:

(1) FNecklaces.L/.z/ D
P1
nD1 FLn=Cn.z/.

(2) FLn.z/ D .FL.z//n.

(3) F¹diagm.u/Wu2Ld º.z/ D FLd .z
m/.

(4) Œzm�.FL.z//d D Œzmn�.FL.zn//d .

The following gives a computation of the strict growth series FNecklaces.L/.z/ from
FL.z/.
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Proposition 2.4. The growth series of the set of necklaces over a language L is

FNecklaces.L/.z/ D

1X
kD1

1X
lD1

�.k/

kl

�
FL.z

k/
�l
;

where � is the Euler totient function.

Proof. For every n;m 2 N, the set Sn.m/ WD ¹w 2 LnW jwj D mº is invariant under the
cyclic permutation action of Cn on Ln. Then the coefficient Œzm�FLn=Cn.z/ is the number
of orbits in Sn.m/ under the action of Cn. For each g 2 Cn, let FixSn.m/.g/ denote the set
of elements of Sn.m/ that are fixed by the action of g. Using Burnside’s lemma, we find

Œzm�FLn=Cn.z/ D
1

n

X
g2Cn

jFixSn.m/.g/j D
1

n

X
d jn

X
1�g�n

.g;n/Dd

jFixSn.m/.g/j:

In fact, whenever d jn, 1 � g � n, .g; n/ D d , and w 2 Ln, then w 2 FixSn.m/.g/ if and
only if w D diag n

d
.v/ for some v 2 Ld with jvj D md

n
. In the case that .g; n/ D d , we

have

jFixSn.m/.g/j D Œz
md
n �
�
FLd .z/

�
D Œz

md
n �
�
FL.z/

�d
D Œzm�

�
FL.z

n
d /
�d
;

where the second and third equalities apply Lemma 2.3 (2) and (4), respectively. Therefore
we find

FLn=Cn.z/ D
1

n

X
d jn

j¹1 � g � n; .g; n/ D dºj
�
FL.z

n
d /
�d
D
1

n

X
d jn

�
� n
d

��
FL.z

n
d /
�d
:

Finally, using Lemma 2.3 (1),

FNecklaces.L/.z/ D

1X
nD1

1

n

X
d jn

�
� n
d

��
FL.z

n
d /
�d
D

1X
kD1

1X
lD1

�.k/

kl

�
FL.z

k/
�l
:

Note that if the language L contains the empty word, then the set Necklaces.L/ con-
tains infinitely many elements of length 0 and so the strict growth series FNecklaces.L/.z/
is nowhere defined. Thus for the remainder of the paper, every language L for which
we consider the series FNecklaces.L/.z/ is assumed not to contain the empty word, so that
FL.0/ D 0.

Remark 2.5. For every n 2N andm 2N0, the strict growth functions forLn andLn=Cn
satisfy 1

n
�Ln.m/ � �Ln=Cn.m/ � �Ln.m/. Then Lemma 2.3 (1) and (2) yield

Œzm�

1X
nD1

�
FL.z//

n

n
� Œzm�FNecklaces.L/.z/ � Œz

m�

1X
nD1

�
FL.z//

n

„ ƒ‚ …
FL.z/

1�FL.z/

:
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Corollary 2.6. Let L be a nonempty language that does not contain the empty word. The
radius of convergence of FNecklaces.L/.z/ is given by

RC.FNecklaces.L/.z// D inf¹jzjW z 2 C; jFL.z/j D 1º;

which is the positive real number t such that FL.t/ D 1.

Proof. Remark 2.5 implies that

RC
� 1X
nD1

�
FL.z//

n

n

�
� RC.FNecklaces.L/.z// � RC

� 1X
nD1

�
FL.z//

n

�
:

The convergence radius of the geometric series
P
n>0 z

n is 1, and hence the seriesP1
nD1

�
FL.z//

n converges for all z satisfying jFL.z/j < 1 and diverges for all z such
that jFL.z/j > 1. Since the language L is a subset of X� for a finite set X , we have
�L.m/ � jX j

m for all m, and so the radius of convergence of the strict growth series FL
is at least 1

jX j
. By Proposition 2.2,

RC
� 1X
nD1

�
FL.z//

n

�
D sup¹r > 0W jFL.z/j � 1 for all z 2 B.0; r/º

D min¹jzjW z 2 C; jFL.z/j D 1º; (2.2)

and moreover, RC.
P1
nD1.FL.z//

n/ D t , where t is equal to the unique positive real num-
ber such that FL.t/ D 1. But then

P1
nD1

FL.t//
n

n
D
P1
nD1

1
n

diverges, implying that
RC.

P1
nD1

.FL.z//
n

n
/ � t .

This implies that RC.FNecklaces.L/.z// D t , as required.

Example 2.7. Let LD ¹c1; : : : ; cpº be a finite subset ofX ; that is, jci j D 1 for all i . Then
FL.z/ D pz and the set L can be viewed as a set of colors. In this case, Proposition 2.4
says that

FNecklaces.L/.z/ D

1X
kD1

1X
lD1

�.k/

kl
plzkl :

The coefficient of zm in this series is the number of necklaces that we can make with m
pearls, all with a color in L.

Proposition 2.4 leads us to the following definition.

Definition 2.8. For any complex power series f with integer coefficients satisfying the
condition Œz0�f .z/ D 0, let

N.f /.z/ WD
1X
kD1

1X
lD1

�.k/

kl
.f .zk//l D

1X
kD1

��.k/

k
log.1 � f .zk//:
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We note that if f D FL is the growth series of a nonempty language L that does not
contain the empty word, then by Proposition 2.4, N.f / D N.FL/ D FNecklaces.L/, and by
Corollary 2.6, the radius of convergence RC.N.f // is the unique positive number t such
that f .t/ D 1.

Example 2.9. If f .z/ D zK withK > 0, then N.f /.z/ D zK

1�zK
(see [20, Lemma 1 (1)]).

3. Graph products: background and languages

Let � D .V; E/ be a finite simple graph with vertex set V and edge set E; that is, an
undirected graph without loops or multiple edges.

For any nonempty subset V 0 � V , the link or centralizing set Lk.V 0/ of V 0 denotes the
set of all vertices of � that are adjacent to all of the vertices in V 0. That is, for any vertex
v 2 V the set

Lk.v/ WD ¹w 2 V W ¹v;wº 2 Eº

is the set of neighbours of v, and for any nonempty subset V 0 � V , we have

Lk.V 0/ WD
\
v2V 0

Lk.v/:

We also set Lk.;/ WD V .
For each vertex v of � , let Gv be a nontrivial group. The graph product of the groups

Gv with respect to � is the quotient of their free product by the normal closure of the set
of relators Œgv; gw � for all gv 2 Gv , gw 2 Gw for which ¹v;wº is an edge of � .

Given a graph product group G over a graph � D .V; E/ and any subset V 0 � V , the
subgraph product associated to V 0 is the subgroup GV 0 WD hGv j v 2 V 0i of G. By [12,
Proposition 3.31], GV 0 is isomorphic to the graph product of the Gv (v 2 V 0) on the
induced subgraph of � with vertex set V 0. Note that GV D G and G; is the trivial group.

Suppose that each vertex group Gv of the graph product has an inverse-closed gener-
ating set Xv with " … Xv . For each V 0 � V , let

XV 0 WD
G
v2V 0

XvI

then XV 0 is an inverse-closed generating set for GV 0 . A syllable of a word w 2 X�V is
a subword u of w satisfying the properties that u 2 XCv for some v 2 V and u is not
contained in a strictly longer subword of w that also lies in X�v .

For each v 2 V let Yv denote the particular generating set Yv WD Gv n ¹"º for Gv . We
denote the associated generating set for GV 0 by

YV 0 WD
[
v2V 0

Gv n ¹"º:

Define a function �WX�V ! Y �V by setting �.w/ to be the word obtained from w 2 X�V by
replacing each syllable u 2 XCv of w by the element of Yv represented by u.
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Definition 3.1. For an element g 2 GV , the support of g is the set

Supp.g/ WD
\

V 0�V and g2GV 0

V 0:

For a word w 2 X�V , the support Supp.w/ of w is the set of all vertices v for which a letter
of Xv appears in w.

3.1. Geodesic languages and word operations

Over the generating set YV , one can obtain a geodesic representative of an element g 2GV
from any other geodesic representative by iteratively swapping the order of consecutive
letters from commuting vertex groups (see [12, Theorem 3.9] or [6, Proposition 3.3]). The
support of g can be realized as the set of all vertices v for which a nontrivial element inGv
appears in a geodesic word representative of g over YV .

In [6], Ciobanu and Hermiller give characterizations of the geodesics and conjugacy
geodesics over the generating set XV in a graph product group GV using a collection
of homomorphisms. For each v 2 V , define a monoid homomorphism �v D �

X
v WX

�
V !

.Xv [ ¹$º/�, where $ denotes a letter not in XV , by defining

�v.a/ WD

8̂̂<̂
:̂
a if a 2 Xv;

$ if a 2 XV n.Lk.v/[¹vº/;

1 if a 2 XLk.v/:

For the generating set YV of GV , we denote the associated map �vW Y �V ! .Yv [ ¹$º/�

by �Yv .
Given languages L, L0 over a finite set X , let LL0 WD ¹uvW u 2 L; v 2 L0º (the

concatenation of L with L0), LC WD
S1
nD1 L

n (where Ln WD Ln�1L for all n), and
L� WD LC [ ¹�º. Also define

CycPerm.L/ WD ¹vuWuv 2 Lº

to be the set of cyclic permutations of words in L.

Lemma 3.2 ([6, Propositions 3.3 and 3.5]). The set of geodesics in the graph product
group GV with respect to the generating set XV is

Geo.GV ; XV / D
\
v2V

��1v .Geo.Gv; Xv/.$Geo.Gv; Xv//�/;

and the set of conjugacy geodesics is

ConjGeo.GV ; XV / D
\
v2V

��1v .ConjGeo.Gv; Xv/ [ CycPerm..$Geo.Gv; Xv//C//:
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For a group G with inverse-closed generating set X , we say that a word w 2 X� is
cyclically geodesic over X if every cyclic permutation of w lies in Geo.G; X/, and we
denote

CycGeo.G;X/ WD ¹cyclically geodesic words for G over Xº:

For the generating set YV , the fact that

Geo.Gv; Yv/ D CycGeo.Gv; Yv/ D ConjGeo.Gv; Yv/ D Yv [ ¹�º

for any vertex v 2 V together with Lemma 3.2 show that

ConjGeo.GV ; YV / D CycGeo.GV ; YV /:

The following is also an immediate consequence of Lemma 3.2.

Corollary 3.3. Let GV be a graph product group with generating set XV and let V 0 be
any subset of V . Then

Geo.GV ; XV / \X�V 0 D Geo.GV 0 ; XV 0/;

CycGeo.GV ; XV / \X�V 0 D CycGeo.GV 0 ; XV 0/;

ConjGeo.GV ; XV / \X�V 0 D ConjGeo.GV 0 ; XV 0/:

We consider two sets of operations on words over XV . The following (first) set of
operations on words over XV preserve the group element being represented:

• Local reduction: yuz! ywz with y; z 2 X�V , u;w 2 X�v for some v 2 V , u D Gvw,
and l.u/ > l.w/.

• Local exchange: yuz ! ywz with y; z 2 X�V , u;w 2 X�v for some v 2 V , u D Gvw,
and l.u/ D l.w/.

• Shuffle: yuwz ! ywuz with y; z 2 X�V , u 2 X�v for some v 2 V and w 2 X�v0 for
some v0 2 Lk.v/.

Whenever a word x 2 X�V can be obtained from another word w 2 X�V by a sequence of
local exchanges and shuffles, we write w les

! x, and whenever x can be obtained from w

by a sequence of local reductions, local exchanges, and shuffles, we write w lrles
! x.

Lemma 3.4 ([6, Proposition 3.3]). Let x be a geodesic in the graph product group GV
with respect to the generating set XV and let w be a word over XV satisfying w D GV x.
Then w lrles

! x. Moreover, if w is also in Geo.GV ; XV /, then w les
! x.

The following (second) set of operations on words over XV preserve the conjugacy
class being represented:

• Conjugate replacement: yuz ! ywz with y; z 2 X�V , u; w 2 X�v for some v 2 V ,
Supp.yz/ � Lk.v/, and u �Gv w.

• Cyclic permutation: yu! uy with y 2 X�V and u 2 X�v for some v 2 V .



L. Ciobanu, S. Hermiller, and V. Mercier 438

Whenever a word x 2 X�V can be obtained from another word w 2 X�V by a sequence of
local reductions and exchanges, shuffles, conjugate replacements, and cyclic permutations,
we write w lrlescrcp

�! x.
In [10], Ferov shows the following.

Lemma 3.5 ([10, Lemma 3.12]). If x and y are cyclic geodesics in the graph product
groupGV with respect to the generating set YV , and x �GV y, then x lrlescrcp

�! y. Moreover,
Supp.x/ D Supp.y/ and x �GSupp.x/ y.

In fact, again using the fact that over the generating set Yv of a vertex group Gv the
geodesics and conjugacy geodesics are the words of length 0 or 1, Ferov’s proof only
uses shuffles, conjugate replacements consisting of replacing a single letter in a vertex
generating set Yv by another letter in that set, and cyclic permutations. In the following,
we extend Ferov’s result to the generating set XV .

Corollary 3.6. Let x be a cyclic geodesic in the graph product group GV with respect to
the generating setXV and letw be a word overXV satisfyingw �GV x. Thenw lrlescrcp

�! x.
Moreover, if w is also in CycGeo.GV ; XV /, then Supp.w/ D Supp.x/ and w �GSupp.x/ x.

Proof. Starting from the word w, by repeatedly performing local reductions and exchan-
ges, shuffles, and cyclic permutations, after a finite number of steps we must obtain a word
w1 for which no local reductions can occur in any further sequence. Then Lemma 3.4
shows that the word w1 2 CycGeo.GV ; XV /.

Among all of the (finitely many) words that can be obtained from w1 by shuffles,
let w0 be a word with the minimum possible number of syllables (where w0 is chosen to
be w1 if w1 already realizes the minimum). Cyclically permute w0 by a single letter, and
repeat the syllable minimization process by shuffles. Repeat this process until a word w2
is obtained for which no cyclic permutations ofw2 allow shuffles that decrease the number
of syllables.

We claim that �.w2/ 2 CycGeo.GV ; YV /. To show this, suppose instead that �.w2/ …
CycGeo.GV ; YV /, and write w2 D u1 � � � un where the ui are the syllables of w2. For
each 1 � i � n, let vi be the vertex for which ui 2 XCvi and let gi be the element of
Gvi n ¹"º represented by ui . Then �.w2/ D g1 � � � gn, and there is an index j such that
gjC1 � � � gng1 � � � gj … Geo.GV ; YV /. Applying Lemma 3.4, the word gjC1 � � � gng1 � � � gj
admits a finite sequence of local shuffles leading to a local reduction. However, the cor-
responding sequence of shuffles of the cyclic permutation ujC1 � � �unu1 � � �uj of w2 leads
to a word with fewer syllables, giving the required contradiction and proving the claim.

Similarly, there is a sequence of shuffles and cyclic permutations from x to another
word x2 2 CycGeo.GV ; XV / satisfying �.x2/ 2 CycGeo.GV ; YV /. Now Lemma 3.5 says
that �.w2/

lrlescrcp
�! �.x2/.

Construct a sequence of operations beginning from the word w2 that follows the pat-
tern of the sequence �.w2/

lrlescrcp
�! �.x2/, in which each shuffle of the form

�.y/�.p/�.q/�.z/! �.y/�.q/�.p/�.z/
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of letters in YV is replaced by a shuffle of the corresponding syllables ypqz ! yqpz

in XCV , each cyclic permutation �.y/�.a/! �.a/�.y/ by a letter �.a/ in a vertex group
generating set Yv is replaced by a cyclic permutation ya ! ay by the corresponding
syllable a in XCv , and each conjugate replacement �.y/�.p/�.z/! �.y/zq�.z/ of a letter
�.p/ in a set Yv is replaced by conjugate replacement ypz ! yqz of the corresponding
syllable p in XCv by any geodesic q 2 Geo.Gv; Xv/ satisfying q D GV zq. Let w3 be the
word obtained from w2 via this sequence of operations on words.

Now �.w3/ D �.x2/, and each syllable of w3 and of x2 is geodesic. Hence there is
a sequence of local exchanges from w3 to x2.

Combining all of the sequences of operations above shows that w lrlescrcp
�! x. Moreover,

if w 2 CycGeo.GV ; XV /, then we can take w D w1. Since none of the operations in the
sequence from w D w1 to x involve local reductions, and the conjugate replacements
in the sequence must replace a word by another nonempty word over the same vertex
group generating set, these operations do not alter the support, and moreover only involve
conjugation by elements of GV whose support is in Supp.w/.

3.2. Shortlex and conjugacy representatives

We now have the tools to show that the results of Corollary 3.3 hold for the shortlex and
conjugacy shortlex languages as well. A total ordering<V of the generating setXV ofGV
is called compatible with a total ordering � of the vertex set V of � if for each vertex
v 2 V there is a total ordering <v of the Xv such that for all a; b 2 XV we have a < b if
and only if either Supp.a/� Supp.b/ or Supp.a/ D Supp.b/ and a <Supp.a/ b.

Proposition 3.7. Let GV be a graph product group with generating set XV , let V 0 be any
subset of V . Let<sl be a shortlex ordering onX�V induced by an ordering compatible with
a total ordering � on V , and let the shortlex ordering on X�V 0 be the restriction of the
ordering <sl. Then

SL.GV ; XV / \X�V 0 D SL.GV 0 ; XV 0/

and
ConjSL.GV ; XV / \X�V 0 D ConjSL.GV 0 ; XV 0/:

Proof. Suppose first that w is a word in SL.GV ; XV / \ X�V 0 . Then no shortlex smaller
word over XV represents the same element of GV , and so no shortlex smaller word over
the subsetXV 0 represents the same element of the subgroupGV 0 ; hencew 2 SL.GV 0 ;XV 0/.

On the other hand, if w 2 SL.GV 0 ; XV 0/, then it follows from Corollary 3.3 that w 2
Geo.GV ;XV /\X�V 0 . Then Lemma 3.4 says that there is a sequence of operations w les

! x

(in the groupGV over the generating setXV ) fromw to the shortlex least word x overXV
representing the same element of GV as w. Since all of these operations also apply to the
group GV 0 over the generating set XV 0 , then x 2 SL.GV ; XV / \ X�V 0 . Moreover, since w
and x are both shortlex least representatives in X�V 0 of the same element of GV 0 , then
w D x, completing the proof of the first equality in Proposition 3.7.
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Next note that if w is a word in ConjSL.GV ; XV / \X�V 0 , then for all g 2 GV we have
w �sl xg for the shortlex least representative xg over XV of the element gwg�1 2 GV . In
the first part of this proof, we show that for all g 2 GV 0 , the word xg is also the shortlex
least representative overXV 0 of the element gwg�1 2GV 0 . Hencew 2 ConjSL.GV 0 ;XV 0/.

Finally, letw 2 ConjSL.GV 0 ;XV 0/, and let x be the element of ConjSL.GV ;XV / satisfy-
ing w �GV x. Then Corollary 3.6 says that w lrlescrcp

�! x. Again, all of these operations also
apply to the group GV 0 over the generating set XV 0 , and so x 2 ConjSL.GV ; XV / \ X�V 0 .
Now w and x are both shortlex least representatives in X�V 0 of the same conjugacy class
of GV 0 , and so w D x.

The following result is useful for characterizing the shortlex least representatives of
the elements of the graph product GV , and in particular shows that shortlex normal forms
have geodesic images under �.

Lemma 3.8. Let <sl be a shortlex ordering on words over the generating set XV of the
graph product group GV induced by an ordering compatible with a total ordering �
on V , let �sl be a shortlex ordering on Y �V compatible with �, and let u 2 X�V . Then
u 2 SL.GV ;XV / if and only if (�.u/ 2 SL.GV ; YV / and each syllable of u is in SL.Gv;Xv/
for some v 2 V ).

Proof. Suppose first that u 2 SL.GV ; XV /. Lemma 3.2 shows that

u 2
\
v2V

.�Xv /
�1.Geo.Gv; Xv/.$Geo.Gv; Xv//�/;

and since any two Xv letters of u whose images under �Xv are consecutive must also be
consecutive in the shortlex normal form u, then

u 2
\
v2V

.�Xv /
�1.SL.Gv; Xv/.$SL.Gv; Xv//�/:

Moreover, if �.u/ is not geodesic, then there exist two nonadjacent letters of �.u/ in the
same subset Xv (for some v) that can be shuffled together so that a local reduction can be
applied; hence the corresponding two syllables of u can be shuffled together, and so u is
not a shortlex least representative of an element of GV . Similarly, if �.u/ is geodesic but
not in SL.GV ; YV /, then Lemma 3.4 says that there is a sequence of shuffles (since local
exchanges cannot alter an element of Geo.GV ; YV /) from �.u/ to its shortlex normal form
in SL.GV ; YV /. Applying the same shuffles to the corresponding syllables of u results in
a word overXV that is smaller in the order<sl, contradicting that u 2 SL.GV ;XV /. Hence
�.u/ 2 SL.GV ; YV /.

Next suppose instead that �.u/ 2 SL.GV ; YV / and each syllable of u is in SL.Gv; Xv/
for some v 2 V . Lemma 3.2 says that for each vertex v 2 V ,

�Yv .�.u// 2 .Yv [ ¹�º/.$.Yv [ ¹�º//
�;
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and hence no two distinct syllables of u with support v can be shuffled to be adjacent.
Thus each �Xv .u/ has the form u1$u2 � � � $un for some n � 1, where each ui is a syl-
lable of u, and so �Xv .u/ 2 Geo.Gv; Xv/.$Geo.Gv; Xv//

�. Now Lemma 3.2 says that
u 2 Geo.GV ; XV /.

Let u0 2 SL.GV ; XV / satisfy u0 D GV u; that is, let u0 be the shortlex normal form
for the group element represented by u. By the first part of this proof, we have �.u0/ 2
SL.GV ; YV /, and so �.u/ D �.u0/. Lemma 3.4 says that u les

! u0. For each v 2 V , shuffles
applied to u cannot change the image of the homomorphism �Xv , and so �Xv .u/D �

X
v .u

0/.
Moreover, since �.u/ D �.u0/ is a geodesic over YV , no sequence of shuffles applied to u
or u0 can result in fewer syllables. Hence the syllables of both u and u0 are the same, the
syllables lie in SL.GV ; XV /, and they occur in the same order. Therefore u D u0, and so
u 2 SL.GV ; XV /.

3.3. Decomposition of graph products into amalgamated products, admissible
transversals, and growth formulas

The computation of the standard growth series of a graph product by Chiswell in [4]
involves decomposing the graph product into an amalgamated product, and applying the
concept of “admissible subgroups”. In this section we give a brief summary of these res-
ults, and describe a language representing an admissible transversal for a subgraph product
in a graph product.

Each graph product over a graph with more than one vertex can be decomposed as an
amalgamated product of graph products of groups over the graph product of an appropriate
centralizing set.

Lemma 3.9 ([4, 12]). Let GV be a graph product of groups, and let v 2 V . Using the
inclusion maps from GLk.v/ into both GV n¹vº and GLk.v/[¹vº D GLk.v/ �Gv , the group GV
can be decomposed as the amalgamated product

GV D GV n¹vº �GLk.v/ .GLk.v/ �Gv/:

Definition 3.10 ([1, 14]). Let G be a group, H a subgroup of G, X an inverse-closed
generating set of G and Y an inverse-closed generating set ofH . The groupH is admiss-
ible in G with respect to the pair .X; Y / if Y � X and there exists a right transversal
UHnG � G for H in G such that whenever g D hu with g 2 G, h 2 H and u 2 UHnG ,
then kgkX D khkY C kukX . Note that the transversal contains the identity as represent-
ative of H since g D " implies " 2 UHnG . We say that UHnG is an admissible right
transversal of H in G with respect to .X; Y /.

Remark 3.11. For an admissible subgroup H D hY i of G D hXi with admissible trans-
versal UHnG , the spherical growth series satisfy the relation �.G;X/ D �.H;Y /�.UHnG ;X/,
where �.UHnG ;X/ denotes the growth series of the elements of the transversal UHnG with
respect to X .



L. Ciobanu, S. Hermiller, and V. Mercier 442

The next lemma shows the relationship between the spherical growth series of a free
product of groups amalgamated along a common admissible subgroup, and the spherical
growth series of the factor and amalgamating subgroups.

Lemma 3.12 ([1, 14]). Let G, K be groups and let H be a subgroup of both G and K.
Let X , Y and Z be inverse-closed generating sets of G, H and K, respectively. Sup-
pose that H is admissible in both G and K with respect to the pairs .X; Y / and .Z; Y /,
respectively. LetA be the amalgamated productA WDG �H K and letW WDX [Z. Then

1

�.A;W /
D

1

�.G;X/
C

1

�.K;Z/
�

1

�.H;Y /
:

Remark 3.13. Given groups Gi D hXi i for i D 1; 2, it follows directly from Defini-
tion 3.10 that G1 is admissible in the direct product group G1 � G2 with respect to the
pair of generating sets .X1 [X2; X1/, with admissible transversal ¹"º �G2.

Recall that if each vertex group Gv of a graph product on a graph with vertex set V
has an inverse-closed generating set Xv , then for each V 0 � V , the subgraph product GV 0
has generating set XV 0 WD

S
v2W Xv . Using these generating sets, any subgraph product

GV 0 is an admissible subgroup in GV with respect to the pair .XV ; XV 0/ (see [4], [16,
Proposition 14.4]).

The following formula for computing the spherical growth series of a graph product
from spherical growth series of subgraph products is an immediate consequence of Lem-
mas 3.12 and 3.9 and Remarks 3.11 and 3.13; this formula was obtained by Chiswell
in [4, proof of Proposition 1]. This recursive formula is the analog for spherical growth
series of our formula in Theorem A for spherical conjugacy growth series.

Corollary 3.14. Let GV be a graph product group over a graph with vertex set V and let
v 2 V . For each v0 2 V let Xv0 be an inverse-closed generating set for the vertex group
Gv0 , and for each S � V let �S be the spherical growth series for the subgraph product
GS on the subgraph induced by S , over the generating set XS D

S
v02S Xv0 . Then

�V D
�Lk.v/�V n¹vº�¹vº

�Lk.v/�¹vº C �V n¹vº � �V n¹vº�¹vº
:

In the following, we provide a set of representatives for a specific admissible trans-
versal for a subgraph product in a graph product, which we will use in our proofs in
Section 4.

Lemma 3.15. Let GV be a graph product with vertex set V , for each v 2 V let Xv be
an inverse-closed generating set for Gv , and let V 0 � V . Let <sl be a shortlex ordering
on X�V compatible with a total ordering � on V satisfying a � b for all a 2 V 0 and
b 2 V n V 0. Then the set of words

yUGV 0nGV WD ¹�º [ .SL.GV ; XV / \ .XV nV 0X
�
V //

is a set of unique representatives of an admissible right transversal UGV 0nGV for the sub-
graph product group GV 0 in GV with respect to the pair .XV ; XV 0/.
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Proof. Let g be any element ofGV , and let y be the shortlex normal form of g. Then there
is a factorization y D y1y2 where y1 is the longest prefix of y lying in X�V 0 . Now either
y2D �, or else the first letter of y2 lies inXV nV 0 . Since every subword of a shortlex normal
form is again a shortlex least representative of a group element, then y2 2 yUGV 0nGV . Hence
yUGV 0nGV contains representatives of elements in every coset.

Next suppose that w 2 SL.GV 0 ; XV 0/ and u 2 yUGV 0nGV ; in this paragraph, we show
that wu is a geodesic in GV over XV using Lemma 3.2. Given v 2 V n V 0, the image of
wu under the homomorphism �v associated to v satisfies �v.wu/ D �v.w/�v.u/, where
�v.w/2 $� and �v.u/2 Geo.Gv;Xv/.$Geo.Gv;Xv//� by Lemma 3.2 since u is a shortlex
normal form and hence a geodesic. On the other hand, given v 2 V 0, we have �v.wu/ D
�v.w/�v.u/ where �v.w/ 2 Geo.Gv; Xv/.$Geo.Gv; Xv//� since w is a geodesic. Either
Supp.u/� Lk.v/, in which case �v.u/D �, or else we can write the shortlex normal form
uD u1cu2 for some u1 2X�Lk.v/ and c 2XV nLk.v/. In the latter case, we show that c …Xv:
if c 2 Xv , then u1cu2 D GV cu1u2 because u1 commutes with every element inGv . How-
ever, the first letter b of u (and therefore u1) lies in XV nV 0 by the definition of yUGV 0nGV ,
and so c < b. This contradicts the fact that u D u1cu2 is a shortlex least representative,
and consequently c … Xv . Therefore the first letter of �v.u/ is $, and in this case the
image of the geodesic u satisfies �v.u/ 2 .$Geo.Gv; Xv//�. Hence in all cases we have
�v.wu/ 2 Geo.Gv; Xv/.$Geo.Gv; Xv//�. Then Lemma 3.2 shows that wu is geodesic.

Now suppose thatwuD GVw
0u0 for somew;w0 2 SL.GV 0 ;XV 0/ and u;u0 2 yUGV 0nGV .

Then uD GVw
00u0, where w00 is the element of SL.GV 0 ;XV 0/ representing w�1w0. By the

preceding paragraph, u and w00u0 are geodesics representing the same element of GV .
Lemma 3.4 shows that u les

! w00u0; that is, w00u0 can be obtained from u by a sequence of
local exchanges and shuffles. Suppose that w00 ¤ �, and let v 2 V 0 be the support of the
first letter a of w00. Then the first letter of �v.w00u0/ is a, and the argument in the previous
paragraph shows that either �v.u/D � or the first letter of �v.u/ is $. Note that the shuffle
operation does not change the image of any word under the �v homomorphism, and the
only change possible under a local exchange is the replacement of one subword of X�v by
another of the same length. Hence the word w00u0 cannot be obtained from u; this contra-
diction shows that w00 D �. Therefore w D GVw

0 (and so w D w0). Consequently, we also
have uD GV u

0, and since u, u0 are shortlex normal forms, uD u0 as well. Thus each coset
has only one representative in yUGV 0nGV , completing the proof that this is a set of unique
representatives of an admissible transversal.

4. The conjugacy growth series of a graph product

In this section we will first determine a set of conjugacy geodesic representatives of the
conjugacy classes of a graph product, in Section 4.1. Then in Section 4.2 we establish
preservation of equality of standard and conjugacy growth rates by a graph product,
and in Section 4.3 we derive the recursive formula for the spherical conjugacy growth
series.
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4.1. Conjugacy geodesic representatives of conjugacy classes

In Proposition 4.1 we apply the characterisation of geodesics and conjugacy geodesics
in graph products from Lemma 3.2 to the amalgamated product decomposition of Lem-
ma 3.9.

Throughout Section 4.1 we will assume the following.

Hypothesis A. Let GV be a graph product group, with generating set XV , and let v 2 V
be a vertex for which ¹vº [ Lk.v/ ¨ V . Let <sl be a shortlex ordering on X�V that is
compatible with a total ordering � on V satisfying x � y for all x 2 Lk.v/ and y 2
V n .Lk.v/[ ¹vº/, and let yU WD yUGLk.v/nGV n¹vº be the admissible transversal set of repres-
entatives for GLk.v/ in GV n¹vº with respect to .XV n¹vº; XLk.v// from Lemma 3.15.

Proposition 4.1. Let GV and v 2 V satisfy Hypothesis A. Suppose that ui 2 yU n ¹�º and
ci 2 Geo.Gv; Xv/ n ¹�º for all i , b 2 Geo.GLk.v/; XLk.v//, zb 2 ConjGeo.GLk.v/; XLk.v//,
and Supp.zb/ � Lk.

Sn
iD1 Supp.ui //. Then

(1) The words bu1c1 � � �uncn and bc0u1c1 � � �uncn are geodesics in GV over XV .

(2) The word zbu1c1 � � �uncn is a conjugacy geodesic in GV over XV .

Proof. Let w D u1c1 � � � uncn. We consider the images of the words bw, bc0w, and zbw
under the �v0 D �

XV
v0 maps, for v0 2 V , in turn.

In the case that v0 D v, note that

�v.b/ D �v.zb/ D �; �v.ci / D ci 2 Geo.Gv; Xv/; �v.ui / 2 $C;

where the latter containment follows from the fact that the first letter of ui lies in the
generating set XV n.Lk.v/[¹vº/, and hence the word �v.ui / is nonempty. Then

�v.bw/ D �v.zbw/ D �v.w/ D $i1c1 � � � $incn 2 .$Geo.Gv; Xv//�

for some natural numbers i1; : : : ; in, and �v.bc0w/ 2 Geo.Gv; Xv/.$Geo.Gv; Xv//�.
Next consider the case that v0 2V n .Lk.v/[¹vº/. Applying Lemma 3.2 to ui (since ui

is a geodesic in GV over XV by Corollary 3.3), we have

�v0.b/; �v0.zb/ 2 $�; �v0.ci / 2 $C; �v0.ui / 2 Geo.Gv0 ; Xv0/.$Geo.Gv0 ; Xv0//�:

Hence in this case, �v0.bw/; �v0.bc0w/; �v0.zbw/ 2 .Geo.Gv0 ; Xv0/$/�.
Finally, suppose that v02 Lk.v/. Let ai be the first letter of the word ui ; then Supp.ai /�

V n .Lk.v/ [ ¹vº/. If the word �v0.ui / were to start with a letter a in Xv0 , then ui can be
shuffled to a word beginning with a, contradicting the fact that ui 2 yU is a shortlex nor-
mal form and a <sl ai in the shortlex ordering (compatible with �). Hence �v0.ui / is
either � or starts with $. In this case (applying Lemma 3.2 and Corollary 3.3 again), we
have �v0.ci / D � and

�v0.b/ 2 Geo.Gv0 ; Xv0/.$Geo.Gv0 ; Xv0//�; �v0.ui / 2 .$Geo.Gv0 ; Xv0//�:
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Moreover, either v0 … Supp.zb/ and �v0.zb/2 $�, or else v0 2 Supp.zb/� Lk.
Sn
iD1 Supp.ui //

and hence (by Lemma 3.2 and Corollary 3.3)

�v0.zb/ 2 ConjGeo.Gv0 ; Xv0/ [ CycPerm..$Geo.Gv0 ; Xv0//C/

and �v0.ui / D � for all i .
Thus for all v0 2 V we have �v0.w/ 2 .$Geo.Gv0 ; Xv0//�,

�v0.bw/; �v0.bc0w/ 2 Geo.Gv0 ; Xv0/.$Geo.Gv0 ; Xv0//�;

and
�v0.zbw/ 2 ConjGeo.Gv0 ; Xv0/ [ CycPerm..$Geo.Gv0 ; Xv0//C/:

Lemma 3.2 then completes the proof of (1) and (2).

A piecewise subword of a word w 2 X�V is a word over XV of the form b1 � � � bk such
that w D d0b1d1 � � �bkdk for some words d0; : : : ; dk 2 X�V . A piecewise subword b0 of w
is proper if b0 ¤ w. In the following lemma, we show that multiplying the geodesics in
Proposition 4.1 on the right by a word w over XLk.v/ yields an element represented by
another such geodesic in which a piecewise subword of w occurs on the left.

Lemma 4.2. LetGV and v 2 V satisfy Hypothesis A. Suppose that u1 2 yU , ui 2 yU n ¹�º
for all i > 1, b 2 SL.GLk.v/; XLk.v//, cn 2 SL.Gv; Xv/, and ci 2 SL.Gv; Xv/ n ¹�º for all
i < n. Then

(1) u1c1 � � � uncnb is equal in GV to a word of the form b0u01c1 � � � u
0
ncn satisfying

u01 2
yU , with u01 D � if and only if u1 D �, u0i 2 yU n ¹�º for all i > 1, and b0 is

a piecewise subword of b. Moreover, if Supp.b/ 6� Lk.
Sn
iD1 Supp.ui //, then b0 is

a proper piecewise subword of b.

(2) bu1c1 � � � uncn can be conjugated by an element of GSupp.b/ to an element of GV
represented by a word of the form zbu01c1 � � � u

0
ncn satisfying u01 2 yU and u01 D �

if and only if u1 D �, u0i 2 yU n ¹�º for all i > 1, zb 2 ConjSL.GLk.v/; XLk.v//, and
Supp.zb/ � Lk.

Sn
iD1 Supp.u

0
i //.

Proof. We begin by proving statement (1) in the special case that n D 1, u1 2 yU n ¹�º,
c1 D �, and b 2 Xv0 is a single letter, with v0 2 Lk.v/.

Case 1. Suppose that Supp.b/ � Lk.Supp.u1//. Then u1b D GV bu1, which has the re-
quired form.

Case 2. Suppose that Supp.b/ 6� Lk.Supp.u1//. Then we can write u1 D xyz, where z is
the maximal suffix of u1 satisfying Supp.b/ � Lk.Supp.z//, and y is a syllable of u1.

Case 2a. Suppose that Supp.y/ ¤ Supp.b/. Then b is a syllable of the word u1b and
�.u1b/ D �.u1/�.b/. Since u1 2 SL.GV n¹vº; XV n¹vº/, Lemma 3.8 says that �.u1/ 2
SL.GV n¹vº; YV n¹vº/ and each syllable of u1 is in SL.Gyv; Xyv/ for some yv. For all yv 2 V



L. Ciobanu, S. Hermiller, and V. Mercier 446

we have �Y
yv
.�.u1b// D �Y

yv
.�.u1//�

Y
yv
.�.b//, and Lemma 3.2 says that �Y

yv
.�.u1// 2

Geo.Gyv; Yyv/.$Geo.Gyv; Yyv//�.
For each yv¤ v0, either �Y

yv
.�.u1b//D �

Y
yv
.�.u1//, or �Y

yv
.�.u1b//D �

Y
yv
.�.u1//. Also

�Yv0 .�.u1b// D �
Y
v0 .�.x//$�.b/. Hence

�.u1b/ 2
\
yv2V

.�Y
yv /
�1.Geo.Gyv; Yyv/.$Geo.Gyv; Yyv//�/;

and by Lemma 3.2 the word �.u1b/ is a geodesic in GV over YV . Now Lemma 3.4
says that there is a sequence of shuffles from �.u1b/ to its shortlex normal form. Let
u0 2 X�

V n¹vº
be the word obtained from u1b by performing the same shuffles to the asso-

ciated syllables of u1b. Then �.u0/2 SL.GV n¹vº;YV n¹vº/ and each syllable of u0 is (either b
or a syllable of u1 and hence) in the shortlex language of its vertex group. Now Lemma 3.8
says that u0 2 SL.GV n¹vº; XV n¹vº/. Moreover, since shuffles cannot alter the image of
a word under a �X

yv
map, and since �X

yv
.u1b/ is either the empty word or starts with a $

for every yv 2 Lk.v/ (by definition of yU and the choice of the ordering <sl compatible
with�), the same is true for the shuffled word u0. Hence u0 2 XV n.¹vº[Lk.v//X�V n¹vº, and
so u0 2 yU . Therefore u1b D GV u

0 for a word u0 2 yU in case 2a.

Case 2b. Suppose that Supp.y/ D Supp.b/. Let y0 be the shortlex normal form for yb.
Since y and z commute and xyz is in shortlex form, the rightmost syllable of x and the
leftmost syllable of z cannot have the same support, and so (irrespective of whether or
not y0 is the empty word) the syllables of xy0z are either y0 or syllables of x or of z
and hence are syllables of u1. Thus each syllable of xy0z is in SL.Gyv; Xyv/ for some yv.
Following an argument similar to that in case 2a, the word �.u1/2 SL.GV n¹vº;YV n¹vº/, and
the word �.xy0z/ is obtained from �.u1/ D �.xyz/ either by an exchange of a letter �.y/
for a letter �.y0/ if y0 ¤ �, in which case the word �.xy0z/ is again in SL.GV n¹vº; YV n¹vº/,
or else by removal of the letter �.y/, if y0 D �. In the latter situation, an argument similar
to that in case 2a, using the maps �Y

yv
, can be used to show that the word �.xy0z/D �.xz/

is geodesic, and moreover is in SL.GV n¹vº; YV n¹vº/. Hence Lemma 3.8 shows that xy0z 2
SL.GV n¹vº; XV n¹vº/. Since the first letter a of the word u1 D xyz lies in XV n.¹vº[Lk.v//,
the subword x is nonempty and the first letter of the word u0 WD xyz is also a. Therefore
u1b D GV u

0 for a word u0 2 yU in case 2b also.
This completes the proof of the special case. For the general case of part (1), let w D

u1c1 � � � uncn and write b D b1 � � � bm with each bi 2 XLk.v/. Starting with the word wb,
shuffle b1 to the left until either b1 reaches the left side of the word, or b1 reaches a sub-
word uj such that Supp.b1/ 6� Supp.uj /, in which case the special case above is applied to
replace uj by another element of yU . Iterating this for the letters b2 through bm completes
the proof of (1).

Note that although cyclic conjugation of bw to wb and then applying the process
from part (1) above results in a word b0yu1c1 � � � yuncn D GVwb with each yui 2 yU and b0

a piecewise subword of b that is potentially shorter than b, it is possible that Supp.b0/ 6�
Lk.
Sn
iD1 Supp.yui //.
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Iterate this process of cyclically conjugating the maximal prefix in X�Lk.v/ to the right
side of the word and applying the algorithm above. Since the word length of the pre-
fix in X�Lk.v/ can only strictly decrease finitely many times, after finitely many steps, the
procedure must reach a word of the form b00w0 D b00u01c1 � � �u

0
ncn such that the algorithm

above applied tow0b00 results in b00w0; that is, Supp.b00/� Lk.
Sn
iD1 Supp.u

0
i //\ Supp.b/.

Finally, let zb 2 ConjSL.GSupp.b/; XSupp.b// be the shortlex least word representing an ele-
ment of the conjugacy class of GSupp.b/ containing b00; Corollary 3.3 shows that zb 2
ConjSL.GLk.v/; XLk.v// as well. Now there is an element g 2 GSupp.b/ such that gb00g�1 D
GSupp.b/

zb, and so zbw0 D GV gb
00w0g�1 is a conjugate of wb by an element of GSupp.b/ as

well. This completes the proof of (2).

Following the notation in [15, Section IV.2], a sequence a1; : : : ; an (with n � 0) of
elements of the amalgamated product G D A �C B is reduced if each ai is in one of two
subgroups A or B , successive ai are not in the same subgroup, if n D 1 then a1 ¤ ", and
if n > 1 then no ai is in C . This sequence is cyclically reduced if every cyclic permutation
of the sequence is reduced.

In the following, we apply the normal form and conjugacy normal form theorems [15,
Theorems IV.2.6 and IV.2.8] for sequences in free products with amalgamation to establish
conjugacy representatives for every conjugacy class of a graph product, and to determine
when two of these conjugacy geodesics represent the same conjugacy class.

Proposition 4.3. Let GV and v 2 V satisfy Hypothesis A. Then

(1) For each element g 2 GV there exists a conjugacy geodesic w 2 X�V representing
the conjugacy class Œg��;GV , with w either of the form

w D zbu1c1 � � �uncn; where n > 0; ui 2 yU n ¹�º; ci 2 SL.Gv; Xv/ n ¹�º;

zb 2 ConjSL.GLk.v/; XLk.v//; and Supp.zb/ � Lk
� n[
iD1

Supp.ui /
�
;

(�)

or else of the form

w 2 ConjSL.GV n¹vº; XV n¹vº/ [ ConjSL.G¹vº[Lk.v/; X¹vº[Lk.v//: (�)

(2) Two words w1; w2 2 X�V that are each of the form (�) or (�) represent conjugate
elements of GV if and only if either w1 D w2, or the words can be written as
w1 D zbu1c1 � � �uncn and w2 D zb0u01c

0
1 � � �u

0
n0c
0
n0 in the form (�) such that

(i) zb D zb0 and n D n0, and

(ii) there is an index j such that ui D u0iCj and ci D c0iCj for all i , where the
indices are considered modulo n.

Proof. Let g be any element of GV . Using Lemma 3.9 and the normal form theorem
for amalgamated products (see for example [15, Theorem IV.2.6]), the element g is rep-
resented by a word of the form x D ybyu1yc1 � � � yunycn for some n � 0, yui 2 yU for all i



L. Ciobanu, S. Hermiller, and V. Mercier 448

with yui ¤ � for all i > 1, yci 2 SL.Gv; Xv/ for all i with yci ¤ � for all i < n, and
yb 2 SL.GLk.v/; XLk.v//. By Lemma 4.2 (2), g is conjugate in GV to another element g0

represented by a word of the form x0 WD yb0yu01yc1 � � � yu
0
nycn satisfying yu01 2 yU , yu0i 2 yU n ¹�º

for i > 1, yb0 2 ConjSL.GLk.v/; XLk.v//, and Supp.zb/ � Lk.
Sn
iD1 Supp.yu

0
i //.

If n D 0, then x0 is of the form (�). Suppose instead that n > 0.
If both yu01 and ycn are not the empty word, then x0 is in the form (�). If both yu01

and ycn are the empty word, then g is conjugate to the element of GV represented by
yb0yu0nyc1 � � � yu

0
n�1ycn�1, which is of the form (�) (or (�) if n D 1).

On the other hand, if exactly one of yu01, ycn is equal to �, then using the fact that g is
also conjugate to g00 D GV

yb0yu0nycnyu
0
1yc1 � � � yu

0
n�1ycn�1, we can replace any consecutive ycnyc1

by the shortlex least representative of this element in Gv over Xv , and we can replace
any consecutive yb0yu0nyu

0
1 (or yb0yu0nyu

0
2 if yu01 D � and ycnyc1 D Gv�) by du00 for some d 2

Geo.GLk.v/; XLk.v// and u00 2 yU , since yU is a set of representatives of a transversal.
We repeat this process iteratively; that is, at each step we conjugate by a word over

XLk.v/ in order to apply Lemma 4.2 (2), and then (cyclically) conjugate by the maximal
suffix in yU � SL.Gv;Xv/, shuffling this word past the maximal prefix in SL.GLk.v/;XLk.v//,
and combining terms in yU and/or SL.Gv; Xv/. At the end apply a final conjugation by
a word over XLk.v/ in order to apply Lemma 4.2 (2) a last time.

After a finite number of iterations this process must stop, resulting either in a word of
the form (�), or else in a word over one of the alphabets XV n¹vº or XLk.v/[¹vº. In the latter
case, further conjugation shows that g is conjugate to a word of the form (�).

Finally, Proposition 4.1 shows that all words of the form (�) are conjugacy geodesics,
and Proposition 3.7 shows that all words of the form (�) are conjugacy geodesics, for the
group GV over the generating set XV , completing the proof of item (1).

For the proof of statement (2), we start by noting that it is straightforward to check
that if (i) and (ii) hold, then w1 D zbu1c1 � � �uncn �GV w2 D zb

0u01c
0
1 � � �u

0
n0c
0
n0 .

Now suppose that w1, w2 each have the form (�) or (�) and represent conjugate ele-
ments of GV . Corollary 3.6 shows that any two conjugacy geodesics for GV over XV that
represent the same conjugacy class must have the same support. Hence either w1, w2 are
both of the form (�), in which case w1 D w2 is the shortlex least representative of their
conjugacy class in the subgroup, or both have the form (�).

In the latter case, we write w1 D zbu1c1 � � � uncn and w2 D zb0u01c
0
1 � � � u

0
n0c
0
n0 in (�)

form, where the sequences .zbu1/; c1; : : : ; un; cn and .zb0u01/; c
0
1; : : : ; un0 ; cn0 are cyclically

reduced sequences of length at least 2. The conjugacy theorem for free products with
amalgamation (see for example [15, Theorem IV.2.8]) implies that any two cyclically
reduced sequences of length at least 2 representing conjugate elements of the amalgamated
product GV D GV n¹vº �GLk.v/ GLk.v/[¹vº must have the same length n D n0, and moreover
there exist a d 2 SL.GLk.v/; XLk.v// and an index 0 � j � n � 1 such that either

w2 D GV d.ujC1cjC1 � � �uncn.
zbu1/c1 � � �uj cj /d

�1 (4.1)

or
w2 D GV d.cjujC1cjC1 � � �uncn.

zbu1/c1 � � �uj /d
�1: (4.2)
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We assume that d has been chosen to be of minimal length; that is, no word of shorter
length over XLk.v/ satisfies equation (4.1) or equation (4.2).

If equation (4.2) holds, then since the support of zb is in the centralizing sets of the
supports of all of the ui , we have

w2 D GV d
zb.cjujC1cjC1 � � �uncnu1c1 � � �uj /d

�1;

and then Lemma 4.2 (1) says that

w2 D GV .d
zb yd/cj yujC1cjC1 � � � yuncnyu1c1 � � � yuj

for a piecewise subword yd of d�1 and elements yu1; : : : ; yun 2 yU . Let yb be the shortlex
least representative of d zb yd . Then the normal form theorem for amalgamated products
says that zb0 D yb and u01 D cj is the first coset representative in the two representations
of w2. However, this contradicts the fact that u01 2 yU n ¹�º and cj 2 SL.Gv; Xv/ n ¹�º,
since these sets are disjoint. Hence equation (4.1) must hold.

We now claim that Supp.d/ � Lk.
Sn
iD1 Supp.ui //. To prove this claim, we suppose

to the contrary that this containment does not hold. Again using the fact that Supp.zb0/ �
Lk.
Sn
iD1 Supp.ui // and Lemma 4.2 (1), we have

w2 D GV .d
zb yd/yujC1cjC1 � � � yuncnyu1c1 � � � yuj cj

for a proper piecewise subword yd of d�1 and elements yu1; : : : ; yun2 yU . Note that j yd j< jd j.
Let yb be the element of SL.GLk.v/; XLk.v// representing d zb yd . Now the normal form the-
orem for amalgamated products says that nD n0, u0i D yuiCj and c0i D ciCj for all i (where
the indices are considered modulo n), and zb0 D yb. Moreover, since w2 is in the form (�),
we have Supp.yb/ � Lk.

Sn
iD1 Supp.yui //. Hence

w2 D GV yujC1cjC1 � � � yuncnyu1c1 � � � yuj cj
yb

D GV yujC1cjC1 � � � yuncnyu1c1 � � � yuj cj .d
zb yd/

D GV
yd�1.ujC1cjC1 � � �uncnzbu1c1 � � �uj cj / yd;

and so yd�1 is a shorter word satisfying equation (4.1), giving the required contradiction.
Now since Supp.d/ � Lk.

Sn
iD1 Supp.ui //, then

w2 D .d zbd
�1/ujC1cjC1 � � �uncnu1c1 � � �uj cj ;

and the normal form theorem for amalgamated products says that n D n0, u0i D uiCj and
c0i D ciCj for all i (where the indices are considered modulo n), and zb0D GV d

zbd�1. Since
both zb and zb0 are in ConjSL.GLk.v/;XLk.v// and represent conjugate elements ofGLk.v/, then
zb D zb0 as well.
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4.2. Equality of the standard and conjugacy growth rates

In this section we show in Theorem B that the class of groups for which the standard and
conjugacy growth rates are equal is closed with respect to the graph product construction.

Recall that �.G;X/.z/ and z�.G;X/.z/ denote the spherical growth series and spherical
conjugacy growth series, respectively, for a group G with respect to a generating set X .

Notation 4.4. Let GV be a graph product and assume that every vertex group Gv has an
inverse-closed generating set Xv . For each V 0 � V , let XV 0 WD

S
v2V 0 Xv and write

�V 0.z/ WD �.GV 0 ;XV 0 /.z/ and z�V 0.z/ WD z�.GV 0 ;XV 0 /.z/:

We begin with a corollary of Corollary 3.14.

Corollary 4.5. Let GV be a graph product group over a graph with vertex set V , and let
v 2 V be a vertex. For each v0 2 V let Xv0 be an inverse-closed generating set for the
vertex group Gv0 , and let XV D

S
v02V Xv0 .

Let U D UGLk.v/nGV n¹vº be the admissible right transversal for GLk.v/ in GV n¹vº with
respect to the pair of generating sets .XV n¹vº;XLk.v// from Lemma 3.15, and let �U be the
strict growth series of the elements of U with respect to XV . Using Notation 4.4, then

�V D �Lk.v/
�U �¹vº

�¹vº C �U � �U �¹vº
:

Moreover, the radius of convergence of �V satisfies

RC.�V / D min
®
RC.�Lk.v//; RC.�U /; RC.�¹vº/;

inf¹jzjW �¹vº.z/C �U .z/ � �U .z/�¹vº.z/ D 0º
¯
:

Proof. If V D Lk.v/[ ¹vº, then GV D Gv �GLk.v/ and U D ¹"º. From Remark 3.11, the
spherical growth series of a direct product of groups is the product of the spherical growth
series of the factors, and so in this case we have �U D 1 and �V D �¹vº�Lk.v/, as required.

Next assume that V ¤ Lk.v/[ ¹vº and soULk.v/n.V n¹vº/¤¹"º. Note from Remark 3.11
that �V n¹vº D �Lk.v/�U . Corollary 3.14 and Lemma 3.15 give the required equality be-
tween the series. Since the radius of convergence of a product is the minimum of the radii
of convergence of the factors, we obtain the claim about RC.�V /.

Remark 4.6. Recall (equation (2.1) in Section 2.2) that the exponential growth rate of
the growth series of a language L over a finite set X is the reciprocal of the radius of
convergence of the series; that is,

grL D 1=RC.FL/:

Thus for a group G with generating set X the spherical and spherical conjugacy growth
rates can be computed from the radii of convergence of the corresponding growth series
by � D 1=RC.�/ and z� D 1=RC.z�/.
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Proposition 4.7. LetGV be a graph product. For any set of vertices V 0 � V , the spherical
conjugacy growth rates satisfy the inequality z�.GV 0 ; XV 0/ � z�.GV ; XV /, and the radii of
convergence satisfy RC.z�V / � RC.z�V 0/.

Proof. Let <sl be a shortlex ordering on X�V that is compatible with a total ordering
� on V satisfying v0 < v for all v0 2 V 0 and v 2 V n V 0, and let the shortlex order-
ing on X�V 0 be the restriction of the shortlex ordering on X�V . From Proposition 3.7, we
have ConjSL.GV ; XV /\X�V 0 D ConjSL.GV 0 ; XV 0/, and in particular ConjSL.GV 0 ; XV 0/ �
ConjSL.GV ; XV /. This implies the inequality on exponential growth rates. Then Re-
mark 4.6 gives the inequality for the radii of convergence.

We are now ready to complete the proof of Theorem B, restated here with the notation
from this section.

Theorem B. LetGV be a graph product group over a graph with vertex set V and assume
that for each vertex v 2 V the spherical and spherical conjugacy growth rates of Gv are
equal; that is, �.Gv; Xv/ D z�.Gv; Xv/ for all v 2 V . Then

�.GV ; XV / D z�.GV ; XV /

and hence also RC.�V / D RC.z�V /.

Proof. Note that Remark 4.6 shows that the equality for the two growth rates follows from
equality of the two radii of convergence, and vice versa. The proof is by induction on the
number of vertices jV j. If jV j D 1, the result is part of the hypothesis. So assume jV j � 2.

Suppose that the graph � underlying the graph product is complete. Then GV is the
direct product of the vertex groups and the spherical and spherical conjugacy growth series
satisfy

�.GV ;XV /.z/ D
Y
v2V

�.Gv ;Xv/.z/ and z�.GV ;XV /.z/ D
Y
v2V

z�.Gv ;Xv/.z/;

so the radius of convergence of this product is the minimum of the radii of conver-
gence of the factors; thus �.GV ; XV / D max¹�.Gv; Xv/ j v 2 V º, and z�.GV ; XV / D
max¹z�.Gv;Xv/ j v 2 V º. Hence RC.�V /D RC.z�V / and �.GV ;XV /D z�.GV ;XV / in this
direct product case.

For the remainder of this proof we assume that there are vertices v; v0 2 V such that v
and v0 are not connected by an edge. By the induction hypothesis and Proposition 4.7, we
have

RC.z�V / � RC.z�Lk.v// D RC.�Lk.v//: (4.3)

Also by induction RC.�¹vº/ D RC.z�¹vº/, and so by Proposition 4.7 we have

RC.z�V / � RC.�¹vº/: (4.4)

Let <sl be a shortlex ordering on X�V that is compatible with an ordering � on V
satisfying x � y for all x 2 Lk.v/ and y 2 V n Lk.v/. Let yU WD yUGLk.v/nGV n¹vº be the



L. Ciobanu, S. Hermiller, and V. Mercier 452

set of representatives for an admissible transversal U of GLk.v/ in GV n¹vº with respect to
.XV n¹vº;XLk.v// defined in Lemma 3.15. Since yU � SL.GV ;XV /, the growth series satisfy
�U D F yU .

Fix an element d 2 SL.Gv;Xv/ of length 1, and consider the language L D ¹ud j u 2
yU n ¹�ºº. Proposition 4.3 shows that distinct elements of L represent distinct conjugacy
classes. Hence the elements of L of length m are in bijection with the set of conjugacy
classes in GV represented by words in L of length m; since Proposition 4.3 also shows
that the words in L are conjugacy geodesics, then the representatives in ConjSL.GV ; XV /
of these conjugacy classes also have length m. Hence the strict growth functions satisfy
�ConjSL.GV ;XV /.m/ � �L.m/ D � yU .m � 1/ for all m > 1, and so the radii of convergence
satisfy

RC.z�V / � RC.�U /: (4.5)

Similarly, consider the language L D ¹uc j u 2 yU n ¹�º; c 2 SL.Gv; Xv/ n ¹�ºº. Pro-
position 4.3 shows that the elements of Necklaces.L/ of length m are in bijection with
the conjugacy classes in GV represented by words of the form u1c1 � � �uncn of length m,
where each ui 2 yU n ¹�º and ci 2 SL.Gv;Xv/ n ¹�º, and Proposition 4.3 shows that these
words are also conjugacy geodesics. Hence the strict growth functions satisfy

�ConjSL.GV ;XV /.m/ � �Necklaces.L/.m/

for all m � 1, and therefore

RC.z�V / � RC.FNecklaces.L//:

By Corollary 2.6, RC.FNecklaces.L// is inf¹jzjW z 2 C; jFL.z/j D 1º, and the growth series
of L in this case is FL.z/ D .�U .z/ � 1/.�¹vº.z/ � 1/. Since FL.z/ D 1 if and only if
�¹vº.z/C �U .z/ � �U .z/�¹vº.z/ D 0, this yields

RC.z�V / � inf¹jzjW z 2 C; �¹vº.z/C �U .z/ � �U .z/�¹vº.z/ D 0º: (4.6)

In combination with inequalities (4.3), (4.4), (4.5), and (4.6) above, Corollary 4.5 shows
that RC.z�V / � RC.�V /.

On the other hand, since in any group the number of conjugacy classes represented by
a conjugacy geodesic of a given length is at most the number of group elements of that
length, RC.z�V / � RC.�V /, yielding the equality of the two radii of convergence.

The following result of Gekhtman and Yang [11, Corollary 1.2] is also an immediate
consequence of Theorem B.

Corollary 4.8. Let G be a right-angled Artin or Coxeter group; that is, a graph product
in which the vertex groups are cyclic of infinite order or of order 2, respectively. Then for
the Artin or Coxeter generating set, respectively, the spherical conjugacy growth rate ofG
is the same as the spherical growth rate of G.
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4.3. The conjugacy growth series formula

In this section we prove Theorem A, giving a recursive formula for the spherical conjugacy
growth series z�V of a graph product group GV in terms of the spherical conjugacy and
spherical growth series z�V 0 and �V 0 for the subgraph products GV 0 where V 0 ¨ V .

We begin with an application of the inclusion-exclusion principle. Given a graph
product groupGV on a graph with vertex set V , we view z� as a function z� WP .V /!ZŒŒz��
to the ring of formal power series, where z�S D z�.GS ;XS / is the evaluation of z� at the subset
S � V . Recall from Proposition 3.7 that for each S � V the spherical conjugacy growth
series z�S is the growth series of the language ConjSL.GS ; XS / D ConjSL.GV ; XV /\X�S ;
hence the series z�S is also the contribution in z�V of the conjugacy classes having shortlex
conjugacy representative with support contained in S .

Define f WP .V /! ZŒŒz�� by setting f .T / to be the contribution in z�V of the con-
jugacy classes having shortlex conjugacy representative with support exactly T . Then for
any subset S � V , we have z�S D

P
S 0�S f .S

0/. Now the Möbius inversion principle (an
extension of the principle of inclusion-exclusion; see, for example, [21, Example 3.8.3],
[13, (3.1.2)]) says that f .S/ D z�M

S , where z�M
S WD

P
S 0�S .�1/

jS j�jS 0jz�S 0 is the function
that is the Möbius inverse of f , yielding the following.

Lemma 4.9. LetGV be a graph product with generating setXV and let S � V . Let<sl be
a shortlex ordering on X�V compatible with a total ordering on V . The contribution in z�V
of the conjugacy classes having shortlex conjugacy representative with support exactly S
is given by

z�M
S D

X
S 0�S

.�1/jS j�jS
0j
z�S 0 :

Recall from Definition 2.8 that

N.f /.z/ WD
1X
kD1

1X
lD1

�.k/

kl
.f .zk//l D

1X
kD1

��.k/

k
log.1 � f .zk//

for any complex power series f with integer coefficients satisfying Œz0�f .z/ D 0, and
recall from Proposition 2.4 that the function N maps the growth series of a language L to
the growth series of the necklace language Necklaces.L/.

The following paraphrased statement of Theorem A (using the notation above) pro-
vides a recursive formula for computing the conjugacy growth series of a graph product.

Theorem A. Let GV be a graph product group over a graph with vertex set V and let
v 2 V be a vertex. Then the conjugacy growth series of GV is given by

z�V D z�V n¹vº C z�Lk.v/.z�¹vº � 1/C
X

S�Lk.v/

z�M
S N

�� �Lk.S/n¹vº
�Lk.v/\Lk.S/

� 1
�
.�¹vº � 1/

�
:

Moreover, if ¹vº [ Lk.v/ D V , then z�V D z�Lk.v/z�¹vº.
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Proof. In the case that ¹vº [ Lk.v/D V , the graph product group is a direct productGV D
GLk.v/ �Gv , and so the conjugacy growth series forGV is the product of the corresponding
series for the factors [6, Proposition 2.1]. Since Lk.v/ D V n ¹vº, then the sets Lk.v/ \
Lk.S/ and Lk.S/ n ¹vº are equal, and so N.. �Lk.S/n¹vº

�Lk.v/\Lk.S/
� 1/.�¹vº � 1// D N.0/ D 0. Hence

the theorem holds in this case.
For the remainder of this proof ¹vº [ Lk.v/¤ V . Let<sl be a shortlex ordering onXV

compatible with an ordering � on V satisfying x � y � v for all x 2 Lk.v/ and y 2
V n .¹vº [ Lk.v//. Let yU WD yUGLk.v/nGV n¹vº be the set of representatives for the admissible
transversal U for GLk.v/ in GV n¹vº with respect to .XV n¹vº; XLk.v// from Lemma 3.15.
Propositions 4.3 and 3.7, together with the fact that the shortlex conjugacy normal form set
for the direct product GLk.v/ � Gv is the concatenation of the shortlex conjugacy normal
form sets for the two factor groups, show that z�V is equal to the growth series of the
language

ConjSL.GV n¹vº; XV n¹vº/ t ConjSL.GLk.v/; XLk.v//ŒConjSL.Gv; Xv/ n ¹�º� t L�

over XV , where the language L� is a set of conjugacy class representatives containing
exactly one word of the form (�), as defined in Proposition 4.3, for each equivalence class
with respect to the equivalence in Proposition 4.3 (2). (Note that although we have not
shown that the words in L� are in ConjSL.GV ; XV /, Proposition 4.3 shows that they are
conjugacy geodesic representatives for their conjugacy classes.) Hence z�V D z�V n¹vº C
z�Lk.v/.z�¹vº � 1/C FL� , where FL� is the growth series of the language L�.

Using Proposition 4.3 (2), and the concept of necklaces from Section 2.3, the growth
series of L� equals the growth series of the disjoint unionG

S�Lk.v/

¹b 2 ConjSL.GLk.v/; XLk.v//W Supp.b/ D Sº � Necklaces. yUS C/;

where yUS WD yU \ X�Lk.S/ n ¹�º is the set of nonempty words in yU whose support is con-
tained in Lk.S/, and C D SL.Gv; Xv/ n ¹�º.

The growth series of ¹b 2 ConjSL.GLk.v/;XLk.v//W Supp.b/D Sº is given by z�M
S , from

Lemma 4.9 and Proposition 3.7. The growth series of the set C D SL.Gv; Xv/ n ¹�º is
�v � 1.

By the definition of yU from Lemma 3.15, we obtain

yUS D .SL.GV n¹vº; XV n¹vº/ \X.V n¹vº/nLk.v//X�V n¹vº/ \X
�
Lk.S/

D SL.GLk.S/n¹vº; XLk.S/n¹vº/ \X.Lk.S/n¹vº/n.Lk.v/\Lk.S//X
�
Lk.S/n¹vº;

where the second equality follows from Proposition 3.7. Now Lemma 3.15 shows that
yUS [ ¹�º is a set of shortlex representatives of the admissible transversal for the sub-
group GLk.v/\Lk.S/ in GLk.S/n¹vº with respect to .XLk.S/n¹vº; XLk.v/\Lk.S//. Following the
same counting argument as in Remark 3.11, admissibility of this transversal implies that
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the concatenation SL.GLk.v/\Lk.S/; XLk.v/\Lk.S//. yUS [ ¹�º/ is a set of (unique) geodesic
representatives for the elements of GLk.S/n¹vº over XLk.S/n¹vº, and so

F yUS
D

�Lk.S/n¹vº

�Lk.v/\Lk.S/
� 1

(where as usual F yUS is the growth series of the language yUS ).
In view of the growth series formula for necklaces in Proposition 2.4 and Defini-

tion 2.8, the contribution of FL� to z�V isX
S�Lk.v/

z�M
S N

�� �Lk.S/n¹vº
�Lk.v/\Lk.S/

� 1
�
.�¹vº � 1/

�
:

We end this section with an example application of Theorems A and B to a right-
angled Coxeter group.

Example 4.10. Suppose that � D .V; E/ is the finite simple graph with vertex set V D
¹v1; v2; v3; v4º and edge set E D ¹¹v1; v2º; ¹v2; v3º; ¹v3; v4ºº; that is, � is a path graph
made up of 3 edges. For each 1 � i � 4 let Gvi D hai j a

2
i D 1i be a cyclic group of

order 2 with inverse-closed generating set Xvi D ¹aiº.
We compute spherical and spherical conjugacy growth series for several (virtually

cyclic) subgraph products directly. For each vertex group Gvi the growth series satisfy
�¹vi º D z�¹vi º D 1 C z. The subgraph product G; is the trivial group with �; D 1. The
group GV n¹v1º is the direct product of Gv3 with the infinite dihedral group G¹v2;v4º, and
so the growth series satisfy �V n¹v1º D �¹v2;v4º�¹v3º and z�V n¹v1º D z�¹v2;v4ºz�¹v3º. The series
for the dihedral group are

�¹v2;v4º.z/ D 1C
2z

1 � z
D
1C z

1 � z
and z�¹v2;v4º.z/ D

1C 2z � 2z3

1 � z2
:

We apply Corollary 3.14 with the choice of vertex v D v1. Using the fact that Lk.v/D
Lk.v1/ D ¹v2º, we have

�V D
�¹v2º�V n¹v1º�¹v1º

�¹v2º�¹v1º C �V n¹v1º � �V n¹v1º�¹v1º

D
.1C z/

��
1Cz
1�z

�
.1C z/

�
.1C z/

.1C z/2 C .1Cz/2

1�z
�
�
.1Cz/2

1�z

�
.1C z/

D
.1C z/2

1 � 2z
:

Now Theorem B (or Corollary 4.8) says that the radius of convergence of the spherical
conjugacy growth series is RC.z�V /D RC.�V /D 1

2
, and so the spherical conjugacy growth

rate is z�.GV ; XV / D �.GV ; XV / D 2.
To obtain an exact formula for z�V , we apply Theorem A with v D v1. Since Lk.v/ D

¹v2º, Lk.;/ D V , and Lk.v2/ D ¹v1; v3º, we have

z�V D z�V n¹v1º C z�¹v2º.z�¹v1º � 1/C z�
M
; N

�� �V n¹v1º
�¹v2º\V

� 1
�
.�¹v1º � 1/

�
C z�M
¹v2º

N
�� �¹v1;v3ºn¹v1º
�¹v2º\¹v1;v3º

� 1
�
.�¹v1º � 1/

�
:
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Computing the Möbius inverses gives

z�M
; D .�1/

0�0
z�; D 1; z�M

¹v2º
D .�1/1�1z�¹v2º C .�1/

1�0
z�; D 1C z � 1 D z:

Plugging these and the series for the subgraph products into the expression for z�V above
yields

z�V D
�1C 2z � 2z3

1 � z2

�
.1C z/C .1C z/z C N

�� 2z

1 � z

�
z
�
C zN.z2/:

Now Example 2.9 says that N.z2/ D z2

1�z2
, and so this simplifies to

z�V D
�1C 4z C 3z2 � 2z3 � 3z4

1 � z2

�
C N

� 2z2
1 � z

�
:
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