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On continuous orbit equivalence rigidity for virtually
cyclic group actions

Yongle Jiang

Abstract. We prove that any two continuous minimal (topologically free) actions of the infinite
dihedral group on an infinite compact Hausdorff space are continuously orbit equivalent only if
they are conjugate. We also show the above fails if we replace the infinite dihedral group by certain
other virtually cyclic groups, e.g., the direct product of the integer group with any non-abelian finite
simple group.

1. Introduction

Let G be a countable discrete group and X be a compact Hausdorff space. Denote by C

a class of continuous actions of G on X . A natural and classical topic is to classify ele-
ments of C up to certain equivalence relation. In classical topological dynamical systems,
the classification of Z-actions, or amenable group actions in general, up to conjugacy, has
been studied intensively. Historically, the notion of entropy was invented to distinguish
Bernoulli shifts on finite bases with different sizes up to conjugacy (at first, in the mea-
surable setting). Over the last decade, more and more attention has been put on a much
wider class of acting groups, sofic groups, after the pioneering work of L. Bowen on sofic
entropy in the measurable setting [3] and D. Kerr and H. Li shortly in the topological
setting [14].

In contrast to the conjugacy relation, a systematic study of the notion of continuous
orbit equivalence (see Definition 2.1) for topological free actions of a general groupG [19]
was initiated by X. Li during his study of crossed product C �-algebras. Note that this
notion and its weaker versions, e.g., topological orbit equivalence have been studied in
special cases (see [4,10,27]) before Li’s work. In particular, Giordano–Putnam–Skau [10]
and Giordano–Matui–Putnam–Skau [8, 9] have proved a series of remarkable results on
classification of minimal Z-actions on the Cantor set up to topological orbit equivalence.

Although continuous orbit equivalence relation is, by definition, a priori weaker than
the conjugacy relation, an interesting phenomenon is that these two notions may coincide
in certain cases. To better describe this, say that a continuous action ˛ of G on X is con-
tinuous orbit equivalence rigid for C if for any continuous action ˇ 2 C , ˛ is continuously
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orbit equivalent to ˇ, implies that they are conjugate, denoted by ˛ coe
� ˇ) ˛

conj
� ˇ. Note

that here, unlike in [19, Definition 2.5], we further assume the acting groups are the same.
Now, we take C to be the class of minimal topologically free actions and explain

two motivations behind this work. First, continuous orbit equivalence rigidity has been
established for various group actions, see, e.g., [4, 5, 7, 19, 25, 26]. However, as far as we
know, the acting groups are assumed to be torsion-free in all written proofs (see also
Remarks 2.5 and 4.7). Thus it is natural to ask whether continuous orbit equivalence
rigidity can be established when the acting groups contain non-trivial torsion elements.
Second, a well-known result due to Boyle–Tomiyama [4] says that two topologically tran-
sitive, topologically free Z-actions (e.g., minimal free Z-actions) are continuously orbit
equivalent only if they are conjugate. This result has been extended to minimal equicon-
tinuous actions of Zd (d � 2) in [7]. More precisely, it is shown there that for minimal
equicontinuous Zd -systems, continuous orbit equivalence implies that the systems are
virtually piecewise conjugate. Moreover, actions of virtually cyclic groups have recently
been considered in the study of dynamic asymptotic dimension [1] and Matui’s HK con-
jecture [22, 23]. Thus, it is natural to study the analogue of Boyle–Tomiyama’s above
mentioned result for virtually cyclic group actions, i.e., to ask the following question.

Question 1.1. Can we establish continuous orbit equivalence rigidity for minimal topo-
logically free actions of infinite virtually cyclic (but non-cyclic) groups?

In general, we could not hope continuous orbit equivalence rigidity holds true for all
infinite virtually cyclic groups. Indeed, we have the following theorem.

Theorem 1.2. Let F be any non-trivial finite group with trivial center, e.g., a non-abelian
finite simple group. Then there exist two minimal free actions z̨ and z̨0 of Z � F on an
infinite compact Hausdorff space X such that z̨ coe

� z̨0 but z̨
conj
œ z̨0.

On the positive side, when dealing with the infinite dihedral group, we do have such
a rigidity theorem.

Theorem 1.3. Let ˛ and ˇ be any two minimal (topologically free) actions of the infi-
nite dihedral group D1 D Z Ì Z=2Z on an infinite compact Hausdorff space X . Then
˛

coe
� ˇ) ˛

conj
� ˇ.

Note that minimal actions ofD1 on an infinite compact Hausdorff space are automati-
cally topologically free, see Proposition 2.6. Moreover, under the assumptions of the above
theorem, we know that continuous orbit equivalence implies that the two actions have the
same topological entropy. This can be compared with [17, Theorem 7.5] and [16, Theo-
rem D], where it is shown that many non-virtually cyclic groups admit actions for which
topological entropy is an invariant of continuous orbit equivalence. For possible general-
izations of the theorems to other virtually cyclic groups, see the discussion in Section 5.
Here, we are content not to discuss a general version of the above theorem. Below, we
briefly describe strategy for the proofs.
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To prove Theorem 1.2, we use the skew product construction to reduce it to a problem
of constructing minimal actions admitting continuous cocycles into finite groups which are
not coboundaries. On the positive side, one may compare the proof of Theorem 1.3 with
the proof of Boyle–Tomiyama [4] for continuous orbit equivalence rigidity for minimal
Z-actions. Here, the basic strategy is as follows: in view of a criterion by X. Li [19,
Proposition 4.4], it suffices to show that the orbit cocycle c is cohomologous to a group
isomorphism ofD1. The starting point for our proof is the characterization of bi-Lipschitz
bijections of Z due to Benjamini–Shamov [2]. After restricting the orbit cocycle cWZ �
X ! D1 on the sub-Z-action, we can extract from it a defect cocycle a which attains
only finitely many values in D1. Here, a is defined to measure the defect between c and
a group homomorphism from Z toD1. By twisting a with a suitable coboundary, we can
assume the range of a is contained in Z. If the sub-Z-action is minimal, one can apply the
well-known Gottschalk–Hedlund theorem [12] for minimal Z-actions to deduce that a is
actually a coboundary, which implies the original orbit cocycle c is trivial. For the general
case where the sub-Z-action is not minimal, we can apply Gottschalk–Hedlund theorem
to each Z-component, now the existence of reflection of Z in the group structure of D1
allows us to patch up untwisters for each component to get a global one.

The paper is organized into five sections. In Section 2, we explain terminologies used
in this paper, including cocycles, continuous orbit equivalence, skew product actions and
induced actions, and present examples of continuous actions. Then we give examples
of minimal free actions admitting continuous cocycles which are not coboundaries in
Section 3. The proof of Theorem 1.2 (resp. Theorem 1.3) is given in Section 4.1 (resp.
Section 4.2). We conclude the paper with a several remarks on the possible generalization
of the theorems in Section 5.

In this paper, G and H usually mean virtually cyclic groups or finitely generated
groups, which is clear from the context. Moreover, we denote a target group byK. Unless
otherwise specified, all cocycles are assumed to be continuous.

2. Preliminaries

2.1. Cocycles and continuous orbit equivalence

Let G Õ X be a continuous action on a compact Hausdorff space and let K be a discrete
group. Recall that a continuous map cWG � X ! K is called a K-valued (continuous)
cocycle if c.g1g2; x/ D c.g1; g2x/c.g2; x/ for all g1, g2 2 G and all x 2 X . Two con-
tinuous cocycles c1; c2WG �X !K are (continuously) cohomologous/equivalent if there
exists a continuous map bWX ! K such that c1.g; x/ D b.gx/�1c2.g; x/b.x/ for all
g 2 G and all x 2 X . A continuous cocycle is called trivial (resp. a coboundary) if it is
equivalent to a group homomorphism �WG ! K (resp. the trivial group homomorphism
� � eK on G), which is treated as a constant cocycle on X .
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Note that when G D Z, aK-valued cocycle c for Z Õ X can be represented as a map
f WX ! K. Indeed, for one direction, set f .x/ D c.1; x/; for the other direction, we can
define c.1; x/ D f .x/ and use the cocycle identity to define c.N; x/ for all N 2 Z and
hence get a cocycle c. Sometimes, we may abuse our notation by calling f a cocycle.

Given two continuous actions G Õ X and K Õ Y , we have the notion of continuous
orbit equivalence [19, Definition 2.5] (abbreviated as coe for short), which was systemat-
ically studied by X. Li [19].

Definition 2.1 (Continuous orbit equivalence). We call two continuous actions G Õ X

and K Õ Y continuously orbit equivalent, G Õ X
coe
� K Õ Y , if there exists a home-

omorphism �WX � Y with inverse  D ��1 and continuous maps aWG � X ! K and
bWK � Y ! G such that

�.gx/ D a.g; x/�.x/;  .hy/ D b.h; y/ .y/

for all g 2 G, h 2 H , x 2 X and y 2 Y .

If both a and b are further assumed to be group isomorphisms fromG toK and fromK

to G, respectively, we call these two actions conjugate, written as G Õ X
conj
� K Õ Y .

Clearly, conjugacy implies coe.
Remark that ifK Õ Y is topologically free (i.e., for each e¤ h 2K, ¹y 2 Y Why ¤ yº

is dense in Y ), then a is a continuous cocycle, see [19, Lemma 2.8]. When both a and b
are cocycles in the above definition, we simply call b the inverse cocycle of a.

The following fact is proved independently in [21] and [20], we sketch the proof for
completeness.

Proposition 2.2. Let G and K be finitely generated groups. Let G Õ X and K Õ Y

be two topological free actions on compact spaces. Assume they are continuously orbit
equivalent, and aWG �X ! K is the associated continuous orbit cocycle, then G 3 g 7!
a.g; x/ 2 K is a bi-Lipschitz bijection for each x 2 X with respect to the right invariant
word metrics on both G and K.

Throughout the paper, a bi-Lipschitz bijection means a bijective map � such that both �
and ��1 are Lipschitz maps in the usual sense.

Proof. Let S and T be any symmetric generating sets for G andK, respectively. Let j � jS
and j � jT be associated word lengths, and let dS .�; �/ and dT .�; �/ be the corresponding right
invariant word length metrics onG andK, i.e., dS .g1; g2/D jg2g�11 jS and dT .h1; h2/D
jh2h

�1
1 jT for all g1, g2 2 G and h1, h2 2 K. Then

dT .a.g1; x/; a.g2; x// D ja.g2; x/a.g1; x/
�1
jT D ja.g2g

�1
1 ; g1x/jT

� jg2g
�1
1 jS � sup

x2X

max
s2S
ja.s; x/jT

D dS .g1; g2/ � sup
x2X

max
s2S
ja.s; x/jT ;
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where the inequality follows from the cocycle identity. This shows that g 7! a.g; x/ is
a Lipschitz map.

To see that g 7! a.g;x/ is a bijection and its inverse is a Lipschitz map, apply a similar
argument to the inverse cocycle using [19, Lemma 2.10].

The following lemma is well known, but we present its proof for the reader’s con-
venience.

Lemma 2.3. Let ˛WZ Õ X be a minimal action on a compact space X and K0 � K be
a closed subgroup in a topological group. Let cWZ � X ! K0 be a continuous cocycle
such that c.n; x/D f .˛n.x//f .x/�1 for some continuous map f WX !K and all n 2 Z,
x 2X . Then there is a continuous map f 0WX!K0 such that c.n;x/Df 0.˛n.x//f 0.x/�1

holds for all n 2 Z and all x 2 X .

Proof. Observe that the continuous map

x 2 X ! K0f .x/ 2 K0nK

is ˛-invariant. Hence minimality implies there exists some k 2 K such that K0f .x/ D
K0k for all x 2 X , i.e., f .x/ 2 K0k for all x 2 X . Define f 0.x/ D f .x/k�1. We deduce
that c.n; x/ D f 0.˛n.x//f 0.x/�1.

2.2. Skew product actions

We recall the following well-known construction of skew product actions. Let � WH !
Aut.K/ be a group homomorphism. Let cWH Õ X ! K be a skew cocycle, i.e., for all
h1, h2 2 H and all x 2 X ,

c.h1h2; x/ D c.h1; h2x/�h1.c.h2; x//:

One can check that c..h1h2/h3; x/D c.h1.h2h3/; x/ holds for all hi 2H , 1 � i � 3, and
all x 2 X . Besides, c is a skew cocycle if and only if the map c0WH Õ X ! K Ì� H
given by c0.h; x/ D .c.h; x/; h/ is a cocycle in the usual sense.

Given a group homomorphism � WH ! Aut.K/, an action H Õ X and a skew cocy-
cle c defined as above, we can define the generalized skew product action:

G WD K Ì� H Õ X �K; .k; h/.x; k0/ WD .hx; c.h; x/�h.k
0/k�1/:

Note that when � is trivial, i.e., � � idK , skew cocycles (resp. skew product actions) are
reduced to the usual cocycles (resp. usual skew product actions) for the group K � H .
In this paper, we usually take H D Z, K be a finite group and � be trivial. To emphasize
the cocycle c, we usually denote X �K by X �c K.



Y. Jiang 560

2.3. Induced actions

Let H be a subgroup of G. Fix any lift map LWG=H ! G such that L.gH/H D gH

for all g 2 G. Consider the associated cocycle cWG �G=H ! H given by c.g; g0H/ D
L.gg0H/�1gL.g0H/ for all g; g0 2 G. Given any continuous action H Õ Y , then the
induced action G Õ G=H � Y is defined as follows:

g.g0H;y/ D .gg0H; c.g; g0H/y/ for all g; g0 2 G and y 2 Y .

2.4. Examples of continuous actions

Odometer actions. Fix a sequence of strictly increasing positive integers .ni /i�1 such
that ni j niC1 for all i � 1. Let

lim
 

Z=niZ D
°
.xi C niZ/i�1 2

Y
i�1

Z=niZWni j .xiC1 � xi /8i � 1
±
:

The odometer action associated to .ni / is defined as the continuous action ˛WZ Õ
lim
 

Z=niZ given by

˛n..xi C niZ/i / D .nC xi C niZ/i ; xi 2 Z:

Weakly mixing actions. A continuous action Z Õ X on a compact Hausdorff space
is called (topologically) weakly mixing [11, p. 23] if the product action Z Õ X � X is
transitive, i.e., for every pair of non-empty open sets U , V in X � X there exists some
g 2 Z with gU \ V ¤ ;. Examples of free minimal weakly mixing actions include the
so-called Chacón system [11, p. 27].

It is well known and easy to check that for a continuous action Z Õ X on a compact
Hausdorff space X , if X has no isolated points and there is a point in X with dense
orbit, then Z Õ X is transitive. Conversely, for a compact metric space X , Z Õ X being
transitive implies that it admits a point with dense orbit, see, e.g., [15, Proposition 7.9].

2.5. Subgroups of D1

LetD1 D Z Ì Z
2Z D hsi Ì hti D hs; t j t

2; tstsi be the infinite dihedral group. We record
a simple lemma on the structure of its subgroups.

Lemma 2.4. If H is a subgroup of D1, then either H D hsk ; si ti for some k; i 2 Z,
0 � ji j < k, or H D hskti, or H D hski for some k 2 Z. Moreover, all subgroups can
be realized as �i .H/ for some i 2 Z and some H 2 ¹kZ Ì Z

2Z ; kZ; Z
2Z W k 2 Zº, where

�i 2 Aut.G/ is defined by �i .s/ D s, �i .t/ D si t .

Proof. Write H \ Z D hski for some k 2 Z. Note that the set of torsion elements of G
is precisely ¹si t W i 2 Zº. If H contains no non-trivial torsion elements, then H � Z, i.e.,
H DH \ZD hski. IfH contains some non-trivial torsion element, say si t 2H for some
i 2 Z. Without loss of generality, we can assume that ji j is smallest among all non-trivial
torsion elements in H .
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Case 1. i D 0. Then clearly, H D hsk ; ti.

Case 2. ji j > 0. If k D 0, then H D hsi ti. Indeed, assume not, then sj t 2 H for some
j ¤ i , which implies that .si t /.sj t / D si�j 2 H \ Z, a contradiction. We can suppose
that k > 0. Clearly, 0 < ji j < k, then H D hsk ; si ti. Indeed, assume sj t 2 H , then
.sj t /.si t /�1 D sj�i 2 H \ Z D hski, hence sj t 2 hsk ; si ti.

The moreover part is now clear.

Remark 2.5. Lemma 2.4 implies that the notion of structurally conjugacy between two
odometer actions ofD1 as introduced in [7, Definition 3.1] coincides with the usual con-
jugacy. Thus, from [7, Theorem 3.3] it follows that continuous orbit equivalence between
two free odometer actions of D1 implies they are conjugate.

Next, let us observe the following holds, see also [22, Proposition 2.8].

Proposition 2.6. If ˛WD1 Õ X is a minimal action on an infinite compact Hausdorff
space X , then it is topologically free.

Proof. Without loss of generality, we can assume ˛ is not free. Write D1 D Z Ì Z
2Z D

hs; t j t2; tstsi D hsi Ì hti. Then observe that the sub Z D hsi-action, i.e., ˛jZWZ Õ X is
minimal.

Indeed, note that the number of minimal Z-components in X is either one or two
(see the discussion before case I in the proof of Theorem 1.3 for details). If we have two
minimal Z-components, say X0 and tX0, then ˛jZ on each component is free and so is ˛,
contradicting our assumption.

Now, as the action is minimal and X is infinite, every stabilizer subgroup must be of
infinite index in D1. By Lemma 2.4, we deduce that for each x 2 X , if the stabilizer
group Stab.x/ is not trivial, then Stab.x/D ¹e; sntº for some n 2 Z. To check topological
freeness of ˛, we only need to show that for each n 2 Z, the closed set Xn WD ¹x 2
X W sntx D xº is nowhere dense.

Note that x 2 Xn if and only if Stab.x/ D ¹e; sntº. Now, assume that 9; ¤ U ¨ Xn,
where U is an open set. Then we can pick any y 2 XnU and use Z Õ X is minimal to
deduce that for each N , 9jmj > N such that smy 2 U . Hence, ¹e; sntº D Stab.smy/ D
sm Stab.y/s�m. Since Stab.y/ D ¹eº or ¹e; sktº for some k 2 Z, we deduce that 2m D
n � k, which gives us a contradiction since m can be arbitrarily large.

2.6. Bi-Lipschitz bijections of Z

We need the following result from [2].

Theorem 2.7 (Benjamini–Shamov). Let f WZ!Z be a bi-Lipschitz bijection (Z is equip-
ped with its usual metric, namely �.x; y/ WD jx � yj). Then either supx2Z jf .x/ � xj <

C1 or supx2Z jf .x/C xj < C1. More precisely, f .x/ D ˙x C constC r.x/, where
supx2Z jr.x/j <1.
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2.7. Gottschalk–Hedlund theorem

Another ingredient that we need is the classical Gottschalk–Hedlund theorem [12, Theo-
rem 14.11]. We record the following version as presented in [13, Theorem 2.9.4, p. 102]
and explain how to use it in our setting. Note that the proof of [13, Theorem 2.9.4, p. 102]
still works without the metrizability assumption on the space.

Theorem 2.8 (Gottschalk–Hedlund). Let X be a compact Hausdorff space, f WX ! X

a minimal continuous map and gWX ! R continuous such that

sup
n2N

ˇ̌̌̌ nX
iD0

g ı f i .x0/

ˇ̌̌̌
<1

for some x0 2 X . Then there is a continuous �WX ! R such that � ı f � � D g.

Now, let f WX!X be a minimal continuous action and cWZ�X!R be a continuous
cocycle for this action. Set g.x/ D c.1; x/, then a calculation shows that

nX
iD0

g ı f i .x0/ D c.nC 1; x0/:

Thus, Gottschalk–Hedlund theorem actually shows that if c is a bounded cocycle, i.e.,
sup.n;x/2Z�X jc.n; x/j <1, then it is a continuous coboundary map.

3. Existence of cocycles that are not coboundaries

To proof Theorem 1.2, we need to construct free minimal actions that admit continu-
ous cocycles which are not coboundaries with values into finite groups. We collect some
results along this direction.

Proposition 3.1. Let Z ÕX be a minimal weakly mixing and continuous action on a com-
pact metric space X . Then for each non-trivial group homomorphism � from Z to F ,
where F is a finite abelian group, � is not a coboundary.

Proof. Suppose that �.s/ D L.sx/ � L.x/ for some continuous map LWX ! F and
all s 2 Z, x 2 X . Then L.sx/ � L.x/ D L.sy/ � L.y/ for all x; y 2 X . Therefore,
L0.x; y/ WD L.x/ � L.y/ is a continuous map which is constant on each orbit of any
point in X � X . By assumption, we know that L0 is constant since the diagonal action
Z ÕX �X admits a point with dense orbit. ThusL0.x;y/DL0.x;x/D 0 for all x;y 2X ,
i.e., L is a constant function on X . Hence �.s/ D 0 for all s 2 Z, i.e., � is a trivial homo-
morphism, a contradiction.

For the next result, we need the following known characterization of coboundaries
using essential values for continuous cocycles in [18], which was adapted from Schmidt’s
notion for measurable cocycles in [24].
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Let K be a locally compact group with the unit element e. By K1 we denote the one
point compactification of K, i.e., K1 D K [ ¹1º. We can extend the group operation
from the groupK onto the setK1 by g � 1 D1 for all g 2 K1. One can check that the
operation K1 �K1 3 .g1; g2/! g1g2 2 K1 is continuous.

Definition 3.2 ([18, Definition 3.1]). Let T WZ Õ X be a continuous action on a compact
space X . Let cWZ �X ! K be a continuous cocycle. We say that r 2 K1 is an essential
value of � if for each non-empty open U � X and each neighborhood V of r there exists
N 2 Z such that

U \ T �NU \ ¹x 2 X W c.N; x/ 2 V º ¤ ;:

The set of all essential values of c we denote by E1.c/. Put also E.c/D E1.c/\K.

Proposition 3.3. Let Z Õ X be a minimal action and K be a compact abelian group,
e.g., a finite abelian group. Let cWZ �X ! K be a continuous cocycle. Then E.c/ D ¹eº
if and only if c is a coboundary, where e denotes the neutral element in K.

Proof. ) See [18, Lemma 3.1 (ii)].( One can check this directly using the definition of
E.c/.

The following result might be known to experts; since we do not find a reference, we
include the proof.

Proposition 3.4. Let .Z; X/ be a minimal odometer action, say X D lim
 

Z=niZ, where
ni j nj for all i � j and limj!1 nj D 1. Let p be a prime number. Then the following
statements are equivalent:

(1) Every continuous map f WX ! Z=pZ gives rise to a continuous coboundary.

(2) supi ord.p; ni / D1, where ord.p; ni / WD maxpk jni k.

Proof. .1/) .2/: By Proposition 3.3, we know that for all continuous f WX ! Z=pZ,
E.f /D ¹0º, i.e., for all 0¤ c 2Z=pZ, there exists some non-empty open setU �X such
that for all n 2 Z, we have x 2 U \ T �nU ) f .x/C f .T x/C � � � C f .T n�1x/ ¤ c.

Now, denote by �i WX ! Z=niZ the natural projection map, i.e.,

�i ..xi C niZ/i / D xi C niZ:

Suppose that supi ord.p; ni / is bounded, let us take some j such that

ord.p; nj / D sup
i

ord.p; ni /

and assume nj > 1, then we define a map f WX ! Z=pZ as the composition

X
�j
! Z=njZ

f 0

! Z=pZ;

where f 0.i C njZ/ D ıi;1 2 Z=pZ for all 0 � i � n1 � 1. Take c D 1 2 Z=pZ, then we
find some U � X as above. We can shrink U if necessary to assume U D ��1

k
.i0C nkZ/
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for some k > j and i0. Now, take any x D .xi C niZ/i 2 U and n D nk` for some
integer ` such that nk

nj
` � 1 mod p. (This is possible since p − nk

nj
by our choice of j

and p is a prime number.) Note that nk j n implies that T nx 2 U . Now, a calculation
shows that

f .x/C f .T x/C � � � C f .T n�1x/ D

n�1X
sD0

f 0.xj C s C njZ/

D 1 �
n

nj
D
nk`

nj
D 1 D c 2 Z=pZ:

This is a contradiction.
.2/) .1/: The proof is similar as above. By Proposition 3.3, we aim to show that for

all continuous f WX ! Z=pZ and all 0 ¤ c 2 Z=pZ, there exists some non-empty set
U �X such that for all n 2Z, x 2U \ T �nU ) f .x/C f .T x/C � � � C f .T n�1x/¤ c.

Choose large enough j such that f factors through �j WX!Z=njZ, i.e., f D �j ı f 0

for some map f 0WZ=njZ! Z=pZ. Since supi ord.p; ni / D1, we can find k > j such
that ord.p; nk/ > ord.p; nj /. Then let U D ��1

k
.0C nkZ/. For each n 2 Z, if x 2 U \

T �nU , then xk D 0 D xk C n in Z=nkZ, so nk j n. Now, a calculation shows that

f .x/C f .T x/C � � � C f .T n�1x/

D

n�1X
sD0

f 0.xj C s C njZ/ D

� nj�1X
sD0

f 0.s C njZ/

�
n

nj

D

�� nj�1X
sD0

f 0.s C njZ/

�
n

nk

�
nk

nj
2 pZ (since ord.p; nk/ > ord.p; nj /):

Thus, 0 D f .x/C f .T x/C � � � C f .T n�1x/ ¤ c in Z=pZ.

From the above proposition, we can deduce that the free minimal odometer action
Z Õ lim

 

Z
2iZ
WD X admits a continuous Z=3Z-valued cocycle that is not a coboundary.

4. Proofs

4.1. Non-rigidity part

Theorem 1.2 is a direct corollary of the following proposition.

Proposition 4.1. Let ˛WZ Õ X be a minimal free action on a compact Hausdorff space.
Let c; c0WZ�X! F be two continuous cocycles (with respect to the action ˛) into a finite
non-trivial group F . Consider the associated skew product actions z̨WF � Z Õ X �c F

and z̨0WF � Z Õ X �c0 F as defined in Section 2.2. Then the following holds:

(i) Both z̨ and z̨0 are minimal free actions.
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(ii) z̨
coe
� z̨0.

(iii) If c0 � e 2 F , the neutral element in F , then z̨
conj
� z̨0 implies that c is cohomol-

ogous to a group homomorphism from Z into C.F /.

(iv) For each F with trivial center, there exist ˛, c and c0 such that z̨
conj
œ z̨0.

Proof. (i) We leave it as an exercise.
(ii) Recall that z̨WF � Z Õ X �c F is defined as follows:

z̨.f;n/.x; f
0/ D .˛n.x/; c.n; x/f

0f �1/ for all f , f 0 2 F , n 2 Z and x 2 X:

Define � W .F � Z/ � .X �c F /! F � Z by setting

�..t; n/; .x; f // D .tf �1c.n; x/�1c0.n; x/f; n/ for all n 2 Z, t 2 F and x 2 X:

One can check that it is a continuous cocycle with respect to the skew product action z̨.
Indeed,

�..t1; n1/.t2; n2/; .x; f //

D �..t1t2; n1 C n2/; .x; f //

D .t1t2f
�1c.n1 C n2; x/

�1c0.n1 C n2; x/f; n1 C n2/;

�..t1; n1/; z̨.t2;n2/.x; f //�..t2; n2/; .x; f //

D �..t1; n1/; .˛n2.x/; c.n2; x/f t
�1
2 //�..t2; n2/; .x; f //

D .t1t2f
�1c.n2; x/

�1c.n1; ˛n2.x//
�1c0.n1; ˛n2.x//c.n2; x/f t

�1
2 ; n1/

� .t2f
�1c.n2; x/

�1c0.n2; x/f; n2/

D .t1t2f
�1c.n2; x/

�1c.n1; ˛n2.x//
�1c0.n1; ˛n2.x//c

0.n2; x/f; n1 C n2/

D .t1t2f
�1c.n1 C n2; x/

�1c0.n1 C n2; x/f; n1 C n2/:

Thus,

�..t1; n1/.t2; n2/; .x; f // D �..t1; n1/; z̨.t2;n2/.x; f //�..t2; n2/; .x; f //:

Moreover, one can verify that

z̨.t;n/.x; f / D z̨
0
�..t;n/;.x;f //.x; f /:

By symmetry, one can also define the inverse cocycle for � , hence z̨ coe
� z̨0.

(iii) First, we observe that for eachˆ2Aut.F �Z/, we haveˆ.t;1/D .".t/g;˙1/ for
some " 2 Aut.F / and g 2 C.F /, the center of F . Indeed, since F is finite,ˆ.F � ¹0º/D
F � ¹0º, thus we define " D ˆjF�¹0º. Next, we can write ˆ.e; 1/ D .g;˙1/ for some
g 2 F . From ˆ..e; 1/.t; 0// D ˆ..t; 0/.e; 1// for all t 2 F , we deduce that g 2 C.F /.
Note that ˆ.t; n/ D .".t/gn;˙n/ for all n 2 Z and t 2 F . For such ˆ, we simply write
ˆ D .".�/g;˙/.
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Next, assume z̨ is conjugate to z̨0, say via a homeomorphism � WX �c F ! X �c0 F

and a group isomorphism .".�/g;˙/WF �Z Š F �Z defined in the last paragraph. Then
we can write

�..x; f 0// D .�.x; f 0/;  .x; f 0//

for some continuous maps �WX �c F ! X and  WX �c F ! F .
Fix any .x; f 0/ 2 X �c F and .f; n/ 2 F � Z, the F � Z-equivariance of � shows

that for all x 2 X , f , f 0 2 F and all n 2 Z, we have

˛˙n.�.x; f
0// D �.˛n.x/; c.n; x/f

0f �1/;

c0.˙n; �.x; f 0// .x; f 0/g�n".f /�1 D  .˛n.x/; c.n; x/f
0f �1/:

(4.1)

Since f is arbitrary in the first expression in (4.1), we deduce that � only depends on
its first coordinate, so we can directly write �.x;�/ D �.x/ and hence ˛˙n.�.x// D
�.˛n.x//. Using � is a homeomorphism, we can check that �jX is also a homeomorphism.

Now, set f D c.n; x/ and f 0 D e into the second line in (4.1). We get that

c0.˙n; �.x// .x; e/g�n".c.n; x//�1 D  .˛n.x/; e/:

Thus,

c0.˙n; �.x// D  .˛n.x/; e/".c.n; x//g
n .x; e/�1: (4.2)

Since ˛˙n.�.x// D �.˛n.x//, (4.2) can be rewritten as

c0.˙n; x/ D  .��1.˛˙n.x//; e/".c.n; �
�1.x///gn .��1.x/; e/�1;

or simply

c0.n; x/ D  0.˛n.x//".c.˙n; �
�1.x///g˙n 0.x/�1 for all n 2 Z and x 2 X , (4.3)

where  0.x/ WD  .��1.x/; e/.
Now, let c � e 2 F , the neutral element in F , then (4.3) is the same as saying c0 is

cohomologous to a group homomorphism Z 3 n 7! g˙n 2 C.F /.
(iv) Set c � e. We are left to construct ˛ and c such that z̨

conj
œ z̨0. It suffices to make

sure the above identity (4.3) fails. Since C.F / is trivial, we deduce g D e. It suffices to
find some ˛ and a cocycle c0WZ �X ! F (with respect to ˛) which is not a coboundary.
By Cauchy theorem, we can find some non-trivial t 2 F such that Z=pZ Š hti � F for
some prime number p. By Lemma 2.3, it suffices to find some ˛ and a continuous cocycle
c0WZ �X ! Z=pZ which is not a coboundary.

We can apply Proposition 3.1 or Proposition 3.4 to construct a suitable free minimal
and weakly mixing or free minimal odometer action Z Õ X and a continuous cocycle c
which is not a coboundary.
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4.2. Rigidity part

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. LetD1 D Z Ì Z
2Z D hsiÌ hti. Denote by S the symmetric gener-

ating set ¹s˙; t˙º for D1. Denote by j � jS the word length on G with respect to S . Note
that jsnt jS D nC 1 and jsnjS D n. Let d.�; �/ be the right-invariant word metric on D1
with respect to S , i.e., d.g1; g2/ WD jg2g�11 jS . Let cWD1 �X ! D1 be the continuous
orbit cocycle associated to a given continuous orbit equivalence.

Claim 4.2. For all x 2 X , the following holds: either supn2Z d.c.s
n; x/; sn/ < 1 or

supn2Z d.c.s
n; x/; s�n/ <1.

Proof. Define � WZ! D1 by setting �.s2n/ D sn and �.s2nC1/ D tsn for all n 2 Z.
One can verify that � is a bi-Lipschitz bijection. In fact,

jn �mj

2
� d.�.sn/; �.sm// � 2jn �mj for all n, m 2 Z:

Fix any x 2 X and write �x.g/D c.g; x/ for all g 2D1. Define �WZ! Z by setting
� D ��1 ı �x ı � . Clearly, � is a bi-Lipschitz bijection as well by Proposition 2.2. From
Theorem 2.7, we deduce that either supn2Z j�.n/ � nj <1 or supn2Z j�.n/C nj <1.
This implies Claim 4.2 holds.

Define XC and X� in the following way:

XC D
®
x 2 X W sup

n2Z
d.c.sn; x/; sn/ <1

¯
;

X� D
®
x 2 X W sup

n2Z
d.c.sn; x/; s�n/ <1

¯
:

Clearly, XC \ X� D ; since s has infinite order. From Claim 4.2, we know that X D
XC tX�.

Claim 4.3. Both XC and X� are clopen subsets of X .

Proof. We follow the idea while dealing with Z-actions in [4]. For each r � 1, define
B.r/ WD ¹tsi ; si W ji j � rº � D1. Note that B.r/% D1 as r !1.

First, for all N > 0, there exists K > 0 such that B.N/ � c.B.K/; x/ for all x 2 X .
Indeed, since D1 3 g 7! c.g; x/ 2 D1 is a bijection, we can find Kx > 0 such that
B.N/ � c.B.Kx/; x/ for all x 2 X . Moreover, by continuity of c, we can find a small
open neighborhood Vx 3 x such that B.N/ � c.B.Kx/; y/ for all y 2 Vx . Since X D
[x2XVx , compactness of X implies we can find a finite subcover X D [niD1Vxi , setK D
max1�i�nKxi .

Let N WD maxx2X;g2S jc.g; x/j, and K as above for this N . Then for all x 2 X ,

either c.s>K ; x/ � ¹s>0; ts>0º and c.s<�K ; x/ � ¹s<0; ts<0º

or c.s>K ; x/ � ¹s<0; ts<0º and c.s<�K ; x/ � ¹s>0; ts>0º:
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Here, c.s>K ; x/ WD ¹c.si ; x/W i > Kº, and c.s�K ; x/ is similarly defined; ¹s>0; ts>0º WD
¹si ; tsj W i > 0; j > 0º and ¹s<0; ts<0º is similarly defined.

To see this, for each jkj > K, we have c.sk ; x/ 62 B.N/ as c.�; x/ is bijective. Since
jc.s˙1; skx/j �N , from c.s˙1Ck ; x/D c.s˙1; skx/c.sk ; x/, we deduce that c.s˙1Ck ; x/
and c.sk ; x/must have the same sign for the s-exponent when writing them as elements in
tZD thsi or ZD hsi. Then apply Claim 4.2 to see that if c.s>K ; x/ � ¹s>0; ts>0º holds,
then x 2 XC and thus c.s�K ; x/ � ¹s<0; ts<0º is automatic.

Now, denote by X 0C WD ¹x 2 X W c.s
>K ; x/ � ¹s>0; ts>0º, c.s<�K ; x/ � ¹s<0; ts<0ºº

andX 0� WD ¹x 2X Wc.s
>K ; x/� ¹s<0; ts<0º, c.s<�K ; x/� ¹s>0; ts>0ºº. From above, we

have shown X 0C tX
0
� D X D XC tX�. It is easy to see that X 0C D XC and X 0� D X�.

Hence, to finish the proof, we just need to observe that both X 0C and X 0� are closed as c is
continuous and D1 is countable and discrete.

Define aWZ �X ! D1 by setting

a.sn; x/ D

´
c.sn; x/s�n if x 2 XC;

c.sn; x/sn if x 2 X�:

Claim 4.4. The map a is a continuous cocycle taking finitely many values as n changes.

Proof. From Claim 4.2, we know that a takes only finitely many values. Fix any x 2 XC
and n 2 Z. We have

a.smCn; x/ D c.smCn; x/s�m�n D c.sm; snx/c.sn; x/s�ns�m

D

´
a.sm; snx/sma.sn; x/s�m if snx 2 XC;

a.sm; snx/s�ma.sn; x/s�m if snx 2 X�:

Case 1. snx 2 XC. Since both a.smCn; x/ and a.sm; snx/ lie in a finite set asm changes,
we deduce that ¹sma.sn; x/s�mWm 2 Zº is a finite set. Therefore, we have a.sn; x/ 2 Z
and thus a.smCn; x/ D a.sm; snx/a.sn; x/.

Case 2. snx 2 X�. Since both a.smCn; x/ and a.sm; snx/ lie in a finite set asm changes,
we deduce that ¹s�ma.sn; x/s�mWm 2 Zº is a finite set. Thus, a.sn; x/ 2 Zt . Once again,
this implies that a.smCn; x/D a.sm; snx/a.sn; x/. To sum up, we have shown that for all
x 2 XC, a.smCn; x/ D a.sm; snx/a.sn; x/ holds for all m, n 2 Z.

Similarly, one can show this also holds for all x 2 X�. We include the details for
completeness.

Fix any x 2 X� and n 2 Z. We have

a.smCn; x/ D c.smCn; x/smCn D c.sm; snx/c.sn; x/smCn

D

´
a.sm; snx/sma.sn; x/sm if snx 2 XC;

a.sm; snx/s�ma.sn; x/sm if snx 2 X�:
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(i) snx 2 XC. Since a.smCn; x/ and a.sm; snx/ take finitely many values as m
changes, we get that ¹sma.sn; x/smWm 2 Zº is a finite set. Therefore, a.sn; x/ 2
Zt , which implies that a.smCn; x/ D a.sm; snx/a.sn; x/.

(ii) snx 2 X�. This case can be checked similarly.

Define DWX ! D1 by

D.x/ D

´
t if x 2 X�;

e if x 2 XC.

From Claim 4.3, we know D is a continuous map. Moreover, one can verify that

D.snx/a.sn; x/D.x/�1 2 Z for all x 2 X and n 2 Z:

Indeed, one can check this by considering four cases depending on x 2 X˙ and
snx 2 X˙. We explain the proof for the case x 2 XC and snx 2 X� below, the other
three cases can be checked similarly.

By assumption, there exists a finite subset F � D1 such that c.sk ; x/s�k 2 F 3
c.sk ; snx/sk for all k 2 Z. From the cocycle identity c.sn; x/ D c.sk ; snx/�1c.skCn; x/,
we deduce that c.sn; x/ D skgkskCn for some gk 2 F �1F for all k 2 Z. Taking a suf-
ficiently large k, we deduce that gk 2 tZ D thsi and thus c.sn; x/ 2 thsi. Therefore,
D.snx/a.sn; x/D.x/�1 D tc.sn; x/s�n 2 Z D hsi.

Thus, the map a0WZ �X ! Z � D1 defined by

a0.sn; x/ WD D.snx/a.sn; x/D.x/�1

is a continuous cocycle taking finitely many values in Z.
Take a Z-minimal component, sayX0, i.e.,X0 D Orb.Z; x0/ for some x0 2 X is min-

imal with respect to the sub-Z-action. Then since Z C D1, we know tX0 D Orb.Z; tx0/
is also a minimal Z-component. Moreover,X0 [ tX0 is aG-invariant closed subset, hence
X D X0 [ tX0 by minimality assumption. Clearly, either X0 \ tX0 D ; or X0 D tX0.

At this stage, we need to split the proof into two cases.

Case I. X0 D tX0, i.e., the sub-Z-action Z Õ X is still minimal. We can think of a0 as
a cocycle taking values in R via the natural inclusion Z ,!R. As we assume Z ÕX is still
minimal, we can apply Gottschalk–Hedlund theorem, i.e., Theorem 2.8 and Lemma 2.3 to
deduce there exists some continuous mapLWX!Z such that a0.sn;x/DL.snx/�1L.x/.
Thus, letting L0.x/ D L.x/D.x/, we deduce that

a.sn; x/ D L0.snx/�1L0.x/:

Therefore,

c.sn; x/ D

´
L0.snx/�1L0.x/sn if x 2 XC;

L0.snx/�1L0.x/s�n if x 2 X�

D L0.snx/�1snL0.x/ for all x 2 X and n 2 Z.
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Here, the last equality can be checked by observing that L.x/ 2 Z which is abelian and t
acts on Z as a reflection.

Claim 4.5. There exists some k 2Z such that c.t;x/DL0.tx/�1.skt /L0.x/ for all x 2X .

Proof. Notice that on the one hand,

.s�n; x/ D L0.s�nx/�1s�nL0.x/;

on the other hand,

c.s�n; x/ D c.tsnt�1; x/ D c.t; snt�1x/c.sn; t�1x/c.t�1; x/

D c.t; snt�1x/L0.snt�1x/�1snL0.t�1x/c.t�1; x/:

Thus,

s�n.L0.x/c.t�1; x/�1L0.t�1x/�1/s�n D L0.s�nx/c.t; snt�1x/L0.snt�1x/�1: (4.4)

Since the right-hand side of the above takes only finitely many values as n changes, we
deduce that L0.x/c.t�1; x/�1L0.t�1x/�1 2 Zt . Write L0.x/c.t�1; x/�1L0.t�1x/�1 D
sk.x/t for some k.x/ 2 Z. It is clear from definition that X 3 x 7! k.x/ 2 Z is con-
tinuous. Next, from (4.4), we can deduce that c.t�1; x/�1 D L0.x/�1sk.x/tL0.t�1x/ and
c.t; snt�1x/DL0.s�nx/�1sk.x/tL0.snt�1x/. Since t2D e, the above implies that k.x/D
k.snx/ for all n 2 Z and x 2 X . Since the sub-Z-action is minimal and k.�/ is continuous,
we get that k.x/ � k for all x 2 X .

To sum up, we have shown that

c.sn; x/ D L0.snx/�1snL0.x/; c.t; x/ D L0.tx/�1sktL0.x/ for all n 2 Z; x 2 X:

Clearly, this is equivalent to say c is cohomologous to � 2 Aut.D1/, where � is given
by �.s/ D s and �.t/ D skt as mentioned in Lemma 2.4. Finally, we can apply [19,
Proposition 4.4 ] to conclude that the two actions are conjugate.

Case II. X0 \ tX0 D ;, i.e., X D X0 t tX0 and hence X0 is a clopen subset. We apply
Gottschalk–Hedlund theorem to the minimal subactions Z Õ X0 and Z Õ tX0. Argue
similarly to case I, we can find two continuous maps L00WX0 ! D1 and L0W tX0 ! D1
such that

c.sn; x/ D

´
L00.snx/�1snL00.x/ for all x 2 X0 and n 2 Z;

L0.snx/�1snL0.x/ for all x 2 tX0 and n 2 Z:
(4.5)

Fix any x 2 X0, we compute as follows:

c.s�n; x/ D L00.s�nx/�1s�nL00.x/;

c.s�n; x/ D c.tsnt�1; x/ D c.t; snt�1x/c.sn; t�1x/c.t�1; x/

D c.t; snt�1x/ŒL0.snt�1x/�1snL0.t�1x/�c.t�1; x/:
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Thus, we deduce

L00.s�nx/c.t; snt�1x/L0.snt�1x/�1 D s�nŒL00.x/c.t�1; x/�1L0.t�1x/�1�s�n:

As ¹L00.s�nx/c.t; snt�1x/L0.snt�1x/�1Wn 2 Zº is a finite set, we deduce that

L00.x/c.t�1; x/�1L0.t�1x/�1

D L00.s�nx/c.t; snt�1x/L0.snt�1x/�1 2 Zt for all n 2 Z:

Let us write

L00.x/c.t�1; x/�1L0.t�1x/�1 D sk.x/t (4.6)

for some map kWX0 ! Z. Clearly, k.�/ is a continuous map. Moreover, since X0 is Z D
hsi-invariant, from the above identity, we deduce that

L00.s�nx/c.t�1; s�nx/�1L0.t�1s�nx/�1 D sk.s
�nx/t;

ŒL00.s�nx/c.t; snt�1x/L0.snt�1x/�1��1 D Œsk.x/t ��1:

Multiply the above two expressions and use t2 D e, we deduce that e D sk.s
�nx/�k.x/, i.e.,

k.s�nx/D k.x/ for all n 2Z. SinceX0 is ZD hsi-minimal, we deduce that k is constant,
say k.x/ D k for all x 2 X0. Then, (4.6) can be simplified to

L0.tx/ D L0.t�1x/ D t�1s�kL00.x/c.t�1; x/�1:

From (4.5), a calculation shows that for each x 2 X0,

c.sn; tx/ D L0.sntx/�1snL0.tx/ D L0.ts�nx/�1snL0.tx/

D Œt�1s�kL00.s�nx/c.t�1; s�nx/�1��1snŒt�1s�kL00.x/c.t�1; x/�1�

D c.t�1; s�nx/L00.s�nx/�1s�nL00.x/c.t�1; x/�1:

In fact, using cocycle identity, we can compute the full expression for c. More precisely,
for all x 2 X0, we have

c.sn; x/ D L00.snx/�1snL00.x/;

c.snt; x/ D c.t�1; s�nx/L00.s�nx/�1s�nL00.x/;

c.sn; tx/ D c.t�1; s�nx/L00.s�nx/�1s�nL00.x/c.t�1; x/�1;

c.snt; tx/ D L00.snx/�1snL00.x/c.t; tx/:

(4.7)

Now, we remind that the two actions considered in Theorem 1.3 are ˛ and ˇ. But for
simplicity, we have omitted writing ˛ for the first action. So, we have gx D ˇc.g;x/.x/ for
all g 2 D1 and x 2 X . Define a map

X D X0 t tX0
�
�! X; �.x/ D ˇL00.x/.x/; �.tx/ D ˇt�1L00.x/.x/ for all x 2 X0:

Clearly, � is continuous as X0 is clopen and both c and L00WX0 ! D1 are continuous.
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Claim 4.6. The map � is the desired conjugacy between the two actions, i.e., � is a
homeomorphism and �.gx/ D ˇg.�.x// for all g 2 D1 and x 2 X .

Proof. The conjugacy identity can be checked by computation using ˇc.g;x/.x/D gx and
the above expression for c.g; x/ in (4.7). We are left to show that � is a bijection.

Injectivity. First, we check that �jX0 is injective. Indeed, take any x; y 2 X0, suppose
�.x/ D �.y/, that is, ˇL00.x/.x/ D ˇL00.y/.y/, i.e., ˇL00.y/�1L00.x/.x/ D y. Since D1 3
g 7! c.g; x/ 2 D1 is a bijection by Proposition 2.2, we can find some g 2 D1 such that
c.g; x/ D L00.y/�1L00.x/.

Thus, y D ˇc.g;x/.x/D gx. Since x;y 2X0 andX0 \ tX0D;, we deduce that g 2Z,
say g D sn. Hence, c.sn; x/D L00.snx/�1L00.x/. In view of (4.7), we deduce sn D e, i.e.,
x D y. Clearly, this also shows that �jtX0 is injective.

It remains for us to show that �.x/ ¤ �.ty/ for any x; y 2 X0. Assume not, then
ˇL00.x/.x/ D ˇt�1L00.y/.y/, i.e., ˇL00.y/�1tL00.x/.x/ D y. We can find some g 2 D1 such
that c.g;x/DL00.y/�1tL00.x/. Hence, y D ˇc.g;x/.x/D gx. So g 2Z, say gD sn. Thus,
c.sn; x/ D L00.snx/�1tL00.x/. In view of (4.7), this implies sn D t , a contradiction.

Surjectivity. First, we observe that the second action also has two distinct minimal Z-
components. Suppose not, we can apply the proof of case I to the second action to see the
first action is conjugate to the second one.

Thus, these two actions must have the same number of minimal Z-components (as
each automorphism of D1 must fix the subgroup Z D hsi globally), but this contradicts
our assumption in case II.

Let us write the two minimal Z-components of the second action as Y0 and ˇt .Y0/,
i.e., X D Y0 t ˇt .Y0/. Now, since �.gx/ D ˇg.�.x// for all g 2 D1 and all x 2 X , we
know �.X0/; �.tX0/ 2 ¹Y0; ˇt .Y0/º. As � is injective and X0 \ tX0 D ;, we deduce that
¹�.X0/; �.tX0/º D ¹Y0; ˇt .Y0/º, so � is surjective.

This concludes the proof of Theorem 1.3.

Remark 4.7. From [5, 6], we know that for every finitely generated one-ended group G,
its full shifts G Õ AG for finite A are continuous cocycle superrigid actions with respect
to any countable target groups. It was mentioned in [5, Corollary 5] that this can be com-
bined with [19, Theorem 1.6] to deduce that the full shifts as above are continuous orbit
equivalence rigid actions if G is further assumed to be torsion-free and amenable. In fact,
this further assumption is unnecessary. Indeed, we just observe that from continuous cocy-
cle superrigidity, we deduce c.g; x/ D L.gx/�1�.g/L.x/. Then take x to be any fixed
point for this full shift action and use g 7! c.g; x/ is a bijection for all x 2 X , we deduce
that g 7! �.g/ is automatically a group isomorphism of G. Hence, we can just apply [19,
Proposition 4.4] instead to deduce that for every finitely generated one-ended group G, its
full shifts as above are continuous orbit equivalence rigid actions.
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5. Concluding remarks

Here are several remarks on the theorems and possible generalizations.

(1) Let F be any non-trivial finite abelian group. From the proof of Proposition 4.1,
we know that if Z Õ X is a minimal action admitting a continuous cocycle cWZ�
X ! F which is not cohomologous to a group homomorphism from Z to C.F /,
the center of F , then we can construct two continuously orbit equivalent but not
conjugate actions.
In fact, for each non-trivial finite abelian group F such a minimal action Z Õ X

and a cocycle as above do exist (by taking Z ÕX to be a well-chosen Toeplitz sys-
tem [11, Example 1.20], as shown to me by Prof. Lemańczyk). By combining this
with Lemma 2.3, we can deduce that for each finite non-trivial group F , F � Z
admits two continuously orbit equivalent but not conjugate minimal actions.

(2) The construction in the proof of Proposition 4.1 (ii) can be modified to deal with
a general semi-direct product group G D F Ì� Z for a finite group F . Since
Aut.F Ì� Z/ becomes more involved and the existence of minimal actions that
admit nontrivial skew cocycles into finite groups is not clear to us, we do not study
the full generality here.

(3) Let G D D1. Then we take a Z-minimal component, for example X0, i.e., X0 D
Orb.Z; x0/ for some x0 2 X is minimal with respect to the sub-Z-action. Then
since Z CG, we know tX0 DOrb.Z; tx0/ is also a minimal Z-component. More-
over, X0 [ tX0 is a G-invariant closed subset, hence X D X0 [ tX0 if we assume
G Õ X is minimal.

We observe below that once we have two minimal Z-components, the G-action is an
induced action.

Proposition 5.1. Under the above notations and assumptions, if X0 \ tX0 D ;, then the
actionG ÕX DX0 t tX0 is conjugate to the induced actionG ÕG=Z�X0 associated
to a cocycle ıWG �G=Z! Z.

Proof. Indeed, consider the natural lift map LWG=Z ! G which given by L.Z/ D e

and L.tZ/ D t . Then for the associated cocycle ıWG � G=Z! Z given by ı.g; g0Z/ D
L.gg0Z/�1gL.g0Z/ we have

ı.sn;Z/ D sn; ı.sn; tZ/ D s�n; ı.snt;Z/ D s�n; ı.snt; tZ/ D sn

for all n 2 Z. Now, define  WX ! G=Z �X0 by setting

 .x/ D

´
.Z; x/ if x 2 X0;

.tZ; tx/ if x 2 tX0.

Clearly,  is a bijection and continuous (as X0 is clopen). One can check that  .gx/ D
g .x/ for all g 2 G and x 2 X .
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Hence,  is a conjugacy between G Õ X D X0 t tX0 and the induced action G Õ
G=Z � X0 for a free minimal action Z Õ X0 (i.e., the sub-Z-action) with respect to the
above chosen cocycle c.

Next, consider the two actions G Õ G=Z � X0 induced from any two minimal topo-
logically free Z-actions on X0 defined above, and let � be a homeomorphism which
induces a continuous orbit equivalence between these two actions. Suppose we know that
� D id, then one can show that the two actions are conjugate directly. This shows that the
main difficulty for dealing with case II in the proof of Theorem 1.3 is that we do not know,
a priori, how the homeomorphism behaves on the two minimal Z-components.

Before proving the above assertion, let us fix some notation for the induced actions.
Fix any lift LWG=Z ! G, i.e., L.gZ/Z D gZ for all g 2 G. We can further assume
L.Z/D e andL.tZ/D t . Then let ıWG �G=Z!Z be the associated cocycle ı.g; sZ/D
L.gsZ/�1gL.Z/. Observe that ı.s;Z/ D L.sZ/�1sL.Z/ D s for all s 2 Z.

Fix a minimal topologically free action ˛WZ Õ X0, then the induced action Q̨ WG Õ
X D G=Z � X0 is defined as follows: Q̨s.gZ; x/ WD .sgZ; ˛ı.s;gZ/.x// for all s; g 2 G
and x 2 X0.

Now it suffices to show the following holds.

Proposition 5.2. Let ˛; ˇWZ Õ X0 be two minimal topologically free actions. Also let
Q̨ ; Q̌WG Õ X WD G=Z�X0 be the associated induced actions as recalled above. Then the
following holds:

(1) Q̨ coe
� Q̌ via the identity homeomorphism) ˛

coe
� ˇ;

(2) ˛ coe
� ˇ) Q̨

conj
� Q̌.

Proof. (1) Let cWG � X ! G be the continuous orbit cocycle with respect to Q̨ , i.e.,
Q̨g. Qx/ D Q̌c.g; Qx/. Qx/, where Qx D .sZ; x/ 2 X is any point. Then a calculation using the
definition of the induced actions shows that

gsZ D c.g; Qx/sZ; ˛ı.g;sZ/.x/ D ˇı.c.g; Qx/;sZ/.x/ 8g; s 2 G; 8x 2 X0:

This implies that c.g; Qx/Z D gZ as Z C G. In particular, c.s; Qx/ 2 Z for all s 2 Z.
Now, we define the map � WZ�X0!Z given by �.s;x/D c.s; Qx/, where Qx WD .Z; x/.

Clearly, � is well-defined and continuous. Then, we verify that � is a cocycle with respect
to ˛. Take any s1; s2 2 Z and x 2 X0, we have

�.s1s2; x/ D c.s1s2; Qx/ D c.s1; Q̨s2. Qx//c.s2; Qx/;

�.s1; ˛s2.x//�.s2; x/ D c.s1;
A˛s2.x//c.s2; Qx/:

It suffices to check that Q̨s2. Qx/ D A˛s2.x/. Recall that

Qx D .Z; x/ and Q̨s2. Qx/ D .s2Z; ˛ı.s2;Z/x/ D .Z; ˛s2.x//:

Meanwhile, A˛s2.x/ D .Z; ˛s2.x//.
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Now, let us check that � gives us a coe between ˛ and ˇ. Indeed, we have

˛s.x/ D ˛ı.s;Z/.x/ D ˇı.c.s; Qx/;Z/.x/ D ˇL.c.s; Qx/Z/�1c.s; Qx/L.Z/.x/

D ˇL.sZ/�1�.s;x/.x/ D ˇ�.s;x/.x/ 8s 2 Z; 8x 2 X0:

(2) Let � WZ � X0 ! Z be the cocycle from the coe. By [4], we know that �.s; x/ D
f .˛s.x//

�1s˙f .x/ for some continuous map f WX ! Z. One can check X0 3 x 7!
f̌ .x/.x/ 2X0 intertwines ˛s with ˇs˙ , which implies Y 3 .gZ; x/ 7! .gZ; f̌ .x/.x// 2X

intertwines Q̨g with Q̌�.g/. Here, � 2 Aut.G/ is defined as follows:

� D

´
id if �.s; x/ D f .˛s.x//�1sf .x/ for all s 2 Z;

� if �.s; x/ D f .˛s.x//�1s�1f .x/ for all s 2 Z:

Here, � 2 Aut.G/ is determined by �.s/D s�1 for all s 2 Z and �.t/D t for the reflection
t 2 G.

Acknowledgments. The author is grateful to Professors Nhan-Phu Chung and Xin Li for
useful discussion, to Professor Xin Li for sharing his unpublished note on coe rigidity
dating back to 2016. He also thanks Professors Mariusz Lemańczyk and Zhengxing Lian
for very helpful correspondence on cocycles. The author also thanks the referee for his/her
helpful suggestion which improves the presentation.

Funding. This work is partially supported by NSFC grant no. 12001081.

References

[1] M. Amini, K. Li, D. Sawicki, and A. Shakibazadeh, Dynamic asymptotic dimension for actions
of virtually cyclic groups. Proc. Edinb. Math. Soc. (2) 64 (2021), no. 2, 364–372
Zbl 1478.37037 MR 4277767

[2] I. Benjamini and A. Shamov, Bi-Lipschitz bijections of Z. Anal. Geom. Metr. Spaces 3 (2015),
no. 1, 313–316 Zbl 1325.26011 MR 3412164

[3] L. Bowen, Measure conjugacy invariants for actions of countable sofic groups. J. Amer. Math.
Soc. 23 (2010), no. 1, 217–245 Zbl 1201.37005 MR 2552252

[4] M. Boyle and J. Tomiyama, Bounded topological orbit equivalence and C�-algebras. J. Math.
Soc. Japan 50 (1998), no. 2, 317–329 Zbl 0940.37004 MR 1613140

[5] N.-P. Chung and Y. Jiang, Continuous cocycle superrigidity for shifts and groups with one end.
Math. Ann. 368 (2017), no. 3–4, 1109–1132 Zbl 1384.37007 MR 3673649

[6] D. B. Cohen, Continuous cocycle superrigidity for the full shift over a finitely generated torsion
group. Int. Math. Res. Not. IMRN 2020 (2020), no. 6, 1610–1620 Zbl 1477.22014
MR 4089429

[7] M. I. Cortez and K. Medynets, Orbit equivalence rigidity of equicontinuous systems. J. Lond.
Math. Soc. (2) 94 (2016), no. 2, 545–556 Zbl 1367.37007 MR 3556453

[8] T. Giordano, H. Matui, I. F. Putnam, and C. F. Skau, Orbit equivalence for Cantor minimal
Z2-systems. J. Amer. Math. Soc. 21 (2008), no. 3, 863–892 Zbl 1254.37012 MR 2393431

https://zbmath.org/?q=an:1478.37037
https://mathscinet.ams.org/mathscinet-getitem?mr=4277767
https://zbmath.org/?q=an:1325.26011
https://mathscinet.ams.org/mathscinet-getitem?mr=3412164
https://zbmath.org/?q=an:1201.37005
https://mathscinet.ams.org/mathscinet-getitem?mr=2552252
https://zbmath.org/?q=an:0940.37004
https://mathscinet.ams.org/mathscinet-getitem?mr=1613140
https://zbmath.org/?q=an:1384.37007
https://mathscinet.ams.org/mathscinet-getitem?mr=3673649
https://zbmath.org/?q=an:1477.22014
https://mathscinet.ams.org/mathscinet-getitem?mr=4089429
https://zbmath.org/?q=an:1367.37007
https://mathscinet.ams.org/mathscinet-getitem?mr=3556453
https://zbmath.org/?q=an:1254.37012
https://mathscinet.ams.org/mathscinet-getitem?mr=2393431


Y. Jiang 576

[9] T. Giordano, H. Matui, I. F. Putnam, and C. F. Skau, Orbit equivalence for Cantor minimal
Zd -systems. Invent. Math. 179 (2010), no. 1, 119–158 Zbl 1293.37004 MR 2563761

[10] T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C�-crossed
products. J. Reine Angew. Math. 469 (1995), 51–111 Zbl 0834.46053 MR 1363826

[11] E. Glasner, Ergodic theory via joinings. Math. Surveys Monogr. 101, Amer. Math. Soc., Prov-
idence, RI, 2003 Zbl 1038.37002 MR 1958753

[12] W. H. Gottschalk and G. A. Hedlund, Topological dynamics. Amer. Math. Soc. Colloq. Publ.
36, Amer. Math. Soc., Providence, R.I., 1955 Zbl 0067.15204 MR 0074810

[13] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Ency-
clopedia Math. Appl. 54, Cambridge University Press, Cambridge, 1995 Zbl 0878.58020
MR 1326374

[14] D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups. Invent.
Math. 186 (2011), no. 3, 501–558 Zbl 1417.37041 MR 2854085

[15] D. Kerr and H. Li, Ergodic theory. Independence and dichotomies. Springer Monogr. Math.,
Springer, Cham, 2016 Zbl 1396.37001 MR 3616077

[16] D. Kerr and H. Li, Entropy, products, and bounded orbit equivalence. Ergodic Theory Dynam.
Systems (2021), DOI 10.1017/etds.2021.154

[17] D. Kerr and R. Tucker-Drob, Dynamical alternating groups, stability, property Gamma, and
inner amenability. To appear in Ann. Sci. Éc. Norm. Supér. (4)
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