
Groups Geom. Dyn. 17 (2023), 985–992
DOI 10.4171/GGD/719

© 2023 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Quotients by countable normal subgroups are hyperfinite

Joshua Frisch and Forte Shinko

Abstract. We show that for any Polish group G and any countable normal subgroup � G G, the
coset equivalence relation G=� is a hyperfinite Borel equivalence relation. In particular, the outer
automorphism group of any countable group is hyperfinite.

1. Introduction

The purpose of this paper is to study the complexity of quotient groups G=� from the
point of view of descriptive set theory. In particular, we focus on the case whereG is Polish
and � is a countable normal subgroup. If � is a countable group, then the automorphism
group of � has a natural Polish group structure, and thus the outer automorphism group
of � is an example, as is any countable subgroup of an abelian group.

A major recent program is the study of complexity of “definable” equivalence rela-
tions. Results in this area are often interpreted to be statements about the difficulty of
classification of various natural mathematical objects. A particular focus of the theory of
definable equivalence relations, and one where much progress has recently been made, is
the study of Borel equivalence relations for which every class is countable, the so-called
countable Borel equivalence relations. There is a natural preorder on Borel equivalence
relations, called Borel reduction, whereE reducing to F is interpreted asE being “easier”
than F . The theory of countable Borel equivalence relations has been applied in numerous
areas of mathematics. For example, the classification of finitely generated groups [14], of
subshifts [2], and the arithmetic equivalence of subsets of N [9] are all equally difficult. In
fact, they are equivalent to the universal countable Borel equivalence relation E1, which
is the hardest countable Borel equivalence relation. On the other hand, many other classi-
fication problems are easier. For example, classification of torsion-free finite rank abelian
groups is substantially below E1 [12, 13].

Countable Borel equivalence relations can be characterized as the equivalence rela-
tions arising from continuous actions of countable groups on Polish spaces, and thus
have very strong interplay with dynamics and group theory. By a foundational result of
Slaman–Steel and Weiss [11,15], the equivalence relations which arise from a continuous
(or more generally, Borel) action of Z are exactly the hyperfinite equivalence relations,
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which are those which can be written as an increasing union of finite Borel equivalence
relations. More generally, it has been shown that every Borel action of a countable abelian
group [5], and even of a countable locally nilpotent group [10], is hyperfinite. It is an
open question whether this holds for all countable amenable groups. By a theorem of
Harrington–Kechris–Louveau [6], the hyperfinite equivalence relations only occupy the
first two levels of the hierarchy of countable Borel equivalence relations on uncountable
Polish spaces under Borel reduction, and thus are considered to have low Borel comp-
lexity.

In general, ifG is a Polish group and � �G is a countable subgroup, thenG=� can be
rather complicated; we will give a non-hyperfinite example in Section 2. However, perhaps
surprisingly, if � is a normal subgroup ofG, then the coset equivalence relationG=� must
have low Borel complexity.

Theorem 1. Let G be a Polish group and let � be a countable normal subgroup of G.
Then G=� is hyperfinite.

Notably, in contrast to the aforementioned results, we require no hypotheses on the
algebraic structure of the acting group. The proof proceeds by showing that the equiv-
alence relation is generated by a Borel action of a countable abelian group, which is
sufficient by the aforementioned theorem of Gao and Jackson. It is worth noting that it is
comparatively easy (albeit still novel) to show that the equivalence relation is an increas-
ing union of hyperfinite equivalence relations (in particular, hyperfinite with respect to any
Borel measure), but it is a very important open problem as to whether this is equivalent to
being hyperfinite.

We obtain as a consequence the following result about outer automorphism groups.

Corollary 2. Let � be a countable group. Then Out.�/ is hyperfinite.

If G is a compact group with a countable normal subgroup � GG, then we also show
that the algebraic structure of � is severely restricted.

Theorem 3. Let G be a compact group and let � be a countable normal subgroup of G.
Then � is locally virtually abelian, i.e., every finitely generated subgroup of � is virtually
abelian.

2. Preliminaries and examples

2.1. Descriptive set theory

A Polish space is a second countable, completely metrizable topological space. A Borel
equivalence relation on a Polish space X is an equivalence relation E which is Borel as
a subset of X �X . A Borel equivalence relation is countable (resp. finite) if every class is
countable (resp. finite). A countable Borel equivalence relation E on X is smooth if there
is a Borel function f WX!R such that xEx0 if and only if f .x/D f .x0/. A Borel equiva-
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lence relationE is hyperfinite (resp., hypersmooth) ifE D
S

nEn, where eachEn�EnC1

(as a subset of X �X ) and each En is a finite (resp., smooth) Borel equivalence relation.
Given a Borel action of a countable group � on a Polish space X , we denote by EX

� the
orbit equivalence relation of � Õ X , the Borel equivalence relation whose classes are the
orbits of the action. We will say that � Õ X is hyperfinite (resp., smooth, hypersmooth)
if its orbit equivalence relation EX

� is hyperfinite (resp., smooth, hypersmooth).
A Polish group is a topological group whose topology is Polish. If G is a Polish group

and H � G is a closed subgroup, then the quotient topology on the coset space G=H is
Polish (see [1, Proposition 1.2.3]).

2.2. Countable subgroups of Polish groups

Let G be a Polish group and let � � G be a countable subgroup. When it is clear from
the context, we will abuse notation and identify G=� with the coset equivalence relation
induced by � Õ G (technically, G=� is induced by the right action G Ô � , but this is
isomorphic to the left action � Õ G via inversion). For example, we will say that G=� is
hyperfinite if � Õ G is hyperfinite.

Note that since the action � Õ G is free, G=� cannot be universal among countable
Borel equivalence relations (see [13, Corollary 3.10]).

Example 4. We give below some examples of G=� and the associated Borel complexity,
for various G and �:

(1) R=Z is smooth since Z�R is a discrete subgroup (see [7, Proposition 7.2.1(iv)]).

(2) R=Q is not smooth, since Q�R is a dense subgroup (see [4, Proposition 6.1.10]).
Similarly, the commensurability relation RC=QC is not smooth. Note that both
are hyperfinite since they arise from Borel actions of countable abelian groups
(see [5, Corollary 8.2]).

(3) Let F2 � SO3.R/ be a free subgroup on two generators. Then SO3.R/=F2 is not
hyperfinite, since the free action F2 Õ SO3.R/ preserves the Haar measure (see
[4, Theorem 7.4.8]).

(4) If � is a countable group, then Inn.�/ is a countable subgroup of Aut.�/, which
is a Polish group under the pointwise convergence topology, and we can consider
the quotient

Out.�/ D Aut.�/= Inn.�/:

For example, when � D Sfin (the group of finitely supported permutations on N),
we have

Out.Sfin/ Š S1=Sfin;

which is hyperfinite and non-smooth.

In the first, second and fourth examples, � is a normal subgroup of G.
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3. Proofs

For any group G and any subset S � G, let CG.S/ denote the centralizer of S in G:

CG.S/ WD ¹g 2 GW 8s 2 S.gs D sg/º:

Note that if G is a topological group, then CG.S/ a closed subgroup of G.

Proposition 5. Let G be a Baire group (i.e., a topological group for which the Baire
category theorem holds), and let � be a finitely generated subgroup of G each of whose
elements has countable conjugacy class in G. Then CG.�/ is open in G.

Proof. Let � D h0; : : : ; ni. Since each i has countable conjugacy class in G, we have
ŒGWCG.i /� � @0, so by the Baire category theorem, CG.i / is nonmeager. Thus by Pet-
tis’s lemma [8, Theorem 9.9], CG.i / is an open subgroup of G, and thus CG.�/ is also
open, since CG.�/ D

T
i�n CG.i /.

As a consequence, under the hypotheses of Proposition 5, if Z.�/ is additionally
assumed to be finite, then � is necessarily a discrete subgroup of G.

When G is a compact group, Proposition 5 implies the following algebraic restric-
tion on � .

Theorem 6. Let G be a compact group and let � be a countable normal subgroup of G.
Then � is locally virtually abelian, i.e., every finitely generated subgroup of � is virtually
abelian.

Proof. Let � be a finitely generated subgroup of � . Then by Proposition 5, CG.�/ is an
open subgroup of G, so since G is compact, the index of CG.�/ in G is finite. Thus since
Z.�/ D � \ CG.�/, the index of Z.�/ in � is finite.

We now prove the main theorem.

Theorem 7. Let G be a Polish group and let � be a countable normal subgroup of G.
Then G=� is hyperfinite.

In the special case where � is an increasing union of finitely generated subgroups
with finite center, this follows from the paragraph following the proof of Proposition 5.
So we are concerned with examples where � is not of this form, such as the quotient
of � �ƒ, where � Š ƒ Š F1, subject to the relation ŒŒı; ��; �� for every ı 2 �, � 2 ƒ,
and � 2 � �ƒ.

Proof. Let � D .k/k<! and denote �k WD h0; : : : ; ki. Let

Ck WD CG.�k/ D CG.0; : : : ; k/

and let Zk WD Z.�k/ D Ck \ �k be the center of �k . By Proposition 5, Ck is an open
subgroup of G.
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Let A WD hZkik<! , the subgroup of G generated by the Zk for all k < !. Then A
is an abelian subgroup of G since each Zk is abelian and since Zk commutes with Zl

(pointwise) for any k < l .
The principal fact we use about A is the following assertion.

Lemma 8. � Õ G= xA is hyperfinite.

Proof. Since xA is a closed subgroup of G, the coset space G= xA is a standard Borel space,
and thus � Õ G= xA induces a Borel equivalence relation.

Every hypersmooth countable Borel equivalence relation is hyperfinite (see [3, Theo-
rem 5.1]), so it suffices to show that � Õ G= xA is hypersmooth. Since � is the increasing
union of .�n/n, it suffices to show for every n that �n Õ G= xA is smooth. In fact, we will
show for every n that every orbit of �n Õ G= xA is discrete, which implies smoothness
(enumerate a basis, then for each orbit, find the first basic open set isolating an element of
the orbit, and select that element).

We need to show for every n and every g 2 G that g xA is isolated in its �n-orbit, or
equivalently that xA is isolated in its g�1�ng-orbit. By normality of � , there is some m
for which g�1�ng � �m, and thus it suffices show for every n that xA is isolated in its
�n-orbit. We claim that Cn

xA isolates xA in its �n-orbit, or equivalently that

�n
xA \ Cn

xA D xA;

which is sufficient since Cn is open. We will show the equivalent statement that �n \

Cn
xA � xA.
SinceCn is an open subgroup ofG, it follows thatCnA is closed (since its complement

is a union of cosets of an open subgroup). Also note that

A D hZkik>n hZlil�n � Cn.�n \ A/:

Thus Cn
xA D Cn.�n \ A/ since

Cn
xA � CnA D CnA � Cn.�n \ A/ � Cn

xA:

So we have

�n \ Cn
xA D �n \ Cn.�n \ A/ D Zn.�n \ A/ � A � xA;

where the second equation holds since if c 2 Cn,  2 �n and c 2 �n, then

c 2 �n
�1
D �n;

and thus c 2 Cn \ �n D Zn.

We now use this lemma to show thatEG
� is induced by the action of a countable abelian

group. This is sufficient since by a theorem of Gao and Jackson, every orbit equivalence
relation of a countable abelian group is hyperfinite (see [5, Corollary 8.2]).
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Since � Õ G= xA is hyperfinite, its orbit equivalence relation is generated by a Borel
automorphism T of G= xA (see [3, Theorem 5.1]). For each left xA-coset C , let .C / 2 � be
minimal such that T .C /D .C /C , and let U WG! G be the Borel automorphism defined
by U.g/ D .g xA/g (the inverse is defined by g 7! ..T�1.g xA///

�1g). This induces a Borel
action Z Õ G, denoted .n; g/ 7! n � g, such that

(i) g xA and h xA are in the same �-orbit if and only if for some n, .n � g/ xA D h xA,

(ii) EG
Z � E

G
� ,

(iii) and Z Õ G commutes with the right multiplication action G Ô . xA \ �/.

So there is a Borel action of Z � . xA\ �/ on G such that EG

Z�. xA\�/
� EG

� . We claim that
in fact

EG

Z�. xA\�/
D EG

� :

Suppose that g;h2G are in the same �-coset (note that we do not need to specify left/right
since � is normal). Then g xA and h xA are in the same �-orbit, so there is some n 2 Z with
.n � g/ xAD h xA. SinceEG

Z �E
G
� , we have that n � g is in the same �-coset as g, and thus in

the same �-coset as h. Since n � g and h are in the same left xA-coset, and also in the same
(left) �-coset, they are in the same left xA \ �-coset. Thus EG

Z�. xA\�/
D EG

� . Since A is
abelian, xA is also abelian, and thus Z � . xA \ �/ is a countable abelian group. Hence EG

�

is generated by the action of a countable abelian group, and is therefore hyperfinite.

We can extend this result to a slightly more general class of subgroups.

Corollary 9. Let G be a Polish group and let � � G be a countable subgroup of G each
of whose elements has countable conjugacy class in G. Then G=� is hyperfinite.

Proof. Since every element of � has countable conjugacy class in G, the subgroup � WD
hg�g�1ig2G is a countable normal subgroup of G, and thus by Theorem 7, EG

� is hyper-
finite. Since EG

� � E
G
� , we have that G=� is also hyperfinite (since hyperfiniteness is

closed under subequivalence relations).

Corollary 10. Let � be a countable group. Then Out.�/ is hyperfinite.

Proof. This follows from Theorem 7, since Inn.�/ G Aut.�/.

We end with some open questions.

Question 11. Let G be a Polish group and let � be a countable subgroup. What are the
possible Borel complexities of G=�? In particular, are they cofinal among orbit equiva-
lence relations arising from free actions?

Definition 12. For a Polish group G, define the subgroup Z!.G/ as follows:

Z!.G/ WD ¹g 2 GWg has countable conjugacy classº:
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In general, Z!.G/ is a characteristic subgroup of G, analogous to the FC-center,
and Z!.G/ is …1

1 by Mazurkiewicz–Sierpiński (see [8, Theorem 29.19]).

Question 13. Is there a Polish group G such that Z!.G/ is …1
1-complete?
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