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Unbounded domains in hierarchically hyperbolic groups

Harry Petyt and Davide Spriano

Abstract. We investigate unbounded domains in hierarchically hyperbolic groups and obtain con-
straints on the possible hierarchical structures. Using these insights, we characterise the structures
of virtually abelian HHGs and show that the class of HHGs is not closed under finite extensions.
This provides a strong negative answer to the question of whether being an HHG is invariant under
quasi-isometries. Along the way, we show that infinite torsion groups are not HHGs. By ruling out
pathological behaviours, we are able to give simpler, direct proofs of the rank-rigidity and omni-
bus subgroup theorems for HHGs. This involves extending our techniques so that they apply to all
subgroups of HHGs.

1. Introduction

Hierarchically hyperbolic spaces and groups were introduced by Behrstock–Hagen–Sis-
to [5] with the aim of providing a common framework for studying mapping class groups
and cubical groups. The motivating observation was that several of the tools and tech-
niques introduced by Masur–Minsky to study the mapping class group can be applied to
(the majority of) groups acting on CAT(0) cube complexes.

This common framework not only allows one to prove results about many groups
at once, but also gives a way to transfer techniques from one setting across to others.
For example, Behrstock–Hagen–Sisto [6] proved a hierarchical version of a result of
Huang [25] for CAT(0) cube complexes, which enabled them to deduce Farb’s quasiflat
conjecture for mapping class groups. Similarly, work of Bowditch on median spaces [9]
has been adapted to the hierarchical setting to show that mapping class groups are semi-
hyperbolic [20]. In the other direction, uniform exponential growth is well understood for
mapping class groups [3, 29], whereas for cubical groups, this was only the case in low
dimensions [19, 27] until the work of [2] in the setting of hierarchical hyperbolicity.

Although several aspects of hierarchically hyperbolic groups have been studied since
their introduction, such as dynamics on the boundary [15], acylindrical actions [1], con-
vexity properties [32], cubical structures [21], and so on, the structure of the “generic”
hierarchically hyperbolic group is far from being understood. This becomes more pro-
nounced when considering group actions. For instance, there are well-known examples
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of CAT(0) cube complexes that do not admit a hierarchically hyperbolic structure, but
these examples do not admit a group action. In fact, all known cocompact CAT(0) cube
complexes are known to be hierarchically hyperbolic by a theorem of Hagen–Susse [23].

An extra layer of complication comes from the fact that the definition of hierarchically
hyperbolic group requires more than just a geometric action on a hierarchically hyperbolic
space, and it is not immediate whether the additional requirements are preserved under
quasi-isometries. Although it was generally agreed that this should not be the case, finding
an example has proved challenging. The main reason for this is that there may be several
different hierarchical structures on a group: even hyperbolic groups can be equipped with
many hierarchically hyperbolic structures [35]. In other words, showing that a group can-
not be equipped with the “natural” structure does not rule out the existence of exotic ones.

The goal of this paper is to analyse the constraints on the hierarchically hyperbolic
structure that stem from being a hierarchically hyperbolic group. As a consequence, we
construct the first example of two quasi-isometric groups where only one admits a hier-
archically hyperbolic group structure.

Our main technical result is the existence of eyries. Every hierarchically hyperbolic
structure consists of a set S of domains, equipped with a partial order v that has a unique
maximal element. With each domain is associated a hyperbolic space, and we say that
a domain is unbounded if its associated hyperbolic space is. A number of complications
in the theory come from the fact that the v-maximal domain may be bounded, preventing
geometric arguments that use the v-maximality. When looking only at the set of unboun-
ded domains, however, we show that an analogous statement holds, namely that there is
a finite collection of v-maximal elements, which we call eyries.

Theorem 3.2 (Less-general version). Let .G;S/ be a hierarchically hyperbolic group.
Then there is a finite, G-invariant set E.G/ D ¹W1; : : : ;Wnº � S of pairwise orthogonal
unbounded domains such that every other unbounded domainU 2S is nested in someWi .

Results on the structure. As a first consequence of Theorem 3.2, we can build upon the
study of domains that are quasilines, carried out in [2], to obtain the following.

Corollary 4.2. Let .G;S/ be a hierarchically hyperbolic group. Then G is virtually
abelian if and only if each domain is either bounded or quasi-isometric to a line.

We thus obtain that there is no hierarchically hyperbolic group structure on a non-
abelian free group that consists only of bounded domains and quasilines. As a measure of
our understanding of the generic hierarchically hyperbolic structure, even such an innocent
statement on a very well-understood group was previously unknown.

Under an additional hypothesis that is called hierarchical acylindricity, Theorem 3.2
was deduced from the omnibus subgroup theorem by Durham–Hagen–Sisto [15, Corol-
lary 9.23]. There are two advantages to our approach. Firstly, by proving the theorem
directly we can significantly simplify the proof. Secondly, dropping the hierarchical acyl-
indricity hypothesis gives us restrictions that all hierarchically hyperbolic group structures
need to satisfy. For instance, the following is a simple consequence of Theorem 3.2.
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Corollary 4.1. Infinite torsion groups are not hierarchically hyperbolic groups.

The role of torsion in proving that a group is not hierarchically hyperbolic is a leitmotif
of this paper. Indeed, Theorem 3.2 can be used to obtain information about the interaction
between torsion elements and the hierarchically hyperbolic group structure. This is par-
ticularly interesting because it is one of the first non-coarse tools that we have for proving
that a group cannot be equipped with a hierarchically hyperbolic group structure.

Theorem 4.4. A crystallographic groupG < Isom Rn admits a hierarchically hyperbolic
group structure if and only if its point group embeds in On.Z/ D Zn

2 Ì Sym.n/.

As well as being interesting in its own right, we see Theorem 4.4 as a blueprint to
prove that a specific group does not admit a hierarchically hyperbolic group structure.
As a corollary, we obtain the first example of a virtually hierarchically hyperbolic group
that is not hierarchically hyperbolic.

Corollary 4.5. The .3; 3; 3/ triangle group is virtually a hierarchically hyperbolic group
(and, in particular, it is a hierarchically hyperbolic space), but is not a hierarchically
hyperbolic group.

Since the .3; 3; 3/ triangle group is a finite extension of the hierarchically hyperbolic
group Z2, this gives a strong answer to the question of quasi-isometric invariance of hier-
archically hyperbolic groups: although the property of being a hierarchically hyperbolic
space is preserved by quasi-isometries, not only is the property of being a hierarchically
hyperbolic group not preserved by quasi-isometries, it is not even preserved by taking
finite extensions.

Moreover, since the direct product of the .3; 3; 3/ triangle group with Z acts properly
cocompactly on the standard cubing of R3, it is hierarchically hyperbolic. Corollary 4.5
therefore shows that direct factors of hierarchically hyperbolic groups need not be hier-
archically hyperbolic.

Since the first appearance of this paper, it has become possible to deduce Theorem 4.4
from [20] and the arguments of [24], but the argument given here is considerably more
direct.

Rank-rigidity and the omnibus subgroup theorem. The rank-rigidity conjecture for
groups acting on CAT(0) spaces was confirmed for CAT(0) cube complexes by Caprace–
Sageev [11]. This result was later shown to hold for a large class of groups acting on hier-
archically hyperbolic spaces, including all hierarchically hyperbolic groups, by Durham–
Hagen–Sisto [15]. In both cases, the proofs are quite complicated, the latter using measure
theory on the HHS boundary. In the same paper, Durham–Hagen–Sisto prove the omnibus
subgroup theorem for many groups acting on hierarchically hyperbolic spaces, including
compact special groups and mapping class groups. Again, the proof is rather involved. For
mapping class groups, this theorem was originally formulated by Mosher to consolidate
several important theorems, including that of Birman–Lubotzky–McCarthy [8] and that of
Ivanov [26]; Mangahas gives a lucid discussion of this in [30].
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As was mentioned earlier, Theorem 3.2 can be deduced from the omnibus subgroup
theorem, which was previously only known to hold in the case where the group is hier-
archically acylindrical. It turns out that the logic can be reversed, and Theorem 3.2 can
be used to prove the rank-rigidity theorem (Corollary 4.7) and the omnibus subgroup the-
orem (Corollary 5.9), allowing the hierarchical acylindricity hypothesis for the latter to be
relaxed. This approach leads to proofs that use much simpler tools and are significantly
shorter. (It should be noted that the results of [15] hold in a slightly more general setting
than that of hierarchically hyperbolic groups.)

The version of rank-rigidity that we state is slightly sharper than the original, and it
allows us to cleanly deduce the following fact, which could be obtained from results in
the literature but has not previously been recorded.

Corollary 4.8. If G and H are quasi-isometric HHGs, then G is acylindrically hyper-
bolic if and only if H is.

We remark that the omnibus subgroup theorem is a very deep result, and even a simpler
proof still presents some amount of technical involvement. In particular, our proof uses
a much more general version of Theorem 3.2, in which we extend the result to subgroups.

Theorem 5.1. Let .G;S/ be a hierarchically hyperbolic group and H � G be any sub-
group. Then there is a finiteH -invariant set E.H/D¹W1; : : : ;Wnº of pairwise orthogonal
domains with unboundedH -projection such that every U with �U .H/ unbounded is nes-
ted in some Wi . Moreover, if H is finitely generated and infinite, then E.H/ is nonempty.

Obtaining a result about all subgroups of a group usually requires some amount of
technical work, and Theorem 5.1 is no exception. In particular, the subgroup considered
may be heavily distorted, and it may have exotic interaction with the hierarchical structure.
For this reason, the proof of Theorem 5.1 forms the most involved part of the paper,
although the techniques used are, in essence, elementary.

Apart from providing a simpler proof of the omnibus subgroup theorem, we expect
more applications to stem from a better understanding of subgroups of hierarchically
hyperbolic groups. For instance, Theorem 5.1 can be used to simplify part of the proof
of the Tits alternative for hierarchically hyperbolic groups [16]. It could also be useful for
proving results on uniform uniform exponential growth similar to those for mapping class
groups [29] and square complexes [27].

2. Background

The definitions of hierarchically hyperbolic spaces and hierarchically hyperbolic groups
are rather technical, and we refer the reader to [4, Definitions 1.1 and 1.21] for a complete
account. Roughly, an HHS is a pair .X;S/, where X is an E-quasigeodesic space and S

is a set, with some extra data. The important structure for us is as follows.
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• For each domain U 2 S there is an E-hyperbolic space CU and a projection map
�U WX ! CU that is coarsely onto [4, Remark 1.3] and coarsely Lipschitz.

• S has a partial orderv, called nesting, and a symmetric relation?, called orthogonal-
ity. Nest-chains are uniformly finite, and the length of the longest such chain is called
the complexity of .X;S/. This also bounds the size of a set of pairwise orthogonal
domains. These relations are mutually exclusive, and the complement of v and ? is
called transversality and denoted t.

• There is a bounded set �U
V � CV whenever U t V or U � V . These sets, and projec-

tions of elements x 2 X , are consistent, in the sense that �U
W coarsely agrees with �V

W

whenever U � V and �V
W is defined (this will be referred to as �-consistency), and

min¹dCU .�U .x/; �
V
U /; dCV .�V .x/; �

U
V /º is bounded whenever U t V .

All coarseness in the above can be taken to be uniform [4, Remark 1.6]. We fix a uniform
constant E. For a domain U , we write SU for the subset ¹V 2 SWV v U º � S.

If X is the Cayley graph of a finitely generated group G, then .G;S/ is an HHG
structure if it also satisfies the following regulating assumptions. (The exact equivariance
described here is not part of the original definition, but it can always be assumed to hold
by [16, §2.1].)

• G acts cofinitely on S, and the action preserves the three relations.

• For each g 2 G and each U 2 S, there is an isometry gW CU ! CgU , and these
isometries satisfy g � h D gh.

• There is equivariance of the form g�U .x/D�gU .gx/ and g�V
U D �

gV
gU for all g;x 2G

and all U; V 2 S with U t V or V � U .

Because the action of G on S is cofinite, there are only finitely many isometry types
of domains. In particular, there is a constant B such that for any U 2 S, if diam CU > B ,
then diamCU D1. This is known as the bounded domain dichotomy. After increasingE,
we can assume that E � B .

More generally, we say that a groupG acts on an HHS .X;S/ by HHS automorphisms
if G acts on X by isometries and satisfies the above three conditions, with the exception
that the action on S need not be cofinite. Observe that if G acts on the HHS .X;S/ by
HHS automorphisms, then the fact that the action preserves the relations on S means that
we cannot have gU � U for any g 2 G, U 2 S. Indeed, if g has finite order, then this
would contradict the fact that v is a partial order, and if g has infinite order, then this
would contradict the fact that v-chains are finite.

An important feature of HHSs is that the distance between two points in the space can
coarsely be recovered from their projections, using the HHS distance formula, which we
now state. For nonnegative numbers p, q, the quantity ¹¹pººq is defined to be p if p � q,
and 0 otherwise. It is conventional in the literature to write dU in place of dCU , and to
suppress the map �U when measuring distances in CU . For example, we write dU .x; �

V
U /

in place of dCU .�U .x/; �
V
U /.
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Theorem 2.1 (Distance formula, [4, Theorem 4.5]). If .X;S/ is an HHS, then for suf-
ficiently large s there are positive constants As and Bs such that, for any x; y 2 X , we
have

�Bs C
1

As

X
U2S

¹¹dU .x; y/ººs � dX .x; y/ � Bs C As

X
U2S

¹¹dU .x; y/ººs :

We now recall (the relevant aspects of) three of the axioms appearing in the definition
of HHSs.

Axiom (Bounded geodesic image). Suppose that U;W 2 S satisfy U � W . If y; z 2 X
have dU .y; z/ > E, then �U

W is E-close to every geodesic Œ�W .y/; �W .z/� � CW .

Axiom (Partial realisation). If ¹Wiº is a set of pairwise orthogonal domains, then for any
tuple .pi /i , with pi 2 CWi , there is some x 2 X with dWi

.x; pi / � E for all i .

Axiom (Uniqueness). For each � there exists �u D �u.�/ such that if x; y 2 X satisfy
d.x; y/ > �u, then there exists U 2 S such that dU .x; y/ > �.

Definition 2.2 (Standard product region). For U 2 S, the standard product region asso-
ciated with U is the set PU D ¹x 2 X W dV .x; �

U
V / � E whenever U t V or U � V º.

Standard product regions can be given a natural (coarse) product structure [4, §5.2].
The following, which is a simplified version of [2, Proposition 2.27], is an example of
this. A domain U 2 S is said to be unbounded if its associated hyperbolic space CU is
unbounded.

Proposition 2.3 ([2, Proposition 2.27]). If .X;S/ is an HHG such that there is an unboun-
ded domain U with the property that every unbounded domain is either nested in U or
orthogonal to U , then PU is coarsely equal to X . If there is an unbounded domain ortho-
gonal to U , then X is quasi-isometric to a product of unbounded HHSs.

We now give a pair of definitions for use in Sections 4 and 5.

Definition 2.4 (Morse). A subset Y of a quasigeodesic space X is said to be Morse if
there is a function M W Œ1;1/! R such that every �-quasigeodesic in X with endpoints
in Y stays M.�/-close to Y . If X is a group and Y is the cyclic subgroup generated by an
element g 2 X , then we say that g is a Morse element.

Morse (also known as strongly quasiconvex) subsets have been studied by a number
of authors in several contexts, with differing levels of generality; for examples, see [17,
28, 36].

Definition 2.5 (Big-set). Let g be an element of a group G acting on an HHS .X;S/ by
HHS automorphisms with a fixed basepoint x 2 X . The big-set of g, written Big.g/, is
the set of domains U for which �U .hgi � x/ is unbounded.

The next lemma is a basic statement that will play an important role in this paper.
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Lemma 2.6 (Passing-up lemma, [4, Lemma 2.5]). Let .X;S/ be an HHS with con-
stant E. For every C > 0 there is an integer p.C / such that if V 2 S and x; y 2 X have
dUi
.x; y/ > E for every element of a set ¹U1; : : : ; Up.C /º � SV , then there is a domain

W 2 SV with some Ui � W and dW .x; y/ > C .

We finish with a simple observation that will be used several times without reference.

Lemma 2.7 ([4, Lemma 2.2]). Every infinite set of domains of an HHS contains two
domains that are transverse.

3. Proof of the main theorem

Here we prove the “less-general version” of the main result of the paper, Theorem 3.2.
We remark that this weaker version is still good enough for many applications; from it we
shall deduce most of the consequences listed in the introduction. Before stating the result,
we define the transversality graph of a subset of the index set of an HHS .X;S/.

Definition 3.1 (Transversality graph). For a subset S0 � S, the transversality graph
of S0, denoted �t.S0/, is the graph with vertex set S0 and an edge joiningU , V whenever
U t V .

Recall that a domain U 2 S is said to be unbounded if its associated hyperbolic space
is. In this section, we shall write xS to mean the set of all unbounded domains.

Theorem 3.2 (Eyries). Let .G;S/ be an HHG. There is a finite,G-invariant set E.G/� xS

of pairwise orthogonal domains such that every U 2 xS is nested in some element of E.G/.
We call the elements of E.G/ the eyries of G.

Proof. For a non-singleton component C of �t.xS/, Lemma 3.7 produces a domain
WC 2

xS with the property that every vertex of C is properly nested in WC . In particu-
lar, WC is not a vertex of C . After applying Lemma 3.7 a finite number of times (at most
the complexity), we obtain W 2 xS that is not transverse to any other V 2 xS. Note that
this implies that, for any g 2 G, the domain gW is not transverse to or properly nested in
any V 2 xS.

Repeating for each non-singleton component of �t.xS/ and taking the v-maximal
domains produced gives a collection of Wi . The Wi must be pairwise orthogonal, so there
can only be finitely many of them. Moreover, G � ¹Wiº is finite because any infinite set of
domains contains a transverse pair. As every V 2 xS is nested in some Wi , this shows that
the set E.G/ D

S
i G � ¹Wiº has the desired properties.

Remark 3.3. Note that if G is infinite then xS is nonempty by the uniqueness axiom
and the bounded domain dichotomy, so the proof of Theorem 3.2 shows that E.G/ is
nonempty in this case. In particular, Proposition 2.3 tells us that every infinite HHG is



H. Petyt and D. Spriano 486

quasi-isometric to the standard product region associated with any one of its eyries, and
any HHG with more than one eyrie is quasi-isometric to a product of unbounded HHSs.

It remains to prove Lemma 3.7. We begin by making an important observation about
the interaction between the relations and group action on S. The results of this section
and of Section 4 only depend on condition (a) of Lemma 3.4, and only with H D G. The
reader who is primarily interested in those results should therefore feel free to ignore the
more technical conditions (b) and (c).

Recall that a metric space X is said to be C -connected if for any pair of points x and
y there is some sequence x D x0; x1; : : : ; xn D y such that d.xi ; xiC1/ � C .

Lemma 3.4 (Producing transverse domains). Let .G;S/ be an HHG of complexity c,
let H be a subgroup, and let V;W 2 S have either V t W or V � W . Suppose that any
one of the following three conditions is satisfied by the pair .H;W /:

(a) �W .H/ is unbounded.

(b) There exists C > 10E such that �W .H/ is C -connected and diam.�W .H// >

10cC1.C C dW .�
V
W ;H//.

(c) There is a constant C 0 > 10E, a geodesic  � CW , and 3c points ¹z1; : : : ; z3cº �

H such that each �W .zi / is C 0-close to  , and dW .zi ; zj / > 10C
0 for all i ¤ j .

Then there is some h 2 H such that either

hW D W and dW .�
V
W ; �

hV
W / > 10E;

or
hW t W and dW .�

V
W ; �

hW
W / > 10E:

Proof. If either one of condition (a) and condition (b) is satisfied, then we can find a
sequence of elements .xi /

c
iD0 � H such that dW .�

V
W ; x0/ > 20E and dW .�

V
W ; xi / >

10dW .�
V
W ; xi�1/ for all i > 0. If xix

�1
j W?W for every pair .i; j /, then we have

xkx
�1
i W?xkx

�1
i .xix

�1
j W / D xkx

�1
j W for all i , j , and k. Since the size of any set of

pairwise orthogonal domains is at most c, there is a pair .i;j / such that either xiW D xjW

or xix
�1
j W t W , because no translate of W can be nested in W .

If xiW D xjW , then the isometry xix
�1
j W CW ! CW sends �W .xj / to �W .xi /.

Since
�

xi x�1
j V

W D xix
�1
j �V

W ;

we have, perhaps after swapping i and j , that

dW .�
V
W ; �

xi x�1
j V

W / � dW .xi ; xj / � 2dW .xi ; �
V
W / � 8dW .xi ; �

V
W / > 10E:

In this case we can take h D xix
�1
j .

If xix
�1
j W t W , then by consistency for xi 2 H , one of two things happens. One

option is that

dW .xi ; �
xi x�1

j W

W / � E;
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in which case
dW .�

V
W ; �

xi x�1
j W

W / � dW .�
V
W ; xi / �E > 10E;

and we can again take h D xix
�1
j . The other option is that

dxi x�1
j W .xi ; �

W
xi x�1

j W
/ � E;

in which case noting that xjx
�1
i �xi x�1

j W .xi / D �W .xj / gives

dW .�
V
W ; �

xj x�1
i W

W / D dW

�
�V

W ; xjx
�1
i �W

xi x�1
j W

�
� dW .�

V
W ; xj / �E > 10E;

and the element h D xjx
�1
i 2 H has the desired property.

Finally, suppose that condition (c) is satisfied. If there is no triple .i; j; k/ such that
ziW D zjW D zkW , then we have j¹ziW ºj>c, so the elements of this set are not pairwise
orthogonal. Consequently, some ziz

�1
j W must be transverse to W . Since dW .zi ; zj / >

10C 0 > 100E, at least one of �W .zi / and �W .zj / is 40E-far from �V
W . As in the pre-

vious cases, we can then use consistency of that point to obtain the result with h 2
¹ziz

�1
j ; zj z

�1
i º.

On the other hand, if there is a triple .i; j; k/ such that ziW D zjW D zkW , then the
isometries zj z�1

i ; zkz
�1
i WCW ! CW send �W .zi / to �W .zj / and �W .zk/, respectively.

By the assumptions on ¹z1; : : : ; z3cº, at least one of these isometries must move �V
W by

more than C 0 > 10E. Thus an element of ¹zj z�1
i ; zkz

�1
i º has the desired property.

If we start with a pair of transverse domains, then Lemma 3.4 can be applied repeatedly
to obtain an infinite sequence of pairwise transverse domains.

Lemma 3.5. Let .G;S/ be an HHG, let H be a subgroup, and let U0; U1 2 S be trans-
verse. Suppose that each pair .H;U0/ and .H;U1/ satisfies at least one of the conditions
of Lemma 3.4. There is a sequence .Uj /j2N � H � ¹U0; U1º of domains such that

Uj t Uj�1 and dUj
dUj

.�
Uj�1

Uj
; �

UjC1

Uj
/ > 10E for all j > 0:

Furthermore, if y 2 H has dU0.y; �
U1

U0
/ > 2E, then for any n 2 N there exists zn 2 H

such that dUj
.y; zn/ > 8E for all j � n.

Proof. The sequence .Uj / is produced by an inductive application of Lemma 3.4. Let us
show that

dUj
.y; �

Uj�1

Uj
/ � E

for all j > 0. For j D 1 this is just consistency, because dU0.y; �
U1

U0
/ > 2E. For the induct-

ive step, the fact that
dUj

.�
Uj�1

Uj
; �

UjC1

Uj
/ > 10E

implies that dUj
.y; �

UjC1

Uj
/ > 9E, and consistency gives the desired inequality for j C 1.

Now, since Un is an H -translate of U0 or U1, there exists zn 2 H with

dUn.zn; �
Un�1

Un
/ > 2E:
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A similar argument to the above shows that dUj
.zn; �

UjC1

Uj
/ � E for all j < n. Combining

these inequalities for y and zn yields the result.

A simple consequence of Lemma 3.5 is that if we have two unbounded domains that
are transverse, then we can produce another unbounded domain that is strictly higher up
the v-lattice. Recall that p.C / denotes the integer produced by the passing-up lemma
(Lemma 2.6) for constant C .

Proposition 3.6. Let .G;S/ be an HHG. If U; V 2 xS are transverse, then there exists
T 2 xS such that either U � T or V � T .

Proof. Let .Uj / be the sequence of domains provided by Lemma 3.5. Taking n D p.E/,
we know that there exist y; z 2 G such that dUj

.y; z/ > E for all j � p.E/. By the
passing-up lemma, there is some domainW satisfying dW .y; z/ > E in which some Uj is
properly nested. By the bounded domain dichotomy, W 2 xS. Since Uj is a translate of U
or V , there is a translate T of W with the desired property.

We can now prove the lemma that we used in the proof of Theorem 3.2, which is
a refinement of Proposition 3.6.

Lemma 3.7. For each non-singleton, connected induced subgraph C of �t.xS/, there
exists WC 2

xS with U � WC for all U 2 C 0.

Proof. Firstly, assume that C is finite. We shall prove the claim by induction on n D jC j.
Suppose C D ¹U1; U2º. By Proposition 3.6, we can find T 2 xS such that one of the Ui

is properly nested in T . We cannot have T?Ui , for then we would have U1?U2. We are
done if both Ui are nested in T . Otherwise, we can apply Proposition 3.6 again. By finite
complexity, the process has to terminate, yieldingW in which both U1 and U2 are nested.

Now assume that the claim holds for subsets of size n� 1 and assume jC jDn. SinceC
is a finite connected graph, there is a leaf Un of a spanning tree of C , and C � ¹Unº is
still connected. By the induction hypothesis, there exists W such that every element of
C � ¹Unº is properly nested in W . Note that we cannot have W v Un or W?Un. Hence
eitherUn �W , and we are done, orUn tW . In the latter case, we are done by considering
C 0 D ¹W;Unº.

Finally, assume that C is infinite. Let D be any finite connected subset of C of
size at least 2, and let WD 2

xS be a v-maximal element in which all elements of D
are nested. The existence of WD is guaranteed by the previous step and finite complex-
ity, as D is finite. Suppose that V 2 C is not properly nested in WD . Consider a path
U0; U1; : : : ; Un D V with U0 2 D and let Ui be the first vertex in the path that is not
properly nested in WD . Since Ui�1 � WD and Ui t Ui�1, we need to have Ui t WD .
Thus, there must be T 2 xS in which both Ui and WD are properly nested, which contra-
dicts the maximality of WD .
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4. Consequences

In this section, we use our new-found understanding of eyries to deduce a number of
structural results for HHGs. Our first two applications give an idea of how Theorem 3.2
can be used to draw algebraic conclusions from the combinatorics of HHG structures.

Corollary 4.1. Infinite torsion groups are not HHGs.

Proof. According to Theorem 3.2, if G is an infinite HHG, then it acts on its finite (and
nonempty) set of eyries E.G/. The kernel of this action is a finite index subgroup H . Let
W 2 E.G/ be an eyrie of G. SinceH fixesW , we have an isometric action ofH on CW ,
which is an unbounded hyperbolic space. Since �W WG ! CW is coarsely onto and H
has finite index in G, the action is cobounded. It follows that H has an element acting
loxodromically on CW [10, §3], and this element must have infinite order.

Corollary 4.2. The following are equivalent for an HHG .G;S/.

• G is virtually abelian.

• The eyries of .G;S/ are all quasilines.

• The domains of .G;S/ are all either bounded or quasilines.

Moreover, the rank of an abelian finite index subgroup of G coincides with the number of
eyries.

Proof. First suppose that G is virtually abelian. Given an HHG structure for G, the ker-
nel K of the action of G on E.G/ has finite index in G. Since �W WK ! CW is coarsely
onto for each eyrieW , the action ofK on CW is cobounded. If some CW is not a quasil-
ine, then K acts coboundedly on the nonelementary hyperbolic space CW , so contains
a nonabelian free subsemigroup by [10, Proposition 3.2 and Lemma 3.3]: a contradiction.
Thus the eyries of .G;S/ are all quasilines.

Now suppose that the eyries of .G;S/ are all quasilines. Again, a finite index sub-
group K of G acts coboundedly on CW for each eyrie W , so there is an element of K
acting loxodromically on CW by [10, §3]. According to [2, Proposition 3.2], this implies
that every domain that is nested in an eyrie is bounded, so the domains of .G;S/ are all
either bounded or quasiline eyries.

If the domains of .G;S/ are all either bounded or quasilines, then the eyries are all
quasilines, so the previous paragraph shows that the only unbounded domains are the
eyries. The distance formula, Theorem 2.1, now gives a quasi-isometry G ! Zn, so G is
virtually abelian [33].

The distance formula provides the statement about the rank.

Corollary 4.3. If .G;S/ is an HHG that is not virtually abelian, then G has an eyrie that
is not a quasiline.
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4.1. Crystallographic groups

Recall that a crystallographic group is a discrete subgroup of Isom Rn that acts properly
cocompactly. By Bieberbach’s theorems [7], any such group G fits into a short exact
sequence of the form

1! H ! G ! F ! 1; (�)

whereH , called the translation subgroup, is free abelian, and F , the point group, is a finite
subgroup of the orthogonal group On.R/. For each h 2H there is a constant T , called the
translation length of h, such that d.v; hv/ D T for all v 2 Rn. By a theorem of Zassen-
haus [37], being crystallographic is equivalent to having a maximal abelian subgroup that
is normal, free abelian, and finite index.

Theorem 4.4. Let G < Isom Rn be a crystallographic group. The following are equiv-
alent.

(1) G admits an HHG structure.

(2) G is cocompactly cubulated.

(3) The point group of G embeds in On.Z/ D Zn
2 Ì Sym.n/.

Proof of Theorem 4.4. The equivalence of items (2) and (3) is given by [22, Theorem B].
IfG is cocompactly cubulated, then since it is virtually abelian it is an HHG by [5, §8]. We
shall now show that if G admits an HHG structure then its point group embeds in On.Z/.

Given any HHG structure for G, Corollary 4.2 shows that the eyries of G are all
quasilines and that every other domain is bounded. Since G is quasi-isometric to Rn there
must be n eyries. It follows that G acts on a set of n pairs of points, each pair being the
boundary of an eyrie. This gives a homomorphism G ! Zn

2 Ì Sym.n/ D On.Z/.
In the notation of (�), we now show that H is in the kernel of this map. From this,

it follows that there is a well-defined induced map F ! On.Z/. We then show that this
induced map is injective.

Let E.G/D¹W1; : : : ;Wnº, and assume that h2H has hWi DWj with i ¤ j . Let �>1
be a quasi-isometry constant for the orbit map of G on Rn, and let T be the translation
length of h. Let s > E be sufficiently large to apply the distance formula, Theorem 2.1,
and let As and Bs be the associated constants.

Since CWi is unbounded and Wi?Wj , we can use the partial realisation axiom to find
x 2G with the property that dWi

.h�1;x/>As�.TC�/CEC sCBs and dWj
.1; x/� E.

The distance formula with threshold s gives

AsdG.x; hx/C Bs �

X
S

¹¹dU .x; hx/ººs � ¹¹dWj
.x; hx/ººs � ¹¹dWj

.1; hx/ �Eººs

� dWi
.h�1; x/ �E � s > As�.T C �/C Bs;

so dG.x; hx/ > �.T C �/, which contradicts the fact that the translation length of h is T .
Thus H fixes each Wk .
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If some h 2 H acts nontrivially on the boundary of CWk , then the distance formula
again leads to a contradiction with the fact that h has finite translation length on Rn. This
establishes that H is in the kernel of the map from G to On.Z/.

A similar argument to the above shows that if an element f 2 F is in the kernel of the
induced map then there is a bound on the distance f moves any point in Rn. This holds
only when f is the identity, as F is a subgroup of On.R/.

Recall that the .3; 3; 3/ triangle group is the crystallographic group defined as T D
ha; b; c; j a2 D b2 D c2 D .ab/3 D .bc/3 D .ca/3 D 1i.

Corollary 4.5. The .3;3;3/ triangle group T is virtually an HHG but not an HHG. In par-
ticular, the group T is an HHS but not an HHG.

Proof. From (�), we see that T is virtually Z2, which is an HHG. By Theorem 4.4, if T
is an HHG, then its point group embeds in Z2

2 Ì Sym.2/. However, T contains an element
of order 3.

Corollary 4.5 shows that the property of being an HHG does not pass to finite index
overgroups, and in particular is not quasi-isometry-invariant. This is in contrast with the
property of being an HHS [4, Proposition 1.10]. It also shows that the property of being
an HHG is strictly stronger than the property of admitting a proper cobounded action on
an HHS.

Remark 4.6. One can use Corollary 4.5 to create acylindrically hyperbolic examples as
well. The group T � Z acts properly cocompactly on the tree of flats, also known as the
universal cover of the Salvetti complex of Z2 � Z. However, the HHS T � Z cannot be
an HHG. Indeed, the flat-stabilising subgroup T is Morse, and hence is hierarchically
quasiconvex by [32, Theorem 6.3], so any HHG structure on T � Z would restrict to an
HHG structure on T .

4.2. Rank-rigidity

We now recover (a sharpened version of) the rank-rigidity result for HHGs of [15]. The
original proof involves doing measure theory on the HHS boundary, but our combinatorial
proof of Theorem 3.2 allows us to avoid this, and is overall much simpler.

Corollary 4.7 (Rank-rigidity for HHGs). Let .G;S/ be an HHG. Then G is either vir-
tually cyclic, acylindrically hyperbolic, or has more than one eyrie. In particular, any
infinite HHG either has a Morse element or is quasi-isometric to a product of at least two
unbounded HHSs and thus is wide in the sense of [14].

Proof. If G has no eyries, then it is finite by Remark 3.3. If .G;S/ has more than one
eyrie, then it is quasi-isometric to a product of unbounded HHSs by Proposition 2.3.
Finally, suppose that G has a single eyrie, E.G/ D ¹W º. Then .G;SW / is an HHG.
By [5, Theorem 14.3], the action of G on the hyperbolic space CW is acylindrical, so G
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is either virtually cyclic or acylindrically hyperbolic. Moreover, G has a Morse element
by [13, Lemma 6.5 and Theorem 6.8] and [34, Theorem 1].

Although the trichotomy presented in Corollary 4.7 could be deduced from the ori-
ginal proof of rank-rigidity for HHGs and other theorems in the literature, to the best of
the authors’ knowledge this is the first time it has appeared in writing. In particular, we
record the interesting consequence that acylindrical hyperbolicity is preserved by quasi-
isometries within the class of HHGs.

Corollary 4.8. If G and H are quasi-isometric HHGs, then G is acylindrically hyper-
bolic if and only if H is.

Remark 4.9 (Acylindrical action). Although an HHG with more than one eyrie is not
acylindrically hyperbolic, it turns out that it does admit an acylindrical action on a product
of hyperbolic spaces. To see this, let .G;S/ be an HHG with eyries E.G/D¹W1; : : : ;Wnº.
The action of G on E.G/ induces an action of G on the product

Qn
iD1 CWi , and a simple

modification of the proof of [5, Theorem 14.3] shows that this action is acylindrical. As the
Wi are pairwise orthogonal and the �Wi

are coarsely onto, partial realisation ensures that
this action is also cobounded.

5. Subgroups

Let H be a group acting on an HHS .X;S/ by HHS automorphisms and fix a basepoint
x0 2 X . Our goal for this section is to generalise Theorem 3.2 so that its conclusion holds
for H . We shall write xSH to mean the set of domains U 2 S for which the projection
�U .H � x0/ is unbounded.

Theorem 5.1 (Eyries for actions). For any group H acting on an HHS .X;S/ by HHS
automorphisms, there is a finiteH -invariant set E.H/D ¹W1; : : : ;Wnº �

xSH of pairwise
orthogonal domains such that every U 2 xSH is nested in some Wi . We call the Wi the
eyries of H . The set E.H/ is nonempty if and only if xSH is nonempty. If the image of H
in Sym.X/ induced by the action is finitely generated and H � x0 is unbounded, then xSH

is nonempty, so H has an eyrie.

Proof. The proof of the existence of E.H/ is the same as that of Theorem 3.2, except
we use Lemma 5.6 in place of Lemma 3.7. The fact that E.H/ is nonempty if and only
if xSH is nonempty is automatic from that proof. The criterion for E.H/ to be nonempty
is proved as Proposition 5.7.

As mentioned in the introduction, in the case where H is hierarchically acylindrical,
Theorem 5.1 was proved by Durham–Hagen–Sisto as [15, Corollary 9.23], where it is
given as a corollary of the omnibus subgroup theorem. In contrast, we shall deduce the
omnibus subgroup theorem from Theorem 5.1 in Section 5.1.
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Remark 5.2. In order to make the notation more comprehensible, we shall assume thatH
is actually a subgroup of an HHG .G;S/. In this case, we can take the basepoint to be 1, so
that xSH denotes the set of domains U for which �U .H/ is unbounded. We stress that this
has no effect on the arguments involved: the change is purely notational. In particular, the
given proofs of Lemmas 3.4, 5.5, and 5.6, and of Propositions 5.4 and 5.7, work equally
well for groups acting on HHSs by HHS automorphisms.

We begin by proving a general structural result for HHSs. It shows that �-points of
nested domains are “well distributed”. One would like to say that not too many �-points
can appear in a bounded set, but the �-consistency condition means that this is not true in
general. This is not an issue if one considers only nest-maximal domains, however. This
necessary restriction accounts for much of the apparent technicality of the statement of
Lemma 5.3.

The way we shall use the lemma will be in order to find a collection of points of H
that satisfy condition (c) from Lemma 3.4. That is, we will produce a large number of
domains that are nested in a common one, and applying Lemma 5.3 will show that there
is a subset of these domains whose �-points are well separated. We then find a collection
of points in H that project close to these well-separated �-points.

Recall that p.C / denotes the integer produced by the passing-up lemma (Lemma 2.6)
for constant C .

Lemma 5.3 (Distribution of �-points). If .X;S/ is an HHS, then the following holds for
allD>50E. Let y;z 2X andW 2S have dW .y;z/�D, and suppose thatU1; : : : ;Un 2

SW XW satisfy dUi
.y; z/ > 3E and have dV .y; z/ < D for all V with Ui � V � W for

some i . If n � p.D C 2E/, then diam.
Sn

iD1 �
Ui

W / � D � 30E.

Proof. Let U1; : : : ; Un 2 SW be as in the statement, but suppose that diam.
Sn

iD1 �
Ui

W / <

D � 30E. By bounded geodesic image, each �Ui

W is E-close to a fixed geodesic

 W Œ0; dW .y; z/�! CW

with .0/D y and .dW .y;z//D z. Choose x�; xC 2X as follows. If dW .y;�
Ui

W /� 10E

for some i , then let x� D y. Otherwise, there exists t such that d..t/; �Ui

W / � 10E for
some i , but d..t 0/; �Ui

W / > 10E for all i and all t 0 < t . Since �W is E-coarsely onto,
we can choose x� 2 X with dW .x

�; .t// � E. Similarly define xC by considering the
other end of  . According to the assumption on the diameter of

Sn
iD1 �

Ui

W , we have that
dW .x

�; xC/ < D.
Bounded geodesic image also shows that dUi

.y;x�/�E and dUi
.z;xC/�E for all i .

In particular, dUi
.x�; xC/ > E. If n� p.DC 2E/, then by the passing-up lemma there is

some domain V 2SW with dV .x
�; xC/ >DC 2E and with Ui � V for some i . We have

seen that dW .x
�; xC/ < D, so V ¤ W . By consistency, we obtain dW .�

V
W ; �

Ui

W / � E,
so the construction of x˙ allows us to use bounded geodesic image to find dV .y; x

�/ � E

and dV .z; x
C/ � E. But now dV .y; z/ � D, which contradicts our assumptions.
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We now prove an analogue of Proposition 3.6. The proof follows the same lines as
that of Proposition 3.6, but there are a number of complications that arise. Firstly, H may
not satisfy the bounded domain dichotomy, so the passing-up lemma may fail to yield an
element of xSH , even for very large constants. We get around this problem as follows.
Starting with the sequence of domains produced by Lemma 3.5, we apply the passing-up
lemma for each natural number. This gives a sequence of domains where the diameters of
the H -projections are infinite or bounded below by a divergent sequence. If any one of
these domains has unbounded H -projection, then the proof is complete. Otherwise, there
are infinitely many of them, so two are transverse.

We should then like to repeat the argument with this transverse pair in place of our
starting pair of domains. Since these new domains are strictly higher up the v-lattice,
this process could only be repeated finitely many times, so at some point a domain with
unbounded H -projection must be produced. However, this is where the second difficulty
comes in: H may not be finitely generated, so the sets �W .H/ need not be uniformly
coarsely connected. In particular, our new transverse pair may fail all three of the con-
ditions of Lemma 3.4, which would prevent us from applying Lemma 3.5. We must
therefore be more careful about how we produce our new pair of transverse domains:
we use Lemma 5.3 to make sure that they meet condition (c) of Lemma 3.4.

Recall that the level of an element U 2 S, written `.U /, is the maximal length of
a �-chain in S with maximal element U .

Proposition 5.4. Let H be a subgroup of an HHG .G;S/ and let U; V 2 xSH be trans-
verse. There exists T 2 xSH such that either U � T or V � T .

Proof. Let R D max¹dG.1; PU /; dG.1; PV /º. We proceed inductively. For the inductive
hypothesis, suppose that we have a pair of transverse domains U i

0 t U i
1 such that

(1) SU i
k
\ ¹U; V º is nonempty for k D 0; 1.

(2) Both pairs .H;U i
0/ and .H;U i

1/ satisfy at least one of the conditions of Lemma 3.4.

(3) min¹`.U i
0/; `.U

i
1/º � i Cmin¹`.U /; `.V /º.

For the base case, we can take U 0
0 D U and U 0

1 D V . Given U i
0 and U i

1 , we shall either
find T as in the statement or we shall constructU iC1

0 andU iC1
1 satisfying the above. Since

.G;S/ has complexity c, this process can only be repeated at most c times, so we must
eventually find the desired domain T .

By the inductive hypothesis, the conditions of Lemma 5.5 are met by U i
0 and U i

1 .
Let Di

1 D 100.ER C 10E/. During the proof we shall define a sequence .Di
j / with

Di
j > D

i
j�1. Given Di

j � D
i
1 for some j > 0, let W i

j be the domain produced by apply-
ing Lemma 5.5 with constant Di

j . If H has unbounded projection to CW i
j , then setting

T D W i
j completes the proof. Otherwise, setDi

jC1 D 10 diam.�W i
j
.H//, which is greater

than 100.ER C 10E/. Since diam.�W i
jC1
.H// > Di

jC1 D 10 diam.�W i
j
.H//, we must

have W i
j ¤ W

i
k

whenever j ¤ k. Thus, if no CW i
j has unbounded H -projection, then

we eventually find a transverse pair W i
p t W i

q . In this case, we set U iC1
0 D W i

p and
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U iC1
1 D W i

q . Lemma 5.5 directly tells us that the inductive assumptions are satisfied
by U iC1

0 and U iC1
1 .

The proof of Proposition 5.4 relies on the following lemma. Recall that p.C / denotes
the integer produced by the passing-up lemma (Lemma 2.6) for constant C .

Lemma 5.5. Let U;V 2 S be transverse, and let R D max¹dG.1;PU /;dG.1;PV /º. Sup-
pose that we have two domains U0 and U1 that are transverse, have SUj

\ ¹U; V º ¤ ¿,
and such that each pair .H; U0/ and .H; U1/ satisfies at least one of the conditions of
Lemma 3.4. For any D � 100.ERC 10E/, there is a third domain W satisfying the fol-
lowing.

(1) diam.�W .H// > D.

(2) SW \ ¹U0; U1º is nonempty. In particular, SW \ ¹U; V º is nonempty.

(3) The pair .H;W / satisfies condition (c) of Lemma 3.4 with C 0 D ERC 10E.

Proof. Let K D 6cp.2D/ and let N D .Kp.D//cC1. Fix an element y 2 H such that
dU0.y; �

U1

U0
/ > 2E. Let .Uj / be the sequence of domains produced by Lemma 3.5. Lem-

ma 3.5 also provides a point z 2 H with dUj
.z; y/ > 8E for all j � N .

For any subset A � ¹0; : : : ; N º of size p.D/, we can apply Lemma 2.6 to obtain
a domain WA with dWA

.y; z/ > D and with Ua � WA for some a 2 A. Since the Uj are
pairwise transverse, WA is not equal to any Uj . Choose WA to be v-minimal amongst all
possibilities.

We now aim to use Lemma 5.3 to find a domain W 0 with a well-separated subset of
the Uj nested in it. There are two cases.

Case 1. If some WA has at least K of the Uj nested in it, then let B be the set of such
indices j . Since K D 6cp.2D/, it follows from Lemma 5.3 that there is a set B 0 � B of
size 3c such that ¹�Ub

WA
W b 2 B 0º is .D � 40E/-separated. Moreover, since dUb

.y; z/ > 8E,
each �Ub

WA
must be E-close to the geodesic Œy; z� � CWA by bounded geodesic image. Set

W 0 D WA. As the Uj are translates of either U0 or U1, we can fix, for each b 2 B 0,
an element hb 2 H translating either U0 or U1 to Ub .

Case 2. Otherwise, for eachWA, fewer thanK of the Uj are nested inWA. Thus j¹WAºj �
N

Kp.D/
. BecauseN D .Kp.D//cC1, we can now apply the passing-up lemma to cardinali-

ty-p.D/ subsets of ¹WAº. Since the domain produced by the passing-up lemma has strictly
higher level than any domain properly nested in it, this process can be repeated at most c
times. Thus, at some stage we obtain: a set ¹Wkº of cardinality at least N

.Kp.D//c DKp.D/,
all elements of which satisfy dWk

.y; z/ > D, and a domain W 0 such that dW 0.y; z/ > D

and at least K of the Wk are properly nested in W 0. Otherwise, we would be able to apply
the passing-up lemma again, contradicting the fact that .G;S/ has complexity c.

We now proceed as in case 1, but with ¹kWWk � W
0º in place of B . Lemma 5.3 gives

a set B 0 of size 3c such that ¹�Wb

W 0 W b 2 B
0º is .D � 40E/-separated, and again every �Wb

W 0

is E-close to the geodesic Œy; z� � CW 0.
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Although it may not be the case that Wb is a translate of U0 or U1, each Wb was
obtained by repeatedly applying the passing-up lemma, starting with translates of U0

and U1. Thus, for each b 2 B 0 there is some jb 2 ¹0; : : : ; N º such that Ujb
v Wb . By

�-consistency, dW 0.�
Ujb

W 0 ; �
Wb

W 0 / � E. In particular, the separation of the �Wb

W 0 implies that
the Ujb

are distinct. As in case 1, for each b 2 B 0, fix an element hb 2 H translating
either U0 or U1 to Ujb

.
In either case, we have a collection of 3c translates of U0 and U1 by elements hb 2H ,

all of which are nested in some domain W 0 with dW 0.y; z/ > D. Because each of U0

and U1 has either U or V nested it, and because both dG.1; PU / and dG.1; PV / are at
most R, we have that dW 0.hb; �

hbU0

W 0 / � ER C 3E for translates of U0, and similarly for
translates of U1.

Fix b0 2 B
0, and let W D h�1

b0
W 0. We have that diam.�W .H// > D; the set SW \

¹U0; U1º is nonempty; and there are 3c points h�1
b0
hb 2 H whose projections to CW are

.ER C 5E/-close to a fixed geodesic and are pairwise at distance greater than D
2

. The
proof is complete.

Lemma 5.6. For each non-singleton, connected induced subgraph C of �t.xSH /, there
exists WC 2

xSH with U � WC for all U 2 C 0.

Proof. The proof is identical to that of Lemma 3.7, but with xS replaced by xSH , and
references to Proposition 3.6 replaced by references to Proposition 5.4.

The final proposition of this section is used to conclude the final statement of Theo-
rem 5.1, completing its proof. In view of Remark 5.2, we work with a finitely generated,
infinite subgroup of an HHG, which is the analogue of a group acting on an HHS by HHS
automorphisms, with finitely generated image in Sym.X/, and with an unbounded orbit.

Proposition 5.7. IfH is a finitely generated, infinite subgroup of an HHG of complexity c,
then there is some domain U such that �U .H/ is unbounded.

Proof. Since H is finitely generated and all maps �V are E-coarsely Lipschitz, there is
a constant C > 10E such that every �V .H/ is C -connected. By the uniqueness axiom,
for each n > 10cC2C there is a domain Vn such that diam.�Vn.H// > n. If the set of
all Vn is finite, then there is some p such that �Vp .H/ is unbounded. Otherwise, there is
a pair .p; q/ such that Vp t Vq . Since diam.�Vp .H// > 10C , consistency ensures that
dVq .H; �

Vp

Vq
/ � E < C , and similarly for Vp .

Condition (b) of Lemma 3.4 is therefore satisfied by both pairs .H; Vp/ and .H; Vq/.
Lemma 3.5 provides a sequence .Uj / of translates of Vp and Vq , and points y; zn 2 H ,
for each n > 10cC2C , such that dUj

.y; zn/ > E for all j � p.n/. We can then apply the
passing-up lemma (Lemma 2.6) to obtain domainsWn with diam.�Wn.H// > n that have
level strictly greater than min¹`.Vp/; `.Vq/º. If the set ofWn is finite, then there is some r
for which diam.�Wr .H// is unbounded. Otherwise, we can find a transverse pair. We can
now repeat the argument with this pair in place of Vp and Vq . By finite complexity, this
process must terminate, which completes the proof.
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5.1. The omnibus subgroup theorem

We now prove the omnibus subgroup theorem for HHGs. The theorem follows from
Theorem 5.1 and [17, Proposition 6.68], which is a variation on the general result [12, The-
orem 5.1], and which we now state. Recall that an isometry is said to be elliptic if it has
bounded orbits.

Proposition 5.8 ([17, Proposition 6.68]). Suppose that a group G is acting on (quasi-
geodesic) hyperbolic spaces X1; : : : ; Xn, with each element of G acting either elliptically
or loxodromically on each Xi . If for each Xi there is an element of G acting loxodromic-
ally on Xi , then there is some element of G that acts loxodromically on every Xi .

Corollary 5.9 (Omnibus subgroup theorem). Let .G;S/ be an HHG, and let H < G,
with eyries E.H/. Assume that, for each eyrie W , there is an element of H acting loxo-
dromically on CW . Then there is an element h 2 H with Big.h/ D E.H/.

Proof. If E.H/ is empty, then this holds for any h 2 H . Otherwise, since E.H/ is finite,
a finite index subgroup H 0 < H acts trivially on E.H/. In particular, H 0 acts on CW

for eachW 2 E.H/, and if h 2 H acts loxodromically on W , then so does hjH WH
0j 2 H 0.

By [16, Theorem 3.1], for anyU 2S, every element of StabG.U / acts either elliptically or
loxodromically on CU , so we can apply Proposition 5.8 to see that E.H/� Big.h/. Since
elements of Big.h/ are pairwise orthogonal [15, Lemma 6.7], this completes the proof.

Note that the assumption that there is a loxodromic for each eyrie is weaker than the
one in [15], which asks for the action of StabH .U / on CU to factor via an acylindrical
action for all domains U . Indeed, every unbounded acylindrical action on a hyperbolic
space has a loxodromic element by [31, Theorem 1.1], but not all actions containing lox-
odromics are acylindrical.

According to Gromov’s classification of actions on hyperbolic spaces [18], as clarified
in [10], if the action of H 0 on CW does not contain a loxodromic element, then since it
is unbounded, it is horocyclic. Note that it is difficult to make general statements about
horocyclic actions, because every group admits a horocyclic action on a hyperbolic space,
namely its combinatorial horoball. If the group is countable and discrete, then this action
is proper.

We conclude that if H does not satisfy the conditions of Theorem 5.9, then there is
some W 2 E.H/ such that the following hold for any x 2 CW .

• H 0 � x is unbounded.

• hhi � x is bounded for all h 2 H 0.

• H 0 � x is not quasiconvex (in particular, it is not coarsely dense) [10, Proposition 3.2].

• H 0 has a unique limit point in @CW , and this point is the unique finite orbit of H 0 in
@CW [10, Proposition 3.1].



H. Petyt and D. Spriano 498

Acknowledgements. The authors would like to thank our respective supervisors, Mark
Hagen and Alessandro Sisto, for their ongoing support and their many useful comments
and suggestions. We are grateful to Jason Behrstock for helpful comments, to Jacob
Russell for a useful suggestion on infinite torsion groups, and to Anthony Genevois for
pointing us to [12]. We are particularly grateful for the care with which the referee read
the manuscript, and for several comments that improved the exposition.

Funding. The second author was partially supported by the Swiss National Science Foun-
dation (grant #182186).

References

[1] C. Abbott, J. Behrstock, and M. G. Durham, Largest acylindrical actions and stability in hier-
archically hyperbolic groups (with an appendix by Daniel Berlyne, with an appendix by Jacob
Russell). Trans. Amer. Math. Soc. Ser. B 8 (2021), 66–104 Zbl 1498.20109 MR 4215647

[2] C. Abbott, T. Ng, and D. Spriano, Hierarchically hyperbolic groups and uniform exponential
growth (with an appendix by Radhika Gupta and Harry Petyt). 2021, arXiv:1909.00439

[3] J. W. Anderson, J. Aramayona, and K. J. Shackleton, Uniformly exponential growth and map-
ping class groups of surfaces. In In the tradition of Ahlfors–Bers. IV, pp. 1–6, Contemp. Math.
432, American Mathematical Society, Providence, RI, 2007 Zbl 1128.20027 MR 2342801

[4] J. Behrstock, M. Hagen, and A. Sisto, Hierarchically hyperbolic spaces II: Combination the-
orems and the distance formula. Pacific J. Math. 299 (2019), no. 2, 257–338 Zbl 07062864
MR 3956144

[5] J. Behrstock, M. F. Hagen, and A. Sisto, Hierarchically hyperbolic spaces, I: curve complexes
for cubical groups. Geom. Topol. 21 (2017), no. 3, 1731–1804 Zbl 1439.20043
MR 3650081

[6] J. Behrstock, M. F. Hagen, and A. Sisto, Quasiflats in hierarchically hyperbolic spaces. Duke
Math. J. 170 (2021), no. 5, 909–996 Zbl 07369844 MR 4255047

[7] L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. Math. Ann. 70 (1911),
no. 3, 297–336 Zbl 42.0144.02 MR 1511623

[8] J. S. Birman, A. Lubotzky, and J. McCarthy, Abelian and solvable subgroups of the mapping
class groups. Duke Math. J. 50 (1983), no. 4, 1107–1120 Zbl 0551.57004 MR 726319

[9] B. H. Bowditch, Median and injective metric spaces. Math. Proc. Cambridge Philos. Soc. 168
(2020), no. 1, 43–55 Zbl 1432.54026 MR 4043820

[10] P.-E. Caprace, Y. Cornulier, N. Monod, and R. Tessera, Amenable hyperbolic groups. J. Eur.
Math. Soc. (JEMS) 17 (2015), no. 11, 2903–2947 Zbl 1330.43002 MR 3420526

[11] P.-E. Caprace and M. Sageev, Rank rigidity for CAT(0) cube complexes. Geom. Funct. Anal.
21 (2011), no. 4, 851–891 Zbl 1266.20054 MR 2827012

[12] M. Clay and C. Uyanik, Simultaneous construction of hyperbolic isometries. Pacific J. Math.
294 (2018), no. 1, 71–88 Zbl 1481.20146 MR 3743366

[13] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating fam-
ilies in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc. 245 (2017), no. 1156,
v+152 pp. Zbl 1396.20041 MR 3589159

https://zbmath.org/?q=an:1498.20109
https://mathscinet.ams.org/mathscinet-getitem?mr=4215647
https://arxiv.org/abs/1909.00439
https://zbmath.org/?q=an:1128.20027
https://mathscinet.ams.org/mathscinet-getitem?mr=2342801
https://zbmath.org/?q=an:07062864
https://mathscinet.ams.org/mathscinet-getitem?mr=3956144
https://zbmath.org/?q=an:1439.20043
https://mathscinet.ams.org/mathscinet-getitem?mr=3650081
https://zbmath.org/?q=an:07369844
https://mathscinet.ams.org/mathscinet-getitem?mr=4255047
https://zbmath.org/?q=an:42.0144.02
https://mathscinet.ams.org/mathscinet-getitem?mr=1511623
https://zbmath.org/?q=an:0551.57004
https://mathscinet.ams.org/mathscinet-getitem?mr=726319
https://zbmath.org/?q=an:1432.54026
https://mathscinet.ams.org/mathscinet-getitem?mr=4043820
https://zbmath.org/?q=an:1330.43002
https://mathscinet.ams.org/mathscinet-getitem?mr=3420526
https://zbmath.org/?q=an:1266.20054
https://mathscinet.ams.org/mathscinet-getitem?mr=2827012
https://zbmath.org/?q=an:1481.20146
https://mathscinet.ams.org/mathscinet-getitem?mr=3743366
https://zbmath.org/?q=an:1396.20041
https://mathscinet.ams.org/mathscinet-getitem?mr=3589159


Unbounded domains in hierarchically hyperbolic groups 499
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