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Minimal homeomorphisms and topological K -theory

Robin J. Deeley, Ian F. Putnam, and Karen R. Strung

Abstract. The Lefschetz fixed point theorem provides a powerful obstruction to the existence of
minimal homeomorphisms on well-behaved spaces such as finite CW-complexes. We show that
these obstructions do not hold for more general spaces. Minimal homeomorphisms are constructed
on compact connected metric spaces with any prescribed finitely generated K-theory or cohomol-
ogy. In particular, although a non-zero Euler characteristic obstructs the existence of a minimal
homeomorphism on a finite CW-complex, this is not the case on a compact metric space. We also
allow for some control of the map on K-theory and cohomology induced from these minimal
homeomorphisms. This allows for the construction of many minimal homeomorphisms that are
not homotopic to the identity. Applications to C�-algebras will be discussed in another paper.

1. Introduction

Let X be an infinite compact metric space. A homeomorphism 'WX ! X is called min-
imal if it has the following property: if F � X is a closed non-empty set such that
'.F / D F , then F D X . A fundamental question in the theory of dynamical systems
is the following:

Question 1.1. Given X , does there exist a minimal homeomorphism 'WX ! X?

Examples where the answer is positive include the Cantor set, the circle, the torus, the
Klein bottle, any odd-dimensional sphere, among others. After proving the existence of
a minimal homeomorphism on a particular space, one would like to classify all minimal
homeomorphisms on that space up to various natural equivalences.

However, proving existence is typically non-trivial, and there are in fact many obstruc-
tions to the existence of a minimal homeomorphism on well-behaved spaces. For example,
a compact manifold with non-empty boundary cannot admit a minimal homeomorphism.
More subtly, if we are given a finite CW-complex with non-zero Euler characteristic, then
by a result of Fuller [10, Theorem 2], any homeomorphism on it has a periodic point.
Since we are considering infinite metric spaces, a homeomorphism with periodic points
can never be minimal.

Based on Fuller’s result, it is natural to ask whether the Euler characteristic is still an
obstruction to the existence of a minimal homeomorphism when considering a general
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compact metric space, rather than a finite CW-complex. This is not the case. In fact, it
follows from our results here that given an integer n there exists an infinite compact metric
space with Euler characteristic n that admits a minimal homeomorphism.

In fact, what we prove is more general, and one of our main motivations is given
by the prominent role minimal homeomorphisms play in the theory of C �-algebras via
the crossed product construction. In particular, K-theory is an important invariant for
both spaces and C �-algebras. For a compact metric space X , its topological K-theory
is a Z=2Z-graded abelian group denoted by K�.X/. Topological K-theory is a functor,
so any continuous map 'WX ! Y induces a group homomorphism K�.Y /! K�.X/,
which we denote by '�. Furthermore, the K0-group of a compact space has the form
K0.X/ Š Z˚ zK0.X/, where zK0.X/ is reduced K-theory, and if X is connected, then
the group homomorphism '� acts as the identity on the copy of Z.

If .X; '/ is a minimal dynamical system, then, from the C �-algebra perspective,
computingK�.X/ and '�WK�.X/! K�.X/ are fundamental problems, as they are nec-
essary inputs for calculating the K-theory of the associated crossed product C �-algebra,
C.X/ Ì' Z. With our assumptions on X , such a C �-algebra is simple, separable, unital
and nuclear, and an important open problem is determining the K-theoretic range of such
crossed products. For more about the C �-algebraic applications, see [7].

As many spaces do not admit minimal homeomorphisms, we instead tackle the ques-
tion from the perspective of K-theory and cohomology. That is, rather than trying to
determine whether a given space admits a homeomorphism, we fix K-theory (or coho-
mology) and then seek spaces admitting minimal homeomorphisms which realize the
prescribed K-theory (or cohomology). Our results begin with the precise formulation of
this question:

Question 1.2. Given countable abelian groups G0 and G1, does there exist an infinite
connected compact metric space X such that

(1) X admits a minimal homeomorphism,

(2) K0.X/ Š Z˚G0 and K1.X/ Š G1?

Our main existence result is that there is such a space when the groups are finitely
generated, see Theorem 3.2 for further details. The proof of this result uses an important
result of Glasner and Weiss [11, Theorem 1] (see Theorem 3.1 for the special case of this
result that we use), our previous work in [6], and some Hilbert cube manifold theory. Our
solution to this special case of Question 1.2 also leads to a positive answer to the analogous
question for the existence of minimal homeomorphisms on spaces with prescribed finitely
generated Čech cohomology.

With the existence of a minimal homeomorphism proved for spaces with prescribed
finitely generated K-theory, we move to understanding the collection of minimal home-
omorphisms on these spaces. To do so, we study the collection of minimal homeomor-
phisms on a particular space via the maps onK-theory and Čech cohomology they induce.
It is important to note that our results in this direction apply not only to the spaces we con-
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struct but also to more well-behaved spaces such as manifolds. The starting point is the
following result of Fathi–Herman [9, Théorème 1]:

Theorem 1.3. Suppose that M is a smooth closed connected manifold that admits a free
smooth S1-action. Then M admits a minimal homeomorphism that is homotopic to the
identity.

This theorem gives a powerful way to obtain existence results. However, any minimal
homeomorphism obtained via this theorem induces the identity map on K-theory and
cohomology because it is homotopic to the identity. We extend this result to allow for
more general induced maps. A special case (see Remark 5.5) is the following:

Theorem 1.4 (Special case of Theorem 5.4). Suppose M is a smooth closed connected
manifold that admits a free smooth S1-action, Y is a closed connected manifold and
ˇWY ! Y is a finite-order homeomorphism. Then there exists a minimal homeomorphism
on M � Y that is homotopic to idM �ˇ.

In particular, if ˇ in the statement of this theorem acts non-trivially on K-theory or
Čech cohomology, then the minimal homeomorphism also acts non-trivially and hence
is not homotopic to identity. In addition, if both Y and ˇ are smooth, then the resulting
minimal homeomorphism can also be taken to be a diffeomorphism, see Theorem 4.1 and
Example 4.2. The assumption that Y is a closed connected manifold can be weakened, see
Theorem 5.4. This is important as the spaces we construct to answer Question 1.2 are not
manifolds (and, by Fuller’s result, cannot be manifolds or even CW-complexes).

By including the action on the given abelian groups in Question 1.2, we have the
following:

Question 1.5. Given countable abelian groups G0 and G1 and group automorphisms

�0W G0 ! G0 and �1W G1 ! G1;

does there exist an infinite compact metric space X such that

(1) X admits a minimal homeomorphism ˛,

(2) K0.X/ Š Z˚G0 and K1.X/ Š G1,

(3) ˛� D id˚�0 on K0.X/ and ˛� D �1 on K1.X/?

The spaces constructed in our answer to Question 1.2 already allow for a positive
answer to Question 1.5 when the groups are finitely generated and both �0 and �1 are the
identity. However, we are also able to construct systems where the maps �0 and �1 are not
necessarily the identity, allowing even further progress on this question. A special case of
our results gives the following (see Section 5.3 for details):

Theorem 1.6 (cf. Theorem 5.11). Suppose that Y is a connected finite CW-complex and
ˇWY ! Y is a finite-order homeomorphism. Then there exist a connected compact metric
space X and a minimal homeomorphism ˛WX ! X such that
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(1) K�.X/ Š K�.Y / and ˛� D ˇ� on K-theory,

(2) H�.X/ Š H�.Y / and ˛� D ˇ� on Čech cohomology.

In particular, this allows us to determine the K-theoretical range of the crossed prod-
uct C �-algebras associated to minimal dynamical systems .X; '/, when X has finitely
generated K-theory, see [7].

2. Background

2.1. Group actions and minimal homeomorphisms

There will be a number of group actions considered in the present paper. Our main results
center on Z-actions. A Z-action on a compact metric space X is obtained by iterates of
a homeomorphism 'WX ! X . If the given homeomorphism has finite order, then it is
often more natural to consider the associated Z=nZ-action where n is the order of the
homeomorphism. We will also need to consider smooth actions of the circle on smooth
closed manifolds. The reader should note that all actions of S1 on smooth manifolds in
the present paper are smooth actions.

Definition 2.1. If M is a closed manifold, then a (smooth) S1-action on M is free if the
following condition holds: if there exists � 2 S1 such that � �m D m for some m 2 M ,
then � D idS1 . A (smooth) S1-action is locally free if for each m 2M , the set

¹� 2 S1 j � �m D mº

is finite.

Definition 2.2. Let X be a compact metric space and � a topological group. An action
� ! Homeo.X/Wg 7! .x 7! g � x/ is called minimal if for every non-empty closed subset
F � X such that � � F D F , we have F D X . A single homeomorphism 'WX ! X is
minimal if the associated Z action is minimal.

Note that 'WX ! X is a minimal homeomorphism if and only if for any non-empty
closed subset F �X with '.F /D F , we have F DX . The next proposition is a standard
result in the theory of minimal homeomorphisms.

Proposition 2.3. Suppose thatX is compact and 'WX !X is homeomorphism. Then the
following are equivalent:

(1) ' is minimal;

(2) for each x 2 X , ¹: : : ; '�1.x/; x; '.x/; '2.x/; : : :º is dense in X ;

(3) for each x 2 X , ¹x; '.x/; '2.x/; : : :º is dense in X ;

(4) if U � X is a non-empty open set, then there exists k 2 N such that

U [ '.U / [ � � � [ 'k.U / D X:
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In our main results (see Theorems 4.1 and 5.4), there is an additional finite-order
homeomorphism, ˇ. We hope that the next result, which is likely known to experts, moti-
vates our assumption that ˇ is finite order.

Proposition 2.4. Suppose X is compact metric space, 'WX ! X is a homeomorphism
such that for each n 2 N, 'n is minimal and ˇWX ! X is a finite-order homeomorphism.
If ˇ ı ' D ' ı ˇ, then ' ı ˇ is minimal.

Before giving the proof of this proposition, note that this result is trivially false without
the finite-order assumption by simply taking ˇ D '�1.

Proof. Let K denote the period of ˇ and let U be a non-empty open subset of X . Then
the fact that 'K is minimal and the previous proposition imply that there exists L such
that

X D U [ 'K.U / [ '2K.U / [ � � � [ 'L�K.U /:

Since ˇK D id and ' ı ˇ D ' ı ˇ, we have

.' ı ˇ/i �K D 'i �K ı .ˇK/i D 'i �K

for any i 2 N.
Using this, we have

X D U [ 'K.U / [ '2K.U / [ � � � [ 'L�K.U / �

L�K[
jD0

.' ı ˇ/j .U /;

and it follows from the previous proposition that ' ı ˇ is minimal.

2.2. Minimal dynamical systems on point-like spaces

In [6], the authors constructed minimal homeomorphisms on infinite “point-like” spaces,
that is, infinite compact connected metric spaces that have both the same Čech coho-
mology and topological K-theory as a point. Moreover, they have finite covering dimen-
sion [6, Corollary 1.12]. As these systems will play a main role in the sequel, we review
some of their properties.

A generalized cohomology theory is called continuous if an inverse limit of spaces
induces an inductive limit of groups at the level of the cohomology theory. The interested
reader can find more on this notion in [3, Section 21.3] (note that in [3] these notions are
formulated in C �-algebraic terms). Two examples of continuous generalized cohomology
theories are Čech cohomology and K-theory. K-theory is the most relevant generalized
cohomology in this paper, but our results also apply to Čech cohomology.

The existence of minimal diffeomorphisms of odd-dimensional spheres of dimension
at least three was proved by Fathi and Herman in the uniquely ergodic case [9] and later
generalized by Windsor [16] to minimal diffeomorphisms with a prescribed number of
ergodic measures. In [6], the authors showed that such a minimal diffeomorphism can
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be used to construct minimal dynamical systems on point-like spaces Z. Given a minimal
diffeomorphism 'WSd ! Sd , d � 3 odd, the associated spaceZ is constructed by remov-
ing a subsetL1 that is a '-invariant immersion of R in Sd and completing Sd nL1 with
respect to a metric obtained from the inverse limit structure. A homeomorphism �WZ!Z

is then given by extending the map 'WSd n L1 ! Sd n L1 to Z.
There is a factor map qWZ ! Sd which is one-to-one on Sd n L1, and every �-

invariant Borel probability measure � satisfies �.Sd n L1/ D 1. Further details for the
factor map can be found in [6, Corollary 1.16 and Lemma 1.14], and the reader is directed
to the rest of the paper for the general construction of these minimal dynamical systems.
We summarize the main aspects in the theorem below.

Theorem 2.5. Let Sd be a sphere with odd dimension d � 3, and let 'W Sd ! Sd be
a minimal diffeomorphism. Then there exist an infinite compact metric space Z with cov-
ering dimension d or d � 1 and a minimal homeomorphism �WZ ! Z satisfying the
following:

(1) Z is compact, connected, and homeomorphic to an inverse limit of compact con-
tractible metric spaces .Zn; dn/n2N .

(2) For any continuous generalized cohomology theory, there is an isomorphism of
groups H�.Z/ Š H�.¹ptº/. In particular, this holds for Čech cohomology and
K-theory.

(3) There is an almost one-to-one factor map qWZ ! Sd which induces a bijection
between �-invariant Borel probability measures onZ and '-invariant Borel prob-
ability measures on Sd .

3. Existence results

In [11], Glasner and Weiss show how one can obtain skew products systems which are
minimal. We will review relevant notation below. In this section, we are interested in
skew product systems arising from minimal homeomorphisms on point-like spaces. In the
context of the discussion in the introduction, these are existence results. In later sections,
we will discuss variants where our goal is to put requirements on the induced maps on
K-theory.

First, let us recall some notation from [11]. For a compact metric space X with met-
ric dX , let Homeo.X/ denote the space of homeomorphisms of X equipped with the
metric d given by

d.g; h/ D sup
x2X

dX .g.x/; h.x//C sup
x2X

dX .g�1.x/; h�1.x//:

Let .Z;�/ be a minimal dynamical system given by Theorem 2.5. For a compact metric
space Y , let X WD Z � Y . Define a subset of Homeo.X/ by

O.� � idY / D ¹G�1 ı .� � idY / ıG j G 2 Homeo.X/º:



Minimal homeomorphisms and topological K-theory 507

Still following [11], we are also interested in subsets of O.� � idY /. Let Homeos.X/ be
the subgroup of Homeo.X/ consisting of homeomorphisms that fix all subspaces of the
form ¹zº � Y (with z 2 Z). Notice that if G 2 Homeos.X/, then it is determined by
a continuous map Z 3 z 7! gz 2 Homeo.Y / via G.z; y/ D .z; gz.y//. Let

�.� � idY / D ¹G�1 ı .� � idY / ıG j G 2 Homeos.X/º:

Theorem 3.1. Let .Z; �/ be a minimal point-like system as in Theorem 2.5. Suppose
that Y is a compact metric space with a path connected subgroup � � Homeo.Y / such
that .Y;�/ is minimal. Then there exists a residual subset of O.� � idY /�Homeo.Z � Y /
consisting entirely of minimal homeomorphisms. Likewise, there is a residual subset of
�.� � idY / consisting entirely of minimal homeomorphisms.

Proof. The proof is a direct application of [11, Theorem 1].

A list of spaces Y that have a path connected subgroup � � Homeo.Y / such that
.Y;�/ is minimal can be found in [8, p. 7]. Although many spaces satisfy this condition, it
does not hold for an arbitrary finite CW-complex. However, ifW is a finite connected CW-
complex, the product of W and the Hilbert cube Q is a connected compact Hilbert cube
manifold (see, for example, [15, p. 498]), and hence such a subgroup of Homeo.W �Q/
exists. In particular, we can apply Theorem 3.1 to Y D W �Q. Since both the Hilbert
cube Q and Z have the same K-theory and cohomology as a point, we arrive at the
following:

Theorem 3.2. Let W be a finite connected CW-complex, and let Q denote the Hilbert
cube. Then Z �W �Q admits a minimal homeomorphism and there are isomorphisms

H�.Z �W �Q/ Š H�.W /; K�.Z �W �Q/ Š K�.W /

of Čech cohomology and K-theory.

Proof. The existence of the minimal homeomorphism follows using Theorem 3.1. The
second statement follows from the Künneth formula, the fact that Q is contractible, and
Theorem 2.5 (2).

Remark 3.3. In the case that the system .Z; �/ is uniquely ergodic, [11, Theorem 2] tells
us that we can obtain a uniquely ergodic skew product system.

Remark 3.4. IfM is a closed connected manifold of finite dimension, then we can apply
Theorem 3.1 directly to X D Z �M . In this case, X is finite-dimensional. In the general
case, when we consider finite CW-complexes, we must include the infinite-dimensional
Hilbert cube, and hence the space X is also infinite-dimensional.

Proposition 3.5. Let W be a finite CW-complex, Q the Hilbert cube, and .Z; �/ a min-
imal point-like system. Then any minimal homeomorphism ˛ 2 O.� � idW�Q/ given by
Theorem 3.1 induces the identity map on K-theory and cohomology. The same is true for
any minimal homeomorphism ˛ 2 �.� � idW�Q/.
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Proof. We give a detailed proof only for the map on K-theory, but the proof for the map
on cohomology is similar. Since ˛ is in the closure of

O.� � idW�Q/ D ¹G�1 ı .� � idW�Q/ ıG j G 2 Homeo.X/º;

we need only to show that elements of O.� � idW�Q/ act as the identity map on K-
theory. This follows since ��WK�.Z/!K�.Z/ is the identity map, as shown in the proof
of [6, Proposition 2.8]. Thus .G�1 ı .� � idW�Q/ ıG/� D G� ı idK�.W�Q/ ı.G�/�1 D
idK�.W�Q/.

A similar but slightly different construction is also possible, which will allow us to
say more about invariant measures of the minimal dynamical system. Let .Sd ; '/, d � 3
odd, be a minimal diffeomorphism and .Z; �/ the corresponding point-like system given
by Theorem 2.5. For a finite CW-complex W and the Hilbert cube Q, we apply [11,
Theorem 1] to the product space Sd �W �Q to obtain a minimal homeomorphism

z'W Sd �W �Q! Sd �W �Q; .s; w; v/ 7! .'.s/; hs.w; v//;

where s 2 Sd ,w 2W , v 2Q and hWSd !Homeo.W �Q/. Let qWZ! Sd be the factor
map of Theorem 2.5 (3). Then we define a homeomorphism

z�W Z �W �Q! Z �W �Q; .z;w; v/ 7! .�.z/; hq.z/.w; v//:

Proposition 3.6. There is a factor map

zqW .Z �W �Q; z�/! .Sd �W �Q; z'/

defined by zq D q � idW�Q.

Proof. Since q is a factor map, it is clear that zq D q � idW�Q is surjective. Also,

zq ı z�.z; w; v/ D zq.�.z/; hq.z/.w; v// D .q.�.z//; hq.z/.w; v//

D .'.q.z//; hq.z/.w; v// D z'.q.z/; hq.z/.w; v//;

so zq intertwines the actions. Thus zq is a factor map.

Proposition 3.7. The homeomorphism

z�W Z �W �Q! Z �W �Q; .z;w; v/ 7! .�.z/; hq.z/.w; v//

is minimal.

Proof. Let L1 � Sd denote the '-invariant immersion of R which is removed in the
construction of Z. Suppose F is a closed non-empty z�-invariant subset of Z �W �Q.
Then zq.F / is a closed non-empty z'-invariant subset of Sd � W � Q, and since z' is
minimal, we have that zq.F / D Sd �W �Q. By [6, Lemma 1.14], q is injective when
restricted to the .Sd nL1/ � Z, from which it immediately follows that zq is injective on
.Sd nL1/�W �Q. Hence (Sd nL1/�W �Q�F . However, .Sd nL1/�W �Q is
dense inZ �W �Q. Thus F is both closed and dense, so we conclude F DZ �W �Q.
It follows that z� is minimal.
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Proposition 3.8. The factor map zqW .Z �W �Q;z�/! .Sd �W �Q; z'/ induces a bijec-
tion between the z�-invariant Borel probability measures onZ �W �Q and the z'-invari-
ant Borel probability measures on Sd �W �Q.

Proof. Let � be a z�-invariant measure. Then zq�.�/ D � ı zq�1 is z'-invariant. The set
L1 �Q�W is a Borel subset of Sd�W �Q, and sinceL1 is '-invariant,L1�Q�W
is invariant under z'. As in the proof of [6, Theorem 1.18], it follows that zq�.�/.L1 �
Q�W /D 0, and hence that�..Sd nL1/�W �Q/D 1. Since the factor map qWZ !Sd

is one-to-one on Sd n L1, we have that zq is bijective on .Sd n L1/ �W �Q, and the
result follows.

Proposition 3.9. The minimal homeomorphism

z�W Z �W �Q! Z �W �Q; .z;w; v/ 7! .�.z/; hq.z/.w; v//

induces the identity map on K-theory and cohomology.

Proof. Using [3, Proposition 10.5.1] and the fact that �� is the identity on K�.Z/, the
statement will follow by showing that z� is homotopic to a conjugate of the homeomor-
phism � � idW � idQ. The space Sd �W �Q is a compact Hilbert cube manifold, and
hence its homeomorphism group is locally contractible by the main result of [5]. Using
this fact together with the skew product construction, there exists a homotopy

H W Sd � Œ0; 1�! Homeo.W �Q/;

where H.z; 0/ D hz and H.z; 1/ D g�1
'.z/
ı gz for some gWSd ! Homeo.W �Q/. Pre-

composing with the factor map zq leads to

zH W Z � Œ0; 1�! Homeo.W �Q/;

where zH.z; 0/ D hq.z/ and zH.z; 1/ D g�1
'.q.z//

ı gq.z/. Summarizing, we have obtained

a homotopy from z� to the homeomorphism

.z; w/ 7! .�.z/; g�1'.q.z// ı gq.z/.w// D .G
�1
ı .� � idW � idQ/ ıG/.z; w/;

where the homeomorphism G is determined by g via G.z;w/ D .z; gq.z/.w//.

4. The manifold case

4.1. Statement of the result in the manifold case

Given a smooth closed manifold M , we denote by Diff1.M/ the collection of smooth
self-diffeomorphisms on M . Since M is compact, Diff1.M/ is a Fréchet Lie group,
see [12, Chapter 2] for more details. In particular, Diff1.M/ is a complete metric space
and the Baire category theorem holds. For an explicit definition of the metric dDiff1.M/,
see [12, Section 2.4].
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Theorem 4.1. Suppose that M is a smooth closed manifold, R� is a free smooth action
of S1 onM and ˇWM !M is a finite-orderC1-diffeomorphism satisfying the following:

(A) for each � 2 S1, ˇ ı R� D R� ı ˇ (this implies that R� gives a well-defined
S1-action on the quotient space M=ˇ);

(B) the S1-action on the quotient space M=ˇ induced by R� is free.

Then there exists ˛WM !M , a minimal C1-diffeomorphism,

˛ D lim
n!1

Hn ı .R�n ı ˇ/ ıH
�1
n ;

where

(1) for each n 2 N, HnWM !M is a C1-diffeomorphism and �n 2 S1;

(2) the convergence in the limit occurs within Diff1.M/.

Moreover, ˛ is homotopic to ˇ, and we can take ˛ to be uniquely ergodic.

Before giving the proof, we discuss conditions (A) and (B), a class of examples satis-
fying the conditions in the theorem, and a number of more specific examples.

It is worth noting that conditions (A) and (B) together imply that R� is a free action
on M . However, we have included the assumption that R� is a free action on M in the
statement of the theorem to emphasize the connection with [9, Théorème 1] (see the intro-
duction for more on this connection). Assuming condition (A), one way for condition (B)
to hold is for the action of S1 � Z=ord.ˇ/Z induced by R� and ˇ to be free. However,
condition (B) can be satisfied when this action is not free. In particular, the Z=ord.ˇ/Z-
action generated by ˇ need not be free. The reader might find it useful to consider the
special case when M D S1 �N with the action of S1 given by rotation on the S1-factor
and by acting trivially on the N -factor, which is a special case of the next example. For
an example that does not satisfy condition (B), one can take M D S1 with the S1-action
given by rotation and ˇ given by rotation by � .

Example 4.2. LetN1 be a smooth closed manifold admitting a free S1-action RN1;� , and
let N2 be a smooth closed manifold with a finite-order C1-diffeomorphism ˇN2 . Then
R� WDRN1;� � idN2 defines an S1-action onN1 �N2 which, together with the finite-order
C1-diffeomorphism, ˇ WD idN1 �ˇN2 , satisfies conditions (A) and (B) of Theorem 4.1.
Many examples can be constructed from this setup.

Example 4.3. Suppose that p and q, 1 � p < q, are odd integers and consider M D
Sp � Sq . The K-theory of M is given by

K0.M/ Š .H 0.Sp/˝H 0.Sq//˚ .Hp.Sp/˝H q.Sq// Š Z˚ Z

and
K1.M/ Š .H 0.Sp/˝H q.Sq//˚ .Hp.Sp/˝H 0.Sq// Š Z˚ Z:

The Z-grading on cohomology implies that induced map on K0.M/˚K1.M/ of a ho-
meomorphism on M is one of the following:
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(1) the identity,

(2) id˚� id in degree zero and id˚� id in degree one,

(3) id˚� id in degree zero and � id˚ id in degree one,

(4) id˚ id in degree zero and � id˚� id in degree one.

The last of these possible maps onK-theory cannot occur for a minimal homeomorphism,
because a homeomorphism inducing this map has a fixed point by the Lefschetz fixed
point theorem.

We show that the other three possible induced maps can occur in the minimal case.
Since M admits a free S1-action, the result of Fathi–Herman discussed in the intro-
duction implies that there exists a minimal diffeomorphism that acts as the identity on
K-theory. Next, since Sp admits a free S1-action and there is an order two orientation-
reversing diffeomorphism ˇWSq ! Sq , the previous theorem implies that there is a min-
imal homeomorphism that acts on K-theory as id˚ � id in degree zero and � id˚ id
in degree one. By reversing the roles of Sp and Sq , we can also get a minimal diffeo-
morphism that acts on K-theory as id˚ � id in degree zero and id˚ � id in degree
one.

Example 4.4. Let q be an odd positive integer and consider Sq � Rn=Zn. Take B an n
by n matrix with integer entries that satisfies

det.B/ D ˙1 and BL D I for some L � 1:

Note that if a matrix satisfies these conditions, then its characteristic polynomial will be
a factor of zN � 1 for some N 2 N. Many examples can be constructed using this fact.
For example,

B D

240 0 �1

1 0 �1

0 1 �1

35 :
Returning to the general case, given B we define a map on Rn=Zn by Œv� 7! ŒBv�, where
v 2 Rn and Œv� denotes the associated element in Rn=Zn. The condition det.B/ D ˙1
implies that this map is a diffeomorphism, and the condition BL D I implies that it is
finite order. Since S1 acts freely on Sq , we have the setup of Example 4.2 whereN1D Sq ,
N2 D Rn=Zn and ˇN2 is the finite-order diffeomorphism obtained from B .

If q D 1, so that we are considering the .nC 1/-torus, then there is a minimal diffeo-
morphism that has an action on H 1.S1 �Rn=Zn/ Š ZnC1 given by id˚B .

If q � 3, then there is a minimal diffeomorphism on Sq �Rn=Zn whose induced map
on H 1.Sq �Rn=Zn/ Š H 0.Sq/˝H 1.Rn=Zn/ Š Zn is given by B .

Note that if B ¤ I , then minimal diffeomorphisms obtained via this construction
cannot be homotopic to the identity since the map they induced on K-theory is not the
identity.
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4.2. Proof in the manifold case

The goal of this section is to prove Theorem 4.1. We begin with a number of lemmas. The
first is [9, Corollaire 4.11], and the second is based on [9, Corollaire 4.12]. Recall that the
definition of a smooth locally free action was given in Definition 2.1.

Lemma 4.5. Suppose that M is a smooth closed manifold admitting a smooth locally
free action of S1. Then, for any non-empty open set U � M , there exists a C1-diffeo-
morphism H such that

(1) H�1.U / meets every orbit of the S1-action;

(2) H is homotopic to the identity on M .

Lemma 4.6. Suppose that M is a smooth closed manifold, R� is a smooth free action of
S1 on M , and ˇWM !M is a finite-order C1-diffeomorphism satisfying the following:

(A) for each � 2 S1, ˇ ı R� D R� ı ˇ (this implies that R� gives a well-defined
S1-action on the quotient space M=ˇ);

(B) the S1-action on the quotient space M=ˇ induced by R� is free.

Let p
q

be a rational number for which the order of ˇ divides q and gcd.p; q/ D 1. Then
given a non-empty open set U �M , there exists a C1-diffeomorphism H such that

(1) H ıR p
q
ı ˇ ıH�1 D R p

q
ı ˇ;

(2) if m 2M , then there exists � 2 S1 and l D 0; : : : ; ord.ˇ/ � 1 such that

R� .ˇ
l .m// 2 H�1.U /I

(3) H is homotopic to the identity on M .

Proof. Fix a non-empty open set U � M . Let G be the group generated by R p
q
ı ˇ.

Since R p
q
ı ˇ D ˇ ıR p

q
and the order of ˇ divides q,G is finite. Moreover, the condition

gcd.p; q/ D 1 together with (B) implies that G is the cyclic group of order q.
We let G act onM (via .R p

q
ı ˇ/k) and prove that this action is free. Suppose that for

k D 0; : : : ; q � 1, .R p
q
ı ˇ/k.m/ D m. Then

m D .R p
q
ı ˇ/k.m/ D R kp

q

.ˇk.m//;

and assumption (B) implies that kp
q

is an integer and k is zero or divides the order of ˇ.
Since k D 0; : : : ; q � 1 and gcd.p; q/D 1, the first of these conditions implies that k D 0.
Hence the action of G on M is free and M=G is a smooth closed manifold. Furthermore,
the quotient map � WM !M=G is a covering map.

Let S1 act on M=G via � � Œm� WD ŒR� .m/�. We note that since for each � 2 S1,
ˇ ı R� D R� ı ˇ, this action is well defined. Furthermore, since S1 acts freely on M
and G is finite, the action of S1 on M=G is locally free.

Applying Lemma 4.5 toM=G and the open set �.U / gives xH WM=G!M=G a C1-
diffeomorphism such that
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(4) xH�1.�.U // meets every S1-orbit, and

(5) xH is homotopic to the identity on M .

Using (5), we are able to prove that xH has a lift to a C1-diffeomorphism H WM ! M .
The details are as follows. Consider the map xH ı� WM !M=G. Since xH is homotopic to
the identity, the map induced by xH ı � at the level of fundamental groups is given by ��,
and hence xH has a unique continuous lift,H WM !M . It follows thatH is smooth since
being smooth is a local property and both � and xH are smooth. Finally, the same argument
can be applied to xH�1 ı � to obtain a unique lift of xH�1WM=G!M=G. The uniqueness
of lifts then implies that H is a diffeomorphism (its inverse is the unique lift of xH�1).

The proof will now be completed by showing that H satisfies the (1), (2) and (3) in
the statement of the theorem.

For (1), by the definition of the lift, we have that H commutes with the action of G.
In particular,

H ı .R p
q
ı ˇ/ ıH�1 D .R p

q
ı ˇ/ ıH ıH�1 D .R p

q
ı ˇ/;

as required.
For (2), let m 2 M . Since xH�1.�.U // meets every S1-orbit in M=G, there exists

� 2 S1 such that ŒR� .m/� 2 �.U /. Using the definition of covering map in the case of
� WM !M=G, there exists g 2 G such that g.R� .m// 2 U . By the definition of G, there
exists k D 0; : : : ; q � 1 such that g D .R p

q
ı ˇ/k . Hence

R
�C

kp
q

.ˇk.m// D .R p
q
ı ˇ/k.R� .m// 2 U;

as required.
For (3), we note that since xH is homotopic to the identity, so is its lift H .

We will now prove Theorem 4.1, which we restate for the reader’s convenience.

Theorem (Theorem 4.1). Suppose that M is a smooth closed manifold, R� is a smooth
free action of S1 on M , and ˇWM ! M is a finite-order C1-diffeomorphism satisfying
the following:

(A) for each � 2 S1, ˇ ı R� D R� ı ˇ (this implies that R� gives a well-defined
S1-action on the quotient space M=ˇ);

(B) the S1-action on the quotient space M=ˇ induced by R� is free.

Then there exists ˛WM !M a minimal C1-diffeomorphism

˛ D lim
n!1

Hn ı .R�n ı ˇ/ ıH
�1
n ;

where

(1) for each n 2 N, HnWM !M is a C1-diffeomorphism and �n 2 S1;

(2) the convergence in the limit occurs within Diff1.M/.

Moreover, ˛ is homotopic to ˇ, and we can take ˛ to be uniquely ergodic.
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Proof. The proof follows the structure of the proof of [9, Théorème 1], which begins on
p. 50 of that paper. The general idea is due to Anosov and Katok [1].

Consider

O1.S1; ˇ/ WD
®
g ı .Rt ı ˇ/ ı g

�1
j t 2 S1; g 2 Diff1.M/

¯
as a subset of Diff1.M/. Since Diff1.M/ is a complete metric space, the Baire category
theorem holds for O1.S1; ˇ/.

Given a non-empty open set U , define

EU WD
®
f 2 O1.S1; ˇ/ j U [ f .U / [ � � � [ f L.U / DM for some L 2 N

¯
:

For each non-empty open set U , the set EU is open in O1.S1; ˇ/.
We will show that for each non-empty open set U , the set EU is dense. By construc-

tion, O1.S1;ˇ/ is dense in O1.S1; ˇ/, so we need only to show that, for each non-empty
open set U , g ı .Rt ı ˇ/ ı g�1 2 EU for each t 2 S1 and g 2 Diff1.M/. However,

g ı .Rt ı ˇ/ ı g
�1
2 EU if and only if Rt ı ˇ 2 Eg�1.U /:

Since g�1.U / is a non-empty open set, this reduces the proof to showing that for each non-
empty open set U and t 2 S1, Rt ı ˇ 2 EU . Letting D denote a dense subset of S1, we
can reduce further to proving that for each non-empty open setU and t 2D,Rt ı ˇ 2EU .

We now specify the dense subset of S1 that we will consider. Let

D WD
°p
q
2 S1

ˇ̌̌
the order of ˇ divides q and gcd.p; q/ D 1

±
:

The fact that D is dense follows from a standard argument using the fact that D contains
elements that are arbitrarily small.

We now fix a non-empty open set U , p
q
2 D and a sequence of irrational numbers �n

that converge to p
q

. Applying Lemma 4.6, we obtain a C1-diffeomorphism H such that

(4) H ıR p
q
ı ˇ ıH�1 D R p

q
ı ˇ;

(5) if m 2M , then there exist � 2 S1 and l D 0; : : : ; ord.ˇ/ � 1 such that

R� .ˇ
l .m// 2 H�1.U /I

(6) H is homotopic to the identity on M .

The fact that �n ! p
q

as n!1 implies that

H ıR�n ı ˇ ıH
�1
! H ıR p

q
ı ˇ ıH�1 D R p

q
ı ˇ:

Therefore, we need only to show thatH ı .R� ıˇ/ ıH�1 2EU for each irrational � 2S1.
The definition of EU and the compactness of M reduce the proof to showing that

1[
iD0

.H ıR� ı ˇ ıH
�1/i .U / DM;
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which is equivalent to showing that

1[
iD0

.R� ı ˇ/
i .H�1.U // DM:

Let m 2M and set
V WD ¹R� .ˇ

l .m// j � 2 S1; l 2 Nº:

Notice that V is .R� ı ˇ/-invariant and diffeomorphic to the disjoint union of k-circles
where k 2 N satisfies

(7) ˇkC1.m/ D m;

(8) ˇl .m/ ¤ m for 1 � l � k.

We identify V Š S1 � ¹0; : : : ; kº. Then, under this identification, we have that for any � ,
R� ı ˇ acts via

.z; i/ 2 S1 � ¹0; : : : ; kº 7! .Rot� .z/; i C 1 mod k C 1/;

where Rot� denotes rotation by � . In particular, for � irrational, .R� ı ˇ/jV is minimal.
By (5), there exist � 2 S1 and l D 0; : : : ; ord.ˇ/ � 1 such that

R� .ˇ
l .m// 2 H�1.U /:

Thus G D H�1.U /\ V is a non-empty set and, moreover, is open in the subspace topol-
ogy of V becauseH�1.U / is open inM . Since .R� ı ˇ/jV is minimal, there existsL 2N
such that

L[
iD0

.R� ı ˇ/
i .G/ D V:

Since m 2 V , it follows that

m 2

L[
iD0

.R� ı ˇ/
i .G/ �

L[
iD0

.R� ı ˇ/
i .H�1.U // �

1[
iD0

.R� ı ˇ/
i .H�1.U //:

The choice of m was arbitrary, so for each � irrational, H ı .R� ı ˇ/ ıH�1 2 EU and
hence, as observed above, we have that EU is dense in O1.S1; ˇ/.

To complete the proof, let ¹Uiºi2N be a countable basis for the topology on M . Then
by the Baire category theorem,

T1
iD0 EUi is dense in O1.S1; ˇ/ and it follows from

Proposition 2.3 that each element in
T1
iD0EUi is minimal.

The proof that we can take ˛ to be homotopic to the ˇ is similar to the proof of
Theorem 5.7, so we omit the details.

Finally, the argument that we can take ˛ to be uniquely ergodic is the same as in the
proof given in [11, Section 3].
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5. Generalization to homogeneous metric spaces

To obtain progress on Question 1.5 from the introduction, a variant of the main result in
the previous section is required. This variant will also be a key result for the C �-algebraic
applications in [7]. In particular, we must move outside of the smooth category. Our result
is related to a theorem by Glasner and Weiss [11, Theorem 1]. More precisely, we extend
the special case of their result (Theorem 3.1 above) so as to allow for more general induced
maps on K-theory. It is worth noting that the proof techniques we use are still closely
related to the work of Fathi and Herman [9] and therefore build on the work of Anosov
and Katok [1].

5.1. The relevant complete metric space

Let M be a smooth closed manifold and let Y be a compact metric space. We fix a Rie-
mannian metric on M and take the l1-product metric on M � Y . Define A to be the
collection of homeomorphisms  2 Homeo.M � Y / of the form

 .m; y/ D .˛.m/; gm.y//;

where

(1) ˛ 2 Diff1.M/, and

(2) m 7! gm is a continuous map from M to Homeo.Y /.

Define a metric on A via

dA. ; z / D dDiff1.M/.˛; z̨/C dHomeo.M�Y /. ; z /:

The proof of the next theorem uses the following straightforward observations:

(1) the metric d.g; zg/ WD supm2M dHomeo.Y /.gm; zgm/ is complete, and

(2) d.g; zg/ � dA. ; z /.

Theorem 5.1. .A; dA/ is a complete metric space.

Proof. Checking that dA is a metric is standard and the details are therefore omitted.
To show that it A is complete with respect to dA, let ¹ kº1kD1 be a Cauchy sequence

in A. By the definition of A,  k.m;y/D .˛k.m/; g
.k/
m .y// for some ˛k 2 Diff1.M/ and

continuous maps g.k/m WM ! Homeo.Y /. The definition of dA implies that ¹˛kº1kD1 is a
Cauchy sequence in Diff1.M/. Since Diff1.M/ is complete, there exists ˛ 2 Diff1.M/

such that ˛ D limk!1 ˛k .
Similarly, .Homeo.M � Y /;dHomeo.M�Y // is complete, so the definition of dA implies

there exists  2 Homeo.M � Y / such that  D limk!1 k with respect to dHomeo.M�Y /.
Now, the fact that ¹ kº1kD1 is Cauchy with respect to dHomeo.M�Y / and, as observed

above, d.g.k/;g.l// WD supm2M dHomeo.Y /.g
.k/
m ;g

.l/
m /� dA. k ; l / implies that ¹g.k/º1

kD1
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is Cauchy. By the completeness of d, there exists gWM ! Homeo.Y / such that g D
limk!1 g

.k/.
Finally, we must show that 2A and k! with respect to dA. It is straightforward

to show that  .m; y/ D .˛.m/; gm.y//, so  2 A. That  k !  now follows from the
definition dA.

5.2. Generalization to the (possibly) non-manifold case

Lemma 5.2. Suppose thatM is a smooth closed manifold admitting a locally smooth free
action of S1. Then, given a non-empty open setU �M andN 2N, there exist a collection
of open sets ¹UiºNiD0 and a C1-diffeomorphism H such that

(1) for each i D 0; : : : ; N , Ui � U ;

(2) for each i ¤ j , Ui \ Uj D ;;

(3) for each i D 0; : : : ; N , H�1.Ui / meets each orbit of the S1-action;

(4) H is homotopic to the identity on M .

Proof. Before starting the proof, notice that theN D 0 case is exactly [9, Corollaire 4.11],
which was stated above as Lemma 4.5. As such, we follow the proof of [9, Corollaire 4.11]
closely (see also [9, Proposition 4.8]).

Let d denote the dimension of M . The locally free S1-action gives M the struc-
ture of a foliation with codimension d � 1. As in the proof of [9, Corollaire 4.11], there
exist k � 1, closed .d � 1/-dimensional disks ¹Dj ºkjD1, " > 0, and C1-diffeomorphism
H WM !M such that

(I) the disks are pairwise disjoint and transverse to the foliation;

(II) the union of the interiors of the disks meet each S1-orbit;

(III) H.
Sk
jD1Dj � Œ0;"�/�U where for each j ,Dj � Œ0;"� is identified with a closed

disk of dimension d inside M ;

(IV) H is homotopic to the identity on M .

Next for each i D 0; 1; : : : ; N , let

Ui WD H

� k[
jD1

int.Dj / �
�2i"
4N

;
.2i C 1/"

4N

��
:

Using (I)–(IV), one sees that ¹UiºNiD0 and H have the required properties, namely (1)–(4)
in the statement of the lemma.

Next, we generalize [9, Corollaire 4.12].

Lemma 5.3. Suppose thatM is a smooth closed manifold admitting a smooth locally free
action of S1. Then, given a rational number p

q
, a non-empty open set U �M andN 2N,

there exist a collection of open sets ¹UiºNiD0 and a C1-diffeomorphism H such that
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(1) for each i D 0; : : : ; N , Ui � U ;

(2) for each i ¤ j , Ui \ Uj D ;;

(3) for each i D 0; : : : ; N , H�1.Ui / meets each of orbit of the S1-action;

(4) H ıR p
q
ıH�1 D R p

q
.

Proof. The proof is the same as the proof of [9, Corollaire 4.12] upon replacing the use
of [9, Corollaire 4.11] with Lemma 5.2. We omit the details.

Suppose in addition to the above notation, ˇ is a finite-order homeomorphism of Y .
Let �.S1; ˇ/ be the collection of homeomorphisms M � Y !M � Y of the form

 D h ı .Rt � ˇ/ ı h
�1

for some h 2 A and t 2 S1.
One can check that �.S1; ˇ/ � A. Since A is a complete metric space, the Baire

category theorem holds in the closure �.S1; ˇ/ � A.

Theorem 5.4. Suppose that M is a smooth closed manifold, R� is a smooth free action
of S1 on M , Y is a compact metric space, � is a path connected subgroup of Homeo.Y /
such that .Y; �/ is minimal, and ˇW Y ! Y is a finite-order homeomorphism. Then there
is a dense Gı -set of uniquely ergodic minimal homeomorphisms in �.S1; ˇ/.

Remark 5.5. It is worth noting that Y in the previous theorem can be taken to be any
closed connected manifold or any compact connected Hilbert manifold, see [11, p. 323].
The relevant � is the path component of the identity in Homeo.Y /.

Proof. Given W a non-empty open set in M � Y , we define EW to be the collection®
f 2 �.S1; ˇ/ j W [ f .W / [ � � � [ f L.W / DM � Y for some L 2 N

¯
:

Note that for each W , EW is open. We will show it is dense in �.S1; ˇ/. Define

D D
°p
q
2 S1

ˇ̌̌
the order of ˇ divides q and gcd.p; q/ D 1

±
:

As in the proof of Theorem 4.1, we need only to prove that for each non-empty open
set W and p

q
2 D, we have that R p

q
� ˇ 2 EW . Furthermore, since we are working with

the product topology, we need only to prove that R p
q
� ˇ 2 EU�V for each non-empty

open set U in M and each non-empty open set V in Y .
As such, we fix W D U � V , where U is a non-empty open set in M and V is a non-

empty open set in Y . By assumption, .Y; �/ is minimal, and hence there exist h1; : : : ; hN
in � such that

V [ h1.V / [ � � � [ hN .V / D Y:
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Using the fact that the action of S1 is free, and by possibly replacing U by a smaller
non-empty open subset, we can assume that the sets

U ; R p
q
.U /; : : : ; R

q�1
p
q

.U /

are pairwise disjoint.
Apply Lemma 5.3 to U to obtain open subsets ¹UiºNiD0 and a C1-diffeomorphism H

satisfying (1)–(4) of Lemma 5.3. Our goal is to define a continuous map gWM ! � .
We start with elements in M that are in Ui for some i D 0; : : : ; N . Let

gm D hi whenever m 2 Ui ;

where h0 WD idY . We then extend g continuously to a map U ! � satisfying gm D idY
for any m on the boundary of U . This can be done because each hi is homotopic to the
identity.

Next, we extend g to
m 2 R p

q
.U / P[ � � � P[R

q�1
p
q

.U /:

Notice that ifm is in this set, then there exist unique zm 2 U and unique k, 1 � k � q � 1,
satisfying

Rkp
q
. zm/ D m:

Define
gm WD ˇ

k
ı g zm ı ˇ

�k :

Finally, we extend g to the entire M by defining it to be the identity for any point not
in U P[R p

q
.U / P[ � � � P[R

q�1
p
q

.U /. One can check that gWM ! � is well defined and con-
tinuous.

Let G 2 Homeo.M � Y / be defined by G.m;y/ WD .m; gm.y//. For t 2 S1, consider

G�1 ı .H � idY / ı .Rt � ˇ/ ı .H�1 � idY / ıG:

Observe that

G�1 ı .H � idY / ı .Rt � ˇ/ ı .H�1 � idY / ıG 2 �.S1; ˇ/:

Our next goal is to show that

G�1 ı .H � idY / ı .R p
q
� ˇ/ ı .H�1 � idY / ıG D R p

q
� ˇ:

Lemma 5.3 implies that

G�1 ı .H � idY / ı .R p
q
� ˇ/ ı .H�1 � idY / ıG D G�1 ı .R p

q
� ˇ/ ıG:

Let .m; y/ 2M � Y . We consider two cases.
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Case 1. Suppose that m 2 U P[R p
q
.U / P[ � � � P[R

q�1
p
q

.U /. Then

G�1 ı .R p
q
� ˇ/ ıG.m; y/

D .R p
q
.m/; g�1R p

q
.m/.ˇ.gm.y////

D .R p
q
.m/; ..ˇkC1 ı g zm ı ˇ

�k�1/�1 ı ˇ ı ˇk ı g zm ı ˇ
�k/.y//

D .R p
q
.m/; .ˇkC1 ı g�1

zm ı ˇ
�k�1

ı ˇ ı ˇk ı g zm ı ˇ
�k/.y//

D .R p
q
.m/; ˇ.y//:

Case 2. Suppose that m 62 U P[R p
q
.U / P[ � � � P[R

q�1
p
q

.U /. Then we must also have that

R p
q
.m/ 62 U P[R p

q
.U / P[ � � � P[R

q�1
p
q

.U /:

Thus, by the definition of gWM ! � , we have that gm D idY and gR p
q
.m/ D idY , and we

have shown that

G�1 ı .H � idY / ı .R p
q
� ˇ/ ı .H�1 � idY / ıG D R p

q
� ˇ:

Take a sequence of irrational numbers ¹�nº1nD0 that converge to p
q

. Then

G�1 ı .H � idY / ı .R�n � ˇ/ ı .H
�1
� idY / ıG

converges to

G�1 ı .H � idY / ı .R p
q
� ˇ/ ı .H�1 � idY / ıG D R p

q
� ˇ:

Hence to prove that R p
q
� ˇ 2 EU�V , we need only to show that for each � irrational,

G�1 ı .H � idY / ı .R�n � ˇ/ ı .H
�1 � idY / ı G 2 EU�V . By compactness of M � Y ,

this further reduces to showing that

1[
iD0

.R� � ˇ/
i ..H�1 � idY / ıG/.U � V // DM � Y:

Let .m; y/ 2 M � Y . There exist 0 � j0 � N and zy 2 V such that hj0.zy/ D y. Since
H�1.Uj0/ meets each S1-orbit, there exist zm 2 Uj0 and t0 2 S1 such that Rt0.m/ D
H�1. zm/. Then

..H�1 � idY / ıG/. zm; zy/D .H�1 � idY /. zm;g zm.zy//D .H�1. zm/;hj0.zy//D .Rt0.m/;y/

Hence, we have shown that

..H�1 � idY / ıG/.U � V / \ ¹.Rt .m/; y/ j t 2 S1º

is a non-empty open set in ¹.Rt .m/; y/ j t 2 S1º.
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The set ¹.Rt .m/; y/ j t 2 S1º is .Rt � idY /-invariant, and for fixed t , the restriction
of Rt � idY to this set is given by rotation of t . If � is irrational, then ord.ˇ/ � � is also
irrational and hence there exists L 2 N such that

L[
iD0

.Rord.ˇ/�� � idY /i .H�1.U / �G.V / \ ¹.Rt .m/; y/ j t 2 S1º/

D ¹.Rt .m/; y/ j t 2 S
1
º:

In particular, .m; y/ 2
SL
iD0.Rord.ˇ/�� � idY /i .H�1.U / �G.V //. So

.m; y/ 2

L[
iD0

.R� � idY /ord.ˇ/�i .H�1.U / �G.V //

�

ord.ˇ/�L[
iD0

.R� � ˇ/
i .H�1.U / �G.V //

�

1[
iD0

.R� � ˇ/
i .H�1.U / �G.V //:

Since .m; y/ was arbitrary, it follows that

1[
iD0

.R� � ˇ/
i .H�1.U / �G.V // DM � Y;

whence G�1 ı .H � idY / ı .R� � ˇ/ ı .H�1 � idY / ı G 2 EU�V for each � irrational.
Hence we have that R p

q
� ˇ 2 EU�V and EU�V is dense in �.S1; ˇ/. The statement of

the theorem now follows from the Baire category theorem and the fact that topology on
M � Y has a countable basis. Also note that the uniquely ergodic part of the theorem
follows in the same way as in the proof given in [11, Section 3].

Theorem 5.6. Let ˛ 2 Diff1.M/ and let m 7! hm be a continuous map from M to
Homeo.Y /. Let  2 �.S1; ˇ/ � A be defined by  .m; y/ D .˛.m/; hm.y//, .m; y/ 2
M � Y . Then if  is minimal, ˛ is also minimal.

Proof. Let U be a non-empty open subset of M . Then since  is minimal, there exists
L 2 N such that

L[
iD0

 i .U � Y / DM � Y:

This implies that
L[
iD0

˛i .U / DM:

Since U is an arbitrary non-empty open set, it follows that ˛ is minimal.
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Recall that a topological space is locally contractible if each point in the space has
a local basis of contractible sets.

Theorem 5.7. Suppose that M is a smooth closed manifold, R� is a smooth free action
of S1 on M , Y is a compact metric space, � is a path connected subgroup of Homeo.Y /
such that .Y; �/ is minimal, and ˇWY ! Y is a finite-order homeomorphism. If the home-
omorphism group of M � Y is locally contractible, then there exists  2 �.S1; ˇ/ such
that  is homotopic to idM �ˇ, minimal, and uniquely ergodic.

Proof. Since Homeo.M � Y / is locally contractible, there exists an open neighborhood
of idM �ˇ, U , such that all homeomorphisms in U are homotopic to the idM �ˇ.

By Theorem 5.4, the set®
 2 �.S1; ˇ/ j  is minimal and uniquely ergodic

¯
is dense in �.S1; ˇ/. By definition, idM �ˇ 2 �.S1; ˇ/, so there exists a sequence of
uniquely ergodic minimal homeomorphisms converging to idM �ˇ with respect to the
metric dA. In particular, this sequence converges to idM �ˇ with respect to dHomeo.M�Y /.
Hence there exists a uniquely ergodic minimal homeomorphism in U . This completes the
proof as all elements in U are homotopic to idM �ˇ.

5.3. Constructions from minimal homeomorphisms on point-like spaces

Let d � 3 be an odd integer,Q be the Hilbert cube, andW be a connected finite CW-com-
plex with finite-order homeomorphism ˇW WW ! W . Then, as observed in Remark 5.5,
we can apply Theorem 5.4 with M D Sd , Y D W �Q, and ˇ D ˇW � idQ to obtain
a minimal homeomorphism

žW Sd �W �Q! Sd �W �Q; .s; w/ 7! .'.s/; hs.w//;

where s 2 Sd , w 2 W �Q, ' 2 Diff1.Sd /, and hWSd ! Homeo.W �Q/ continuous.
Moreover, h is of the form

hs D g
�1
'.s/ ı ˇ ı gs;

where gW Sd ! Homeo.W �Q/ is a continuous map. By Theorem 5.6, the diffeomor-
phism 'W Sd ! Sd is minimal and therefore, using Theorem 2.5, there exists a corre-
sponding minimal point-like system .Z; �/.

Let qWZ ! Sd be the factor map of Theorem 2.5 (3). Then we define a homeomor-
phism

z�W Z �W �Q! Z �W �Q; .z;w/ 7! .�.z/; hq.z/.w//:

The next two propositions are analogous to Propositions 3.6 and 3.7, now applied to h
as above. The proofs carry through verbatim, so are omitted.
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Proposition 5.8. There is a factor map

zqW .Z �W �Q; z�/! .Sd �W �Q; ž/

defined by zq D q � idW�Q.

Proposition 5.9. The homeomorphism

z�W Z �W �Q! Z �W �Q; .z;w/ 7! .�.z/; hq.z/.w//

is minimal.

Proposition 5.10. The map on K-theory induced by the minimal homeomorphism z� sat-
isfies the following:

K�.Z �W �Q/
z�� // K�.Z �W �Q/

K�.W /

p�W

OO

ˇ� // K�.W /;

p�W

OO

where pW WZ � W � Q ! W is the projection map and ˇ is the original finite-order
homeomorphism onW . Since the vertical map is an isomorphism, we have that .z�/�D ˇ�.
The same result holds for the induced maps on cohomology.

Proof. By Theorem 5.7, the minimal homeomorphism žWSd �W �Q! Sd �W �Q

is homotopic to idSd �ˇ � idQ. Using this fact, the induced maps onK-theory fit into the
following commutative diagram:

K�.Z �W �Q/
z�� // K�.Z �W �Q/

K�.Sd �W �Q/

q�

OO

ž�
// K�.Sd �W �Q/

q�

OO

K�.W /

p�

OO

ˇ� // K�.W /;

p�

OO

where q is the factor map Z �W �Q! Sd �W �Q and pWSd �W �Q! W is the
projection map. The result follows by noting that pW WZ �W �Q!W is equal to p ı q.
The proof that the same result holds in cohomology is similar and is therefore omitted.

We summarize the results of this section in the following theorem.

Theorem 5.11. Suppose that W is a connected finite CW-complex and ˇWW ! W is
a finite-order homeomorphism. Then there exist a connected compact metric space X and
minimal homeomorphism ˛WX ! X such that
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(1) K�.X/ Š K�.W / and ˛� D ˇ� on K-theory,

(2) H�.X/ Š H�.W / and ˛� D ˇ� on Čech cohomology.

Proof. The relevant space isX DZ �W �Q and the relevant homeomorphism is ˛ D z�.
(The definition of z� can be found just before the statement of Proposition 5.8.) That this
homeomorphism is minimal follows from Proposition 5.9, and that it has the required
induced map on K-theory and Čech cohomology follows from Proposition 5.10.

Remark 5.12. In the previous proof, note that if the connected finite CW-complex W is
a closed connected manifold, then we do not need to take the Cartesian product with the
Hilbert cube. In this case, one can use the space Z �W .

6. Induced automorphism on K -theory and cohomology

6.1. Examples starting from a manifold

In what follows, .Z; �/ is the dynamical system from Theorem 2.5, and we will apply the
construction in the previous section to a number of specific examples.

Example 6.1. Let Sn be the n-sphere and consider the space Z � Sn. There are two
possible induced maps on theK-theory of the n-sphere, and both can be realized by finite-
order homeomorphisms. It follows from Theorem 5.11 and Remark 5.12 that both these
induced maps can be realized by minimal homeomorphisms on Z � Sn.

Example 6.2. Consider Z � Rn=Zn and B an n by n matrix with integer entries that
satisfies the following conditions:

det.B/ D ˙1 and BL D I for some L � 1:

We define a map on Rn=Zn via Œv� 7! ŒBv�, where v 2 Rn and Œv� denotes the associated
element in Rn=Zn. The condition det.B/D˙1 implies that this map is a homeomorphism
(in fact a diffeomorphism), and the condition BL D I implies that it is finite order.

Theorem 5.11 and Remark 5.12 imply that there is a minimal homeomorphism on
Z �Rn=Zn with induced map on H 1.Z �Rn=Zn/ Š Zn given by B .

Example 6.3. This example is based on a question of Nielsen [13]. Suppose that W is
a finite CW-complex and 'WW !W is a homeomorphism such that for someK � 1, 'K is
homotopic to the identity. Then one can ask if there exists a homeomorphism ˇWW ! W

such that ˇ has finite order and is homotopic to '. In general, this is not possible, see [4,
Introduction]. However, for orientable surfaces, Nielsen proved that this is always the
case [13].

In our context, Nielsen’s theorem and our results imply the following: Suppose N is
a closed manifold admitting a free S1-action, Mg is an orientable surface of genus g, and
'WMg ! Mg is a homeomorphism such that for some K � 1, 'K is homotopic to the
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identity. Then N �Mg admits a minimal homeomorphism that is homotopic to idN �'.
To see that this is the case, Nielsen’s theorem implies that there is a homeomorphism
ˇWMg !Mg that has finite order and is homotopic to '. We can then apply Theorem 5.4
to N �Mg with the finite-order homeomorphism ˇ to obtain a minimal homeomorphism
that is homotopic to idN �ˇ. This completes the proof since idN �ˇ is homotopic to
idN �'.

Likewise, using Theorem 5.11 and Remark 5.12, Z �Mg admits a minimal homeo-
morphism that has action onK-theory given by '�, where .Z; �/ is the dynamical system
from Theorem 2.5.

6.2. Examples starting from finite CW-complexes

The following question is a natural question about finite CW-complexes, but Theorem 5.4
and Proposition 5.10 give it added importance in our context (see Theorem 6.5 below).

Question 6.4 (A realization question in K-theory). Given a finitely generated abelian
groupG and a finite-order automorphism � WG! G, does there exist a pointed connected
finite CW-complexW such that zK0.W /Š G andK1.W /Š ¹0º and based point preserv-
ing finite-order homeomorphism ˇW WW ! W such that ˇ�W D �?

It would be natural to ask that the orders of ˇW and � are equal, but since our results
do not require this, we do not ask this here. The realization question is related to a clas-
sical question of Steenrod, see [14, Introduction]. Steenrod’s question was about singular
homology (rather than K-theory), and Swan provided the first counterexamples in [14].

In this section, we discuss some examples where the realization question in K-theory
has a positive answer. These particular cases are strong enough to give the C �-algebraic
applications considered in [7]. Moreover, we hope they illustrate some of the issues and
proof techniques arising in the study of such problems. The interested reader can see
more details on these techniques in the case of Steenrod’s question, for example, in [2,
Section 2].

Theorem 6.5. Suppose G is a finitely generated abelian group and � is a finite-order
automorphism for which the answer to the “realization question in K-theory” is “yes”.
Then there exist a metric spaceX and minimal homeomorphism ž such that zK0.X/Š G,
K1.X/ D ¹0º, and ž� D � . Moreover, we can take the minimal homeomorphism to be
uniquely ergodic.

Proof. Since the realization question has a positive answer, we can take a pointed con-
nected finite CW-complex W and a based point preserving finite-order homeomorphism
ˇW WW ! W such that ˇ�W D � . Then we can apply the results from Section 5.3 (see, in
particular, Proposition 5.10) to X D Z �W �Q with the finite-order homeomorphism
ˇ D ˇW � idQ to get the required minimal homeomorphism z�, which can be taken to be
uniquely ergodic by Theorem 5.4.
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Theorem 6.6. Suppose that G1; : : : ; Gk are finitely generated abelian groups with finite-
order automorphisms �i WGi ! Gi , i D 1; : : : ; k. If the realization question in K-theory
has a positive answer for each .Gi ; �i /, then the realization question in K-theory for

.G1 ˚ � � � ˚Gk ; �1 ˚ � � � ˚ �k/

also has a positive answer.

Proof. Induction reduces the proof to the k D 2 case. Let .W1; ˇ1/ and .W2; ˇ2/ denote
solutions to the realization problem in K-theory for .G1; �1/ and .G2; �2/, respectively.
Since we are working with pointed spaces and based point preserving maps, we can form
.W1 _W2; ˇ1 _ ˇ2/. One can check that ˇ1 _ ˇ2 has finite order. The wedge axiom in
reduced K-theory implies the result holds.

Example 6.7. In this example, we consider a special case of Lemma 6.8 below. It should
aid the reader when considering the more general situation of Lemma 6.8. Let

B D

240 0 �1

1 0 �1

0 1 �1

35 :
Note that B4 D I (and Bn ¤ I for 1 � n � 3), so B gives a Z=4Z-group action on Z3.

Our goal is the construction of a connected finite CW-complex W and a based point
preserving homeomorphism ˇWW ! W such that zK0.W / Š Z3, and the action of ˇ on
reduced K-theory is given by B . To this end, consider the circle S1 with the trivial Z=4Z
action and the wedge of four copies of S1, denoted by S1 _ S1 _ S1 _ S1, with the Z=4Z
action generated by permuting the copies of S1 cyclically. We use the wedge point as the
based point and denote an element in S1 _ S1 _ S1 _ S1 by .x; i/, where x 2 S1 and
i D 1; 2; 3; 4 indicates the circle x is an element in. At the level of theK1-groups we have

K1.S1/ Š Z;

with the trivial Z=4Z-action, and

K1.S1 _ S1 _ S1 _ S1/ Š Z4;

with the Z=4Z-action generated by

A D

2664
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

3775 :
There is an equivariant map f WS1 _S1 _S1 _S1!S1 defined by .x; i/ 7! x. Moreover,
the induced map on the K1-groups

f �W K1.S1/ Š Z! K1.S1 _ S1 _ S1 _ S1/ Š Z4
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is given by

Œn� 7!

2664
n

n

n

n

3775 :
Let W D Cf be the reduced mapping cone of f (where we note that Cf is a connected
finite CW-complex and is pointed because we have taken the reduced mapping cone).
Using the fact that zK0.S1 _ S1 _ S1 _ S1/Š zK0.S1/Š ¹0º and long exact sequence in
reduced K-theory, we have the following:

0! K1.Cf /! Z! Z4 ! zK0.Cf /! 0:

It follows that zK0.Cf /Š cokerf � Š Z3 andK1.Cf /Š kerf � Š ¹0º as abelian groups.
However, there is more structure involved. Since the mapping cone construction is func-
torial and f is equivariant with respect to the Z=4Z-actions, there exists ˇWCf ! Cf
a based point preserving homeomorphism of order four making the previous exact se-
quence of abelian groups into an exact sequence of abelian groups with actions of Z=4Z.

Now let us show that ˇ�W zK0.Cf /! zK0.Cf / is given by B . To do so, let e1, e2 and e3
be the images of 2664

1

0

0

0

3775 ;
2664
0

1

0

0

3775 and

2664
0

0

1

0

3775
in coker.f �/, respectively. This gives an explicit realization of the isomorphism

zK0.Cf / Š coker.f �/ Š Z3:

Moreover, equivariance implies that ˇ�.e1/ D e2 since2664
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

3775
2664
1

0

0

0

3775 D
2664
0

1

0

0

3775 ;
and likewise implies that ˇ�.e2/ D e3. Finally, ˇ�.e3/ D �e1 � e2 � e3 since2664

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

3775
2664
0

0

1

0

3775 D
2664
0

0

0

1

3775 ;
and 2664

0

0

0

1

3775 D
2664
�1

�1

�1

0

3775
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as elements in coker.f �/. Thus ˇ� is given by

B D

240 0 �1

1 0 �1

0 1 �1

35 ;
as we have computed its action with respect to e1, e2, and e3. This completes theK-theory
part of the example.

We now consider cohomology. Suppose that n0 is an even positive integer. Consider
the .n0 � 1/-dimensional sphere Sn0�1 with the trivial Z=4Z action and the wedge of four
copies of Sn0�1, denoted by Sn0�1 _ Sn0�1 _ Sn0�1 _ Sn0�1, with the Z=4Z action
generated by permuting the copies of Sn0�1 cyclically. We use the wedge point as the
based point and denote an element in Sn0�1 _ Sn0�1 _ Sn0�1 _ Sn0�1 by .x; i/, where
x 2 Sn0�1 and i D 1; 2; 3; 4 indicates the circle x is an element in. The reduced cohomol-
ogy of these spaces vanishes except for the follows:

zHn0�1.Sn0�1/ Š Hn0�1.Sn0�1/ Š K1.Sn0�1/ Š Z;

with the trivial Z=4Z-action, and

zHn0�1.Sn0�1 _ Sn0�1 _ Sn0�1 _ Sn0�1/ Š Hn0�1.Sn0�1 _ Sn0�1 _ Sn0�1 _ Sn0�1/

Š K1.Sn0�1 _ Sn0�1 _ Sn0�1 _ Sn0�1/

Š Z4;

with the Z=4Z-action generated by

A D

2664
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

3775 :
Let W D Cf be the reduced mapping cone of f (where we note that Cf is a connected
finite CW-complex and is pointed because we have taken the reduced mapping cone). The
non-trivial part of the long exact sequence in reduced cohomology has the same form as
the one for reduced K-theory:

0! Hn0�1.Cf /! Z! Z4 ! Hn0.Cf /! 0;

where the map Z! Z4 is given by

Œn� 7!

2664
n

n

n

n

3775 :
It follows that zK0.Cf / Š Hn0.Cf / Š Z3. The relevant finite-order homeomorphism is
the same one discussed above in the case of K-theory. We omit the details.
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Lemma 6.8. Consider the d by d matrix

B D

2666666664

0 0 0 � � � 0 �1

1 0 0 � � � 0 �1

0 1 0 � � � 0 �1

0 0 1 � � � 0 �1
:::

:::
:::

: : :
:::

:::

0 0 0 � � � 1 �1

3777777775
as an automorphism of Zd and let n0 be an even positive integer. Then there exist a con-
nected finite CW-complex W and finite-order homeomorphism ˇ such that

Hn0.W / Š zK0.W / Š Zd ;

all other non-zero degree cohomology and K-theory groups trivial, and such that ˇ� is
given by B on both reduced cohomology and reduced K-theory.

The proof of the previous lemma is the same as the construction in the previous exam-
ple, but with general d 2 N n ¹0º not necessarily equal to 3. The details are therefore
omitted. However, it is worth mentioning that the space W is the reduced mapping cone
associated to the map

f WSn0�1 _ Sn0�1 _ � � � _ Sn0�1 ! Sn0�1

defined by .x; i/ 7! x.

Theorem 6.9. Consider the d by d matrix

B D

2666666664

0 0 0 � � � 0 �1

1 0 0 � � � 0 �1

0 1 0 � � � 0 �1

0 0 1 � � � 0 �1
:::

:::
:::

: : :
:::

:::

0 0 0 � � � 1 �1

3777777775
as an automorphism of Zd and let n0 be an even positive integer. Then there exist a con-
nected metric space X and minimal homeomorphism ž such that

Hn0.X/ Š zK0.X/ Š Zd

with the other reduced cohomology and reduced K-theory groups trivial such that ž� is
given by B on both reduced cohomology and reduced K-theory.

Proof. Lemma 6.8 implies that the answer to the realization question inK-theory is “yes”
in this special case. The statement about K-theory then follows from Theorem 6.5, and
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the statement about cohomology can be obtained from the fact that the K-theory and
cohomology of the CW-complex constructed in this situation are isomorphic; the details
are omitted.

An important consequence of the previous theorem is that we have many minimal
homeomorphisms that are not homotopic to the identity. In addition, the minimal homeo-
morphisms constructed in the previous theorem play an important role in the C �-algebraic
applications considered in [7]. In particular, the following result will be used in [7]. The
condition that H 1.X/ is trivial has been included so that the crossed products in [7] have
no non-trivial projections, see [7, Corollary 4.6].

Theorem 6.10. Suppose that G0 and G1 are finitely generated abelian groups and the
realization problem in K-theory for �0WG0 ! G0 and �1WG1 ! G1 each have a positive
answer. Then there exist a uniquely ergodic minimal homeomorphism on a compact metric
space X such that H 1.X/ is trivial, K0.X/ Š Z ˚ G0, K1.X/ Š G1 and the induced
maps on K-theory are idZ˚�0 and �1.

Proof. Let W0 be the finite CW-complex and ˇ0WW0 ! W0 be the finite-order homeo-
morphism that solve the realization problem in K-theory for �0, and likewise let W1 be
the finite CW-complex and ˇ1WW1 ! W1 the finite-order homeomorphism that solve the
realization problem in K-theory for �1.

Take W D W0 _ †W1, where †W1 is the reduced suspension of W1, and let ˇW D
ˇ0 _ †ˇ1. We note that ˇW is well defined because the spaces and maps considered are
pointed and the wedge product is taken at this point. Since ˇ0 and ˇ1 have finite order,
ˇW also has finite order.

The space W satisfies

K0.W / Š Z˚G0 and K1.W / Š G1;

and the induced map on K-theory from ˇW is

ˇ�W D idZ˚�0W Z˚G0 ! Z˚G0 and ˇ� D �1W G1 ! G1:

Finally, consider †2W and †2ˇW (that is, take the reduced suspension twice). Bott peri-
odicity implies that †2W and †2ˇ have the same K-theory properties as W and ˇW .
Moreover, for k � 1,

H k.†2W / Š H k�2.W /:

Hence H 1.†2W / Š H�1.W / is trivial. We can apply the results in Section 5.3 (see, in
particular, Proposition 5.10) toX DZ �†2W �Q with the finite-order homeomorphism
ˇ D idZ �†2ˇW � idQ to get the required minimal homeomorphism. By Theorem 5.4,
we can take the homeomorphism to be uniquely ergodic. Finally, we note that H 1.X/ Š

H 1.†2W / is trivial, as required.
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