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Non-divergence in the space of lattices

Nicolas de Saxcé

Abstract. Using Harder–Narasimhan filtrations and Grayson polygons to describe the geometry of
the space of lattices, we give a new proof of the Kleinbock–Margulis quantitative non-divergence
estimate.

1. Introduction

Non-divergence estimates were first introduced by Margulis [9] in his study of unipotent
flows on the space of lattices. They were later refined by Dani [5] and became a funda-
mental tool for the study of unipotent orbits in quotients of Lie groups by lattices, which
led in particular to Ratner’s work on the subject [11, 12]. More recently, these estimates
were made quantitative by Kleinbock and Margulis [7] and used to solve long-standing
conjectures of Sprindzuk and Baker in Diophantine approximation. Since then, they have
found many other applications in the field; among those, we only cite three recent articles
[1, 2, 15] where the interested reader can find more references. As far as we know, until
now, all the refinements of non-divergence estimates were proved following the strategy
of the original paper of Margulis [9] on the subject.

The goal of this note is twofold: first, we present a statement of the quantitative non-
divergence estimates in terms of Grayson polygons and Harder–Narasimhan filtrations,
two objects used to describe the geometry of lattices in Rd , and then we give a new proof
for them, based on these geometric tools. We hope that the pictures associated to the
Grayson polygons can help the reader visualize and better understand the meaning of the
technical statement discussed here.

2. Statement of the non-divergence estimate

Given a lattice � in Rd , for k 2 ¹1; : : : ; dº, we define

�k.�/ D inf¹� j 9v1; : : : ; vk 2 �; linearly independent with 8i; kvik � �º:

We have of course �1.�/ � �2.�/ � � � � � �d .�/, and the numbers �k.�/ are called the
successive minima of the lattice �. The successive minima describe the rough position
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Figure 1. Graph of k 7! L�.k/, for k 2 Œ0; 6�.

of� inside the space of lattices�D GLd .R/=GLd .Z/ endowed with a distance induced
by a right-invariant Riemannian metric on GLd .R/: two lattices with the same successive
minima are at bounded distance from each other. Alternatively, the position of a lattice �
in � can be described by the successive covolumes given by

�k.�/ D min¹kv1 ^ � � � ^ vkkW v1; : : : ; vk 2 � linearly independentº;

where kv1 ^ � � � ^ vkk denotes the covolume of the sublattice spanned by v1; : : : ; vk in its
real span. By Minkowski’s second theorem, the numbers �k.�/ determine the successive
minima within multiplicative constants depending only on d :

�k.�/ � �1.�/ � � ��k.�/:

2.1. The Grayson polygon of a lattice

Let � be a lattice in Rd . An important property of the covolume function on the set of
sublattices of � is that for every sublattices V and W , one has kV \ W kkV C W k �
kV kkW k. Equivalently, if � denotes the function � W V 7! logkV k on sublattices of �,
then � is submodular, i.e., satisfies

�.V \W /C �.V CW / � �.V /C �.W /:

To any such function, the so-called “slope formalism” associates two canonical objects:
the Grayson polygon and the Harder–Narasimhan filtration. We briefly recall their defini-
tions and elementary properties here, and refer the reader to [4, §4] or [3, §1.3] for more
details on their construction.

The Grayson polygon of a lattice � is a convex function L�W Œ0; d �! R that allows
one to understand all the successive covolumes—or the successive minima—together
in a nice picture. By definition, it is the maximal convex function on Œ0; d � such that
L�.0/ D 0 and for each k 2 ¹1; : : : ; dº, L�.k/ � log�k.�/. An example of a Grayson
polygon is given in Figure 1 above, where each point .k; log�k.�//, k D 0; : : : ; 6, is
marked with a red cross, and the graph of L� is plotted in blue.

At each index k 2 ¹1; : : : ; dº where the graph of L� has an angle, i.e.,

L�.k/ � L�.k � 1/ < L�.k C 1/ � L�.k/;
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there is a unique primitive sublattice �k of rank k in � such that �k.�/ D k�kk. More-
over, if the angles of L� occur at the indices k1 < k2 < � � � < ks , then the sublattices �k
form a partial flag

¹0º < �k1 < �k2 < � � � < �ks < �

called the Harder–Narasimhan filtration of �.

Example. When the Harder–Narasimhan filtration of � is trivial, or equivalently, when
the Grayson polygonL� is constant equal to zero, one says that� is stable, or semistable.
It is worth noting that when the space � is endowed with the Haar probability measure,
the measure of the set of stable lattices tends to one as the dimension goes to infinity [14].

2.2. Quantitative non-divergence

The goal of this note is to describe the behavior of the Grayson polygon and of the Harder–
Narasimhan filtration a random lattice�D xZd , where x 2 GLd .R/ is a random element
distributed according to some probability � on GLd .R/ satisfying natural regularity con-
ditions. To state the result, it is convenient to extend the definition on a Grayson polygon
to arbitrary compact subsets S � GLd .R/. For each k 2 ¹1; : : : ; dº, we write Wk.Z/ for
the set of non-zero pure k-vectors in ^kZd and set

�k.S/ D

´
1 if k D 0;

infw2Wk.Z/ supx2S kxwk if 1 � k � d:

As before, we then define LS W Œ0; d �! R to be the maximal convex function such that for
each k, LS .k/ � log�k.S/. When S D ¹xº is reduced to a singleton, one recovers the
Grayson polygon of the lattice xZd ; we then simply write Lx instead of L¹xº. One should
note the following two properties:

(1) If LS has an angle at k, then there exists a sublattice wk of rank k in Zd such that
for all x 2 S , kxwkk � eLS .k/ D �k.S/. (If S is not reduced to a singleton, this
sublattice may not be unique.)

(2) For all k 2 ¹1; : : : ; dº and all x 2 S , there exists a sublattice wk;x of rank k in Zd

such that kxwk;xk � KeLS .k/ for some constant K depending only on d .

The first assertion is clear by definitions of LS and �k.S/, and the second follows from
the first using Minkowski’s second theorem on successive minima. Here is another way
to understand this second property: For every x 2 S , the graph of k 7! Lx.k/, which up
to bounded additive constants represents the minimal covolume of a sublattice of rank k
in xZd , for k D 1; : : : ; d , lies below the graph of LS .

Now let � be a measure on GLd .R/, and S D Supp �. The above observations show
that for �-almost every x, all points on the graph of Lx are under the graph of LS . Under
some regularity assumptions on �, the next theorem gives a converse statement: the �-
measure of points such that Lx contains one point below LS � log 1

"
goes to zero as

" > 0 goes to zero. Recall that given D > 0, a finite measure � on a metric space X is
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Figure 2. With probability � 1 � C"˛ the graph of L� lies in the gray area.

D-doubling if for every x 2 Supp � \ X and every r > 0, �.B.x; 2r// � D�.B.x; r//,
and that a function f WX ! R is .C; ˛/-good on X with respect to the measure � if we
have, for every ball B D B.x; r/ � X centered at x 2 Supp �,

�.¹x 2 B j jf .x/j � "º/ � C
� "

kf k�;B

�˛
�.B/;

where kf k�;B D supx2B\Supp � jf .x/j. In the sequel, we endow GLd .R/ with the metric
induced by any Euclidean metric on the spaceMd .R/ of d � d matrices with real entries.

Theorem 1 (Non-divergence with Grayson polygons). Given positive constants D, C0
and ˛0, there existC;˛ > 0 such that the following holds. LetB be a ball in GLd .R/ and �
a finite measure on GLd .R/, D-doubling on 5B . Assume that for every k 2 ¹1; : : : ; dº,
for every non-zero wD v1 ^ � � � ^ vk in ^kZ, the map x 7! kxwk is .C0; ˛0/-good on 5B
with respect to �, and let S D B \ Supp �. For " 2 .0; 1/, consider the set B" of points
x 2 GLd .R/ satisfying

9k 2 ¹1; : : : ; dºW Lx.k/ � LS .k/C log ":

Then,
�.B" \ B/ � C"

˛�.B/:

In other words, if � is a probability measure satisfying the assumptions of the theorem
and � D xZd , with x chosen randomly in B according to the law �, then the probability
that the graph ofL� lies between that ofLS andLS C log" is bounded below by 1�C"˛ ,
see Figure 2 above.

One consequence of the theorem is that in some sense the Harder–Narasimhan filtra-
tion of�D xZd is constant with very high probability. This is the content of the following
corollary.

Corollary 2 (Partial flag associated to a good measure). There exist constants C 0; ˛0 > 0
such that under the assumptions of Theorem 1, the following holds. Let

JS ."/ D ¹k 2 ¹1; : : : ; d � 1º j LS .k C 1/C LS .k � 1/ � 2LS .k/ � � log "º
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and write JS ."/ D ¹k1 < � � � < ksº. For " > 0 small enough, there exists a unique partial
flag

0 < V Sk1 < � � � < V
S
ks
< Zd

such that for each i D 1; : : : ; s,

�
�
¹x 2 B j 8i; �ki .xZd / is attained on V Ski º

�
� 1 � C 0"˛

0

:

Remark 3. It formally follows from the statement of the corollary that, provided " > 0
is small enough, the subspaces V S

ki
do not depend on ". But the set of indices JS ."/ D

¹k1; : : : ; ksº can decrease as " goes to zero.

While this note was still being written, Lindenstrauss, Margulis, Mohammadi and
Shah informed us that they had independently observed that Margulis’s proof also allowed
to derive the two results above, a fact that they used in their work on the quantitative behav-
ior of unipotent flows [8, Theorem 5.3]. Our motivation to prove Theorem 1 was another
application to Diophantine approximation, described in a paper written in collaboration
with Emmanuel Breuillard [3]. One advantage of the proof given here is that it can be
generalized to obtain an intrinsic statement for the non-divergence estimate in an arbitrary
semisimple Q-group G, without having to embed G in some linear group GLd . For more
details on this aspect and for other applications of such estimates, the reader is referred
to [6].

3. Proofs

The argument used in this note starts with an estimate for the probability of having a small
sublattice of fixed rank k, Theorem 5 below, a statement that bears its own interest. Before
we turn to its proof, we recall a useful interpretation of the successive covolumes �k.�/
of a lattice � using exterior powers. If � is a lattice in Rd , then ^k� is a lattice in
^kRd ' R.

d
k/ and its successive minima are determined by those of � by the following

formula due to Mahler. See [13, p. 109, Theorem 7A].

Lemma 4 (Successive minima of exterior powers). Let � be a lattice in Rd . Within mul-
tiplicative constants depending only on d , the successive minima of ^k� are given by

�� .^
k�/ � ��1.�/��2.�/ � � ���k .�/; � D ¹�1; : : : ; �kº � ¹1; : : : ; dº:

The order on the set of indices � depends on the values of �1.�/; : : : ; �d .�/, but the first
and second minima of ^k� are always given by ¹1; : : : ; kº and ¹1; : : : ; k � 1; k C 1º, so
that

�¹1;:::;kº.^
k�/ � �k.�/ and �¹1;:::;k�1;kC1º.^

k�/ �
�kC1.�/

�k.�/
�k.�/:
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3.1. Sublattices of rank k

For non-divergence estimates as in [7], one is given a map hWX ! GLd .R/ and a ball
B � X such that for every sublattice w � Zd , there exists a point x 2 B such that

kh.x/wk � �; (1)

and concludes that the proportion of points in B such that �1.h.x/Zd / � "� is bounded
above by C"˛ for some constants C; ˛ > 0 depending on some regularity properties of h.
Of course, it is readily seen by considering the map

Œ0; 1�! GL2.R/; x 7!

�
x 1

x2 � " x

�
that it is not enough to assume (1) only for vectors in Zd . Yet, the main point of this
section is to explain what can be concluded from such an assumption, or more generally,
what can be said when one only assumes (1) for sublattices w of fixed rank k.

Theorem 5 (Non-divergence for k-sublattices). Given positive constants D, C0 and ˛0,
there exist C1; ˛1 > 0 such that the following holds for any k 2 ¹1; : : : ; dº and any choice
of parameters M > 1 and �k > 0. Let B be a ball in GLd .R/, let � be a finite measure
on GLd .R/, doubling on 5B , and set S D B \ Supp �. Assume that for every non-zero
w D v1 ^ � � � ^ vk in ^kZ,

(1) The map x 7! kxwk is .C0; ˛0/-good on 5B with respect to �.

(2) supx2S kxwk � �k .

For " 2 .0; 1/, consider the set

A.k/
" D ¹x 2 B j "

M�k � �k.xZd / � "�k ; �k.xZd / < "�kC1.xZd /º:

Then,
�.A.k/

" / � C1M"˛1�.B/:

Proof. To simplify notation, we shall write �k.x/ and �k.x/ for �k.xZd / and �k.xZd /,
respectively. Note also that it is enough to prove the proposition for " smaller than an
arbitrary constant.

First case: 1 < M � 4
3

.
For x 2 S , choose a pure k-vector wx D vx1 ^ � � � ^ v

x
k

such that �k.x/ D kxwxk.
Then, if x 2 A

.k/
" \ S , let Rx > 0 be maximal such that

8y 2 B.x;Rx/ \ Supp �; kywxk � "
1
2 �k :

Let Bx D B.x; Rx/. Note that Bx � 3B and 2Bx � 5B because supy2S kywxk � �k .
Moreover, by maximality of Rx ,

sup
y22Bx

kywxk � "
1
2 �k : (2)
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We claim that for any y 2 A
.k/
" \ Bx ,

wy D wx : (3)

In words, up to sign, wx is the only non-zero vector in ^kZd satisfying kywxk D �k.y/.
Indeed, if y 2 A

.k/
" , then �kC1.y/ > "�1�k.y/, so, by Lemma 4, for any w 2 ^kZd that

is not collinear to wy , for small enough " > 0,

kywk � "�1�k.y/ � "
1
3 �k ;

and since kywxk � "
1
2 �k , we must have (3). Thus,

y 2 A.k/
" \ Bx ) kywxk � "�k :

Using that y 7! kywxk is .C0; ˛0/-good on 2Bx � 5B and satisfies (2), we find

�.A.k/
" \ Bx/ � C0"

˛0
2 �.2Bx/ � DC0"

˛0
2 �.Bx/:

To conclude, we use the Besicovitch covering theorem [10, p. 30] in the Euclidean space
Md .R/'Rd

2
: take a cover of A

.k/
" \B by ballsBxi , i 2N with intersection multiplicity

bounded by the Besicovitch constant K of Md .R/, and bound

�.A.k/
" \ B/ �

X
i2N

�.A.k/
" \ Bxi / � DC0"

˛0
2

X
i2N

�.Bxi / � C0D
3K"

˛0
2 �.B/:

This is the desired result, with C1 D C0D3K and ˛1 D ˛0
2

.

General case: M � 4
3

.
We cover the interval Œ"M�k ; "�k � with intervals of the form Œ"

jC1
3 �k ; "

j
3 �k �, where

j D 3; 4; : : : ; 3M . For each j , we may apply the first part of the proof with �k replaced
by "

j
3�1�k and find that the �-measure of points in B satisfying´

"
jC1
3 �k � �k.xZd / � "

j
3 �k ;

�k.xZd / < "�kC1.xZd /

is bounded above by C1"˛1�.B/. To conclude, it suffices to sum all these inequalities; we
obtain

�.A.k/
" \ B/ � 3C1M"˛1�.B/:

3.2. Full flags

In this final paragraph, we derive Theorem 1 and its corollary. The proof of Theorem 1
is based on Theorem 5 applied for some well-chosen k 2 ¹1; : : : ; dº. The derivation
of Theorem 1 from Theorem 5 is based on the following elementary observation: there
exists a constant � > 0 depending only on d such that if A > 0 is some parameter and
Lx � LS any two convex functions on ¹0; : : : ; dº such that Lx.i/ � Lh.i/�A for some
i 2 ¹0; : : : ; dº, then one may find some k 2 ¹0; : : : ; dº such that Lx.k/ � LS .k/ � �A
and such that the angle at k of the function Lx is at least �A (or k D 0 or d ). The formal
argument is given below.
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Proof of Theorem 1. Of course, it is enough to prove the estimate for " smaller than an
arbitrarily small constant depending on d , and in particular, we may assume " 2 .0; 1

2
/.

Moreover, if B0
" denotes the set of points x 2 GLd .R/ satisfying´

9i 2 ¹1; : : : ; dºW log�i .x/ � LS .i/C log ";

8i 2 ¹1; : : : ; dº; log�i .x/ � LS .i/C 2 log ";

then it is enough to show that

�.B0
" \ B/ � C"

˛�.B/:

Indeed, from there, using the inclusion B" �
S1
nD0 B0

"2
n , we find

�.B" \ B/ � C�.B/

1X
nD0

"2
n˛
� C 0"˛�.B/:

Let � D 1
2d2

and ˛ D �˛1, where C1, ˛1 are given by Theorem 5. Since x 7! det x is
.C0; ˛0/-good with respect to �, we have

�.¹x 2 B j �d .x/ � "
�eLS .d/º/ � C0"

˛0��.B/:

Next, we claim that if x 2 Supp � is such that �d .x/ � "�eLS .d/ and for some i ,
log�i .x/ � LS .i/C log ", then there must exist some k such that

�k.x/ � "
�eLS .k/ and �k.x/ � "

��kC1.x/: (4)

From there, one concludes using Theorem 5 with "� in place of ", and M D 2
�

:

�.B0
" \ B/ � �.¹x 2 B j �d .x/ � "

�eLS .d/º/C

d�1X
kD1

�.A
.k/
"� \ B/

� C0"
˛0��.B/C .d � 1/C1"

�˛1�.B/

� C"˛�.B/:

Now we turn to the justification of the existence of k satisfying (4). We argue by contra-
positive: assuming´

�d .x/ � "
�eLS .d/;

8k D 1; : : : ; d; �k.x/ � "
�eLS .k/ or �k.x/ � "��kC1.x/;

(5)

we want to show that for all i D 1; : : : ; d , log�i .x/ � LS .i/C log ". Using the equiva-
lence between Grayson polygons and successive covolumes, one sees that for " > 0 small
enough, assumption (5) implies´

Lx.d/ � LS .d/C � log ";

8k D 1; : : : ; d; Lx.k/ � LS .k/C 2� log " or log �kC1.x/

�k.x/
� 2� jlog "j:

(6)
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Now let i 2 ¹0; : : : ; dº be arbitrary, and choose a minimal interval Œk1; k2� (possibly
reduced to ¹iº) containing i such that

Lx.kj / � LS .kj /C � log "; j D 1; 2:

Because of assumption (6), all the angles ofLx on the segment Œk1; k2� are bounded above
by 2� jlog "j, and the distance from Lx to LS at k1 and k2 is bounded above by 2� jlog "j.
But Lx and LS are convex functions and Lx � LS , so we may bound the maximal dis-
tance from Lx to LS on the whole segment Œk1; k2� by 2� jlog "j C �.k1 � k2/2jlog "j.
In particular,

Lx.i/ � LS .i/C Œ2C .k1 � k2/
2�� log " � LS .i/C 2d2� log ":

Now by definition, log�i .x/ � Lx.i/, so that recalling our choice � D 1
2d2

, this proves
the desired inequality.

Finally, we prove Corollary 2 on the partial flag associated to the measure �.

Proof of Corollary 2. We write kf k D supt2Œ0;d�jf j for the supremum norm on real-
valued functions on the segment Œ0; d �. By Theorem 1,

�.¹x 2 B j kLx � LSk � � log "º/ � C"˛�.B/:

Given a constant C1 > 0, if " > 0 is sufficiently close to 0, this inequality implies in
particular that there exists x1 2 S such that

kLx1 � LSk � �
log "
C1

:

Then, provided C1 has been chosen large enough, for each k D 1; : : : ; d � 1,ˇ̌̌
log

�kC1.x1/

�k.x1/
� LS .k C 1/ � LS .k � 1/C 2LS .k/

ˇ̌̌
� �

log "
2
:

So, for k 2 JS ."/, we must have

�kC1.x1/

�k.x1/
� "�

1
2 :

By Lemma 4, this implies that for k 2 JS ."/, there exists a unique sublattice wk of rank k
in Zd such that �k.x1/ D kx1wkk, and that for every w 2 ^kZd linearly independent
with wk ,

kx1wk � "�
1
2�k.x1/ � "

� 12C
1
C1 �k.S/:

Thus, for each k 2 JS ."/, the sublattice wk is the unique sublattice of rank k satisfying

sup
x2S

kxwkk D �k.S/:
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But by construction, the subspace Vk corresponding to wk is the k-dimensional term in
the Harder–Narasimhan filtration of x1Zd , so that if JS ."/ D ¹k1 < � � � < ksº, then

¹0º < Vk1 < � � � < Vks < Zd :

The reasoning made above for the chosen point x1 is valid for any other x such that
kLx � LSk � �

log "
C1

so that for any such x, the subspaces Vk1 < � � � < Vks occur in the
Harder–Narasimhan filtration of xZd , i.e., �ki .x/ D kxwki k. This finishes the proof of
the corollary, because

�
�°
x 2 B j kLx � LSk � �

log "
C1

±�
� C 0"˛

0

�.B/:
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