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On the topology of the space of bi-orderings of a free
group on two generators

Serhii Dovhyi and Kyrylo Muliarchyk

Abstract. LetG be a group. We can topologize the spaces of left-orderings LO.G/ and bi-orderings
O.G/ ofG with the product topology. These spaces may or may not have isolated points. It is known
that LO.Fn/ has no isolated points, where Fn is a free group on n � 2 generators. In this paper, we
show that O.Fn/ has no isolated points as well, thereby resolving the second part of Conjecture 2.2
by Sikora [Bull. London Math. Soc. 36 (2004), 519–526].

1. Introduction

Given a group G, a linear order < is a left order if it is invariant under left multiplication,
i.e., x < y implies zx < zy for all x; y; z 2 G. A group that admits a left order is called
left-orderable. Elements that are bigger or smaller than the identity element of a group are
called positive and negative, respectively.

Another way to define left-orderability is as follows:

Proposition 1.1. A group G is left-orderable if and only if there exists a subset P � G
such that

(1) P � P � P I

(2) for every g 2 G, exactly one of g D 1, g 2 P or g�1 2 P holds.

Such a subset P is called a positive cone.
For a given order < on a group G, the positive cone P< associated with this order

is defined by P< WD ¹g 2 G j g > 1º. For a given positive cone P � G, the associated
order <P is defined by x <P y if x�1y 2 P . A group that admits a linear ordering which
is invariant under both left and right multiplication is called bi-orderable or just order-
able.

Proposition 1.2. A group G is orderable if and only if it admits a subset P satisfying
conditions .1/ and .2/ in Proposition 1.1, and in addition, the condition

(3) gPg�1 � P for all g 2 G.
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Proposition 1.3. The family of orderable groups is closed under the following operations:
taking subgroups, direct products, free products (first proved in [10]), quotients by normal
convex subgroups. Moreover, orders on G1 �G2 and G1 �G2 can be taken as the exten-
sions of orders on G1 and G2. The order on G=N can be defined as follows: gN is positive
in G=N if g is positive in G and g … N .

In particular, free groups are orderable as free products of copies of the (orderable)
group Z.

LetX be any set, and P.X/ be its power set. The spaces LO.G/� P.G/ (resp. O.G/�
P.G/) of all left-invariant (bi-invariant) positive cones in G was defined in [9]. As there is
a one-to-one correspondence between left-orderings (bi-orderings) of G and left-invariant
(bi-invariant) positive cones inG, it is natural to describe LO.G/ (resp. O.G/) as the space
of all left-orderings of G (the space of all bi-orderings of G).

We follow [1] in our exposition below. The power set can be identified with the set
of all functions X ! ¹0; 1º, via the characteristic function �AWX ! ¹0; 1º associated
to a subset A � X . Endow ¹0; 1º with the discrete topology, and then one can consider
P.X/ as a product of copies of ¹0; 1º indexed by the set X . The product topology is
defined as the smallest topology on the power set P.X/ such that for each x 2 X the sets
Ux D ¹A � X j x 2 Aº and U c

x D ¹A � X j x … Aº are open. A basis for the product
topology can be obtained by taking finite intersections of various Ux and U c

x .
It is then natural to ask:

Question 1.4. How does the topological space LO.G/ (resp. O.G/) look like for a given
group G?

The following theorem was proved in [9]:

Theorem 1.5. Let G be a countable orderable group. Then the space LO.G/ is a compact
totally disconnected Hausdorff metric space. The space O.G/ is a closed subset of LO.G/.

Let < be a left-ordering of a group G, and let a finite chain of inequalities g0 < g1 <

� � � < gn be given. Then the set of all left-orderings in which all these inequalities hold
forms an open neighborhood of < in LO.G/. The set of all such neighborhoods for all
finite chains of inequalities is a local base for the topology of LO.G/ at the point <.

Remark 1.6. Instead of a chain of inequalities g0 < g1 < � � � < gn equivalently we can
consider the sequence x1 D g

�1
0 g1 > 1; : : : ; xn D g

�1
n�1gn > 1, so ¹x1; : : : ; xnº � P< for

the positive cone P< associated with the order <.

A left-ordering ofG is isolated in LO.G/ if it is the only left-ordering satisfying some
finite chain of inequalities. Some groups G have isolated points in LO.G/, while others
do not. Thus, by Theorem 1.5 for a left-orderable (bi-orderable) countable group G, the
space LO.G/ (resp. O.G/) is homeomorphic to the Cantor set if and only if it has no
isolated points. We would, therefore, like to address the existence of isolated points in the
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space LO.G/ (resp. O.G/) as the first step towards understanding the structure of LO.G/
(resp. O.G/).

It was established in [9] that a free abelian group Zd , d � 2 has no isolated orderings,
and, therefore, the space LO.Zd /D O.Zd / is isomorphic to the Cantor space. The funda-
mental group of the Klein bottleK Š hx;y j xyx�1D y�1i has isolated orders [1]. In fact,
K admits only finitely many (four) left-orders, all of them are isolated. The Thompson’s
group F has eight isolated bi-orders while O.F / is uncountable [6].

Another important object is the free group on two generators F2. The following the-
orem was firstly proved in [4]:

Theorem 1.7. The space LO.F2/ has no isolated points.

Later, Theorem 1.7 has been proved in many different ways. We are mostly interested
in the idea presented in [5]. A slightly modified strategy of this proof (see [1, The-
orem 10.15]) is as follows:

Sketch of the proof of Theorem 1.7. Let < be a left order on the free group F2.

Step 1. Embed F2 into a countable dense left-ordered group G.

Step 2. Construct an order-preserving bijection t WG ! Q.

Step 3. F2 acts on G by left multiplication. Using t transform it to the action on Q.
Namely, for g 2 F2 let �.g/.t.h// D t .gh/ where h runs over G and so t .h/
runs over Q. Extend �.g/ to an action R! R.

Step 4. Let a and b be the generators of a free group F2. Then �.a/ and �.b/ generate
its copy in the group HomeoC.R/ of orientation-preserving homeomorphisms
of R. Let ˛;ˇ 2 HomeoC.R/ be “small” perturbations of �.a/, �.b/, respect-
ively. Consider a subgroup H D h˛; ˇi of HomeoC.R/ with the induced left
order �.

Step 5. It remains to check that for an appropriate choice of ˛, ˇ, H is a free group,
and the new left order � on it is “close” but different from the initial left
order < on F2.

The critical part of the above proof is the construction in steps 1–3. More generally,
each countable left-ordered group order-preserving embeds into HomeoC.R/ in a similar
way. This embedding is called the dynamical realization of a left-ordered group.

In this paper, we study the space O.F2/ of orderings of a free group F2 on two gener-
ators.

The main result of this paper is the following theorem:

Theorem 1.8. The space O.F2/ of orderings of a free group on two generators has no
isolated points.

Remark 1.9. Although in this paper we prove Theorem 1.8 only for O.F2/, all arguments
can be appropriately adapted for all O.Fn/, n > 2.
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We will follow the strategy from the above proof of Theorem 1.7 in our proof. Simil-
arly to step 1 from the above proof, we need to embed F2 into a group with some density
property. Our construction requires a stronger condition than a simple density. We will
call this strong density. It is discussed in Section 3. Also, we prove that every countable
bi-ordered group embeds into a countable strongly dense group.

Following steps 2 and 3, in Section 4 we construct two dynamical realizations of bi-
ordered groups, one with action on Q�Q equipped with lexicographic order, and another
with action on R. Equivalently, we construct embeddings of a countable ordered group G
into the group HomeoC.Q �Q/ of the order-preserving homeomorphisms of Q �Q and
HomeoC.R/. An important difference between bi-ordered and left-ordered cases is that
HomeoC.Q �Q/ and HomeoC.R/ are left-ordered but not bi-ordered groups. Therefore,
not every faithful action on Q �Q or R generates an order.

Finally, in Section 5 we show how to perturb a given order on F2. We begin with
a dynamical realization of F2 (as an action on Q � Q). Then, we define a family of
admissible changes of this action. Every member of this family will generate an order
on F2. To finish the proof of Theorem 1.8, we will choose a new order that sufficiently
approximate the original order on F2.

2. Further notation

Let .G;</ be an ordered group, and g; h 2 G: We will use the following notations:

(1) We denote the conjugation by gh WD hgh�1.
(2) A subset A � G is said to be convex if for any f; h 2 X , f < h, every element

g 2 G satisfying f < g < h belongs to A.
(3) We denote by �g D �g.G;</ the largest convex subgroup ofG that does not con-

tain g 2 G n ¹1º. We denote the set of all such subgroups by �� D ��.G;</. Simil-
arly, we denote by x�g the smallest convex subgroup of G containing g 2 G n ¹1º,
and by x�� the set of all such subgroups. The group G acts on �� by conjugation.
This action satisfies .�g/

h D �gh . The set �� is naturally ordered by inclusion. The
action of G by conjugation preserves this order.

(4) We will write g � h when �g ¨ �h, or, equivalently, g 2 �h.
(5) We say that the elements of G are equivalent if they define the same convex sub-

group. Namely, g � h if �g D �h:

3. Strongly dense groups

Definition 3.1. An ordered group .G; </ is called strongly dense (with respect to the
order <) if the following conditions are satisfied:

(1) 8g1; g2 2 G; g1 � g2; 9g3 2 G such that g1 � g3 � g2I

(2) 8g1 2 G 9g2; g3 2 G such that g2 � g1 � g3:
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In other words, the group G is strongly dense if the corresponding set of convex sub-
groups �� , ordered by inclusion, is dense and does not contain the smallest and largest
elements. Replacement of the relation� with the relation < in Definition 3.1 above leads
to the definition of a dense group. In the definition of a dense group, the second condition
is omitted because the analogous condition is automatically satisfied.

Another approach to defining strongly dense groups is given below.

Definition 3.2. Let .H;</ be an ordered group.

(1) A pair .h0; h00/, h0; h00 2H , h0� h00; is called a gap if there is no h 2H such that
h0 � h� h00. Equivalently, .h0; h00/ is a gap if �h00 D

x�h0 .

(2) An element h 2 H is called a peak if there is no h1 2 H such that h � h1.
Equivalently, h is a peak if x�h D H .

(3) An element h 2H is called a bottom if there is no h1 2H n ¹1º such that h� h1.
Equivalently, h is a bottom if �h D ¹1º.

It is easy to see that an ordered group is strongly dense if and only if it contains no
gaps, peaks, and bottoms.

The following theorem is the key result of this section.

Theorem 3.3. Any countable ordered group F embeds in some countable strongly dense
ordered group G.

Our plan for proving this theorem is to eliminate peaks, gaps, and bottoms consecut-
ively. By eliminating a peak, gap, or bottom of a countable group H , we understand the
embedding H in a countable ordered group H1 without this peak, gap, or bottom. For
example, if we want to eliminate a gap .h0; h00/ in H , then we construct H1 so there is
h1 2 H1 such that h0 � h1 � h00.

The next lemma states that we can always eliminate gaps, peaks, and bottoms.

Lemma 3.4. For any countable ordered group H and any peak, gap, or bottom in H ,
there is its countable extension H1 without this peak, gap, or bottom.

Firstly, we prove that Lemma 3.4 implies Theorem 3.3.

Proof of Theorem 3.3. Assume that we can eliminate gaps, peaks, and bottoms in any
countable ordered group. Since F is a countable group, it contains at most countably
many gaps, peaks, and bottoms. So we can enumerate all of them. Consider the chain
F D G0 D G

.0/
0 < G

.1/
0 < G

.2/
0 < � � � of groups, constructed in the following way: if the

groupG.i/
0 contains the gap, peak, or bottom with number i then we eliminate it, otherwise

we set G.iC1/
0 D G

.i/
0 . The group G.i/

0 is countable ordered and does not contain the i th
gap, peak, or bottom of the group F D G0.

Let G1 D
S

i G
.i/
0 . The group G1 is a countable ordered group without any gap, peak,

and bottom of F D G0, but possibly with new gaps, peaks, and bottoms. Similarly, con-
struct a new chainG1DG

.0/
1 <G

.1/
1 < � � �. Get a countable orderedG2 D

S
i G

.i/
1 without
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any gaps, peaks, and bottoms ofG1. Then construct the chainF DG0<G1< � � � of count-
able ordered groups, where GiC1 does not contain any gap, peak, and bottom of Gi . Let
G D

S
i Gi . Then G is a countable ordered group.

Assume that G is not strongly dense. Then it contains some gap, peak, or bottom. Let
it be the gap .g1; g2/, where g1 2 Gi , g2 2 Gj . Then .g1; g2/ is a gap in Gmax¹i;j º, so it
has been eliminated during construction ofGmax¹i;j ºC1. This meansG >Gmax¹i;j ºC1 does
not contain the gap .g1; g2/. Contradiction. Similarly, the cases where G contains a peak
or a bottom are also impossible.

So G is a countable strongly dense group.

It remains to prove Lemma 3.4.

Proof of Lemma 3.4. How to eliminate a peak h 2H? The group Z �H , where ZD hzi
is an infinite cyclic group ordered lexicographically, does not have the peak h 2 H , since
z � h;8h 2 H .

How to eliminate a bottom h 2 H? The group H � Z ordered lexicographically does
not have the bottom h 2 H , since z � h;8h 2 H n ¹1º.

How to eliminate a gap .h0; h00/? To remove the gap .h0; h00/, we want to construct
a new ordered group H1 > H , with order < on H1 as an extension of the order < on H ,
and there is an element z 2 H such that h0 � z � h00 in H1. We will search for H1 as
a restricted wreath product Zwr� H , where Z D hzi is the infinite cyclic group. In fact,
we add a new generator z to H and put it between h0 and h00 to remove the gap.

Remark 3.5. The orderability of a restricted wreath product has been proved in [7]. How-
ever, the order used in [7] does not eliminate gaps.

We think of H1 as a free product H � Z quotient by some relations. When may an
element h 2 H commute with z? Elements z and h commute if and only if zh D z. Since
the group H1 supposed to be ordered, h0 � z � h00 implies .h0/h � zh D z � .h00/h.
This is possible only if conjugation by h preserves the classes Ch0 and Ch00 .

Let M be a set of all those h, i.e., M WD ¹h 2 H j .h0/h � h0º. Note that M is a sub-
group of G. Conjugation by any h 2 H preserves the order < and the class Ch0 . Since
.h0; h00/ is a gap, Ch00 is the smallest class larger than Ch0 . Therefore, conjugation by h
also preserves the class Ch00 . This gives

M D ¹h 2 H j .h00/h � h00º:

Each element h 2H �Z could be written in the form hD h0.z
"1/h1 : : : .z"n/hn , where

n � 0, h0; h1; : : : ; hn 2 H , "i 2 ¹˙1º, i D 1; : : : ; n.

Remark 3.6. Now we are ready to defineH1 as a restricted wreath product. Let� be the
set of left cosets of M in H . The action of H on � is left multiplication. Then H1 WD

Zwr�H .
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Recall that by definition H1 D K ÌH , where K WD
L

!2� Z! is the direct sum of
copies of Z! WD Z indexed by the set �. Note that each ! 2 � has a form ! D hM

for some h 2 H . We will use notation .zk/hM , k 2 Z, for elements of Z! . Then zh1M

and zh2M commute for all h1; h2 2 H . In addition, zM and m commute for all m 2M .
Taking into account the above notation, we can rewrite H1 as

H1 D
®
h0.z

k1/h1M : : : .zkn/hnM
j n � 0; h0; : : : ; hn 2 H; ki 2 Z; i D 1; : : : ; n

¯
:

The multiplication � in H1 comes from it being a restricted wreath product:

.h
.1/
0 .zk

.1/
1 /h

.1/
1 M : : : .zk

.1/
n1 /h

.1/
n1

M / � .h
.2/
0 .zk

.2/
1 /h

.2/
1 M : : : .zk

.2/
n2 /h

.2/
n2

M /

D h
.1/
0 h

.2/
0 .zk

.1/
1 /h

.2/
0 h

.1/
1 M : : : .zk

.1/
n1 /h

.2/
0 h

.1/
n1

M .zk
.2/
1 /h

.2/
1 M : : : .zk

.2/
n2 /h

.2/
n2

M :

Then the inverse is defined as follows:

.h0.z
k1/h1M : : : .zkn/hnM /�1

D h�1
0 .z�k1/h

�1
0 h1M : : : .z�kn/h

�1
0 hnM :

Let us define the order on H1. Firstly, we extend the relation� from H to H1 by the
following rules:

(1) zh1M � zh2M if .h0/h1 � .h0/h2 (or, equivalently, .h00/h1 � .h00/h2 ) and
h�1

2 h1 62M ;

(2) h� zh1M if h� .h00/h1 , and h� zh1M if h� .h0/h1 .

Remark 3.7. From the definition ofM , one can see that for every h1; h2 2H exactly one
of zh1M � zh2M , zh2M � zh1M or h1M D h2M holds. Therefore, all zh1M , h1 2 H ,
are comparable with each other with respect to the relation�. Also every zh1M , h1 2H ,
is comparable with every h 2 H .

Keeping Remark 3.7 in mind, we can define the positive cone P1 of H1 now as fol-
lows: For h D h0.z

k1/h1M : : : .zkn/hnM 2 H , let zhi M be the largest (with respect to the
relation �) of zhj M , j D 1; : : : ; n. Now we say that h 2 P1 if either h0 � zhi M and
h0 2 P (where P is the positive cone of H ), or h0 � zhi M and ki > 0.

Checking the properties of Proposition 1.2 for P1 is straightforward.
Finally, note that h0 � zM � h00, so the group H1 does not contain the gap .h0; h00/.

This completes the proof of Lemma 3.4.

Let F be an ordered group and G be its ordered extension. We say that a positive
element g 2 G is small with respect to F if g < f for any positive f 2 F .

Lemma 3.8. Let F be an ordered group with no bottoms, and let G > F be its strongly
dense extension constructed as in Theorem 3.3. Then the group G does not contain ele-
ments that are small with respect to F .

Proof. Assume that there is an element g 2 G that is small with respect to F in G. Recall
thatG D

S
i Gi , with F DG0 <G1 <G2 < � � �. LetGi be the first group in the chain that
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contains g. LetGi D
S

j G
.j /
i�1 withGi�1 D G

.0/
i�1 < G

.1/
i�1 < G

.2/
i�1 < � � �, and letG.j /

i�1 be
the first group in the chain that contains g. The group G.j /

i�1 is constructed from the group
G

.j�1/
i�1 by eliminating one of its gaps, peaks or bottoms as in Lemma 3.4.

Since every bottom of G.j�1/
i�1 is small with respect to F , the group G.j�1/

i�1 has no
bottoms. Peak elimination clearly does not add small elements.

Let G.j /
i�1 eliminate the gap .g1; g2/ of G.j�1/

i�1 . Then, as was shown in Lemma 3.4,
g 2 G

.j /
i�1 can be written as

g D h0.z
k1/h1M : : : .zkn/hnM ;

where h0; h1; : : : ; hn 2 G
.j�1/
i�1 .

Let h0 be the largest in h0; .z
k1/h1M ; : : : ; .zkn/hnM . This means h0 � .h2/

hi , i D
1; : : : ; n, and h0 > 1 as g > 1. Then

g2
D .h0.z

k1/h1M : : : .zkn/hnM /2

D h2
0..z

k1/h0h1M : : : .zkn/h0hnM /..zk1/h1M : : : .zkn/hnM /

D h0.h0.z
k1/h0h1M : : : .zkn/h0hnM .zk1/h1M : : : .zkn/hnM /:

Note that h0 � .h2/
h0hi since h0 � .h2/

hi , so

h0.z
k1/h0h1M : : : .zkn/h0hnM .zk1/h1M : : : .zkn/hnM > 1

and g2 > h0.
Similarly, if .zki /hi M is the largest in h0; .z

k1/h1M ; : : : ; .zkn/hnM , then

g2 > .z/hi M > g
hi
1 :

In both cases, g is grater than some positive element g0 2G.j�1/
i�1 . SinceG.j�1/

i�1 has no
small with respect to F elements, g0 > f 0 > 1 for some f 0 2 F . Since F has no bottoms,
f 0 � f > 1 for some f 2 F . So

g2 > g0 > f 0 > f 2

and g > f . Thus g is not small with respect to F .

Corollary 3.9. Let F2 be an ordered free group, and let G > F2 be its strongly dense
extension as in Theorem 3.3. Then G has no small with respect to F2 elements.

Proof. This is true sinceF2 with any order has no bottoms. Indeed, let f 2F2 be a bottom.
Let g 2 F2 be any element that does not commute with f . We may assume f > f g > 1.
Otherwise, we replace g with g�1. Then fg 2 x�f . It follows from [3, Theorem 2.3.1]
that the group �f is normal in x�f and the quotient x�f=�f

is abelian. Since f is a bot-
tom, �f D ¹1º and x�f=�f

Š x�f . But x�f is not abelian since it contains non-commutative
elements f and f g . So F2 has no bottoms.
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4. Dynamical realization of bi-ordered groups

The dynamical realization of a left-ordered group G rises from the action of G on itself
by left multiplication. If G is a bi-ordered group, then it acts order-preserving on �� . This
action corresponds to the action on Q as in the standard dynamical realization construction
for left-ordered groups. However, this action is insufficient to construct a sort of dynamical
realization. For instance, if G is abelian, then the conjugation action is always trivial, so it
provides no information about the order of G. Hence we need a more complicated action.
In this section, we will construct an action ofG on Q�Q to prove the following theorem.

Theorem 4.1. A countable group G is bi-ordered if and only if it acts on Q �Q in the
following way:

(I) the image of each layer q �Q, q 2 Q is also a layer, and the induced action
of G on the set ¹q �Qº of layers preserves the natural order;

(II) for any layer q �Q, the action by any element g 2 G on the second component
of q �Q is either trivial, increasing, or decreasing;

(III) for each g 2 G n ¹1º there is a layer qg �Q such that the fixed points under
the action by g are exactly the pairs .q; p/ 2 Q �Q with q > qg .

Proof. We prove the “if” part by showing that any group of all such actions on Q �Q is
ordered. Let F be the set of all such actions on Q �Q, and let H � F be a group. We
say g 2 H is positive (negative) if it increases (decreases) the second component in the
layer qg �Q. Clearly, every nontrivial action is either positive or negative. Consider two
positive elements g; h 2 H . Then qgh D max¹qg ; qhº and the action of gh increases the
second component in the layer qgh �Q. So, gh is a positive element. Consider a positive
g 2 H and any h 2 H . Then qgh �Q D h.qg �Q/, and the action of gh on qgh �Q is
the conjugated action of g on qg �Q. So, it increases the second component. Then, gh is
positive. Thus, H is an ordered group.

It remains to prove the “only if” part of the theorem. Using Theorem 3.3, we may
assume that the groupG is strongly dense. Then, by Cantor’s back and forth argument [2],
the set of convex subgroups �� D ��.G/ is order-preserving isomorphic Q. We associate ��
with the first components in Q �Q. We plan to construct an ordered dense group S and
associate it with the second components in Q�Q. Thus, constructing the action on Q�Q
is equivalent to constructing the action on �� � S . We are looking for the action ˛ of G
on �� � S of the following form. Let ˛0 be an order-preserving action of G on �� , and
let ¹˛�º�2�� be a collection of order-preserving actions of G on S . Then the action ˛ is
given by

˛.g; .�; s// D .˛0.g; �/; ˛�.g; s//; g 2 G; � 2 ��; s 2 S: (4.1)

We require the actions ˛0, ˛� to satisfy the following conditions:

(1) for every g 2 G n ¹1º, there exists a convex subgroup �.g/ 2 �� such that
˛0.g; �/ D � for all � � �.g/;
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(2) each action ˛�.g; �/ is either trivial, increasing, or decreasing;

(3) the action ˛�.g; �/ is trivial if and only if � > �.g/ or g D 1;

(4) the action ˛�.g/.g; �/ is increasing for g > 1 and decreasing for g < 1;

(5) ˛h��.g; ˛�.h; s// D ˛�.gh; s/, for all g; h 2 G, s 2 S , � 2 �� .

Condition (5) implies that ˛ defined by (4.1) is a group action. Indeed,

g � .h � .�; s// D g � .h � �; ˛�.h; s// D .g � .h � �/; ˛h��.g; ˛�.h; s///

D ..gh/ � �; ˛�.gh; s// D .gh/ � .�; s/:

Conditions (1)–(3) mean that the action ˛ satisfies conditions (I)–(III) of the theorem.
We have

(I) the action ˛ order-preservingly permutes layers � � S according to the ac-
tion ˛0;

(II) for a fixed layer � � S the action ˛�.g; �/ is either trivial, increasing, or de-
creasing by condition (2);

(III) for each g 2 G n ¹1º, there is a layer �.g/ � S such that the fixed points under
the action ˛.g; �/ are exactly the pairs .�; s/ 2 �� � S with � > �.g/;

Condition (4) gives a characterization of the order

(IV) g > 1 (respectively, g < 1) if the action ˛�.g/.g; �/ is increasing (respectively,
decreasing).

Next, we are going to build the group S and such actions. For ˛0 we take the conjuga-
tion action ˛0.g;�/D .�/

g . We will take each action ˛�.g; �/ to be a left multiplication by
some sg;� 2 S . Then, with �.g/ D �g , conditions (1) and (2) are automatically satisfied.
Conditions (3)–(5) are transformed into

(30) sg;� D 1 if and only if g 2 �;

(40) sg;�g > 1 for all g > 1, and sg;�g < 1 for all g < 1;

(50) sg;.�/h � sh;� D sgh;� for all g; h 2 G, � 2 �� .

The action ˛0 splits �� into orbits. Orbits are equivalence classes and they partition
�� D O1 [ O2 [ � � �. For each orbit Oi , we choose a representative �i 2 Oi . Let also
Gi D NG.�i / be the normalizer of �i in G. Clearly, Gi < G, and the order on G induces
the order onGi . Then �i is a normal convex subgroup ofGi . Therefore, the quotient group
Hi D

Gi =�i
is ordered with the order given by h�i 2 Hi is positive if h is positive in Gi

and h … �i .
For each � 2 Oi , we choose h� 2G such that .�/h� D �i . For a pair .g;�/ 2G �Oi

consider the element hg;� D h.�/ggh�1
� . We have

.�i /
h�1

� D �; .�i /
gh�1

� D .�/g ; and .�i /
hg;� D ..�/g/h.�/g D �i :

So hg;� 2 Gi .
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Let S D .�iHi / �F1, where F1 D hf� j � 2 ��i is an infinitely generated free group.
The group S is ordered as a free product of ordered groups; the order on S extends the
orders on each Hi and is necessarily dense since the center of S is trivial. Indeed, if the
order on S is not dense, then there is the smallest positive element g 2 S . But then for any
h 2 S , not commuting with g, either 1 < gh < g or 1 < gh�1

< g holds.

Remark 4.2. The action ˛WG � .�� � S/! �� � S obviously extends to the action ˛0WG �
.�� � S 0/! �� � S 0 for any S 0 > S . The action ˛0 is given by

˛0.g; .�; s// D .˛0.g; �/; ˛
0
�.g; s//; g 2 G; � 2 ��; s 2 S:

Thus, in this construction, we can replace S with any countable ordered dense group
S 0 > S .

We set
sg;� WD f.�/g .hg;��i /f

�1
� ; .g; �/ 2 G �Oi :

It remains to verify that the elements sg;� satisfy conditions (30)–(50).
Condition .30/: sg;� D 1 if and only if g 2 � . If .�/g ¤ � , then sg;� ¤ 1 since

f.�/g ¤ f� . In this case, g … � . Assume that .�/g D � . Then sg;� D 1 is equivalent
to hg;� D g

h� 2 �i or g 2 .�i /
h�1

� D � . So sg;� D 1 if and only if g 2 � .
Condition .40/: sg;�g > 1 for g > 1. Since .�g/

g D �g , sg;�g D .hg;�g�i /
f�g > 1

when hg;�g�i > 1 in Hi . Note that g … �g . So by (30) sg;�g ¤ 1 and hg;�g�i ¤ 1. Then
hg;�g�i > 1 in Hi if hg;�g > 1 in G. But hg;�g D g

h�g > 1 as g > 1.
Condition .50/: sg1;.�/g2 � sg2;� D sg1g2;� . We have

sg1;.�/g2 � sg2;� D .f..�/g2 /g1 .hg1;.�/g2�i /f
�1

.�/g2 / � .f.�/g2 .hg2;��i /f
�1

� /

D f..�/g2 /g1 .hg1;.�/g2�i /.hg2;��i /f
�1

�

D f.�/g1g2 .hg1;.�/g2 � hg2;��i /f
�1

�

D f.�/g1g2 .h..�/g2 /g1g1h
�1
.�/g2 � h.�/g2g2h

�1
� �i /f

�1
�

D f.�/g1g2 .h.�/g1g2 .g1g2/h
�1
� �i /f

�1
�

D sg1g2;� :

This completes the proof of Theorem 4.1.

Although the dynamical realization constructed in Theorem 4.1 is sufficient for the
purposes of this paper, it may be inconvenient for others. For example, the actions on
Q �Q are not continuous (if Q �Q is granted with the standard topology). Therefore,
we construct an alternative dynamical realization, with an action on R, similarly to the
standard dynamical realization of left-ordered groups. We will show that every countable
ordered group embeds into HomeoC.R/ granted with an order defined below.

Let a set P � HomeoC.R/ be given by

P WD ¹f 2 HomeoC.R/ j sup¹xWf .x/ > xº > sup¹xWf .x/ < xºº: (4.2)
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Here we consider the supremum of the empty set to be�1. It is easy to see thatP satisfies
the following properties:

(1) P � P � P ;

(2) fPf �1 � P for every f 2 HomeoC.R/;

(3) P \ P�1 D ;.

So, P defines a partial order on HomeoC.R/ given by f < g when f �1g 2 P .

Theorem 4.3. Every countable ordered groupG embeds into HomeoC.R/ taken with the
partial order defined by the positive cone P given by (4.2).

Proof. By Theorem 4.1, there is a special action ˛ of G on Q �Q. Consider Q �Q with
lexicographic order. Then it is an unbounded dense countable set, therefore, by Cantor’s
back and forth argument [2], it is order equivalent to Q. Let t WQ �Q! Q be an order-
preserving bijection. For each g 2 G, we define the map �.g/WR! R firstly on Q by the
rule

�.g/.t.q; r// D t .˛.g; .q; r///;

then we extend it continuously to the action on R. Then g 7! �.g/ is the embedding of G
into HomeoC.R/.

Remark 4.4. The order on G may be considered to be a left order. Then the standard
dynamical left-ordered realization �l WG!HomeoC.R/ of the bi-ordered groupG proves
Theorem 4.3. In fact, for every g > 1 in G, the graph of �l .g/ is above the line y D x.
Therefore, we have

sup¹xW �l .g/.x/ > xº D C1 and sup¹xW �l .g/.x/ < xº D �1:

However, the properties of � and �l are quite different.

Consider a layer q �Q. It corresponds to rational points on the interval

Iq WD .inf¹t .q; r/W r 2 Qº; sup¹t .q; r/W r 2 Qº/:

Let 	 WD ¹Iq W q 2 Qº be the set of all such intervals. Then it is easy to see that

(a) for any g 2 G and I 2 	 we have �.g/.I / 2 	;

(b) for any g 2 G and I 2 	 inequalities �.g/.x/ � x or �.g/.x/ � x hold for all
x 2 I simultaneously;

(c) for any g ¤ 1 there is an interval Ig D Iqg D .p; q/ 2 	 such that �.g/.x/ D x
for x > q;

(d) for any g ¤ 1 and any I � Ig there is x 2 I such that �.g/.x/ ¤ x;

(e) for any g > 1 and any x 2 Ig , g.x/ � x.
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5. Changing the order

In this section, we prove our main result, Theorem 1.8. That is, any given order < on
F2Dha;bi is not isolated in O.F2/. For any collection of positive elements g1; : : : ;gn>1,
we need to construct a new order � ¤ < such that g1; : : : ; gn � 1.

Let F2 embed into a strongly dense countable group G, and the order < on G extend
the order < on F2. Everywhere in this section, we let �g D �g.G;</ and �� D ��.G;</
be considered with respect to the group G and order < on it. We consider the dynamical
realization of G.

Recall that the dynamical realization was constructed in Section 4 using the action ˛
of G > F2 on �� � S . By Remark 4.2, we may replace the group S with any countable
ordered dense extension S 0 > S in this construction. We consider S 0 D S � F .a/

1 � F
.b/
1 ,

where F .a/
1 D hfa;� j � 2 ��i, F

.b/
1 D hfb;� j � 2 ��i are infinitely generated free groups.

The group S 0 is ordered since it is a free product of ordered groups, and we choose an
order on S 0 to extend the order on S . Moreover, this order is dense since the center of S 0

is trivial. We will construct a family of alternative actions of F2 on �� � S 0, where S 0 is
a countable ordered extension of S .

The action ˛0 was constructed through the (conjugation) action ˛0 of G on �� and
a collection of (left multiplications by sg;� ) actions ¹˛0�º�2�� on S 0. Namely,

g � .�; s/ D ..�/g ; sg;�s/; g 2 F2; � 2 ��; s 2 S
0:

For simplicity, we will write ˛ instead of ˛0.
Similarly to the construction in Theorem 4.1, we build alternative actions F2 on ���S 0.

Similarly to ˛, the new action ˇ is defined by an action ˇ0 of G on �� , and a collection of
actions ¹ˇ�º�2�� on S 0. Each action ˇ�.g; �/ is the left multiplication by s0g;� 2 S

0.
To construct the action ˇ of the group F2 D ha; bi, we need to define the actions of its

generators a, b. We begin with defining the action ˇ0 on the set of convex subgroups �� .
Fix some convex subgroup �0 2 �� . We define

ˇ0.c; �/ D c � � D .�/
c ; � � �0 [ .�0/

c�1

; c 2 ¹a; a�1; b; b�1
º:

In other words, c � � D .�/c for �0 � .�/
c \ � . We extend the action ˇ0 so that

ˇ0.a; �/ and ˇ0.b; �/ are order-preserving bijections �� ! �� . We can always extend these
actions using Cantor’s back and forth argument. Moreover, for any � < �0 [ .�0/

c�1

we can choose c � � to be any convex subgroup < .�0 [ .�0/
c�1
/c D �0 [ .�0/

c , c 2
¹a; a�1; b; b�1º.

Everywhere below, g � � means ˇ0.g; �/ and g � .�; s/ means ˇ.g; .�; s//.
Let us now define the actions ˇ� . Recall that the action ˇ� is a multiplication by

s0g;� 2 S
0. For c 2 ¹a; bº, we define

s0c;� D

´
sc;� ; � > �0 [ .�0/

c�1
;

fc;� ; � � �0 [ .�0/
c�1
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and

s0
c�1;�

D .s0
c;c�1��

/�1
D

´
s�1

c;c�1��
; � > �0 [ .�0/

c ;

f �1
c;c�1��

; � � �0 [ .�0/
c :

We also denote fc�1;� WD f
�1

c;c�1��
. Then for c 2 ¹a; a�1; b; b�1º

s0c;� D

´
sc;� ; � > �0 [ .�0/

c�1
;

fc;� ; � � �0 [ .�0/
c�1
:

(5.1)

In other words, the new actions ˇ�.c; �/ are equal to the old actions ˛�.c; �/ for sufficiently
large �’s, and are multiplications by fc;� 2 F

.a/
1 � F

.b/
1 < S 0 for sufficiently small �’s.

For g D cn : : : c1, ci 2 ¹a; a
�1; b; b�1º, i D 1; : : : ; n, we have

g � .�; s/ D cn : : : c2 � c1 � .�; s/ D cn : : : c2 � .c1 � �; s
0
c1
s/ D � � �

D .cn : : : c1 � �; s
0
cn
: : : s0c1

s/:

We denote
s0g;� D s

0
cn;�n

: : : s0c1;�1
: (5.2)

Then we have

g � .�; s/ D .g � �; s0g;�s/; g 2 F2; � 2 ��; s 2 S: (5.3)

Remark 5.1. The constructed action ˇ depends on the choice of the order on S 0, the
convex subgroup �0, and the actions of a and b on the small convex subgroups.

Since �� and S 0 are countable dense sets, we can see ˇ as an action on Q �Q instead
of �� � S 0.

Theorem 5.2. For any choice of the order on S 0, �0, and any actions of a, b on �� ,
the constructed as above action ˇ satisfies conditions (I)–(III) from Theorem 4.1, and,
therefore, ˇ defines some order � on F2.

Proof. Recall that by (5.3), for any � 2 �� , we have g � .�; s/ D .g � �; s0g;�s/. Similarly
to the proof of Theorem 4.1, we will show that for any g 2 F2 n ¹1º there is a convex
subgroup � 0g such that s0g;� ¤ 1 if and only if � � � 0g , and g � � D � for � > � 0g . Then
the action ˇ defines the order � on F2, given by g � 1 when s0

g;� 0g
> 1 in S 0.

Recall that the initial order < is given by g > 1 when sg;�g > 1 in S 0. Consider
g D cn : : : c1 ¤ 1, ci 2 ¹a; a

�1; b; b�1º. Recall that then by (5.2)

s0g;� D s
0
cn;�n

: : : s0c1;�1
:

In this product, each s0ci ;�i
is either sci ;�i

or fci ;�i
. Let

gi D ci�1 : : : c1



On the topology of the space of bi-orderings of a free group on two generators 15

be the word containing the last i � 1 letters of the word g. In particular, g1 D 1 is the
trivial word. Note that �i D gi � � . Recall that by (5.1)

s0ci ;�i
D sci ;�i

, �i > �0 [ .�0/
c�1

i , � > g�1
i � .�0 [ .�0/

c�1
i /:

Let
�.i/

g D g
�1
i � .�0 [ .�0/

c�1
i /:

Then � D �.i/
g is the largest convex subgroup such that the i th from the right letter s0ci ;�i

in the word s0g;� is an f -letter (i.e., equal to fci ;�i
). Also, for a set of indices

I D ¹i1; i2; : : : ; ik j 1 � i1 < i2 < � � � < ik � nº

we denote
gI WD cik : : : ci1

and
�.I /

g WD g�1
i1
� �gI

:

We claim that for g 2 F2 either g D 1 or the convex subgroup � 0g is one of the �.i/
g ’s

or �.I /
g ’s. Namely, the largest of them such that s0g;� ¤ 1. We prove this statement by

induction on the length of g. The base case g D 1 holds trivially.
Let g ¤ 1 be a reduced word and assume that for any shorter word h ¤ 1 there exists

a convex subgroup � 0
h
2 ¹�

.i/

h
; �

.I /

h
º such that s0

h;�
¤ 1 if and only if � � � 0

h
, and

h � � D � for � > � 0h:

Let � 0g;1 < � 0g;2 < � � � < � 0g;N be the convex subgroups �.i/
g ’s and �.I /

g ’s ordered by
inclusion.

Consider the case � � � 0g;1. Then � � �.i/
g , 1 � i � n, and therefore

s0g;� D s
0
cn;�n

: : : s0c1;�1
D fcn;�n : : : fc1;�1

is an f -word, i.e., every letter of it is an f -letter (an element of F .a/
1 � F

.a/
1 ). So s0g;� ¤ 1

as a nontrivial reduced word in the free group F .a/
1 � F

.b/
1 . In particular, s0g;�g;1

¤ 1.

Consider the case � > � 0g;N . Then � > �.i/
g , 1 � i � n, and therefore

s0g;� D s
0
cn;�n

: : : s0c1;�1
D scn;�n : : : sc1;�1 D sg;� :

Also � > �.I /
g with I D ¹1; 2; : : : ; nº. So s0g;� D sg;� D 1.

It remains to consider � 2 .� 0g;1; �
0
g;N �. If s0g;� ¤ 1 for all � 2 .� 0g;1; �

0
g;N � then

theorem is proven with � 0g D �
0
g;N . Let � 2 .� 0

g;k
; � 0

g;kC1
� and s0g;� D 1. We choose the

smallest k for which such � exists. So s0g;� ¤ 1 for all � 2 .� 0g;1; �
0
g;k
�. We will show

� 0g D �
0
g;k

.
In the word s0g;� , we combine consecutive s-letters and f -letters. Write

s0g;� D s1f1s2f2 : : : slflslC1;
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where si 2 S and fj 2 F
.a/
1 � F

.b/
1 . All of si ’s and fj ’s are nonempty words except

possibly s1 and slC1. Note that all fj ’s are nontrivial as elements of the free group
F

.a/
1 � F

.b/
1 . So s0g;� D 1 is possible only if some si D 1. Let

si D s
0
cr ;�r

: : : s0ct ;�t
D scr ;�r : : : sct ;�t D 1:

Here si is an s-subword so all its letter are s-letters. This means � > �.j /
g , j D r; : : : ; t .

Also scr ;�r : : : sct ;�t D 1 if and only if � > �.I /
g with I D ¹r; : : : ; tº. Since

� 2 .� 0g;k ; �
0
g;kC1�;

we have � 0
g;k
� min¹�.I /

g ; �
.r/
g ; : : : ; �

.t/
g º.

We write
g D uvw;

where
u D cn : : : crC1; v D cr : : : ct ; and w D ct�1 : : : c1:

Then we have
si D s

0
v;�t
D s0v;w �� D sv;w �� D 1: (5.4)

Consider a convex subgroup z� > � 0
g;k

and let zsi D s0
cr ;z�r

: : : s0
ct ;z�t

be the subword
of s0

g;z�
whose letters are located at the same positions in s0

g;z�
as the letters of si in s0g;� .

Here
z�1 D z�; z�iC1 D ci � z�i :

Then, since z� > min¹�.r/
g ; : : : ; �

.t/
g º, zsi is an s-word, and, since z� > �.I /

g , zsi D 1. Sim-
ilarly to (5.4), we have

zsi D s
0

v;z�t
D s0

v;w �z�
D sv;w �z� D 1:

Note that we also have
v � .w � z�/ D .w � z�/v D w � z�:

Therefore,
v � .w � z�; s/ D .w � z�; zsis/ D .w � z�; s/ (5.5)

whenever z� > � 0
g;k

.
Let h be obtained from g by removing the subword v. We have

h D .cn : : : crC1/.ct�1 : : : c1/ D uw:

Note that the word h is shorter than g. We claim that for z� > � 0
g;k

we have

h � .z�; s/ D g � .z�; s/:

Consider h�1g D .uw/�1uvw D w�1vw. We have

h�1g � .z�; s/ D w�1vw � .z�; s/ D w�1v � .w � z�; sw;z�s/:
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Using (5.5), we get

h�1g � .z�; s/ D w�1
� .w � z�; sw;z�s/ D .

z�; s/:

Thus,
g � .z�; s/ D h � .h�1g � .z�; s// D h � .z�; s/:

If h D 1, we immediately have s0
g;z�
D s0

1;z�
D 1 and g � z� D 1 � z� D z� for all z� > � 0

g;k
.

Recall that s0g;� ¤ 1 for � � � 0
g;k

. Therefore, � 0g D �
0
g;k

.
Let h ¤ 1. Then, after applying the inductive assumption, we obtain

s0
g;z�
D s0

h;z�
D 1 and g � z� D h � z� D z�

for all z� > � 0
g;k
[ � 0

h
. Here � 0

h
D � 0

h;m
for some m. Note that every � 0

h;i
is one of

the � 0g;j ’s. And s0
h;�
D 1 implies � 0

h
< � 0

g;kC1
. So � 0

h
� � 0

g;k
. Then � 0

g;k
[ � 0

h
D � 0

g;k
.

Again, s0
g;z�
D 1 and g � z� D z� for all z� > � 0

g;k
, so � 0g D �

0
g;k

.

Now we can prove the main result of this paper.

Proof of Theorem 1.8. We need to show that a given order < on F2 is not isolated. That
is for any sequence of positive elements g1; : : : ; gk there is another order �¤< satisfying
g1; : : : ; gk � 1. We consider the order � to be associated with the action ˇ as in The-
orem 5.2. We need to choose a convex subgroup �0 2 �� , an order on S 0, and an action ˇ0

of F2 on �� . By choosing sufficiently small �0, we guarantee g1; : : : ; gk � 1, and by
choosing appropriate order on S 0 and action ˇ, we make the new order � different from
the old order <.

For gi D c
.i/
ni
: : : c

.i/
1 , i D 1; : : : ; k, by (5.2) we have

s0gi ;�gi
D s0

c
.i/
ni

;�
.i/
ni

: : : s0
c

.i/
1 ;�

.i/
1

;

�
.i/
1 D �gi

, �.i/
jC1 D c

.i/
j � �

.i/
j , j D 1; : : : ; ni � 1. Then, if �0 <

Tni

jD1 �
.i/
j , we have

�
.i/
jC1 D c

.i/
j � �

.i/
j D .�

.i/
j /cj .i/ and s0

c
.i/
j

D s
c

.i/
j

:

Therefore,

s0gi ;�gi
D s0

c
.i/
ni

;�
.i/
ni

: : : s0
c

.i/
1 ;�

.i/
1

D s
c

.i/
ni

;�
.i/
ni

: : : s
c

.i/
1 ;�

.i/
1

D sgi ;�gi
> 1:

Similarly, for � > �gi
, we have s0gi ;� D sgi ;� D 1. In this case, � 0gi

D �gi
and gi � 1.

By choosing

�0 <

k\
iD1

ni\
jD1

�
.i/
j ;

we get g1; : : : ; gk � 1 for any order on S 0 and any action ˇ0.
By Corollary 3.9, there is a nontrivial element h 2 F2 \

Tk
iD1

Tni

jD1 �
.i/
j . Without

loss of generality, we can assume h > 1. Let h D cm : : : c1. Consider two cases:
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Case 1. �h D .�h/
a D .�h/

b . In this case, �h is a normal convex subgroup of F2.
We obtain the new order � by reversing the signs of elements of �h. In other words,
the new order � is generated by the positive cone

P� D .P< n �h/ [ .P
�1
< \ �h/;

where P< is the positive cone of the order <. Clearly, this does not affect the signs of
g1; : : : ; gk . Also, the new order � is different from the old order < since �h is nontrivial
by Lemma 3.8.

Case 2. �h ¤ .�h/
a or �h ¤ .�h/

b . Consider a total left preorder �h given by x �h y

when .�h/
x � .�h/

y . Recall that a preorder is a reflexive and transitive relation for which
x � y and y � x may hold simultaneously. Note that the left preorder �h is completely
determined by the action ˛0 and the convex subgroup �h. Namely, x �h y if and only
if ˛0.x; �h/ D .�h/

x � .�h/
y D ˛0.y; �h/. The similarly defined left preorder �h for

an order � described in Theorem 5.2 depends only on the action ˇ0 and the convex sub-
group � 0

h
.

In order to change the order <, we change the induced left preorder �h. First, we
choose sufficiently small �0 so that �h D �

0
h
. By the above discussion, it is sufficient to

take �0 <
Tn

jD1 �
.j /

h
. Then, we change the left preorder �h by changing the action ˛0.

We will use the method similar to the argument for showing that free products do not
admit isolated left-orders [8]. For its adopted version for the free group F2, see [1, The-
orem 10.15].

We construct sequences d1; d2; : : : and x1; x2; : : : as following:
Let x1 D d1 2 ¹a; a

�1; b; b�1º be the minimal letter with respect to �h. We choose
di 2 ¹a; a

�1; b; b�1º to minimize xi WD dixi�1, i D 2; 3; : : : with respect to �h. Note
that xi is a minimal (but not necessarily the smallest) word of length i in�h. Equivalently,
xi minimizes ˛0.xi ; �h/. Note that because �h is not normal in F2, we have 1 >h xi >h

x2 >h � � �.
Let �0 D .�h/

xm . Then, �0 < .�h/
x , for any word x of length less thanm. In particu-

lar, �0 < �
.j /

h
, j D 1; : : : ;m. Thus, for an order � as in Theorem 5.2, we have � 0

h
D �h.

Also, since �0 < �h <
Tk

iD1

Tni

jD1 �
.i/
j , g1; : : : ; gk � 1 holds.

Let d D dmC1 and d 0 2 ¹a; a�1; b; b�1º n ¹d; d�1º be such that xmC1 D dxm �h

d 0xm �h xm. Then, since xmC1 <h xm, we have

xmC1 <h max¹c�1xm; xmº; c D d; d 0:

In terms of the conjugation action, for � D .�h/
xmC1 this means

� < �0 [ .�0/
c ; c D d; d 0:

Therefore, for the new action ˇ0, we may choose ˇ.d; �/ and ˇ.d 0; �/ to be any suffi-
ciently small (for instance, < �) convex subgroups.
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We build ˇ0 so that

ˇ0.d1; �h/ D ˛0.d1; �h/ D .�h/
x1 ;

ˇ0.d2; .�h/
x1/ D ˛0.d2; .�h/

x1/ D .�h/
x2 ;

ˇ0.d3; .�h/
x2/ D ˛0.d3; .�h/

x2/ D .�h/
x3 ;

:::

ˇ0.dm; .�h/
xm�1/ D ˛0.dm; .�h/

xm�1/ D .�h/
xm ;

and
ˇ0.d; .�h/

xm/ > ˇ0.d
0; .�h/

xm/:

In terms of the left preorder�h, the last means dxm �h d
0xm while in the left preorder�h

we have dxm �h d
0xm. Clearly, then the left preorders �h and �h are different, and,

therefore the orders < and � are different.

Remark 5.3. In terms of the order <, for a positive h the condition dxm �h d
0xm means

hdxm < .hd 0xm/n (5.6)

for sufficiently large n 2 N. In the order �, the inequality (5.6) is reversed.

So we can take the order � different from the order <, but still satisfying

g1; : : : ; gk � 1:

Therefore, the order < is not isolated in O.F2/.

Corollary 5.4. The space O.F2/ is homeomorphic to the Cantor set.

Acknowledgements. The authors are grateful to Dr. Adam Clay for telling them about
this conjecture, some known previously made attempts to solve it, reading drafts of this
paper, and pointing out that the construction in Section 3 is an unrestricted wreath product.
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