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The Polish topology of the isometry group
of the infinite-dimensional hyperbolic space

Bruno Duchesne

Abstract. We consider the isometry group of the infinite-dimensional separable hyperbolic space
with its Polish topology. This topology is given by pointwise convergence. For non-locally com-
pact Polish groups, some striking phenomena like automatic continuity or extreme amenability may
happen. Our leading idea is to compare this topological group with usual Lie groups on one side
and with non-Archimedean infinite-dimensional groups like �1, the group of all permutations of
a countable set on the other side. Our main results are

• automatic continuity (any homomorphism to a separable group is continuous);

• minimality of the Polish topology;

• identification of its universal Furstenberg boundary as the closed unit ball of a separable Hilbert
space with its weak topology;

• identification of its universal minimal flow as the completion of some suspension of the action
of the additive group of the reals R on its universal minimal flow.

All along the text, we lead a parallel study with the sibling group Isom.H /, where H is a separable
Hilbert space.

La plaisanterie, qui n’en était pas entièrement une, fut prise
au sérieux et tous les experts ont depuis adopté cette étrange
terminologie . . .

Roger Godement, Analyse Mathématique IV

1. Introduction

1.1. The Polish topology on the hyperbolic isometries

Alike Euclidean spaces, hyperbolic spaces have natural infinite-dimensional analogues.
Here we consider the separable one. Let H be some separable Hilbert space with some
Hilbert base .ei /i2N. Let Q be the quadratic form with signature .1;1/ defined by

Q.x/ D x20 �
X
i�1

x2i ;
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where .xi / are the coordinates of x in the above base. We denote by O.1;1/ the orthog-
onal group of Q. The infinite-dimensional (separable) hyperbolic space is then

H D ¹x 2 H I Q.x/ D 1; x0 > 0º:

The hyperbolic metric can be defined via the formula

cosh.d.x; y// D .x; y/ D hx; Jyi;

where .�; �/ is the symmetric bilinear form obtained by polarization fromQ, J is the linear
operator such that Je0 D e0 and Jei D �ei for i > 0 and h�; �i is the scalar product on H .

This space appears in several previous works. Among some examples, it appears in [4,
5, 9, 11, 29–31]. The group of isometries of H is

Isom.H/ D PO.1;1/ D O.1;1/=¹˙ Idº:

A proof of this identification can be obtained by mimicking the classical proof in finite
dimension [2, Theorem I.2.24]. It is also a particular case of identification of isome-
try groups of infinite-dimensional Riemannian symmetric spaces. See [14, Theorem 1.5]
and [15, Theorem 3.3].

This infinite-dimensional group has a natural group topology which makes the action
Isom.H/ � H! H continuous. This is the pointwise convergence topology, that is, the
coarsest group topology on Isom.H/ such that orbit maps g 7! gx are continuous. Actu-
ally, this topology is merely the quotient topology of the strong operator topology on
O.1;1/ (Proposition 3.1). Since H is separable, this topology is known to be Polish [24,
§9.B], that is, separable and completely metrizable.

The aim of this paper is to study this Polish group. It lies at the crossroads of two
worlds: classical Lie groups and non-locally compact Polish groups with surprising prop-
erties for group theorists used to the locally compact ones. Actually, O.1;1/ is a Lie
group—more precisely a Banach–Lie group—but for the stronger topology given by the
operator norm.

There is another Polish group which really looks like Isom.H/. This is the isometry
group of the Hilbert space Isom.H /. Actually, these two groups are homeomorphic but
the homeomorphism (provided by the Cartan decomposition proved in Proposition 3.5) is
not a group homomorphism. So, as a leitmotif, we will compare Isom.H/ and Isom.H /

all along the paper.

1.2. Flows and amenability

Actions on compact spaces are useful tools to study topological groups. For example, they
play a crucial role in Furstenberg’s boundary theory and rigidity results for lattices of Lie
groups. A flow or a G-flow is a continuous action G � X ! X of a topological group G
on a non-empty compact Hausdorff space X . A flow is minimal if every orbit is dense,
equivalently, there is no non-trivial closed invariant subspace. One can reduce to the study
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of minimal flows since any flow contains a minimal one. Ellis proved that each topological
group G has a universal minimal flow M.G/ in the sense that for any other flow X , there
is a continuous G-equivariant map M.G/! X . In some sense, the study of all minimal
flows is contained in the study of the universal one. See, for example, [18] for a general
reference.

For locally compact non-compact groups G, this universal minimal flow M.G/ is
very large (for example, it is non-metrizable) and we lack a handy description. On the
other hand, some infinite-dimensional1 Polish groups have an easily describable universal
minimal flow: it is reduced to a point. Such groups are called extremely amenable, and
equivalently, any continuous action on a compact space has a fixed point. One of the first
groups known to be extremely amenable is the orthogonal group O of a separable Hilbert
space. It appears as a consequence of the concentration of the measure phenomenon for
Euclidean spheres in high dimensions [20, 32].

For simple non-compact Lie groups G, a flow is provided by the homogeneous space
G=P where P is a minimal parabolic subgroup. This flow is often called the Furstenberg
boundary of G. It is, moreover, strongly proximal: any probability measure on G=P has
a Dirac mass in the closure of its orbit in the compact space of probability measures
on G=P with its weak-* topology. This flow is actually the universal strongly proximal
minimal flow ofG: any other strongly proximal minimal flow is an equivariant continuous
image of G=P [18, Chapter 6].

For finite-dimensional hyperbolic space Hn and its isometry group PO.1; n/, the
parabolic subgroup P is the stabilizer of a point at infinity and G=P is the sphere at infin-
ity @Hn. In our infinite-dimensional setting, the sphere at infinity @H is no more compact
and thus does not provide a flow.

To any metric space .X; d/, one can associate a compactification of X which is the
completion of the uniform structure induced by the functions x 7! d.x; y/ � d.x; z/

from X to Œ�d.y; z/; d.y; z/�. This is the horicompactification of X . For both H and H ,
the points of this horicompactification have been described explicitly in [8, 21]. Here we
give a slightly different presentation emphasizing the topological structure and we explicit
how it is an Isom.X/-flow. It is actually a closed subspace of a product space on which
Isom.X/ acts by permutation of the factors.

A bit surprisingly, the horicompactifications of H and H are the same as topologi-
cal spaces. Let D be the open unit ball in H and xD its closure endowed with the weak
topology. The frustum (or merely the truncated cone) over xD is

F D ¹.x; r/ 2 xD � Œ0; 1�; kxk � rº:

Observe that F is homeomorphic to the Hilbert cube thanks to Keller’s theorem (see,
e.g., [17, Theorem 12.37]).

1We use the terms “infinite-dimensional groups” as a synonym of non-locally compact groups, as it is
customary.
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Theorem 1.1. The horicompactifications of H and H are homeomorphic to the frustum F.

So F is a flow for both Isom.H/ and Isom.H / but there is an important difference
between these two flows. The projection map F! xD is a factor map between G-flows
only in the case G D Isom.H/.

The fact that the closed unit ball with the weak topology xD is a flow for Isom.H/ can
be seen more geometrically using the Klein model, see Proposition 6.2. On the contrary,
Pestov proved that Isom.H / is extremely amenable [32, Theorem 6.15], and since the
action Isom.H / Õ xD has no fixed point, it cannot be continuous.

The action Isom.H/ Õ xD is, moreover, strongly proximal, minimal and this is indeed
the universal strongly proximal minimal flow (or Furstenberg boundary) of Isom.H/.

Theorem 1.2. The universal strongly proximal minimal flow of Isom.H/ is xD.

Let us emphasize that this flow has two orbits (the open ball and the unit sphere) and
the sphere is comeager. Moreover, this is the universal proximal flow of Isom.H/ as well
(Theorem 6.5). Once the action Isom.H/ Õ xD has been proved to be continuous, the key
point of Theorem 1.2 is the fact that stabilizers of points at infinity of H are amenable
subgroups.

The simplicity of this flow allows us to investigate the structure of the universal
minimal flow M.G/ of G D Isom.H/. By universality, there is a continuous G-map
M.G/ ! xD and for x 2 xD, Mx D ��1.¹xº/ is a Gx-flow, where Gx is the stabilizer
of x. So, the preimage by � of the orbit of x is a suspension of the action Gx Õ Mx .
Since the sphere (identified with @H in the Klein model) is a comeager orbit, it is natural
to try to understand what is the suspension over this sphere @H.

Let � 2 @H and G� be its stabilizer. One has the following short exact sequence

0! H� ! G� ! R! 0;

where H� is the kernel of the Busemann homomorphism ˇ� WG� ! R. This homomor-
phism is defined in the following way. If � 2 @H and x; y 2 X , the Busemann function
at .x; y/ is b�.x; y/ D limt!1 d.�.n/; x/� d.�.n/; y/, where �WRC ! X is a geodesic
ray with �.0/ D y and limn!1 �.n/ D �. It satisfies the following cocycle formula:
b�.x; y/C b�.y; z/ D b�.x; z/. On G� , the map g 7! ˇ�.g/ D b�.gx; x/ is a homomor-
phism with values independent of the choice of x 2 H. See [2, Chapter II.8] for details
about Busemann functions.

Actually, the groupH� is isomorphic to Isom.H / and so is extremely amenable as well
(Lemma 5.3). In particular, for any minimalG� -flowM ,H� acts trivially and thusM is an
R-flow. Let M.R/ be the universal minimal flow of the reals. Let us denote by S.M.R//
the completion of the suspension of the action G� Õ M.R/ with respect to some natural
uniform structure. This construction is detailed in Section 7. Essentially, it is obtained in
the following way: the group G acts on M.R/ �G=G� via

g.m; �/ D .mC c.g; �/; g�/;
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where c is a cocycle constructed from Busemann functions. The space is not complete
(as uniform space), we complete it and show that the action extends continuously.

Theorem 1.3. The universal minimal flow of the group Isom.H/ is the completed suspen-
sion S.M.R//.

As a corollary, we get that this flow is not metrizable, as it is the case in finite dimen-
sion. For infinite-dimensional Polish groups, universal minimal flows are often obtained
as Samuel compactifications of homogeneous space G=H , where H is an extremely
amenable closed subgroup. For Isom.H/, maximal extremely amenable subgroups are
stabilizers of points Gx with x 2 H and horospherical subgroupsH� with � 2 @H. In both
cases, the Samuel compactification Sam.G=H/ is not minimal (Lemma 7.12) and thus
the universal minimal flow of Isom.H/ is not of the form Sam.G=H/. So, whereas the
Furstenberg boundary is covered by the quite common situation described in [41, Theo-
rem 7.5] for universal flows with a comeager orbit, this is not the case for the universal
minimal flow.

1.3. Automatic continuity

Another surprising property that some Polish groups may have is automatic continuity.
A topological groupG has automatic continuity if any homomorphismG!H , whereH
is a separable Hausdorff topological group, is continuous.

In [31], Monod and Py proved that irreducible self-representations of Isom.H/ are
automatically continuous and asked more generally whether automatic continuity holds
for Isom.H/ in [31, §1.3].

We answer positively this question for the groups Isom.H/ and Isom.H /. As it is well
known, automatic continuity implies uniqueness of the Polish topology and thus we can
speak about the Polish topology of either group.

Theorem 1.4. The groups Isom.H/ and Isom.H / have automatic continuity.

A common strategy to prove automatic continuity is to prove the existence of ample
generics [34]. Here, this is not possible since Isom.H/ has no dense conjugacy class
(Theorem 9.7). With respect to this property, the group Isom.H/ looks like its finite-
dimensional siblings.

We prove that both Isom.H/ and Isom.H / have the Steinhaus property and this prop-
erty is well known to imply automatic continuity. Let G be a topological group. A subset
W � G is � -syndetic if G is the union of countably many left translates of W . It is sym-
metric if W D W �1 D ¹w�1; w 2 W º. The group G has the Steinhaus property if there
is some natural integer k such that for any � -syndetic symmetric subset W � G, W k

contains an open neighborhood of the identity. To prove this property for Isom.H/ and
Isom.H /, we rely on the same property for the orthogonal group, which was proved by
Tsankov [37]. The orthogonal group appears as a point stabilizer in both groups.
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While the groups Isom.H/ and Isom.H / exhibit strong geometric differences, the
proof of the Steinhaus property is the same for both groups and rely on the use of the
stabilizers of three non-aligned points.

1.4. Minimality of the topology

Automatic continuity means that the Polish topology is maximal (i.e., the finest) among
separable group topologies onG. In the other direction, one can look for minimality prop-
erties for G. A Hausdorff topological group .G; �/ is said to be minimal if there is no
Hausdorff group topology on G coarser than � . Since the 1970s, minimal topological
groups have been an active subject and we refer to the survey [13] for background and
history. For example, connected semisimple groups with finite center as well unitary or
orthogonal groups of separable Hilbert spaces are minimal groups.

Stojanov [36] gave the first proof that the orthogonal groupO of the separable Hilbert
space H is minimal with the strong operator topology. This group can be thought as the
isometry group of the unit sphere (or the projective space) with the angular metric.

The group Isom.H/ can be identified with the group of Möbius transformations of
the unit sphere [31], which are transformations that preserve angles infinitesimally. Using
some ideas borrowed from Stojanov, we prove the minimality of Isom.H/.

Theorem 1.5. The Polish group Isom.H/ is minimal.

Since Isom.H/ is topologically simple, we get immediately that Isom.H/ is totally
minimal, that is, any continuous homomorphism to a Hausdorff topological group is open.
Combining minimality and automatic continuity, we get, moreover, the following charac-
terization of the Polish topology.

Corollary 1.6. The Polish topology on Isom.H/ is the unique separable Hausdorff group
topology on Isom.H/.

For the isometry group of the Hilbert space, the group structure is different since the
orthogonal group O is a quotient of Isom.H / but we prove minimality of the topology in
a different way.

Theorem 1.7. The Polish group Isom.H / is minimal.

As above we get the uniqueness of the separable Hausdorff topology on Isom.H /.
Let us observe that this answers the question whether the isometry group of a separable
homogeneous complete metric X is minimal [13, Question 4.33] in the cases X D H ;H.

1.5. Dense conjugacy classes

For matrix groups, the spectrum is a continuous conjugacy invariant and this fact essen-
tially proves that there is no dense conjugacy class. Actually, Wesolek proved that no
locally compact second countable group has a dense conjugacy class [40].
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In infinite dimension, some Polish groups like �1, Aut.Q; </, Aut.R/, where R is
the random graph, or Aut.D1/, where D1 is the universal Ważewski dendrite [16], have
dense conjugacy classes and even a comeager one.

The groups Isom.H/ and Isom.H / are in opposite position with respect to the exis-
tence of dense conjugacy classes.

Theorem 1.8. The Polish group Isom.H/ has no dense conjugacy class.

Theorem 1.9. The Polish group Isom.H / has dense conjugacy classes.

The explanation of this difference has a pure geometric origin. In a Euclidean space,
bounded parts of hyperplanes can be approximated uniformly by subsets of spheres with
very large radii and this is not possible in hyperbolic spaces. Another way to express this
approximation property is the fact that Euclidean hyperplanes coincide with horospheres
whereas hyperplanes and horospheres are different things in hyperbolic spaces.

2. The infinite-dimensional hyperbolic space and its boundary
at infinity

2.1. The hyperboloid and projective models

There is another model of the hyperbolic space, close to the hyperboloid model described
in the introduction. This is the projective model where H coincides with its image in
the projective space P.H /. It can be understood geometrically as in Figure 1. This way,
one can identify H with lines in P.H / that are positive for Q. In this model, the visual
boundary @H is given by Q-isotropic lines in P.H /. We denote by xH the union H [ @H.
The cone topology on xH is the one obtained from the inverse system of bounded convex
subsets [2, Chapter II.8]. In finite dimension, it provides a compactification of H but this
is no more the case in our infinite-dimensional setting. In opposition to the weak topology
described below, it can be thought as the strong topology but it will have almost no role in
this paper.

2.2. The ball model or Klein model

Let H� be the closed subspace ¹x 2 H ; x0 D 0º and let D be the unit ball of H�. To an
element x 2 D, we associate the point f .x/ D .e0 C x/=

p
1 � kxk2 2 H. This map f is

a bijection between D and H. It can be understood geometrically. The point f .x/ is the
intersection of the line through the point e0 C x and H. The inverse map of f can also be
understood geometrically. If y 2 H, f �1.y/ is given by the orthogonal projection on H�
of the intersection of the line through y and the affine hyperspace ¹x 2 H ; x0 D 1º. The
metric induced by the norm on D and the pullback of the hyperbolic metric via f induced
the same Polish topology but not the same uniform structure. (The hyperbolic metric is
complete whereas the norm is not complete on D.) When D is endowed with the pullback
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D

e0

O

H�

f .x/

x

Figure 1. The correspondence between the hyperboloid model and the Klein model.

of the hyperbolic metric, then geodesics are straight lines. This is the famous Klein model.
In this case, the hyperbolic metric coincides with the Hilbert metric associated to the
bounded convex subspace D � H. The identification between H and D induces an action
of Isom.H/ on D.

2.3. The weak topology

A hyperplane of xH is a non-empty intersection of xH with a linear hyperplane of the Hilbert
space H . A closed half-space of xH is the intersection of xH and a linear closed half-space.
An open half-space of xH is the complement of a closed half-space. Let us endow xH with
the coarsest topology such that closed half-spaces are closed. This topology Tc is intro-
duced in [28, Example 19]. It is proved that xH is a compact Hausdorff space. In the ball
model xD, a closed half-space corresponds (via f �1) to the intersection of xD with some
affine closed half-space of H� and thus the topology Tc coincides with the weak topology
of this closed unit ball of the Hilbert space H�. In particular, it is metrizable. Thus we
will call Tc the weak topology on xH.

Remark 2.1. Since H is a subspace of H , one can also endow it with the restriction of the
weak topology on H . Let us denote by T0 this topology. Since cosh.d.x; y// D .x; y/ D
hx; Jyi, a sequence of H which is T0-convergent in H is actually strongly convergent.

Lemma 2.2. The collection of open half-spaces is a base of the weak topology on xH.

Proof. By the definition of the Tc-topology, it suffices to see that any finite intersection of
open half-spaces contains some open half-space. Let us use the ball model. Let U1; : : : ;Un
be open half-spaces (which are the intersection of open affine half-spaces of H� with xD)
with non-empty intersection in xD. Let � be on the sphere @D and in the intersection U1 \
� � � \ Un. Each Ui has a boundary included in some closed affine hyperplane Hi . Let us
denote Si D @D \Hi , which is a closed (for the strong topology) subspace of @D that
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does not contain � . In particular, there is ˛i > 0, such that the ball of radius ˛i for the
angular metric on @D is included in Ui . Thus for ˛ D infi ˛i , the ball of radius ˛ around �
is included in U1 \ � � � \ Un. This spherical ball is exactly the intersection of some open
half-space U and @D. In particular, U is included in U1 \ � � � \ Un.

A bit counterintuitively, the substantial part of the closed unit ball, for the weak topol-
ogy, is not the open unit ball but the unit sphere. So, stabilizers of points at infinity in
Isom.H/ will play a more important role in the sequel than stabilizers of points in H.

Lemma 2.3. The sphere at infinity @H is comeager in xH for the weak topology.

Proof. One can write H as the countable union of closed balls around e0 with integral
radius. None of these balls contains an open half-space and thus, they have empty interior.
So H is meager.

Lemma 2.4. The restriction of the weak topology on @H coincides with the cone topology.

Proof. We use the ball model. A sequence of unit vectors that converges weakly to a unit
vector, converges strongly actually.

2.4. Horicompactifications

In this subsection, we recall a construction of a compact space associated to any metric
space which is originally due to Gromov in a slightly different form. Let .X; d/ be some
metric space with isometry groupG D Isom.X/ endowed with the pointwise convergence
topology (recalled in Section 3). For x; y; z 2 X , let us define

'y;z.x/ D d.x; y/ � d.x; z/ 2 Œ�d.y; z/; d.y; z/�

and let
X2 D …y¤z2X Œ�d.y; z/; d.y; z/�

be the product space with the product topology. It is thus compact.
The horicompactification yX of X is the closure of the image of X in X2 via the

continuous map
'W x 7! ¹'y;z.x/ºy¤z :

Let us observe that for any g 2 G, x ¤ y and z 2 X ,

'y;z.gx/ D 'g�1y;g�1z.x/:

In particular, the map ' is equivariant with respect to the action of G by permutations of
the indices in X2.

Lemma 2.5. The map 'WX ! yX is an injective continuous map. The horicompactifica-
tion yX is a Isom.X/-flow which is metrizable as soon as X is separable.
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Proof. For an element  2 X2, we denote by  y;z 2 Œ�d.y; z/; d.y; z/� its coordinate
corresponding to y ¤ z 2 H . The continuity of ' follows from the inequality

j'y;z.x/ � 'y;z.x
0/j � 2d.x; x0/

which shows actually that ' is uniformly continuous. Injectivity of ' follows from the
fact that j'x;x0.x/ � 'x;x0.x0/j D 2d.x; x0/. The triangle inequality implies that for any
x; y; z 2 X ,

j'y;z.x/ � 'y0;z0.x/j � d.y; y
0/C d.z; z0/: (2.1)

In particular, for any  2 yX , j y;z �  y0;z0 j � d.y; y0/ C d.z; z0/. Thus, for any
 ; 0 2 yX , g 2 Isom.X/ and y; z 2 X ,

j.g 0/y;z �  y;zj � j 
0

g�1y;g�1z
�  0y;zj C j 

0
y;z �  y;zj

� d.gy; y/C d.gz; z/C j 0y;z �  y;zj:

This shows the continuity of the action since the pointwise convergence topology on
Isom.X/ is a group topology.

The metrizability follows from equation (2.1) which shows that any  2 yX is com-
pletely determined by . y;z/y;z2X0 whereX0 is some dense countable subset of the metric
space X .

Remark 2.6. This horicompactification is also known as the metric compactification
of X [21, 33] and sometimes the space yX n X is called the horofunction boundary, for
example in [39]. If we identify X with its image in X2, the induced topology from the
product topology coincides with the topology Tw in [28, §3.7].

Let us emphasize that Gromov originally defines a similar space in [19] but with the
uniform convergence on bounded subsets. For proper metric spaces, this is equivalent
with pointwise convergence but in our infinite-dimensional context, the two notions of
convergence are different.

Remark 2.7. Often the horicompactification of a metric space is defined in a slightly
different way. One fixes a point x0 and considers the product

X1 D …y¤x02X Œ�d.y; x0/; d.y; x0/�

with the map

X ! X1; x 7! .'y;x0.x//y¤x0 ;

where 'x;x0.y/ D d.y; x/ � d.y; x0/ as above. The fact that 'y;z D 'y;x0 � 'z;x0 shows
that closures of the images of X in X1 and X2 are homeomorphic. A difference is the
fact that 'WX ! X2 is equivariant without the need to consider a quotient of the image.
Moreover, the action on the image yX is maybe more explicit since it appears as a subshift
of a generalized Bernoulli shift.
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For the separable Hilbert and hyperbolic spaces, explicit descriptions of the horofunc-
tion boundary are given in [8, 21]. In the following two subsections, we reformulate these
descriptions to fit our objectives. We implicitly consider xD with its weak topology.

2.5. Horicompactification of the hyperbolic space

Let F be the frustum
¹.x; r/ 2 xD � Œ0; 1�; kxk � rº

considered as a subset of xD� Œ0;1�with the topology product. This is a compact metrizable
space with a continuous projection � WF! xD as displayed in Figure 2.

0

F

r

xD

H

�

Figure 2. The frustum F.

Following notations in [8], we denote by i WD ! D1 the map given by i.x/.y/ D
d.x; y/ � d.x; 0/, where d is the hyperbolic metric on D. This is .'y;0.x//y¤0 in the
above notations, i.e., this corresponds to the point x0 D 0 in Remark 2.7. It is proved
in [8, Theorem 3.3] that any function in i.D/ is given by the formula, for y 2 D,

�x;r .y/ D log
�1 � hx; yi Cp.1 � hx; yi/2 � .1 � kyk2/.1 � r2/

.1C r/
p
1 � kyk2

�
(2.2)

where x, r are uniquely determined elements of xD � Œ0; 1� such that kxk � r . Actually,
'y;0.x/ coincides with �x;r .y/ when r D kxk and the Busemann function vanishing at 0
associated to x 2 @D is �x;1. The points that do not come from xD are thus the one corre-
sponding to x 2 D and r > kxk.

Proposition 2.8. The horicompactification yH is homeomorphic to the frustum F (and the
projection � WF ' yH! xD is a continuous G-equivariant map).

Proof. It follows from formula (2.2) that the map hW .x; r/ 7! .�x;r .y/� �x;r .z//y;z from
F to yH is a continuous bijection between compact Hausdorff spaces and thus a homeo-
morphism. The continuity of the projection � W yH! xD is thus a direct consequence. The
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equivariance is a consequence of the construction of the map f �1WH! D described in
the paragraph about the Klein model. We detail the computation below.

For z 2 D � H�, we denote by Qz the point e0 C z. Let us denote by ˛.g/ the action
of g 2 Isom.H/ on D. More precisely, ˛.g/.x/ D f �1gf .x/. Let us write

�x;r .y/ D log
� .zx; zy/Cp.zx; zy/2 �Q.zy/.1 � r2/

.1C r/
p
Q.zy/

�
;

and observe that if we multiply zy by some positive constant, we get the same value. If we
identify g 2 Isom.H/' PO.1;1/ with an element of O.1;1/ which preserves the upper
sheet of the hyperboloid, one has .g zy; e0/B˛.g/.y/ D g zy. So, if we set � D .g zy; e0/�1,
� D .g�1zx; e0/ > 1 and � D

p
1 � .1 � r2/=�2, we have

�x;r .˛.g/.y//

D log
� .zx; B˛.g/.y//Cq.zx; B˛.g/.y//2 �Q.B˛.g/.y//.1 � r2/

.1C r/

q
Q.B˛.g/.y//

�
D log

� .zx; �g zy/Cp.zx; �g zy/2 �Q.�g zy/.1 � r2/
.1C r/

p
Q.�g zy/

�
D log

� .zx; g zy/Cp.zx; g zy/2 �Q.g zy/.1 � r2/
.1C r/

p
Q.g zy/

�
D log

� .g�1zx; zy/Cp.g�1zx; zy/2 �Q.zy/.1 � r2/
.1C r/

p
Q.zy/

�
D log

� .�D˛.g�1/.x/; zy/Cq.�D˛.g�1/.x/; zy/2 �Q.zy/.1 � r2/
.1C r/

p
Q.zy/

�
D log

� .D˛.g�1/.x/; zy/Cq.D˛.g�1/.x/; zy/2 �Q.zy/.1 � �2/
.1C �/

p
Q.zy/

�
� log

� 1C r

�.1C �/

�
D �˛.g�1/.x/;�.y/C �˛.g�1/.x/;�.0/:

This computation shows that g�1 � h.x; r/D h.˛.g�1/.x/; �/ and we have the follow-
ing commutative diagram giving the equivariance:

yH yH

xD xD:

g�1

�ıh�1 �ıh�1

˛.g�1/

Remark 2.9. This horicompactification is a G-flow but not a minimal one since the sheet
r D 1 is G-invariant and homeomorphic to xD via � .
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2.6. Horicompactification of the Hilbert space

Let �H denote the map
H ! D; x 7!

xp
1C kxk2

;

which can be understood geometrically in the following way. Let H 0 be the Hilbert space
H ˚ R. We identify x 2 H with .x; 1/ 2 H 0 and y 2 D with .y; 0/ 2 H 0. In this way,
�H is the composition of the stereographic projection on the unit sphere in H 0 centered at
the origin and the vertical projection H 0 ! H , see Figure 3.

O

R

xD

H

.x; 1/

�H .x/

Figure 3. The geometric interpretation of the map �H .

Proposition 2.10. The horicompactification yH is homeomorphic to the frustum F D
¹.x; r/ 2 xD � Œ0; 1�; kxk � rº.

As before, we denote by i WH !H1 the map corresponding to x0 D 0 in Remark 2.7.
More precisely, i.x/.z/ D kx � zk � kxk. Since the inverse map ��1

H
WD! H is given

by ��1
H
.y/ D y=

p
1 � kyk2, a computation shows that

i.��1H .y//.z/ D

s
kyk2

1 � kyk2
� 2

hz; yip
1 � kyk2

C kzk2 �
kykp
1 � kyk2

for y 2D and z 2H . Following [21] and considering a sequence .yn/ such that yn weakly
converges to some y 2 xD and kynk converges to r 2 Œ0; 1�, one gets that any element of yH
is given by

�y;r .z/ D

s
r2

1 � r2
� 2

hz; yi
p
1 � r2

C kzk2 �
r

p
1 � r2

;

kyk � r < 1 and this formula collapses to

�y;1.z/ D �hy; zi

when r D 1.
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The formulas above show that the map .x; r/ 7! �x;r is a continuous bijection between
the compact Hausdorff spaces F and H , and thus is a homeomorphism.

Remark 2.11. For x D 0 and r D 1, one gets the zero function and in particular a global
fixed point for the action of Isom.H / on yH .

One can try to understand how the action of Isom.H / on yH translates to an action of
Isom.H / on F � xD � Œ0; 1�. The action of the orthogonal group O is simple to describe.
For g 2 O and .x; r/ 2 F, g.x; r/ D .g.x/; r/.

For the translation group .H ;C/, the situation is different. Let �v be the translation
with vector v 2 H . Then

�v � .x; r/ D
� 1
p
1C �2

� x
p
1 � r2

C v
�
;

�
p
1C �2

�
;

where � D
q

r2

1�r2
C kvk2 � 2hv; xp

1�r2
i. Whereas the hyperbolic and Hilbert horicom-

pactifications are homeomorphic, one can observe that contrarily to the hyperbolic space,
the projection F! xD does not induce an action of Isom.H / since the first component of
� � .x; r/ does depend on the second one.

3. A Polish group

Let � be the topology of pointwise convergence on Isom.H/, that is, the one induced by
the pseudo-metrics .g; h/ 7! d.gx; hx/ with x 2 H. This topology is Polish since H is
separable. We call this topology “the Polish topology”. The name will be justified later,
since we will prove there is a unique Polish topology on Isom.H/.

Let us recall that the strong operator topology on GL.H / (the set of all bounded invert-
ible operators on H ) is given by the family of pseudo-metrics .g; h/ 7! kg.x/ � h.x/k,
where x varies in H .

Proposition 3.1. The Polish topology coincides with the strong operator topology coming
from the embedding Isom.H/ � GL.H /.

Proof. Let us embed H as ¹x 2 H ; Q.x/ D 1; x0 > 0º. The hyperbolic metric and the
Hilbert metric give rise to the same topology on H. Thus, the Polish topology is weaker
than the strong operator topology. The converse holds because, H is total in H and any
converging sequence for the Polish topology is actually bounded for the operator norm.

It is proved in [15, Theorem 3.14] that the group Isom.H/ is topologically simple but
not abstractly simple.

Let Hn be the hyperbolic space of dimension n > 1. A standard embedding of the
group Isom.Hn/ in Isom.H/ comes from a totally geodesic embedding ' of Hn in H.
That is, the action of Isom.Hn/ on H is such that ' is equivariant and the action is trivial
on the orthogonal complement of the image of '.
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Lemma 3.2. The group Isom.H/ is the completion of the union of all standard embed-
dings of Isom.Hn/.

Proof. It is shown in [15, Proposition 3.10] that for any g 2 Isom.H/ and x1; : : : ; xn 2 H,
there is a standard embedding Isom.Hk/ ,! Isom.H/ and h 2 Isom.Hk/ such h.xi / D
g.xi / for all I .

Definition 3.3. A symmetry is a non-trivial involutive isometry of H.

Let us observe that a symmetry � has non-empty fixed points set F� (simply because
orbits are bounded and H is CAT(0), see [2, Corollary II.2.8]). This set is a closed totally
geodesic subspace (by uniqueness of the geodesic line through two distinct points, any
geodesic line through two fixed points is pointwise fixed). The differential dx� of � at
a fixed point x 2F� is the orthogonal symmetry of TxH (the tangent space at x) with TxF�
as fixed points set.

For any totally geodesic subspace E � H (maybe reduced to a point), we define the
symmetry �E whose fixed point set is exactly E. For a point x 2 H, there is a correspon-
dence between orthogonal symmetries of the tangent space TxH and symmetries of H
fixing x. Any two symmetries are conjugate in Isom.H/ if and only if the˙1-eigenspaces
of their differentials at fixed points have the same dimensions.

Cartan–Dieudonné theorem tells us that any element of Isom.Hn/ is the product of at
most nC 1 symmetries with respect to hyperplanes. If we allow more general symmetries
and go to infinite dimensions, we get the following bounded generation result.

Lemma 3.4. An isometry of H is a product of at most 5 symmetries.

Proof. It is well known that any element in the orthogonal group O is a product of at
most 4 symmetries. If g 2 Isom.H/, choose x 2H and letm be the mid-point of Œx;g.x/�
and �m be the symmetry at m. Then �m ı g fixes x and the result follows.

3.1. Cartan decomposition

Let o.1;1/ D k ˚ p be the Cartan decomposition of the Lie algebra o.p;1/ � L.H /

associated to the point e0 2 H and let us define O D Stab.e0/ and P D exp.p/. Let us
observe that O is isomorphic to the orthogonal group of the separable Hilbert space H�.
Let 'e0 W Te0H! p be the identification between the tangent space and the subspaces p

of the Lie algebra. When p is endowed with the Hilbert–Schmidt metric and Te0H is
endowed with its Riemannian metric, then 'e0 is a linear isometry (up to a scalar multipli-
cation) between separable Hilbert spaces. With this identification, for any v 2 Te0H one
has exp.v/ D exp.'e0.v//e0, where the first exponential is the Riemannian one and the
second one is the exponential of bounded operators. We refer to [14] for details.

Let us endow O , P with the induced topology from the Polish topology on G. With
this topology expW p! P is a homeomorphism. We endow the product O � P with the
product topology.
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Proposition 3.5. The following map is a homeomorphism:

O � P ! G; .k; p/ 7! pk:

Proof. Since H is a simply connected manifold of non-positive curvature, the exponen-
tial map expe0 W Te0H! H is a homeomorphism. Let loge0 WH! expe0 H be the inverse
of expe0 . For g 2G, let pD exp.'e0.loge0.ge0///. By construction, pe0D ge0, p�1g2O .
So, the existence of the decomposition follows. Uniqueness follows from the fact that if
g D pk, then pe0 D ge0, and thus p D exp.'e0.loge0.ge0///.

Continuity is automatic since the Polish topology is a group topology. For the inverse,
the map g 7! p is continuous by composition of exp, ' and loge0 and we conclude that
g 7! k is continuous because k D p�1g.

Since O and P are contractible, we obtain the following immediate consequence.

Corollary 3.6. The group G is contractible.

Let us now consider a similar decomposition for the isometries of the Hilbert space H .
As it is well known (it is a particular and easy case of the Mazur–Ulam theorem) and
easy fact that any isometry of a Hilbert space is affine. It follows that Isom.H / splits as
O Ë H where H is identified with the group of translations andO is the orthogonal group
identified with the stabilizer of the origin.

Lemma 3.7. The group isomorphism Isom.H /'O Ë H is, moreover, a homeomorphism
between the pointwise convergence topology Isom.H / and the product topology of the
strong operator topology on O and the strong topology on H .

Proof. The isomorphism is then 'W .�; v/ 2 O �H 7! �v ı �, where �v is the translation
by v 2 H . The inverse is given by g 7! .��g.0/ ı g; �g.0//. The continuity of ' and its
inverse is an easy consequence of the joint continuity of the addition in H .

We also get the fact (as in finite dimension) that Isom.H / and Isom.H/ are homeo-
morphic but, of course, not isomorphic as groups.

4. Automatic continuity

Let G be a topological group. A subset W � G is � -syndetic if G the union of countably
many left translates ofW . It is symmetric ifW DW �1D¹w�1; w 2W º. The groupG has
the Steinhaus property if there is some natural integer k such for any � -syndetic symmetric
subset W � G, W k contains an open neighborhood of the identity.

It is proved in [37, Theorem 3] that the orthogonal or unitary group of a real or complex
Hilbert space of infinite countable dimension has the Steinhaus property (with k D 506).
It is a key fact for the following result.

Theorem 4.1. The Polish groups Isom.H/ and Isom.H / have the Steinhaus property.
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Proof. Let X D H or H and G D Isom.X/. For any x 2 X , Stab.x/ with the induced
topology is isomorphic (as Polish group) to the orthogonal group O . Let W be some
symmetric � -syndetic subset of G. By [37, Lemma 4], W 2 \ Stab.p/ is symmetric and
� -syndetic in Stab.p/ for any p 2X . In particular,W 1012 contains an open neighborhood
of the identity in Stab.p/.

Let us fix three distinct points x; y; z 2 X such that z does lie on the geodesic line
through x and y. For a point p 2 X , we say that some g 2 G is a rotation at p if g
fixes p and its differential (which coincides with the linear part of g if X D H ) at p has
a codimension 2 subspace of invariant vectors and it acts as a standard rotation on the
orthogonal plane.

Thus, one can find finitely points many p1; : : : ; pn and " > 0 such that

¹g 2 Stab.p/; d.gpi ; pi / < "8i � nº � W 1012

for p D x; y and z. In particular, there is �0 > 0 such that for any rotation � at p D x; y; z
with angle � < �0, d.�pi ; pi / < "=3 for any i � n.

So, for ˛ > 0 small enough and any u; v 2 B.x; ˛/ and at the same distance from y,
there is g 2 W 1012 \ Stab.y/ such g.u/ D v and displacing the pi ’s by at most "=3.

Since z does not belong to the geodesic through x and y, the set of distances d.�.x/;y/
contains an interval .d.x; y/ � �; d.x; y/C �/ with � 2 .0; ˛/ where � is a rotation cen-
tered at z of angle � < �0 in the totally geodesic plane containing x, y, z.

Now, let g 2G such that d.gx;x/<� and d.gpi ;pi /< "=3 for i �n. From above, one
can find a rotation �1 2W 1012 \ Stab.z/with angle less than �0 such that d.�1.gx/;y/D
d.x; y/. Moreover, one can find a rotation �2 2 W 1012 \ Stab.y/ with angle less than �0
such that �2.�1.gx//D x. Now, �2�1gmoves the pi ’s by at most 3� "=3 and thus belongs
to Stab.x/ \W 1012.

Finally, g D ��11 ��12 .�2�1g/ 2 W
3036 and the Steinhaus property is proved.

As it is standard for Polish groups, the Steinhaus property implies the automatic
continuity property, that is, any homomorphism to a separable Hausdorff group H is con-
tinuous [34, Proposition 2]. So, this proves Theorem 1.4 and implies that these groups
have a unique Polish group topology.

5. Amenable and extremely amenable subgroups

The possibilities for amenable groups acting on H are well understood thanks to [6, Theo-
rem 1.6]. For this theorem, the finiteness of the telescopic dimension is required and for H
the telescopic dimension is exactly 1 since H is Gromov-hyperbolic.

Proposition 5.1. Let G be an amenable topological group acting continuously by isome-
tries on H. Then G has a fixed point in xH or stabilizes a geodesic line in H. In particular,
there is a subgroup of index at most 2, fixing a point in xH.
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Let us first observe that the Polish group Isom.H/ is not amenable since there is no
fixed point in H nor in @H. It does have a continuous isometric action on a Hilbert space
without fixed point since the distance function on H induces a kernel of conditionally
negative type [7, §7.4.2]. Thus it does not have property FH and a fortiori it does not have
property T.

For x 2 H, we denote by Stab.x/ its stabilizer in Isom.H/. As observed previously,
this group is isomorphic to the orthogonal group of a separable Hilbert space and since
the latter is extremely amenable, we get immediately the following.

Lemma 5.2. For any x 2 H , the Polish group Stab.x/ is extremely amenable.

Let � 2 @H, x 7! ˇ�.x; x0/ the associated Busemann function vanishing at x0 and G�
its stabilizer in Isom.H/. The Busemann homomorphism at g 2 G� , ˇ�.g/ is ˇ�.gx0; x0/
which does not depend on x 2 H. This defines a continuous surjective homomorphism

ˇ� W G� ! R:

Let H� � G� be the kernel of the Busemann homomorphism, which is the set-wise
stabilizer of horospheres around �.

Lemma 5.3. The closed subgroup H� is isomorphic to Isom.H / as Polish group. In par-
ticular, it is extremely amenable.

Proof. In the model of the hyperbolic space H described in [31, §2.2], one sees that the
hyperbolic metric on horospheres is a bijective function of an underlying Hilbert structure.
So, any isometry preserving an horosphere induces an isometry of the Hilbert structure.
Conversely, any isometry of this Hilbert structure can be extended uniquely as an element
of H� . See [31, §2.4] for the description of horospheres in this model.

This gives a group isomorphism H� ! Isom.H /. It is continuous since the topology
on Isom.H / comes from the pointwise convergence for points in a fixed horosphere cen-
tered at �. One can prove easily by geometric means that the inverse is continuous as well
but the automatic continuity of Isom.H / is a handy shortcut.

Lemma 5.4. Let � 2 @H. The group G� is a closed amenable subgroup of Isom.H/.

Proof. Let us prove that G� is closed first. Let x 2 H and y ¤ x such that � is one
extremity of the geodesic through these points. Let .gn/ be a sequence converging to
g 2 Isom.H/. By definition of the topology, gnx ! gx and gny ! gy. In particular, the
geodesic .gnx;gny/ converges uniformly on bounded subsets to .gx;gy/. So, if gn 2G� ,
then g 2 G� as well because � is an extremity of the geodesic line .gx; gy/.

The group G� splits as a semi-direct product H� Ì R. The elements of the group R
can be realized as transvections along a fixed geodesic pointing to � . Since R is abelian,
the amenability of G� follows from the one of H� .

For a topological group H , we denote by M.H/ its universal minimal flow.
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Lemma 5.5. Let E be a topological extension of a quotient group Q by an extremely
amenable normal subgroup A. Then any minimal action of E on a compact space factor-
izes to a minimal Q-flow. In particular, M.E/ 'M.Q/.

Proof. Let X be some minimal E-flow. By extreme amenability of A, this subgroup has
a fixed point x. Since A is normal, any point y in the same orbit as x is a A-fixed point.
Actually, if y D gx with g 2E, ay D g.g�1ag/xD gxD y for any a 2A. By minimality
of the action, the orbit of x is dense and thusA acts trivially onX and the action factorizes
into a Q-action.

In the particular case where G� is the topological semi-direct product H� Ì R, we get
the following identification of the universal minimal M.G�/.

Proposition 5.6. The universal minimal flow M.G�/ is homeomorphic to M.R/.

Remark 5.7. The universal minimal flow M.R/ can be easily described from the Stone–
Čech compactification of the integers ˇZ. Actually, it is merely the suspension from Z
to R of the extension to ˇZ of the shift map n 7! nC 1. One may look at [38] for details.
Let us observe that this universal minimal space is not metrizable since ˇZ is not.

A topological group H is said to be strongly amenable if any proximal minimal H -
flow is trivial. For example, all abelian groups are strongly amenable [18, §II.4].

Corollary 5.8. The group G� is strongly amenable.

Proof. Let X be some proximal G� -flow. By Lemma 5.5, this is a minimal proximal R-
flow as well and thus it is reduced to a point.

6. Universal strongly proximal minimal flow

Since H is separable, it is well known that the weak topology on the closed unit ball
xD ' xH is compact and metrizable.

Let us recall that a flow X is strongly proximal if the closure (for the weak-* topology
on the space of probability measures Prob.X/) of every orbit in Prob.X/ contains a Dirac
mass.

In the proof of the following proposition, we use angles †p.x; y/ between points
x; y 2 xH at p 2 H. See [2, Chapter I.2] for a definition and basic properties of these
angles. Let us observe that these angles coincide with the Riemannian angles of the tangent
vectors of Œp; x� and Œp; y� in the tangent space TpH. One can also define them in the
following way: Let u, v be the initial vectors of the hyperbolic segments Œp; x� and Œp; y�,
then cos.†p.x; y// D �.u; v/ [2, Chapter I.2].2

2They use the opposite of Q.
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Lemma 6.1. Let x, y be distinct points of H and .xn/, .yn/ be sequences in H converging
strongly to x and y. Let us fix r > 0. Then for any " > 0, there isN such that for all n�N
and z 2 xH n B.x; r/,

j†xn.yn; z/ � †x.y; z/j < ":

Proof. Let un and vn be the initial vectors at xn of the segments Œxn; z� and Œxn; yn�. So
cos.†xn.z; yn// D �.un; vn/. These initial vectors can be expressed as

un D
z � .xn; z/xn

.�Q.z � .xn; z/xn//1=2
and vn D

yn � .xn; yn/xn

.�Q.yn � .xn; yn/xn//1=2
:

Let us emphasize that kunk is bounded by the supremum of the operator norms of the
transvections �n from e0 to xn because �n maps e?0 to x?n and the preimage of un by �n is
a unit vector in e?0 . The operator norm of �n is bounded above by cosh.d.e0; xn// and thus
uniformly bounded. By homogeneity of the numerator and denominator, we can replace z
by the corresponding point z0 in e0 C xD (i.e., the point z0 in H collinear to z such that
.e0; z

0/ D 1).
Similarly, the initial vectors u and v of the segments Œx; z� and Œx; y� can be ex-

pressed as

u D
z0 � .x; z0/x

.�Q.z0 � .x; z0/x//1=2
and v D

y � .x; y/x

.�Q.y � .x; y/x//1=2
:

By uniform continuity of the arccosine function, it suffices to prove that for any ˛ > 0,
there is N such that for any n � N , j.un; vn/ � .u; v/j < ˛. Let us write

z0 � .x; z0/x � .z0 � .xn; z
0/xn/ D .xn � x; z

0/xn C .x; z
0/.xn � x/:

Now, since .p; q/ D hJp; qi � kpk � kqk and kz0k � 2,

kz0 � .x; z0/x � .z0 � .xn; z
0/xn/k� 2.kxnk C kxk/kxn � xk: (6.1)

Let us observe that jQ.z0 � .xn; z0/xn/j, jQ.z0 � .x; z0/x/j are bounded below by
a constant depending only on x and r as soon d.xn; x/ < r=2. Actually, it suffices to
consider the case x D e0 and in this case jQ.z0 � .x; z0/x/j � tanh.r/2. They are also
bounded above independently of z0.

So, together with inequality (6.1), for any ˛0 > 0, one can find N (independent of z0)
such that ku � unk < ˛0 for any n > N . From the inequality

j.un; vn/ � .u; v/j � j.un; vn/ � .un; v/j C j.un; v/ � .u; v/j

� j.un; vn � v/j C j.un � u; v/j

� kunk � kvn � vk C kun � uk � kvk;

the strong convergence vn ! v and the boundedness of kunk, the desired domination
follows.
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Proposition 6.2. The space xH is a metrizable strongly proximal minimal flow of Isom.H/
with 2 orbits and one of these orbits is comeager.

Proof. The main point is the continuity of the action. Since both Isom.H/ and xH are
metrizable, it suffices to prove sequential continuity. Let .xn/ be a sequence of points in xH
converging to x for the weak topology and .gn/ be a sequence of isometries converging to
g 2 Isom.H/ for the Polish topology. Since the topology on Isom.H/ is a group topology,
it suffices to deal with the case g D Id.

Let U be some open half-space of xH containing x. Let x0 be the projection of x on the
closed half-space C D xH n U . If x 2 @H, then x0 is the minimum in C of the Busemann
function associated to x. Choose W to be some hyperplane orthogonal to the geodesic
line L through x and x0 that separates x and x0, and let U 0 be the open half-space of xH
associated to W that contains x. Let y D L \W .

By invariance of U 0, x0 and y by rotation around the geodesic line through x0 and y,
there is ˛ <�=2 such that for all z 2U 0,†x0.y;z/� ˛. Actually, this ˛ can be obtained by
a compactness argument in a hyperbolic plane containing x0, y and z. For n large enough,
xn 2 U

0 and thus †x0.x; xn/ D †x0.y; xn/ � ˛ for n large enough. Since gnx0 ! x0
and gny ! y (for the strong topology), by continuity of the angle (Lemma 6.1 with
r D d.x; y/), for any " > 0, n large enough and z 2 U 0,

j†gnx0.gny; z/ � †x0.y; z/j < ":

In particular, for z D gnxn, †x0.y; gnxn/ � †gnx0.gny; gnxn/C " D †x0.y; xn/C
" � ˛ C ". For " < 1=2.�=2 � ˛/, one gets that for n large enough, †x0.y; gnxn/ �
�=2 � 1=2.�=2 � ˛/ and thus gnxn 2 U . This proves the continuity of the action.

The two orbits are H and @H which are both dense. The minimality follows and it is
proved in Lemma 2.3 that @H is comeager.

Strong proximality follows from the fact that any proper closed subspace is contained
in some closed half-space and any closed half-space X can be sent inside any open half-
space via some hyperbolic element of Isom.H/.

Let us recall that a closed subgroupH of a topological group is coprecompact ifG=H
is precompact for the uniformity coming from the right uniform structure on G. This
means that the completion 1G=H is compact. This is equivalent to the fact that for any
open neighborhood of the identity, V , there is a finite subset F � G such that VFH D G.

In the remaining of this section, let us denote G D Isom.H/ and G� is the stabilizer of
� 2 @H.

Proposition 6.3. The subgroup G� is coprecompact in G.

Proof. Let V be some open neighborhood of the identity. By definition of the topology, it
suffices to consider the case

V D ¹g 2 G; 8i D 1; : : : ; n; d.gxi ; xi / < "º;

where x1; : : : ; xn 2 H and " > 0.
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Let H0 be the minimal totally geodesic subspace containing the xi ’s and let H1 be
some totally geodesic subspace containing H0 and � with dim.H1/D dim.H0/C 1. Let c
be the circumcenter of the xi ’s and let � > 0 be the associated circumradius. By com-
pactness of the stabilizer of c in Isom.H1/ for the uniform convergence on compact
subsets (i.e., the Lie group topology), one can find finitely many elements of Stab.c/ in
Isom.H1/ such that any other element of Stab.c/ lies at distance at most " for the metric
d.g; h/ D sup¹d.gx; hx/; x 2 B.c; �/º. Let us denote by F the image of these elements
under the standard embedding Isom.H1/! G.

Let g 2 G. The group G� acts transitively on pairs .x;H0/ where x is a point in the
totally geodesic subspace H0 of dimension dim.H0/C 1 such that � 2 @H0. Let H01 be some
totally geodesic subspace containing g�1.H0/ and � in its boundary and with dimension
dim.H0/C 1. So one can find h 2 G� such that h.g�1.H0// � H1 and h.g�1.c// D c.
Now, the restriction of h ı g�1 to H0 coincide with some element of Isom.H1/ fixing c,
and thus there is f 2 F such that the restrictions of h ı g�1 and f �1 coincide up to " on
B.c; �/ \H0. In particular, if we set v�1 D f ı h ı g�1, then v�1 2 V and thus v 2 V .
So g D vf h 2 VFH .

Theorem 6.4. The universal strongly proximal minimal flow of G is xH ' 1G=G� .
Proof. LetX be some strongly proximal minimal flow. By amenability,G� fixes a point x.
The orbit map g 7! gx is uniformly continuous and thus induces a continuous G-map
1G=G� ! X . It is surjective by minimality of X . This proves that 1G=G� is the strongly
proximal minimal G-flow once we know that 1G=G� and xH are isomorphic as G-spaces.

Since G acts continuously on xH, we have a continuous map 1G=G� ! xH. Let us prove
that the inverse of the bijection G=G� ! @H is uniformly continuous by showing that the
image of any Cauchy sequence in G=G� is a Cauchy sequence in xH (this is equivalent
since the spaces are precompact [35]).

Let .gn/ be a sequence of elements in G such that gn� converges in xH for the weak
topology. We aim to show that gnG� is Cauchy in 1G=G� . It suffices to prove that for
x1; : : : ; xk 2H, " > 0 and V D ¹v 2G; d.vxi ;xi / < "; 8i D 1; : : : ; kº there isN 2N such
that for n;m � N there is vn;m 2 V such that gmG� D vn;mgnG� , i.e., gm� D vn;mgn�.

If gn� converges to some point in H, we define x0 to be this limit point. Otherwise, we
define x0 to be any point in H. Since G� acts transitively on H, we may and will assume
that gn fixes x0 for any n 2N. Let us define vn;m to be the rotation centered at x0 such that
vn;mgn� D gm�. If gn� converges in @H, then gn� converges in the cone topology and the
angle of vn;m goes to 0 when n;m!1. So vn;m converges uniformly to the identity on
bounded subsets and vn;m 2 V for n, m large enough.

In the other case, the angle between the geodesic segment Œx0; xi � and the geodesic ray
Œx0;gn�/ goes to �=2 because x0 is the limit point of gn�. Thus, the angle between Œx0; xi �
and the totally geodesic plane containing the geodesic rays Œx0; gn�/ and Œx0; gm�/ goes
to �=2 for n; m!1. In particular, d.vn;mxi ; xi /! 0 for n; m!1. Thus vn;m 2 V
for n, m large enough.
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Theorem 1.2 is then a consequence of the homeomorphism xD ' xH where the two
spaces are endowed with the weak topologies.

Theorem 6.5. The universal proximal minimal flow of G is xH ' 1G=G� .

Proof. The flow 1G=G� is a minimal proximal G-flow. The universal property follows
from the fact that G� is strongly amenable (Corollary 5.8).

Remark 6.6. One can deduce Theorem 6.5 from Theorem 6.4 thanks to [27, Theorem 1.7]
as well.

7. The universal minimal flow

Let us denote by M.G/ the universal minimal Flow of the Polish group G D Isom.H/.
The aim of this section is to describe this flow as the completion of some suspension.
This suspension will be defined in two ways. The first definition will be more concrete
but relies on some choices and a cocycle. The second one will be more pleasant but more
abstract.

Proposition 7.1. There is a continuous G-equivariant map � WM.G/! xH such that for
any � 2 @H, M� D �

�1.¹�º/ is a minimal G� -flow and thus a minimal R-flow.

Proof. The existence of the map � follows directly from the definition of the universal
minimal flow.

For � 2 @H, M� D �
�1.�/ is a closed G� -invariant subspace. Let N be some closed

minimal G� -invariant subspace of M� . Let m 2 N and y 2 M� . By minimality of the
action of G on M.G/, y 2 G �m, so there is a net .g˛m/ converging to y with g˛ 2 G.
By continuity of � , g˛G� converges to G� in G=G� . So there is a net .g0˛/ with g0˛ 2 G�
such that g˛g0˛ converges to the identity inG. By compactness ofN , there is a subnet .g0

ˇ
/

such that .g0
ˇ
/�1m converges to m0 2 N . Now gˇm D .gˇg

0
ˇ
/.g0

ˇ
/�1m converges to m0

and thus y D m0 2 N . So M� is a minimal G� -flow.

Definition 7.2. Let .X;UX / be a uniform space and G a topological group with its right
uniformity. An action by uniform isomorphisms is bounded if for any U 2UX there is an
open neighborhood V � G such that for any x 2 X , V � x � U.x/.

Let us emphasize that a bounded action is continuous and any continuous action on a
compact space is bounded [32, Remarks 2.17]. We include a proof for completeness. One
can also find this result in [10, Proposition 3.3]. The same notion appeared under the name
motion equicontinuity in [3].

Lemma 7.3. LetX be a compact space with its unique compatible uniform structure. Any
continuous action G �X ! X is bounded.
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Proof. Let U be some entourage in X . By continuity of the action, for any x 2 X , there
is an identity neighborhoodWx in G and Vx � U entourage such that for any g 2Wx and
y 2 Vx.x/, g.y/ 2 U.x/. By compactness, there is x1; : : : ; xn such that Vx1.x1/ [ � � � [
Vxn.xn/ D X . Let us define W D Wx1 \ � � � \Wxn . For any x 2 X , there is xi such that
.x; xi / 2 Vxi and thus, for g 2 W , .gx; xi / 2 U . So .gx; x/ 2 U 2.

For a continuous actionG ÕX on a uniform space, it is natural to ask when the action
extends to the completion xX of X . If X is precompact, the boundedness of the action is
required. Boundedness is actually a sufficient condition and such a result is well known
by experts, see for example [26, Lemma 4.5].

Lemma 7.4. Let X be a uniform space and let us assume that G is a topological group
with a bounded action on X by uniform isomorphisms. Then this action extends to a con-
tinuous G-action on xX .

Proof. Each element of G is a uniform isomorphism of X and thus extends uniquely
to a uniform isomorphism of xX . So we get an action of G by uniform isomorphisms.
By definition of the uniform structure on the completion, the extended action is bounded
as well and thus continuous.

Let M be some minimal R-flow with a free orbit (for example, the universal minimal
flow M.R/). This orbit can be identified with the group R and the action R Õ M extends
the action by addition. So we denote this action additively. We aim to describe the univer-
sal minimal G-flow as some G-equivariant compactification of the homogeneous space
G=H� , where � 2 @H.

Let us denote by � WG=H� ! G=G� the quotient map and ˇWG=H� ! R � M be
the map gH� 7! ˇg�.gx0; x0/, which is well defined because H� is exactly the stabi-
lizer of the Busemann function associated to � . Actually, for h 2 H� , ˇgh�.ghx0; x0/ D
ˇgh�.ghx0; gx0/C ˇgh�.gx0; x0/ D ˇ�.hx0; x0/C ˇg�.gx0; x0/ D ˇg�.gx0; x0/.

We denote by U the smallest uniform structure on G=H� making � and ˇ uniformly
continuous maps and let G=H� be its completion with respect to U. By definition, ˇ and
� extends to uniformly continuous maps on G=H� .

Remark 7.5. The map ˇ �� WG=H�!M �G=G� is injective and uniformly continuous
with dense image. So, the completion G=H� is isomorphic with M � 1G=G� as uniform
space ( 1G=G� is the completion of G=G� with respect to the right uniformity).

Proposition 7.6. The uniform space G=H� 'M � 1G=G� is a minimal G-flow.

Proof. It suffices to prove that G acts continuously and the action is minimal. Compact-
ness is immediate.

Let us start by observing that � is G-equivariant by definition and

ˇ.hgH�/ D ˇ.gH�/C c.h; g�/; (7.1)
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where c is the cocycle cWG � @H! R, c.h; �/ D ˇh�.hx0; x0/ D ˇ�.x0; h�1.x0//. The
cocycle relation is c.gh; �/ D c.g; h�/C c.h; �/. Let us observe that the restriction of ˇ
on G� coincides with the Busemann homomorphism ˇ� defined above. In particular,
ˇ.H�/ D 0 2 R. The action on M �G=G� is given by the following formula:

g.m; �/ D .mC c.g; �/; g�/:

Equation (7.1) shows that the map ˇ � � is G-equivariant.
Let us show that the action by left multiplications G Õ G=H� extends to a continuous

G-action on its completion. Thanks to Lemma 7.4, it suffices to prove that G acts bound-
edly by uniform isomorphisms onM �G=G� . By compactness, we already know that the
actions R Õ M and G Õ 1G=G� are bounded. In particular, for any entourage V in M ,
there is " > 0 such that for any m 2M and r 2 R, if jr j < ", then mC r 2 V.m/.

Since c.g; �/ D ˇ�.x0; g
�1x0/, jc.g; �/j � d.x0; gx0/. Let us fix .m; �/ 2 M �

G=G� . For any " > 0, if g is the neighborhood of the identity ¹g 2 G; d.gx0; x0/ < "º,
jc.g; �/j < " and thus the action G Õ M �G=G� is bounded.

Let us prove minimality. For x; y 2 G=H� , we aim to show that y 2 Gx. First assume
that x; y 2 ��1.G=G�/. Since G=G� is a homogeneous G-space and � is equivariant,
we may assume that �.x/ D �.y/ D G� . Let .r˛/ be a net of real numbers such that
ˇ.x/C r˛ converges to ˇ.y/ (such a net exists by minimality of the action R Õ M ). Let
.g˛/ be a net of transvections along a geodesic line with � in its boundary at infinity such
that ˇ�.g˛x0; x0/ D r˛ for all ˛. So ˇ.g˛x/ D ˇ.x/C r˛ ! ˇ.y/ and thus g˛x ! y.

Now assume that y 2 ��1.1G=G� nG=G�/ and x 2 ��1.G=G�/. By the above argu-
ment, it suffices to deal with the case where ˇ.x/Dˇ.y/. Let �n be a sequence of rotations
centered at x0 such that �n.�.x//! �.y/. Since for any n and any �, c.�n; �/ D 0, one
has that ˇ.�nx/ D ˇ.x/ for any n and thus �nx ! y. Thus, we showed that a point
x 2 ��1.G=G�/ has a dense orbit.

So it remains to show that for some x 2 ��1.1G=G� n G=G�/, there is y 2 Gx and
�.y/ 2 G=G� . It suffices to consider some sequence gn such that gn�.x/ converges
to some point in G=G� and extract a subnet g˛ to guarantee that ˇ.g˛x/ converges as
well.

Remark 7.7. The cocycle cWG �G=G� ! R extends to a cocycle xcWG � 1G=G� ! R via
the formula xc.g; x/ D �yx;1.gx0/ � �yx;1.x0/, where �yx;1 is defined in equation (2.2) and
yx 2 D is the point corresponding to x 2 xH ' 1G=G� .

Now, let us present the suspension as a quotient. On the space G �M , we consider
the product uniform structure given by the right uniformity on G and the unique uni-
form structure compatible with the topology on M . The group G� acts on this space by
h � .g;m/D .gh�1; hm/. We denote by� the equivalence relation induced by this action.
Let R D ¹.x; y/; x � yº � .G �M/2. The equivalence relation is weakly compatible
with the uniform structure if for any entourage D, there is an entourage D0 such that
D0 ıR ıD0 � R ıD ıR (see [23, Condition 2.13]).
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Lemma 7.8. The equivalence relation � is weakly compatible with the uniform structure
on G �M .

Thanks to this weak compatibility, the quotient uniform structure on .G �M/=G� is
well defined. Moreover, if Z is a any uniform space, a function f W .G �M/=G� ! Z is
uniformly continuous if and only if f ı pWG �M ! Z is uniformly continuous, where
pWG �M ! .G �M/=G� is the projection map.

Proof of Lemma 7.8. Let U be some neighborhood of the identity in G (thought as the
entourage ¹.g;h/; gh�1 2 U º inG) and V be some entourage ofM . LetD be the product
entourage. Then R ıD ıR is®

..g;m/; .ug.hh0/�1; n//; g 2 G; h; h0 2 G� ; u 2 U; .h
0m; h�1n/ 2 V

¯
:

Similarly, for U 0, V 0 and D0 the associated product entourage, D0 ıR ıD0 is[
n02M

®
..g;m/; .u0ugh�1; n//; g 2 G; .m; n0/ 2 V 0; .n0; hn/ 2 V 0; u; u0 2 U 0; h 2 G�

¯
:

So if one chooses U 0 and V 0 such that .U 0/2 � U and .V 0/2 � V , one has D0 ı R ı
D0 � R ıD ıR (it suffices to take h0 D e in R ıD ıR and replace h by h�1).

The left multiplication on the first factor G Õ G �M commutes with the action
of G� and thus gives a continuous action by uniform isomorphisms on the quotient space
.G �M/=G� . The quotient space .G �M/=G� is the classical suspension of the action
G� Õ M . See [22, Chapter I, §1.3.j] for generalities about suspensions. We call its com-
pletion, the completed suspension and denote it by S.M/.

Proposition 7.9. The space S.M/ is compact and isomorphic to 1G=G� �M as G-flow.

Proof. Let us show that the suspension is precompact. That is, for any entourageD, there
are finitely many xi 2 S.M/ such that S.M/ D

S
i D.xi /. Basic entourages of S.M/

are given by p � p.U � V / where U is an open neighborhood of the identity and V is an
entourage inM . Let us fixU and V . By coprecompactness ofG� inG, there are g1; : : : ;gn
such that

Sn
iD1 UgiG� D G and by compactness of M , one can find m1; : : : ; mk such

M D
Sk
jD1 V.mj /.

We claim that
S
i;j p.Ugi � V.mj // D S.M/, which proves the precompactness of

S.M/. Any element of S.M/ is some p.g;m/ for some .g;m/ 2G �M . There is u 2 U ,
i � n and h 2 G� such that g D ugih�1. Since h.

S
j V.mj /// DM , there is j such that

m 2 h.V .mj // and thus p.g;m/ 2 p.Ugi � V.mj //.
Let us prove the boundedness of the action G Õ .G �M/=G� and thus obtain an

extended action G Õ S.M/. Let us fix a basic entourageD D p � p.U � V /. For u 2 U
and p.g;m/ 2 .G �M/=G� , up.g;m/ D p.ug;m/ 2 D.p.g;m// and thus the action is
bounded. So S.M/ is a G-flow.
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The map

'W G �M ! 1G=G� �M; .g;m/ 7! .gG� ; mC c.g; �//

is G-equivariant, invariant for the action of G� and uniformly continuous. So it induces
a uniformly continuous G-equivariant map .G �M/=G� ! 1G=G� �M (that we denote
by ' as well) and thus a G-equivariant uniformly continuous map S.M/! 1G=G� �M .
Its image is dense and compact, so it is surjective.

Let us prove that ' has a uniformly continuous inverse on its image. On G=G� �M ,
the inverse map  of ' is given by .gG� ; m/ 7! p.g;m � c.g; �//. Let U � V be some
basic entourage of G �M . Let U 0 be an open neighborhood of the identity such that
.U 0/2 � U and for any u 2 U 0, � 2 @H and m 2M , mC c.u; �/ 2 V.m/ (such U 0 exists
by boundedness of the action G� Õ M ).

By precompactness of G=G� , one can find some group elements g1; : : : ; gn 2 G such
that

Sn
iD1 U

00giG� D G, where U 00 is some open neighborhood of e with .U 00/2 � U 0.
The maps

m 7! m � c.gi ; �/

are uniformly continuous and thus one can find V 0 2 UM such that .m; n/ 2 V 0 implies
.m � c.gi ; �/; n � c.gi ; �// 2 V for all i . Now, let us consider .gG� ; m/; .hG� ; n/2
G=G� �M such that g 2 U 00hG� and .m; n/ 2 V 0. There is gi such that g; h 2 U 0giG� .
One has  .gG� ;m/D p.ugi ;m� c.ugi ; �// and  .hG� ; n/D p.vgi ; n� c.vgi ; �// for
some u; v 2 U 0. In particular, ugi .vgi /�1 2 .U 0/2, .m � c.ugi ; �/; m � c.gi ; �// 2 V ,
.m � c.gi ; �/; n � c.gi ; �// 2 V and .n � c.gi ; �/; n � c.vgi ; �// 2 V . So . .gG� ; m/;
 .hG� ; n// 2 p � p.U � V

3/. In particular,  is uniformly continuous and extends to
a continuous inverse 1G=G� �M ! S.M/ and thus the two G-flows are isomorphic.

Theorem 7.10. The universal minimal G-flow is S.M.R//.

Proof. Let M.G/ be the universal minimal G-flow. Let M� given by Proposition 7.1.
There is aG� -equivariant continuous map f WM.R/!M� . Let us define 'WG �M.R/!
M.G/ by '.g;m/ D gf .m/. For h 2 G� , '.gh�1; hm/ D '.g;m/ and we claim that this
map is uniformly continuous. So it defines .G �M.R//=G� !M.G/, a uniformly con-
tinuous map, and it extends to a map S.M.R//! M.G/. By construction, it is clearly
G-equivariant. So, by uniqueness of the universal minimal flow, this map is a homeomor-
phism between M.G/ and S.M.R//.

Let us prove the uniform continuity claim. Since 1G=G� �M.R/ and S.M.R// are
isomorphic, it suffices to prove that ' is uniformly continuous on G=G� �M.R/ seen as
a subset of S.M.R//. Actually, '.gG� ; m/ D gf .m � c.g; �// for .gG� ; m/ 2 G=G� �
M.R/. By precompactness of G=G� �M.R/, it suffices to prove that the map is Cauchy
continuous, that is, it maps Cauchy filters to Cauchy filters or equivalently, Cauchy nets
to Cauchy nets [35, Theorem 3]. So, let .g˛G� ;m˛/˛ be some Cauchy net and V be some
symmetric entourage inM.G/. By boundedness of the actionG ÕM.G/, there is a sym-
metric open neighborhood of the identity U such that for any x 2M.G/, Ux � V.x/.
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For each ˛, let us choose a representative g˛ 2 G of g˛G� such that g˛ 2 Gx0 , the
stabilizer of some point x0 2H. This way, c.g˛; �/D 0 for all ˛ and thus '.g˛G� ;m˛/D
g˛f .m˛/. Let us denote by u˛;ˇ the rotation centered at x0 such that u˛;ˇgˇ � D g˛�. So
g˛Du˛;ˇgˇk˛;ˇ with k˛;ˇ 2Gx0 \G� �H� . SinceH� fixes pointwiseM� , '.g˛;m˛/D
u˛;ˇgˇf .m˛/.

Since the net is Cauchy, there is ˛0 such that for all ˛; ˇ � ˛0, u˛;ˇ 2 U , thus, for
˛; ˇ � ˛0, .g˛f .m˛/; g˛0f .m˛// 2 V and .g˛0f .mˇ /; gˇf .mˇ // 2 V .

Since .m˛/ is Cauchy and g˛0 ı f is uniformly continuous, .g˛0f .m˛//˛ is Cauchy
as well and thus there is ˛1 � ˛0 such that for ˛; ˇ � ˛1, .g˛0f .m˛/; g˛0f .mˇ // 2 V .
Thus, for ˛; ˇ � ˛1,

.g˛f .m˛/; gˇf .mˇ // 2 V
3

and ' is Cauchy continuous.

Since M.R/ is not metrizable (Remark 5.7), we deduce the following corollary. This
non-metrizability can also be deduced from Lemma 7.12 below and results in [41].

Corollary 7.11. The universal minimal space M.G/ is not metrizable.

We conclude this subsection by observing that M.G/ does not coincide with the
Samuel compactification of some homogeneous space G=H with H extremely amenable
subgroup. These maximal extremely amenable subgroups are the stabilizers Gx of a point
x 2 H or the horospherical groups H� for � 2 @H. So it suffices to prove the following
statement.

Lemma 7.12. The Samuel compactifications Sam.G=H/ for a closed subgroup H � Gx
or H � H� are not minimal G-spaces.

Proof. We rely on [41, Proposition 6.6] where a characterization of minimality of the
action of G on Sam.G=H/ for a closed subgroup H � G is given. More precisely, the
action is minimal if for any open neighborhood of the identity U � G, UH is syndetic
in G, i.e., finitely many left3 translates of UH cover G. So we prove that for some U ,
UK and UH� are not syndetic since it implies that UH is not syndetic. Let us take U D
¹g 2 G; d.gx; x/ < 1º. Let F be any finite subset of G.

Let us start withGx . An element inF UGx sends x to a point at distance at most 1 from
a point f x with f 2 F . SinceG acts transitively on H and H is unbounded, F UGx ¤ G.

Let us continue with H� , denote R D maxf 2F d.f x; x/ and let g be the transvection
along the geodesic line L through x to � with translation length ` > 0. Assume that G D
F UH� . Thus, let us write g D f uh and denote l D f u with f 2 F , u 2 U and h 2 H� .
So, l D gh�1 2 G� and

d.l.x/; x/ � d.l.x/; f .x//C d.f .x/; x/ � d.u.x/; x/C d.f .x/; x/ � 1CR:

3We are left-handed where Zucker is right-handed.
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Now, h D l�1g and thus h.L/ D l�1.L/. Let ˇ� be the Busemann function with
respect to �. Since l�1.x/ and h.x/ are on the same geodesic line toward the point �,

d.l�1.x/; h.x// D jˇ�.l
�1.x/; h.x//j D jˇ�.l

�1.x/; x/j � d.l.x/; x/:

Therefore,

d.x; h.x// � d.x; l�1.x//C d.l�1.x/; h.x// � 2d.x; l.x// � 2.RC 1/:

The following inequality gives a contradiction for ` > 3.RC 1/:

d.g.x/; x/ � d.lh.x/; x/ � d.lh.x/; l.x//C d.l.x/; x/

� 2.RC 1/C .RC 1/ D 3.RC 1/:

8. Minimality of the group topologies

8.1. Hyperbolic isometries

In this subsection, we prove Theorem 1.5, that is, Isom.H/ with its Polish topology is
minimal. Our proof is inspired by the original proof of the minimality of the orthogonal
group with its strong operator topology by Stojanov [36]. But the induction in Stojanov
proof will be short-lived since we will only use the first step. Essentially we prove that the
stabilizerG� of a point � 2 @H inG D Isom.H/ is closed andG=G� has a unique compact
G-extension.

We use the same terminology as in [36]. LetX be aG-space. AG-compactification Y
of X is a G-flow with a continuous G-equivariant map X ! Y with dense image. It is,
moreover, a G-extension if it is an homeomorphism on its image.

The stabilizer G� can be identified with the group of Möbius transformations of the
Hilbert space H and thus splits as the semi-direct product .R � O/ Ë H , where .H ;C/

is the group of translations, O is the orthogonal group and R corresponds to positive
homotheties. See [31, §2].

Proposition 8.1. The only non-trivial G-compactification of the sphere @H' G=G� is xH
with its weak topology.

Proof. Let @H ! C be such a G-compactification where C is not reduced to a point.
The action G Õ C is bounded by compactness of C . Thus the map @H ' G=G� ! C

is uniformly continuous, with respect to the right uniformity on G=G� , and extends to
a surjective G-map xH ' c@H! C . It suffices to prove that this map is injective to get that
C ' xH. It is injective on @H because otherwise the double transitivity of G Õ @H (see,
for example, [9, Proposition 2.5.9]) would imply that the image of @H collapses to a point.
Since G acts transitively on pairs .x; �/ 2 H � @H, the same argument shows that x and �
cannot have the same image.
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Assume that two distinct points x, y of H are sent to the same point. We claim that the
image of H is reduced to this point. Actually, the stabilizer of a point acts transitively on
each sphere around this point. So the whole sphere of radius d.x; y/ around x is mapped
to a unique point. For any r � 2d.x; y/, this sphere contains a point at distance r from y.
So, by the same argument, all the points in the closed ball of radius 2d.x; y/ is mapped to
a unique point. A proof by induction shows that for any n 2 N, the closed ball of radius n
around xn is mapped to the same point in C where xn is x if n is even and y otherwise.
Since H is dense in xH, this implies that the image is a point.

Remark 8.2. This proposition proves that the sphere @H is a weakly minimal G-space as
defined in [36]. This means that any G-compactification is a G-extension. Proposition 8.1
can be put in parallel with the weak minimality of the Hilbert sphere and the projective
space as O-spaces where O is the orthogonal group of H [36, Proposition 4.2].

Lemma 8.3. The subsets VP D ¹vp; v 2 V; p 2 P º, where P is the stabilizer of a point
in @H and V is an open neighborhood of the identity, is a sub-basis of identity neighbor-
hoods in G.

Proof. It suffices to prove that for x 2 H and " > 0, there is an identity neighborhood V
and point stabilizers P1, P2, P3 such that for all g 2 VP1 \ VP2 \ VP3, d.gx; x/ < ".

Let X be a two-dimensional totally geodesic submanifold of H such that x 2 X .
Let �1; �2 2 @X such that x lies on the geodesic line between these two points at infinity.
Let �3 2 @X distinct from �1 and �2. Let x1, x2 be distinct points on the geodesic .�1; �2/
and x3 be a point on .x; �3/. Let ˛ > 0 and V˛ D ¹g 2 G; d.gxi ; xi / < ˛ 8i D 1; 2; 3º.
For any neighborhoodW of �i , there is ˛ > 0 such that for any g 2 V˛ , g�i 2W and thus
for any g 2 V˛Pi , g�i 2 W .

We claim that for any " > 0 one can find ˛ small enough such that d.gx; x/ < " for
any g 2

T
i V˛Pi . Assume this is not the case, then we can find a sequence .gn/ such

that d.gnx; x/ > " for all n 2 N and for all ˛ > 0, gn 2
T
i V˛Pi eventually. Since the

pointwise stabilizer of the totally geodesic hyperbolic plane containing �1, �2, �3 acts
transitively on totally geodesic subspaces of dimension 5 containing �1, �2, �3, we may
assume that the gn�i ’s belong to the boundary of a fixed totally geodesic subspace Y of
dimension 5 and actually that gn lies in the image of Isom.Y / in G for all n 2 N. Since
the action of Isom.Y / on triples of distinct points of @Y is proper (this is one of the
first examples of convergence groups), the sequence .gn/ is bounded in Isom.Y / and by
local compactness of Isom.Y /, one can extract a converging subsequence with some limit
g 2 Isom.Y /. Since g fixes each �i , the restriction of g on X is trivial and thus gx D x.
So we have a contradiction.

Let us recall a standard fact about topological groups.

Lemma 8.4. Let .G; �/ be a topological group and H � G be a closed subgroup, then
the normalizer of H in G is closed.
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Proof. For h 2 H , let 'h.g/ D ghg�1. The map 'hWG ! G is continuous and the nor-
malizer of H is

T
h2H '

�1
h
.H/ and thus closed.

Let � be any Hausdorff group topology on G D Isom.H/ and � 2 @H.

Lemma 8.5. The subgroup of translations T� ' H in G� is a closed subgroup of .G; �/.

Proof. Let t be some non-trivial translation ofG� . If g 2 G commutes with t , then it fixes
the unique fixed point in @H of t , which is �. So its centralizer is a closed subgroup of G
included in G� . From the semi-direct structure of G� , it easy to see that the intersection of
the centralizers of all t 2 T� is exactly T� and thus this group is closed in G.

Proposition 8.6. The subgroup G� is a closed subgroup of .G; �/.

Proof. The group G� is the normalizer of T� . Actually, T� is normal in G� and con-
versely, any element normalizing T� fixes the unique point at infinity fixed by all elements
in T� .

We can now prove that the Polish topology on G is minimal.

Proof of Theorem 1.5. Assume that � is a Hausdorff group topology coarser than the Pol-
ish topology � on G. Let P be the stabilizer of a point in @H which is a closed subgroup
of G for � by Proposition 8.6.

Let us endow G=P with the quotient topology �P obtained from � . Let C be some
compact G-extension of G=P (which exists by [36, Lemma 4.4]). By Proposition 8.1,
C D xH and thus the quotient topologies �P and �P coincide on G=P . So, for any identity
neighborhood V for � , VP is an identity neighborhood for � . By Lemma 8.3, this implies
that � is finer than � and thus � D � .

8.2. Euclidean isometries

We now prove that the Polish group Isom.H / is minimal. In finite dimension, the same
result is obtained in [25] with very different methods since the group is locally compact.
We use the semi-direct decomposition Isom.H / D O Ë H where O is identified to the
stabilizer of some origin in the Hilbert space H and H is identified to the subgroup of
translations. In this identification, the action of O on the Hilbert space corresponds to the
action by conjugations on the subgroup of translations.

The abelian group .H ;C/ (with the norm topology) is not minimal. For example, the
weak topology is a coarser group topology. To get the minimality of G D Isom.H /, the
action of the rotations in O on H plays a key role and we use ideas from [12] where it is
proved that the affine group of the real line R is minimal whereas the group .R;C/ with
its usual topology is not minimal.
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Proof of Theorem 1.7. Let � be the Polish topology on G D Isom.H / and � be a coarser
Hausdorff group topology. We first observe that the stabilizer of any point is isomorphic
to O and by minimality of the strong topology on O , � jO D � jO .

Let u be a unit vector in H and �u 2 O be the associated symmetry fixing pointwise
the orthogonal of u. A simple computation shows that for any t 2 H , the commutator
Œt; �u� is 2ht; uiu. Let us denote by Ru the line spanned by u in H . It is a closed subgroup
of .G; �/ since it is the commutator of the semi-direct product of the stabilizer of u in O
with Ru.

The map
�uW H ! Ru; t 7! Œt; �u�

is a continuous map with respect to � on the domain and the target. Let v be a unit vector
orthogonal to u and let �� be the rotation of angle � in the base .u; v/. The map

 W R �H ! Ru; .�; t/ 7! �u.���u.t/�
�1
� /

is continuous and �u.���u.t/��1� / D 4 cos.�/hu; tiu.
Let U be an identity neighborhood of .Ru; �/ such that U � U ¤ Ru (which exists

since � is Hausdorff). By continuity of  , there is �0 > 0 (smaller than �=2) and V an
identity neighborhood of H such that for any .�; t/ 2 ���0; �0Œ � V ,  .�; t/ 2 U . Let
" D min¹cos.�0=2/ � cos.�0/; 1 � cos.�0=2/º. Since  .�; t/ �  .�0=2; t/ 2 U � U for
all .�; t/2 ���0; �0Œ�V , for all t 2 V , ��4"hu; tiu;4"hu; tiuŒ2U �U . SinceU �U ¤G,
¹hu; ti; t 2 V º is bounded. So the restriction of � on Ru has bounded identity neighbor-
hoods and since the restriction of � on Ru is locally compact, � and � coincide on Ru.
Using this fact for all unit vectors u, we get that � is finer than the weak topology on H .

We claim there is a bounded neighborhood of the origin in H for � . Otherwise, one
can find a net .t˛/ of H converging to 0 for � and such that kt˛k!1. We observe that t˛
does not lie in Ru for ˛ larger than some fixed ˛0 (otherwise, it would contradict the weak
convergence).

Let �˛ be the rotation in the plane spanned by u and t˛ with angle �˛ such that
h�˛.t˛/; ui ! C1 and �˛ ! 0. It is possible to find such an angle �˛ because

h�˛.t˛/; ui D sin.�˛/ht˛; u˛i C cos.�˛/ht˛; ui;

the unit vector orthogonal to u in the spanned of u and t˛ such that hu˛; t˛i > 0. By weak
convergence, ht˛; ui ! 0 and thus ht˛; u˛i � kt˛k ! C1. So one can choose, for exam-
ple, #˛ D arcsin.log.kt˛k/=ht˛; u˛i/. Since �˛ ! 0, �˛ converges to the identity for the
strong topology. So �˛t˛��1˛ converges to the identity and we have a contradiction with
h�˛.t˛/; ui ! 1.

So there is R > 0 such that the ball B.0;R/ is a neighborhood of 0 in H for � . Since
this is a group topology, there is an open set U containing 0 such that U C U � B.0;R/.
In particular, U � B.0;R=2/. Repeating this argument, we see that the collection of open
balls around the origin is a collection of origin neighborhoods for � . So � and � coincides
on H .
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Since � and � coincide on O ' G=H and on H , they coincide on G thanks to [12,
Lemma 1].

Remark 8.7. This yields another proof of Theorem 1.5. One can prove first that the Polish
topology on the group of Möbius transformations on H , i.e., the group of similarities
.R �O/ Ë H is minimal (which follows easily from Theorem 1.7) and combine this fact
with Proposition 8.1 and [12, Lemma 1] to get the minimality of Isom.H/.

9. Existence and lack of dense conjugacy classes

A simple idea to separate conjugacy classes is to find a continuous non-constant conjugacy
invariant. For finite-dimensional linear groups, the spectrum is such an invariant. In our
geometric setting, a natural invariant is the translation length. For a metric space X and
g 2 Isom.X/, the translation length is

`.g/ D inf
x2X

d.gx; x/:

Lemma 9.1. The translation length is upper semi-continuous on Isom.X/ for the point-
wise convergence topology.

Proof. This follows from the general fact that an infimum of continuous functions is upper
semi-continuous.

Corollary 9.2. For any separable metric space X , if g 2 Isom.X/ has a dense conjugacy
class, then `.g/ D 0.

Proof. Let gn be a sequence in the conjugacy class of g converging to the identity. Since
`.g/ D lim supn!1 `.gn/ � `.Id/ D 0, we have the result.

The following theorem is surely well known but we provide a proof since we use some
elements constructed in the proof.

Proposition 9.3. The orthogonal and the unitary groups of a separable Hilbert space H

have a dense conjugacy class.

Lemma 9.4. Let H be a real or complex Hilbert space and U.H / its orthogonal or uni-
tary group. If A 2 U.H / and x1; : : : ; xk 2H , then there is an operator A0 2 U.H / which
coincides with A on each xi and which is the identity on a subspace of finite codimension.

Proof. Without loss of generality, we may assume that .x1; : : : ; xk/ is free. Let e1; : : : ; ek
be the basis obtained by the Gram–Schmidt process and let e01; : : : ; e

0
k

its image by A. We
define F to be the (finite-dimensional) span of the union of these two families. By com-
pleting these two orthonormal families, one can find an orthogonal or unitary operator U1
of F mapping ei to e0i and thus xi to U0.xi /. Extending this operator by the identity
on F ?, we get A0.
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Proof of Proposition 9.3. We prove the theorem in the complex case. In the real case, the
proof is the same, using rotations instead of complex homotheties with unitary ratio.

Let .�n/ be a sequence of complex numbers in the unit circle that is dense (in the
real case, we choose rotations with angles the arguments of the �n). Let us write H as an
infinite orthogonal sum ˚nHn, where Hn is a closed subspace of infinite dimension. Let
us define a unitary operator U , that is, the multiplication by �n on each Hn. We claim that
the conjugacy class of U is dense in U.H /. That is, for any U0 2 U.H /, x1; : : : ; xk in
the unit sphere of H and " > 0, there is U 0 in the conjugacy class of U such that for any
i D 1; : : : ; k,

kU 0.xi / � U0.xi /k < ": (9.1)

Let us apply Lemma 9.4 to U0 and x1; : : : ; xk . We get an operator U 00 that coincides
with U0 on the span of the xi ’s and that is trivial on a finite-codimensional subspace. Let
us denote by U1 the restriction of U 00 on F , the orthogonal of this finite-codimensional
subspace.

There is an orthonormal basis f1; : : : ; fl of F such that U1 acts diagonally in this ba-
sis, multiplying each fj by some j̨ 2S

1. For each j , choose �i.j / such that j j̨ � �i.j /j<
"=k. Now, find a unitary operator T mapping some unit vector of Hi.j / to fj for each j
and set U 0 to be T UT �1. This way, each fj is an eigenvector of U 0 with eigenvalue �i.j /
and thus for each x in the unit sphere of F , kU 0.x/�U1.x/k< ". Restricting this equality
to the xi ’s, we get inequality (9.1).

Theorem 9.5. The Polish group Isom.H / has a dense conjugacy class.

Proof. We prove that the element U constructed in the proof of Theorem 9.3 has a dense
conjugacy class in Isom.H /. Thanks to Lemma 9.4 and the fact that translations act tran-
sitively, it suffices to approximate elements g such that g preserves a finite-dimensional
linear subspace and acts trivially on its orthogonal. Let us recall that all isometries of
finite-dimensional Hilbert spaces are semisimple, that is, the infimum in the definition of
the translation length is actually a minimum.

If g has a fixed point, it is conjugated to an element of O , the stabilizer of the origin
in H . In this case, it lies in the closure of the conjugacy class of U by Theorem 9.3.

Now assume that `.g/ > 0. Let us write g.x/ D Ax C b, where A 2 O and b 2 H .
The Hilbert space H splits orthogonally as im.I � A/˚ ker.I � A/. Let us set A0 to be
the restriction of A to im.I � A/ and let b D b0 C b1 be the decomposition of b with
respect to this splitting. The isometry g acts diagonally with respect to this splitting as
g0 � g1 where g0.x0/ D A0x0 C b0 and g1.x1/ D x1 C b1. Since b0 2 im.I � A0/, g0
has a fixed point. Up to conjugating g by a translation along im.I � A/, we may assume
that this fixed point is 0, that is, b0 D 0. Actually, kb1k D `.g/ and thus b1 ¤ 0.

Thanks to Theorem 9.3, it suffices to show that for any " > 0 and x1; : : : ; xk 2 H ,
one can find an elliptic element h, that is, an element with a fixed point, such that for any
i 2 ¹1; : : : ; kº, kg.xi / � h.xi /k < ". Up to projecting these vectors on im.I � A/ and
ker.I � A/, we can assume they lie in im.I � A/ or in ker.I � A/.
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Let g00 2 O.H / acting like g0 on the xi ’s in im.I � A/ and being trivial on a finite-
codimensional subspace F containing ker.I � A/. Such an element is given by Lem-
ma 9.4 for g0.

Now choose a unit vector u 2 F orthogonal to all the xi ’s and b1. Fix r such that all
projections of the xi ’s on Rb1 and b1 have norm at most "r

b1
. Choose R large enough such

thatR.1� 1=
p
1C r2=R2/ < ". Let c be the pointRu. Let � be the rotation with center c

in plane spanned by .u; b1/ and angle ˛1 such that sin.˛1/ D b1
R

. In the frame centered
at c with bases .u; b1/, the point � b1

kb1k
has coordinates .R;�/. Its image by the translation

of vector b1 is .R; � C b1/ and its image by � is .R cos.˛1/ � � sin.˛1/; R sin.˛1/ C
� cos.˛1//. With our assumptions, for � corresponding to the projection of one of the xi ’s,
one has � sin.˛1/ � "r

b1
�
b1
R
< ". Since

jR �R cos.˛1/j < "; j� � � cos.˛1/j < " and R sin.˛1/ D b1;

the images of the projections of the xi ’s on Rb1 by the translation or the rotation are at
distance at most

p
5".

Let us define h to coincide with g00 on F ? and � on F . By construction, for any xi ,

kg.xi / � h.xi /k <
p
5"

and this finishes the proof.

Remark 9.6. Some Polish groups, like �1, have, moreover, generic elements that are ele-
ments with a comeager conjugacy class. One can find in [1, Discussion 5.9] that Isom.H /

nor the unitary group have generic elements.

Theorem 9.7. The Polish group Isom.H/ has no dense conjugacy class.

Proof. By Corollary 9.2, if there are elements with a dense conjugacy class, then those
elements are neutral, that is, they have vanishing translation length. These elements pre-
serve some sphere or horosphere.

Let " > 0 and g be a transvection with positive translation length. Let us fix x1, x2, x3
on the axis of g such that x2 D g.x1/ and x3 D g.x2/. For a contradiction, assume
there is a neutral element h 2 Isom.H/ such that d.h.xi /; g.xi // < "=2 for i D 1; 2.
So d.h2.x1/; x3/ < ". If c (resp. �) is a fixed point of h in H (resp. in @H), x2, x3 are
at most " from the sphere (resp. the horosphere) centered at c (resp. at �) through x1. Up
to using a rotation around the axis of g, we may assume c (resp. �) lies in some fixed
two-dimensional totally geodesic subspace H2.

Letting "! 0 and upon extracting a converging sequence for the centers in H2, we
find a sphere or a horosphere containing x1, x2, x3 in H2. But this impossible because
in the Poincaré ball model for H2, the axis of the transvection may be represented by
a straight line, a sphere or an horosphere is a circle and the intersection of a circle and
a line contains at most 2 points.
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