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Counting arcs on hyperbolic surfaces

Nick Bell

Abstract. We give the asymptotic growth of the number of arcs of bounded length between bound-
ary components on hyperbolic surfaces with boundary. Specifically, if S has genus g, n boundary
components and p punctures, then the number of orthogeodesic arcs in each pure mapping class
group orbit of length at most L is asymptotic to L6g�6C2.nCp/ times a constant. We prove an
analogous result for arcs between cusps, where we define the length of such an arc to be the length
of the sub-arc obtained by removing certain cuspidal regions from the surface.

1. Introduction

Let S be an orientable surface of negative Euler characteristic of genus g with n boundary
components and p punctures, where we assume .g; nC p/ ¤ .0; 3/. Let Mod.S/ be the
mapping class group, and let PMod.S/ be the pure mapping class group: the finite-index
subgroup of Mod.S/ consisting of exactly those elements which fix each boundary com-
ponent and each puncture of S . See [8] for a thorough treatment of mapping class groups.
Here we will say that two multicurves, by which we mean formal sums of finitely many
weighted curves, are of the same type if they share a PMod.S/-orbit.

A celebrated theorem of Mirzakhani [14,15] gives the asymptotic growth of the num-
ber of (homotopy classes of) multicurves of the same type of bounded hyperbolic length.
Letting Y be a complete hyperbolic metric on the interior So and 
0 be a multi-curve on S ,
Mirzakhani showed that

lim
L!1

j¹
 of type 
0 j `Y .
/ � Lºj
L6g�6C2.nCp/

D c.
0/m.Y /; (1.1)

where c.
0/ is a constant depending on the type 
0 and m.Y / is a constant depending
on Y . We refer the reader to [6,14,15] for details of the constants. Here, `Y .
/ denotes the
Y -length of the geodesic representative of 
 . Mirzakhani first proved the above result for
simple multicurves in [14], and then again for general multicurves in [15]; also see [6, 7]
for an alternative proof of this theorem. In fact, Mirzakhani’s theorem holds if we redefine
the type of a multicurve to correspond to the orbit of any finite-index subgroup of Mod.S/.

In this paper, we shall show that Mirzakhani’s theorem holds when we replace mul-
ticurves by multi-arcs. The question of adapting Mirzakhani’s original proof for simple
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curves to arcs was first raised by Wolpert in the case of so-called lariats (simple arcs from
a cusp to itself). Here, we take a different approach and consider both simple arcs and
general arcs. We first prove the following.

Theorem 1.1. Let X be a complete, finite-area, hyperbolic metric on S with non-empty
geodesic boundary. Let ˛0 be a compact multi-arc on S . Then there exist positive constants
c.˛0/ and m.X/ such that

lim
L!1

j¹˛ of type ˛0 j `X .˛/ � Lºj
L6g�6C2.nCp/

D c.˛0/m.X/:

Here, a compact arc is a geodesic segment whose endpoints lie on the boundary
of S , and a compact multi-arc is a formal sum of finitely many weighted compact arcs.
The length of a compact arc is the length of its orthogeodesic representative, which is
the unique geodesic compact arc in its homotopy class which meets the boundary ortho-
gonally, and the length of a compact multi-arc is the weighted sum of the lengths of its
components.

We also consider infinite arcs, that is, arcs whose endpoints are at punctures of S .
As implied by the name, infinite arcs have infinite length as they descend infinitely far
down the cusps. Hence we must define a suitable notion of the length of infinite arcs to
allow us to derive an analogue of Theorem 1.1. A natural way to do this is to cut off the
cusps (of area t ) and consider the length `t .˛/ of the segment of the arc which remains
(we refer to Section 4 for the precise definition). There are other natural choices of length
to assign to infinite arcs, such as the truncated length (see [17]). As we will explain in
Section 4, Theorem 1.2 also holds for the truncated length.

We prove the following result.

Theorem 1.2. Let X be a complete, finite-area, hyperbolic metric on S with (possibly
empty) geodesic boundary. Let ˛0 be an infinite arc on S . Then for any positive t � 1, we
have

lim
L!1

j¹˛ of type ˛0 j `tX .˛/ � Lºj
L6g�6C2.nCp/

D c.˛0/m.X/;

where c.˛0/ and m.X/ are as in Theorem 1.1. In particular, the limit does not depend
on t .

Remark 1.3. Theorem 1.2 also holds for infinite multi-arcs, following the same argument
presented in this paper. Moreover, our arguments can be easily modified to apply to rays,
by which we mean arcs with one endpoint on the boundary and one at a puncture, or any
collection of infinite arcs, compact arcs and rays.

As mentioned above, instead of modifying Mirzakhani’s original proof, here we take
a different, much simpler approach. The main idea is to associate a multicurve 
˛ to each
multi-arc ˛ in a way which respects length, up to a well-behaved error, and then use
Mirzakhani’s theorem to deduce Theorems 1.1 and 1.2. In fact, c.˛0/will be shown in each
case to be closely related to c.
˛0/: we will get that c.˛0/ D k.˛0/2

6g�6C2.nCp/c.
˛0/,
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where k.˛0/ is a combinatorial constant depending on ˛0, c.
˛0/ is as in (1.1), and 
˛0 is
the curve associated to ˛0 as defined in Sections 3.1 and 4.

In Section 2, we will introduce the necessary tools to formulate our proof, and deal
with a technicality regarding the application of Mirzakhani’s theorem in our setting. We
shall discuss the link between compact arcs and curves in Section 3.1, before proving
Theorem 1.1 in Section 3.2. Then in Section 4, we will demonstrate how to apply the
same method to infinite arcs and subsequently prove Theorem 1.2.

Remark 1.4. The study of orthogeodesics on hyperbolic surfaces has a rich history. For
example, if one counts all orthogeodesics of length at most L, Basmajian’s identity [1]
gives an upper bound exponential in L for this number, and the actual asymptotic growth
was shown to be exponential by Parkonnen and Paulin in [16] (see [10] for a general-
isation). These results can be viewed as analogues to Huber’s [11] and Margulis’ [12]
prime geodesic theorems, showing asymptotic exponential growth of the number of closed
geodesics on the surface. Our results are instead analogues of Mirzakhani’s theorem,
counting arcs in each (pure) mapping class group orbit and giving polynomial asymptotic
growth.

2. Background

As above, let S be an orientable surface of negative Euler characteristic of genus g with n
boundary components and p punctures, where .g; nC p/ ¤ .0; 3/. By @S we shall mean
the boundary of S , consisting of the n boundary components. The p punctures correspond
to ends of S , and we denote the collection of punctures as C. When convenient, we may
consider the punctures as marked points on (the closure of) S . LetX be a complete, finite-
area, hyperbolic metric on S such that @S is geodesic. We will consider S to be endowed
with such a metric throughout the following. Finally, we define the mapping class group
of S to be the group of homeomorphisms of the interior of S up to homotopy, that is,

Mod.S/ WD Mod.So/ D HomeoC.So/=HomeoC0 .S
o/;

where So D S n @S is the interior of S , HomeoC.So/ is the space of orientation-pre-
serving homeomorphisms of So and HomeoC0 .S

o/ is the subgroup of homeomorphisms
properly homotopic to the identity.

By a curve we mean (the homotopy class of) an immersion of the circle 
 WS1 ! S ,
and we identify curves which differ by an orientation. We assume curves to be essen-
tial, meaning not homotopic to a point or a puncture, and non-peripheral, meaning not
homotopic to a boundary component. By abuse of notation, we will use 
 to refer to both
a curve and its homotopy class. If a curve can be realised by an embedding, we call it
simple.

A compact arc is an immersion of the closed interval ˛W Œ0; 1� ! S that satisfies
˛.0/; ˛.1/ 2 @S and ˛..0; 1// � So. We consider compact arcs up to homotopy relat-
ive to @S , where we allow the endpoints to move along @S , and we assume that they are
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not homotopic into the boundary. Similarly, we define an infinite arc to be an immersion
of the open interval ˛W .0; 1/! S such that the endpoints are in C, by which we mean
that when we consider the punctures as marked points, the limit of ˛ in each direction is
a marked point. We consider infinite arcs up to homotopy relative to C, and we assume that
they are not homotopic into C. We identify arcs which differ by an orientation, and again
by abuse of notation, we refer to both an arc and its homotopy class by ˛. If an (infinite
or compact) arc can be realised as an embedding, then we call it simple. We stress that
throughout, we allow arcs to have self-intersections; we do not only count simple arcs.

A multicurve or a multi-arc is a finite formal sum of weighted curves or (infinite or
compact) arcs, respectively. Explicitly, if ! is a multicurve (resp. multi-arc), then

! D

mX
iD1

ai!i

for some ai 2 RC and m 2 ZC, where each !i is a curve (resp. arc). We will refer to
the !i as the components of !.

Each homotopy class of curves has a unique geodesic representative, and each homo-
topy class of compact arcs has a unique geodesic representative which meets the boundary
orthogonally, which we refer to as an orthogeodesic. We define the length of (a homotopy
class of) a curve or compact arc to be the length of its geodesic or orthogeodesic rep-
resentative, which we denote by `X .�/. The length of a multicurve or compact multi-arc
is defined to be the weighted sum of the lengths of its components: for ! D

Pm
iD1 a

i!i ,
we have `X .!/D

Pm
iD1 a

i`X .!
i /. We will discuss how to assign appropriate finite lengths

to infinite arcs in Section 4.
The pure mapping class group PMod.S/ acts naturally on curves and arcs in S . If '

is a mapping class and ! is either a geodesic curve, an orthogeodesic compact arc or a
geodesic infinite arc, then we define ' �! to be the (ortho)geodesic representative of f .!/,
where f is any representative of '. Let !0 be a curve or arc, then for any curve or arc !,
we say that ! is of type !0 if they share an orbit in the pure mapping class group, that is,
there exists some ' 2 PMod.S/ such that ' � !0 D !.

The action of PMod.S/ on multicurves and multi-arcs is defined analogously to the
above: if ! D

Pm
iD1 a

i!i is a multicurve or multi-arc, then

' � ! D

mX
iD1

ai .' � !i /:

We say that a multicurve or multi-arc ! is of type !0 if ! and !0 share a PMod.S/-orbit.
As a result, we have that if ! D

Pm
iD1 a

i!i and !0 D
Pn
jD1 a

j
0!

j
0 are of the same type,

then m D n and, up to relabelling, for all i 2 ¹1; : : : ; mº, ai D ai0 and !i is of type !i0.
Since X is complete and finite-area, each puncture corresponds to a cusp. Recall that

a cusp is an end which has a neighbourhood Ht isometric to°
z 2 H2

j Im.z/ >
1

t

±
=hz 7! z C 1i
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for some t > 0, where we have identified the hyperbolic plane H2 with the Poincaré
upper half-plane. Such a region has volume t , and we refer to Ht as a cuspidal region
(of volume t ). The ends of any infinite arc escape down cusps, and the unique geodesic
representative of its homotopy class eventually intersects the horocyclic foliation of the
corresponding cusps orthogonally.

Let t > 0. For each p 2 C, let Hp
t denote the cuspidal region at p of area t . Denote

the union of these regions over all p by Ht D
S
p2C H

p
t . It is well known that for any

t < 2, the cuspidal regions Hp
t are embedded and pairwise disjoint, as can be seen as a

result of the collar lemma (see, for example, [4, Theorem 4.4.6]).
For each boundary curve ı in @S and for any c > 0, define the annulus Aıc to be the

set of points at a distance less than c from ı. That is,

Aıc D ¹x 2 S j dX .x; ı/ < cº:

Denote by Ac D
S
ı A

ı
c the union of these annuli over all ı in @S . It again follows from

the collar lemma, applied to the boundary curves, that there exists c0 > 0 depending on X
such that the annuli Aıc0 are embedded and pairwise disjoint. We can choose c0 such that
for all t < 2, Ht \Ac0 D ;, and in particular, S n .Ht [Ac0/ is homeomorphic to So.

For any p and t < 2, and for any complete geodesic 
 intersecting @Hp
t transversely,


 \H
p
t takes one of two forms. Either it never leaves the cuspidal region and so inter-

sects every horocycle in Hp
t orthogonally, or it winds around the cusp before leaving

the region, and hence, when long enough, creates self-intersections. In the latter case,
we call the segment returning. In fact, the deeper into Hp

t a returning segment goes, the
more times it must self-intersect, and there is a direct relationship between the length of
a returning segment and its self-intersection number, which we record below for future
reference. We refer to [2, 3] for more details about the behaviour of returning segments
and for the proof of the below lemma: in particular, [3, Proposition 3.4] gives a much more
precise description of the relationship between how far an arc goes into a cusp and its self-
intersection number. Letting �.�; �/ denote the (geometric) intersection number between
curves or arcs (which is realised by their (ortho)geodesic representatives), we have the
following.

Lemma 2.1. Let p be a puncture, and let d > 0. Suppose ˇ is a geodesic segment
inHp

1 with both endpoints on @Hp
1 such that �.ˇ; ˇ/ � d . Then there exists some positive

B D B.d/ such that
`X .ˇ/ � B:

It follows from Lemma 2.1 that any geodesic curve 
 with at most d self-intersections
never enters He�B.d/ .

We can make a similar observation regarding boundary components on S . Whenever
a complete geodesic enters a small annulus around a boundary curve ı, it spirals towards ı,
and unless it is asymptotic to ı it eventually leaves the annulus, creating self-intersections
if long enough. It follows that if 
 is a geodesic curve with at most d self-intersections,
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there exists some c < c0 depending on d (and X ) such that 
 never enters Ac . Putting
this together with the above gives us that 
 is contained in the compact subsurface S n
.He�B.d/ [ Ac/ � S

o. Note that, as before, S n .He�B.d/ [Ac/ is homeomorphic to So.
Furthermore, since Mod.S/ preserves the self-intersection number of curves and arcs,
the above is true for any curve of type 
 . We summarise this well-known fact below for
reference; for a more precise description see [3, Proposition 3.4].

Lemma 2.2. Let 
0 be a curve. Then there exists a compact subsurface K � So with Ko

homeomorphic to So such that for any 
 of type 
0, the geodesic representative of 
 is
contained in K.

Since multicurves have finitely many components, this lemma holds for multicurves
by taking the union of the compact subsurfaces given for (the support of) each com-
ponent.

Let d be some non-negative integer, and let ˛ be an infinite arc such that �.˛; ˛/ D d .
Then similarly to the above, ˛ \ He�B.d/ consists of exactly two components, which
are simple geodesic rays. Equivalently, ˛ \ .S n He�B.d// has exactly one component.
We state this here for reference.

Lemma 2.3. Let ˛ be an infinite arc. Then there exists some positive t˛ < 1 depending
only on �.˛; ˛/ such that ˛ \ .S nHt˛ / has exactly one component.

We also need the fact that if a geodesic goes far enough into a cusp, then it must
intersect itself inside H2. To see this, suppose ˇ is a returning geodesic segment in H2

that enters Hp
t for some t � 1 and some p 2 C. Consider the cuspidal region Hp

2 and
identify it with °

z 2 H2
j Im.z/ >

1

2

±
=hz 7! z C 1i:

A fundamental domain for the action of z 7! z C 1 is the region in H2 bounded by x D 0
and x D 1. Note that any geodesic in H2 neither of whose endpoints are at 1 which
intersects the line y D 1

t
also intersects its translate under the map z 7! z C 1, and this

intersection occurs above the line y D 1
2

. Hence ˇ intersects itself inside the embedded
cuspidal region Hp

2 . Moreover, any segment entering a cusp in H1 must intersect itself
in a slightly larger cusp; for example, a cusp in H2. We record this here for reference,
and refer to [13] and [3, Proposition 3.2] for more details.

Lemma 2.4. Let 0 < t � 1. If ˇ is a geodesic segment in H2 with both endpoints on @H2,
and ˇ \Ht ¤ ;, then �.ˇ; ˇ/ � 1.

In particular, any simple geodesic not asymptotic to a puncture cannot enter H1.
We now comment very briefly on measured laminations; briefly, because although

central to Mirzakhani’s work, they somewhat surprisingly play no role here except stating
the constant below. A measured lamination is a closed subset of S foliated by simple
geodesics together with a transverse measure, and we denote the space of (compactly
supported) measured laminations on So as ML.S/: for background, we refer the reader
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to [9,20,21]. As the support of any � 2ML.S/ is a disjoint union of simple geodesics, it
follows from Lemma 2.4 that the support of � is contained in So nH1. In fact, there exists
a compact subsurface K � So nH1 which contains the support of ML.S/.

As mentioned in the introduction, the central idea of this paper is to find a nice way
to associate curves to arcs so that we can use Mirzakhani’s curve-counting theorem to
count arcs. However, Mirzakhani’s theorem is stated for complete finite-area hyperbolic
metrics on the interior So, and we will need to use the result for our metric X on S
which has geodesic boundary. This issue is resolved by instead using a generalisation
of Mirzakhani’s theorem to complete Riemannian metrics. We state this in full generality
below but note that metrics with variable negative curvature are sufficient for our purposes.

Theorem 2.5 ([5, Corollary 1.3]). Let Y be a complete Riemannian metric on the interior
So D S n @S . Then for any multicurve 
0,

lim
L!1

j¹
 of type 
0 j `Y .
/ � Lºj
L6g�6C2.nCp/

D c.
0/m.Y /;

where c.
0/ is as in (1.1), m.Y / is a constant depending on Y , and `Y .
/ is the length of
a shortest curve homotopic to 
 .

Remark 2.6. We refer the reader to Mirzakhani’s original result [15] and Erlandsson and
Souto’s book [6] for details on the constants appearing in Theorem 2.5. The constant
m.Y / can be expressed in terms of the Thurston measure mThu on ML.S/ as

m.Y / D mThu.¹`Y .�/ � 1º/:

Following the notation of [6], c.
0/ can be written as

c.
0/ D
cPMod.S/.
0/

bg;nCp
;

and both cPMod.S/.
0/ and bg;nCp can also be expressed in terms of Thurston measures.
The original constants, due to Mirzakhani, were expressed in a different fashion, using
integrals over moduli space with respect to the Weil–Petersson metric. See the end of [6,
Chapter 8] for a discussion on the relationship between these constants and those appear-
ing in [6].

To see how Theorem 2.5 implies that we can count curves in our setting, let 
0
be a multicurve on S and let K D K.
0/ be the compact subsurface of So given by
Lemma 2.2. By the discussion after Lemma 2.4, we can assume that K is such that
ML.S/�K. Take any complete Riemannian metric Y on So which agrees withX onK.
Since the geodesic representative of every multicurve 
 of type 
0 is contained in K and
ML.S/ sits insideK, we have that `Y .
/D `X .
/ for all 
 of type 
0 and `Y .�/D `X .�/
for all � 2ML.S/. From the latter equality, we get that m.X/Dm.Y / by the description
of these constants in Remark 2.6. We record this consequence for reference.
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Corollary 2.7. Let X be a complete, finite-area, hyperbolic metric on S such that @S is
geodesic. Then for any multicurve 
0,

lim
L!1

j¹
 of type 
0 j `X .
/ � Lºj
L6g�6C2.nCp/

D c.
0/m.X/;

where c.
0/ and m.X/ are as in (1.1).

3. Compact arcs

3.1. Relating compact arcs and curves

In this section, we will discuss how to associate multicurves to compact multi-arcs in
a way that respects length, up to some well-behaved error. We will achieve this using the
nice geometric properties of pairs of pants.

First, we will discuss how to associate a single curve to a single compact arc. Fix an
orientation on S , which induces an orientation on the boundary components. Let ˛ be
some compact arc in S oriented from ˛.0/ to ˛.1/. The endpoints ˛.0/ and ˛.1/ each lie
on a boundary component, which we denote by ı˛0 and ı˛1 , respectively: note that these
are not necessarily distinct. Pick basepoints p0 and p1 on ı˛0 and ı˛1 , respectively, and
consider these boundary components as loops based at their respective basepoints. Apply
a homotopy to ˛ so that ˛.0/ D p0 and ˛.1/ D p1. Then we define the curve associated
to ˛ to be the geodesic curve 
˛ (freely) homotopic to the concatenated path

˛�1 � ı˛1 � ˛ � ı
˛
0

which starts and ends at p0. In particular, in the case that ˛ is simple and ı˛0 ¤ ı
˛
1 , 
˛ is

homotopic to the boundary of a small neighbourhood of the union of ˛, ı˛0 and ı˛1 ; see
Figure 1. Recall that we identify arcs and curves differing by an orientation, and note that
the arc ˛0 which differs from ˛ only in orientation gives rise to exactly the same curve
as ˛, even in orientation.

Now, let P be a topological surface with g D 0, n D 3 and p D 0, known as a pair of
pants, and fix an orientation on P . The boundary components of P are referred to as cuffs,
and for each pair of cuffs the unique homotopy class of simple compact arcs between them
is called a seam. We label the cuffs by ıP0 , ıP1 and ıP2 and the seam between ıP0 and ıP1
by ˛P .

For any arc ˛ on S with endpoints on ı˛0 and ı˛1 , there exists an orientation-preserving
immersion �˛WP ! S such that

�˛.ı
P
0 / D ı

˛
0 ; �˛.ı

P
1 / D ı

˛
1 ; �˛.˛P / D ˛:

Note that the images of the two cuffs and the seam under this map determine the image
of the third cuff up to homotopy since this is exactly the (free) homotopy class of the path
˛�1 � ı˛1 � ˛ � ı

˛
0 . That is,


˛ D �˛.ı
P
2 / (3.1)
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˛

˛


˛


˛

Figure 1. Examples of compact arcs (in red) and their associated curves (in blue).

(up to homotopy). Let �0˛ be another immersion which satisfies the above. Then since they
agree on ıP0 , ıP1 and ˛P , we have that the images �˛.ıP2 / and �0˛.ı

P
2 / of the third cuff are

homotopic, and such a homotopy extends to a homotopy from �˛.P / to �0˛.P /. Thus any
two such immersions of P are homotopic.

In the case that ˛ D
Pm
iD1 a

i˛i is a compact multi-arc, we define the multicurve
associated to ˛ to be the weighted sum of the curves associated to its components. That is,


˛ D

mX
iD1

ai
˛i D

mX
iD1

ai �˛i .ı
P
2 /: (3.2)

In the remainder of the section, we will first prove several statements for single compact
arcs before demonstrating how these also hold for compact multi-arcs.

Let A.S/ and C.S/ denote the sets of compact arcs and curves on S respectively.
We define the association map I WA.S/! C.S/ by

I.˛/ D 
˛:

First, we show that I distorts the length of arcs in a controlled way (see also [3, Section 6]
for various expressions relating the lengths of ˛ and 
˛).

Lemma 3.1. Let X be a complete, finite-area, hyperbolic metric on S such that @S is
geodesic. There exists a constant C.X/ > 0 such that for any ˛ 2 A.S/,

j`X .I.˛// � 2`X .˛/j � C.X/;

where I.˛/ D 
˛ is the curve associated to ˛.

Proof. This will follow from basic hyperbolic geometry. Let ˛ 2 A.S/.
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Choosing the lengths of two cuffs and the seam between them on a pair of pants fixes
the length of the third cuff; that is, the lengths of ı˛0 , ı˛1 and ˛ determine the length of 
˛ .
More precisely,

cosh
`X .
˛/

2
D sinh

`X .ı
˛
0 /

2
sinh

`X .ı
˛
1 /

2
cosh `X .˛/ � cosh

`X .ı
˛
0 /

2
cosh

`X .ı
˛
1 /

2
(3.3)

(see [4, Theorem 2.4.1]). Let @S D ¹ı1; : : : ; ınº, then for some i , j , ı˛0 D ıi and ı˛1 D ıj .
To simplify notation, we will write

Ai;j D sinh
`X .ıi /

2
sinh

`X .ıj /

2
;

Bi;j D cosh
`X .ıi /

2
cosh

`X .ıj /

2
:

Then equation (3.3) gives the length of 
˛ as

`X .
˛/ D 2 cosh�1.Ai;j cosh `X .˛/ � Bi;j /;

and we want to show that this length is close to 2`X .˛/. To this end, we define the error
function Ei;j W Œmi;j ;1/! R by

Ei;j .`/ D 2 cosh�1.Ai;j cosh ` � Bi;j / � 2`;

wheremi;j is a lower bound on the lengths of arcs between ıi and ıj which can be taken as

mi;j WD cosh�1
�Bi;j C 1

Ai;j

�
:

This function is continuous, and the limit

lim
`!1

Ei;j .`/ D 2 ln.Ai;j /

exists. Hence jEi;j .`/j is bounded for all ` 2 Œmi;j ;1/, thus there exists C.i; j / > 0 such
that for any arc ˛ between ıi and ıj , we have j`X .
˛/ � 2`X .˛/j � C.i; j /. Therefore,
as S has finitely many boundary components, there exists C.X/ > 0 such that for any
˛ 2 A.S/,

j`X .
˛/ � 2`X .˛/j � C.X/:

This association map I is not one-to-one: for example, suppose that S is a four-holed
sphere with boundary components ı1, ı2, ı3, ı4. Let ˛ be a simple arc connecting ı1
and ı2, and ˇ a simple arc connecting ı3 and ı4. Then 
˛ and 
ˇ are the same (homotopy
class of) curve up, to orientation.

There are also less trivial examples, such as where ˛ and ˇ are arcs between the same
boundary components, as the following example illustrates.
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Example 3.2. Let P be the pair of pants from above. Fix a base point ? 2 P and choose
generators A and B for �1.P; ?/ ' F2 such that the loops A and B are freely homotopic
(as oriented curves) to ıP0 and ıP1 , respectively. Note that the third boundary compon-
ent ıP2 corresponds to the conjugacy class of B�1A�1. Let S D S0;3;0 be another oriented
pair of pants and let a, b be generators of �1.S;�/ (for some basepoint � 2 S ) such that a
and b are freely homotopic to two of the boundary components of S , say ıS0 and ıS1 ,
respectively.

Now consider the homomorphism h1W�1.P; ?/! �1.S;�/ defined by

A 7! a and B 7! b�1aba�1b:

As h1.A/ and h1.B/ are conjugate to a and b, h1.A/ and h1.B/ are (freely) homotopic
to ıS0 and ıS1 , preserving orientation. Thus h1 induces an immersion �1WP ! S .

Similarly, the homomorphism h2W�1.P; ?/! �1.S;�/ defined by

A 7! ab�1aba�1 and B 7! b

also induces an immersion �2WP ! S .
Note that (the homotopy classes of) all three boundary components of �1.P / and �2.P /

agree; they correspond to the conjugacy classes of a, b and b�1ab�1a�1ba�1. Further,
note that

ha; b�1aba�1bi ¤ hab�1aba�1; bi;

and hence �1.P / is not homotopic to �2.P /. In particular, the arcs �1.˛P / and �2.˛P / are
not homotopic, whilst 
�1.˛P / and 
�2.˛P / determine the same curve (namely, the conjugacy
class of b�1ab�1a�1ba�1); see Figures 2 and 3.

Despite this complication, if we restrict I to a (pure) mapping class group orbit of an
arc, it is constant-to-one. This will be enough for our purposes, as I is equivariant with
respect to PMod.S/, which we now demonstrate.

Figure 2. The arcs corresponding to the homomorphisms h1 (left) and h2 (right), drawn from two
perspectives for clarity.
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Figure 3. The curve associated to the arcs from Figure 2, drawn from two perspectives for clarity.

Lemma 3.3. Let ' 2 PMod.S/ and ˛ 2 A.S/. Then

I.' � ˛/ D ' � I.˛/:

Proof. To see this, write

'�˛ D �'�˛.ı

P
2 /

using (3.1). We have that �'�˛.P / � S is an immersed pair of pants with boundary com-
ponents ı˛0 and ı˛1 , and the seam between them is ' � ˛. Similarly, ' � �˛.P / � S is an
immersed pair of pants with boundary components ı˛0 and ı˛1 and the seam ' � ˛ between
them since ' fixes the boundary components of S . Therefore, �'�˛.P / D ' � �˛.P / and,
in particular, �'�˛.ıP2 / D ' � �˛.ı

P
2 /. Since 
˛ D �˛.ıP2 / by (3.1), we have


'�˛ D ' � 
˛

and so the lemma holds.

Let ˛0 be a compact arc, and let

I˛0 W PMod.S/ � ˛0 ! PMod.S/ � 
˛0

be the restriction of I to arcs of type ˛0. By Lemma 3.3, this map is well-defined.
Moreover, I˛0 is finite-to-one. To see this, take some 
 2 PMod.S/ � 
˛0 and consider
the collection of compact arcs ˛i such that 
˛i D 
 . By Lemma 3.1, the maximum length
of such an arc is 1

2
`X .
/C

1
2
C.X/, and thus there are only finitely many. In fact, since I˛0

is PMod.S/-equivariant and PMod.S/ acts transversely on PMod.S/ � 
˛0 , it follows that
all pre-images have the same cardinality; that is, I˛0 is constant-to-one.

Proposition 3.4. Let ˛0 be a compact arc. Then there exists k D k.˛0/ such that I˛0 is
surjective and k-to-1.

We will need to use these results for compact multi-arcs. Let Amulti.S/ and Cmulti.S/

be the sets of weighted compact multi-arcs and weighted multicurves, respectively. By
abuse of notation, define the association map on multi-arcs I WAmulti.S/! Cmulti.S/ by

I.˛/ D I
� mX
iD1

ai˛i
�
D

mX
iD1

aiI.˛i /:
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As multi-arcs have finitely many components, Lemma 3.1 holds for multi-arcs as a direct
consequence if we allow the constant to depend on the number of components. In partic-
ular, we have the following corollary.

Corollary 3.5. Let X be a complete, finite-area, hyperbolic metric on S such that @S is
geodesic. For any ˛ 2 Amulti.S/, there exists a constant C.X/ > 0 such that

j`X .I.˛// � 2`X .˛/j � C.X/;

where I.˛/ D 
˛ is the multicurve associated to ˛.

Furthermore, as an immediate corollary to Lemma 3.3, I remains PMod.S/-equivari-
ant when defined on compact multi-arcs. Following the proof of Proposition 3.4, we can
see that the restriction of the association map to multi-arcs of a particular type is surjective
and k-to-1 for some k depending only on the type. We record this here for reference.

Corollary 3.6. Let ˛0 be a compact multi-arc and 
˛0 be as in (3.2). Let

I˛0 W PMod.S/ � ˛0 ! PMod.S/ � 
˛0

be the restriction of I to multi-arcs of type ˛0. Then there exists k D k.˛0/ such that I˛0
is surjective and k-to-1.

Remark 3.7. It would be interesting to understand the value of k. Example 3.2 demon-
strates that I is not one-to-one; how far from injective could it be? When restricting to
a type, is the map then one-to-one? For example, if ˛0 is simple, is k.˛0/ equal to 1?
Future work could study this association more closely to give us an idea of how it varies
with the type of arc and, if it is not identically 1, derive some explicit examples of arcs of
the same type which are associated to the same curve.

3.2. Counting compact arcs

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Let ˛0 be a compact multi-arc. Consider the set

¹˛ of type ˛0 j `X .˛/ � Lº

for some L > 0. By Corollary 3.6, there exists k such that the association map I˛0 is k-
to-1, and by Corollary 3.5, the maximum length of a multicurve associated to a multi-arc
in this set is 2LC C.X/. Hence we can write

j¹˛ of type ˛0 j `X .˛/ � Lºj � kj¹
 of type 
˛0 j `X .
/ � 2LC C.X/ºj:
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Then we have

lim sup
L!1

j¹˛ of type ˛0 j `X .˛/ � Lºj
L6g�6C2.nCp/

� lim sup
L!1

kj¹
 of type 
˛0 j `X .
/ � 2LC C.X/ºj
L6g�6C2.nCp/

D k � lim sup
L!1

j¹
 of type 
˛0 j `X .
/ � 2LC C.X/ºj
.2LC C.X//6g�6C2.nCp/

.2LC C.X//6g�6C2.nCp/

L6g�6C2.nCp/

D k � 26g�6C2.nCp/c.
˛0/m.X/

using Corollary 2.7. Using a similar argument, we have

j¹˛ of type ˛0 j `X .˛/ � Lºj � kj¹
 of type 
˛0 j `X .
/ � 2L � C.X/ºj;

and therefore

lim inf
L!1

j¹˛ of type ˛0 j `X .˛/ � Lºj
L6g�6C2.nCp/

� k � 26g�6C2.nCp/c.
˛0/m.X/:

Hence, since the limit superior and inferior both exist and agree, we have that the limit
exists and equals the same value. In other words,

lim
L!1

j¹˛ of type ˛0 j `X .˛/ � Lºj
L6g�6C2.nCp/

D c.˛0/m.X/;

where c.˛0/ WD k � 2
6g�6C2.nCp/c.
˛0/, k is as in Corollary 3.6, and c.
˛0/ and m.X/

are as in (1.1).

4. Counting infinite arcs

The main work in this section is to prove the lemmas from Section 3.1 for infinite arcs,
with modifications to account for the range of values the t -length of an infinite arc can
take. The proof of Theorem 1.2 will then be analogous to that of Theorem 1.1.

First, we discuss the assignment of appropriate finite lengths to infinite arcs. For any
t 2 .0; 1�, let Ht D

S
p2CH

p
t be the union of the cuspidal regions of volume t as before,

and define the t -length `tX .˛/ of any arc ˛ to be the length of ˛t D ˛ \ .S nHt /. That is,

`tX .˛/ D `X .˛
t /:

Note that in general, ˛t could consist of multiple connected components, and in this case
`X .˛

t / is the sum of the lengths of its components. Fix an infinite arc ˛ and let t˛ be given
by Lemma 2.3. Then ˛ \ .S nHt˛ / is connected, and moreover for any t � t˛ , ˛t has
exactly one component.

As mentioned in the introduction, the t -length of an arc is closely related to the trun-
cated length as defined by Parlier in [17]. Choose a standard collection of cuspidal regions,
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which we can take as H1. For any infinite arc ˛, the (doubly) truncated length of ˛ is the
length of the segment of ˛ between the first and last times ˛ crosses @H1. We denote this
length by `Tr

X .˛/.
This length is also closely related to the �-length introduced by Penner in [18, 19].

In our setting, having chosen the appropriate cuspidal regions, we have that

�.˛/ D e
1
2 `

Tr
X .˛/:

Note that for any ˛ 2A.S/, `t˛X .˛/ and the truncated length `Tr
X .˛/ differ by a constant,

and this constant depends only on �.˛; ˛/. This is because the t˛-length of ˛ is exactly
the truncated length plus the lengths of the two geodesic segments of ˛ between @H1

and @Ht˛ , each of length ln. 1
t˛
/. Thus we can write

j`
t˛
X .˛/ � `

Tr
X .˛/j � 2 ln

� 1
t˛

�
: (4.1)

Recall that by Lemma 2.3, t˛ depends only on �.˛; ˛/. Using this fact, one can show that
Theorem 1.2 also holds when we replace `tX by `Tr

X .
The curve 
˛ associated to an infinite arc ˛ is defined analogously to the compact

case. Denote by p˛0 and p˛1 the cusps at each end of ˛, where ˛ is oriented from p˛0 to p˛1 .
With t˛ as above, define 
˛ to be the geodesic curve (freely) homotopic to the loop given
by the concatenation

.˛t˛ /�1 � h˛1 � ˛
t˛ � h˛0 ;

where h˛0 D @H
p˛0
t˛

, h˛1 D @H
p˛1
t˛

are the horocycles at p˛0 and p˛1 of length t˛ , viewed
as loops with appropriate basepoints and orientations. Note that if we replaced t˛ by any
t < t˛ , we would get the same curve 
˛ . Let P be a (generalised) pair of pants with
one boundary component and two cusps, labelled ı, p0 and p1, respectively. There is
an orientation-preserving immersion �˛WP ! S which sends p0 and p1 to p˛0 and p˛1 ,
respectively, and such that (the homotopy class of) the simple infinite arc between them is
mapped to ˛. Then equivalently, 
˛ is the geodesic representative of �˛.ı/.

Abusing notation, we define I WA1.S/! C.S/ to be the association map from infin-
ite arcs to curves, where A1.S/ is the set of all infinite arcs on S . That is, for any
˛ 2 A1.S/,

I.˛/ D 
˛:

We will now prove an analogue of Lemma 3.1 for infinite arcs. As t can be taken
arbitrarily close to 0, the t -length of an arc can be arbitrarily long, and so any bound on
the difference between the t -lengths of infinite arcs and the lengths of their associated
curves must depend on t . Furthermore, arcs which self-intersect arbitrarily often will go
arbitrarily deep into the cusps, and therefore so will their curves. Thus for a fixed value
of t , this difference can become arbitrarily large. Hence, any such bound must also depend
on self-intersection number.
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Lemma 4.1. Let ˛ be an infinite arc. Then for any positive t < 1, there exists such
C.�.˛; ˛/; t/ > 0 that

j`X .I.˛// � 2`X .˛
t /j � C.�.˛; ˛/; t/;

where I.˛/ D 
˛ is the curve associated to ˛.

Proof. Let ˛ be an infinite arc, and let t˛ be given by Lemma 2.3. We will start by proving
the lemma in the case that t � t˛ . Then we will demonstrate that for t > t˛ , the dif-
ference between `tX .˛/ and `t˛X .˛/ is uniformly bounded across all arcs with the same
self-intersection number, and so complete the proof.

Suppose that t � t˛ . Equip the generalised pair of pants P with a metric using the
pullback of X through �˛ . Cut P along four geodesic arcs: the pre-image of ˛, the per-
pendicular compact simple geodesic arc from the boundary component to itself, and the
two simple geodesic rays between the boundary component and the cusps; see Figure 4.
We are left with 4 isometric copies of a quadrilateral with three right angles and one ideal
vertex, which we label as in Figure 5.


˛

˛

@Ht

Figure 4. The pre-image of an infinite arc ˛ in the generalised pair of pants P with the perpendicu-
lars which we cut along.

Since t � t˛ , we have that the length of the edge qw is 1
2
`X .˛

t /, and the length of the
edge uv is 1

4
`X .
˛/. Consider this quadrilateral in the upper-half space model for H2 and

normalise it such that the ideal vertex is at1 and the edges incident to it are on the lines
x D 0 and x D 1. As the length of the boundary of the cuspidal region of area t is t , the
length of the segment which lives in this quadrilateral is t

2
. Therefore, it lies on the line

y D 2
t
.

This means that w D 2
t
ie�

1
2 `X .˛

t /, and a computation shows that

`X .
˛/ D 4 cosh�1
� t
2

e
1
2 `X .˛

t /
�
:
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10

uw

q

v

2
t

w

vu
1
4
`X .
˛/

1
2
`X .˛

t /

t
2

q

Figure 5. One of the quadrilaterals acquired from cutting P (left), and the same quadrilateral in the
upper-half plane model after normalising (right).

Hence, the difference `X .
˛/ � 2`X .˛t / can be written as

4 cosh�1
� t
2

e
1
2 `X .˛

t /
�
� 2`X .˛

t /:

The functionEt .`/D 4cosh�1. t
2

e
1
2 `/� 2` is continuous on Œmt ;1/, wheremt WD 2 ln.2

t
/

is a lower bound on the length of ˛t , and lim`!1 Et .`/ D 4 ln.t/. It follows that there
exists C1.t/ > 0 such that

j`X .
˛/ � 2`X .˛
t /j � C1.t/: (4.2)

Now suppose that t > t˛ . Note that ˛t is contained in ˛t˛ , and so `tX .˛/ < `
t˛
X .˛/.

Consider ˛t˛ n ˛t , which lies in Ht nHt˛ . Exactly two of the components of ˛t˛ n ˛t are
simple geodesic arcs from @Ht to @Ht˛ which meet each boundary orthogonally. Hence,
these two components each have length ln. t

t˛
/ � ln. 1

t˛
/. The other components, if any,

are returning segments in Ht with both endpoints on @Ht . Let ˇ be some such segment
of ˛, and let d D �.˛; ˛/. Then we must have �.ˇ; ˇ/ � d . Thus, as t � 1, `X .ˇ/ � B.d/,
whereB is given by Lemma 2.1. AsB only depends on d , this holds for any such segment.
Now we need to show that there are only finitely many segments of ˛ in Ht nHt˛ . From
Lemma 2.4, we have that the self-intersection number of each segment is at least 1, and
indeed the sum of the self-intersection numbers of these segments is at most d . Hence,
˛ \ .Ht nHt˛ / has at most d C 2 components and so

`
t˛
X .˛/ � `

t
X .˛/ � dB.d/C 2 ln

� t
t˛

�
� dB.d/C 2 ln

� 1
t˛

�
:

Note that by Lemma 2.3, t˛ depends only on d D �.˛; ˛/. Thus there exists some positive
C2.�.˛; ˛// such that

j`
t˛
X .˛/ � `

t
X .˛/j � C2.�.˛; ˛//:

Now by applying (4.2) to t˛ , we have that j`X .
˛/� 2`X .˛t˛ /j � C1.t˛/, and thus we
can write

j`X .
˛/ � 2`X .˛
t /j � C1.t˛/C 2C2.�.˛; ˛//:
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Therefore, for any t � 1,

j`X .
˛/ � 2`X .˛
t /j � C.�.˛; ˛/; t/;

where

C�.˛; ˛/; t/ D

´
C1.t/ if t � t˛;

C1.t˛/C 2C2.�.˛; ˛// if t > t˛:

The fact that I for infinite arcs is PMod.S/-equivariant holds by an argument analog-
ous to the proof of Lemma 3.3. That is, for any infinite arc ˛ and any ' 2 PMod.S/,

I.' � ˛/ D ' � I.˛/: (4.3)

For any infinite arc ˛0, I˛0 W PMod.S/ � ˛0 ! PMod.S/ � 
˛0 is the restriction of I to
PMod.S/ � ˛0. Given any curve 
 of type 
˛0 and a fixed value of t , there are only finitely
many arcs ˛ of type ˛0 such that `.˛t / � 1

2
`X .
/C

1
2
C.�.˛0; ˛0/; t/. By Lemma 4.1, this

means that there are only finitely many arcs ˛ of type ˛0 such that 
˛ D 
 . Using this
together with (4.3), Proposition 3.4 holds for I˛0 by an analogous argument.

Proposition 4.2. Let ˛0 be an infinite arc. Then there exists some k D k.˛0/ such that I˛0
is surjective and k-to-1.

Armed with this, we can follow the argument from the proof of Theorem 1.1 to prove
Theorem 1.2.

Proof of Theorem 1.2. Let ˛0 be an infinite arc, and fix some positive t � 1. Let 
˛0 be
the curve associated to ˛0, as defined above. Using the same argument as in the proof of
Theorem 1.1, replacing Corollaries 3.5 and 3.6 by Lemma 4.1 and Proposition 4.2, we
have

lim
L!1

j¹˛ of type ˛0 j `tX .˛/ � Lºj
L6g�6C2.nCp/

D k � 26g�6C2.nCp/ lim
L!1

j¹
 of type 
˛0 j `X .
/ � Lºj
L6g�6C2.nCp/

D k � 26g�6C2.nCp/c.
˛0/m.X/

D c.˛0/m.X/;

where c.˛0/ D k � 2
6g�6C2.nCp/c.
˛0/, k is as in Proposition 4.2, and c.
˛0/ and m.X/

are as in (1.1).

Remark 4.3. As previously mentioned, Theorem 1.2 holds when we replace the t -length
by the truncated length `Tr

X . This can be seen by applying Theorem 1.2 in the case that
t D t˛0 , and using the bound on the difference in the t˛0 -length and the truncated length
from (4.1).
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