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Commensurations of the outer automorphism group of
a universal Coxeter group

Yassine Guerch

Abstract. This paper studies the rigidity properties of the abstract commensurator of the outer
automorphism group of a universal Coxeter group of rank n, which is the free product Wn of n
copies of Z=2Z. We prove that for n � 5 the natural map Out.Wn/ ! Comm.Out.Wn// is an
isomorphism and that every isomorphism between finite index subgroups of Out.Wn/ is given by
a conjugation by an element of Out.Wn/.

1. Introduction

Given a group G, the abstract commensurator of G, denoted by Comm.G/, is the group
of equivalence classes of isomorphisms between finite index subgroups of G. Two such
isomorphisms are equivalent if they agree on some common finite index subgroup of their
domain. Note that every automorphism of G induces an element of Comm.G/, and in
particular, the action of G on itself by global conjugation gives a homomorphism G !

Comm.G/.
The abstract commensurator of G captures a notion of symmetry for the group that is

weaker than its group of automorphisms. For instance, the abstract commensurator of Zm

is isomorphic to GL.m;Q/ while the abstract commensurator of a nonabelian free group
is not finitely generated (see [1]). However, some groups satisfy strong rigidity properties
and the group Comm.G/ is then not much larger than Aut.G/ orG itself. For instance, the
Mostow–Prasad–Margulis rigidity theorem and Margulis arithmeticity theorem (see, for
instance, [37]) imply that if � is a lattice in a connected noncompact simple Lie group G
with trivial center, and if G ¤ PSL.2;R/, then � is a finite index subgroup of Comm.�/
if and only if � is not arithmetic, otherwise Comm.�/ is dense in G. In the case of the
extended mapping class group of a connected orientable closed surface Sg of genus g at
least 3, we have an even stronger result due to Ivanov [26] since the natural homomor-
phism Mod˙.Sg/! Comm.Mod˙.Sg// is an isomorphism. This result also extends to
the case of the mapping class group of a connected orientable surface with genus equal
to 2 and with at least two boundary components. In the context of the outer automorphism
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group of a free group FN of rank N , Farb and Handel [10] proved that, for N � 4, the
natural map from Out.FN / to Comm.Out.FN // is an isomorphism and that every isomor-
phism between two finite index subgroups of Out.FN / extends to an inner automorphism
of Out.FN /. This result was later extended by Horbez and Wade [25] to the case N D 3
using a more geometric approach. Their techniques also enabled them to compute the
abstract commensurator of many interesting subgroups of Out.FN /, like its Torelli sub-
group. These rigidity results have been extended to other groups, such as handlebody
groups [22] and big mapping class groups [2].

In this article, we are interested in the outer automorphism group of a universal Coxeter
group. Let n be an integer greater than 1. Let F D Z=2Z be a cyclic group of order 2 and
Wn D �nF be a universal Coxeter group of rank n, that is, a free product of n copies
of F . We prove the following theorem.

Theorem 1.1. Let n � 5. The natural homomorphism

Out.Wn/! Comm.Out.Wn//

is an isomorphism.

The group Out.W2/ is finite and the group Out.W3/ is isomorphic to PGL.2;Z/. This
gives an almost complete classification except for n D 4, where our proof for n � 5 can-
not be immediately adapted to this case as Out.W4/ does not contain any direct product
of two nonabelian free groups. Hence the case n D 4 remains open. One step towards
the understanding of Out.W4/ is given in [12], where we proved that Out.W4/ has a non-
trivial outer automorphism. The conclusion of Theorem 1.1 will therefore not be true if
one can prove that this outer automorphism remains nontrivial for every finite index sub-
group of Out.Wn/. Theorem 1.1 is a major improvement of [12, Théorème 1.1] which
states that, for n � 5, the only automorphisms of Out.Wn/ are the global conjugations.
In turn, Theorem 1.1 implies that every isomorphism between two finite index subgroups
of Out.Wn/ is given by a conjugation by an element of Out.Wn/. The proof of the present
Theorem 1.1 significantly differs from the one of [12, Théorème 1.1] since the proof
of [12, Théorème 1.1] is based on the study of torsion subgroups of Out.Wn/, whereas
Out.Wn/ is virtually torsion free (see [17, Corollary 5.5]).

Our proof of Theorem 1.1 is inspired by the proof of the similar result in the context
of Out.FN / given by Horbez and Wade [25]. However, new ideas are required in this sit-
uation. Indeed, to our knowledge, there is no way to compute the abstract commensurator
of Out.Wn/ by identifying it with a subgroup of Out.FN /. Moreover, the study of the
restriction of automorphisms of Wn to some finite index nonabelian free subgroup of Wn
is not sufficient to understand the abstract commensurator of Out.Wn/, as it does not give
information about finite index subgroups of Out.Wn/. Finally, the proof of Horbez and
Wade relies extensively on the possibility of writing a free group as an HNN extension,
which is not possible in a universal Coxeter group. Instead, we use the fact thatWn can be
written as a free product Wn D A � B , where B is a finite abelian subgroup of Wn.
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We now sketch our proof of Theorem 1.1. Following a strategy that dates back to
Ivanov’s work [26], we study the action of Out.Wn/ on various graphs which are rigid,
that is, every graph automorphism is induced by an element of Out.Wn/. These graphs
include the spine Kn of the outer space of Wn as defined by Guirardel and Levitt in [17],
generalizing Culler and Vogtmann’s outer space of a free group [9], or the free splitting
graph xKn of Wn (see [13, Theorems 1.1 and 1.2] and Section 2.2 for definitions). The
proof of Theorem 1.1 relies on the action of Out.Wn/ on a subset of the vertices of xKn,
called the set of Wk-stars. Let k 2 ¹0; : : : ; n � 1º. A Wk-star is a free splitting S of Wn
such that the underlying graph of the induced graph of groups WnnS is a tree with n � k
edges, such that the degree of one of the vertices, called the center, is equal to n � k,
and such that the group associated with the center is isomorphic to Wk and the groups
associated with the leaves are all isomorphic to F . The Wk-stars are the analogue for Wn
of the roses in the outer space of a free group. They play a significant role in the proof of
other rigidity results for Out.Wn/ (see [12, 13]).

This allows us to introduce a graph called the graph of one-edge compatible Wn�2-
stars, and denoted by Xn. It is defined as follows: vertices areWn-equivariant homeomor-
phism classes ofWn�2-stars, where two vertices � and � 0 are adjacent if there exist S 2 �

and S 0 2 � 0 such that S and S 0 have both a common refinement and a common collapse.
We prove the following result.

Theorem 1.2. Let n � 5. The natural homomorphism

Out.Wn/! Aut.Xn/

is an isomorphism.

Our proof of Theorem 1.2 requires the rigidity of another graph, called the graph of
W�-stars, and denoted by X 0n. It is the graph whose vertices are theWn-equivariant home-
omorphism classes of Wk-stars with k varying in ¹0; : : : ; n � 2º, where two vertices �

and � 0 are adjacent if there exist S 2 � and S 0 2 � 0 such that S refines S 0 or conversely.
We first show that every graph automorphism of Xn induces a graph automorphism of X 0n
and that the induced map Aut.Xn/! Aut.X 0n/ is injective. Using the rigidity of X 0n (see
Theorem 3.4), we show that any graph automorphism of Xn is induced by an element of
Out.Wn/.

We then show that every commensuration f of Out.Wn/ induces a graph automor-
phism of Xn. Once we have that result, a general argument (see Proposition 2.1) gives the
isomorphism between Out.Wn/ and Comm.Out.Wn//. In order to construct such a homo-
morphism Comm.Out.Wn//!Aut.Xn/, we first give an algebraic characterization of the
stabilizers of equivalence classes of Wn�2-stars. The characterization relies on the exam-
ination of maximal abelian subgroups of Out.Wn/ and of direct products of nonabelian
free groups in Out.Wn/. In particular, we prove (see Theorem 5.1), using the action of
Out.Wn/ on a simplicial complex called the free factor complex of Wn, the following
result.
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Theorem 1.3. Let n� 4. The maximal number of factors in a direct product of nonabelian
free groups contained in Out.Wn/ is equal to n � 3.

One of the examples of such a maximal direct product of nonabelian free subgroups
of Out.Wn/ is the following. Let Wn D hx1; : : : ; xni be a standard generating set for Wn
and let W D hx1; x2; x3i. For every i � 4 and every w 2 W , let Fi;w be the automor-
phism which fixes xj for every j ¤ i and which sends xi to wxiw�1. Let ŒFi;w � be the
outer automorphism class of Fi;w and let Hi D hŒFi;w �w2W i. Then the group hHi ii�4 is
a subgroup of Out.Wn/ isomorphic to a direct product of n � 3 groups isomorphic to W3.

The complete characterization of stabilizers of equivalence classes ofWn�2-stars being
quite technical, we do not give the complete statement in the introduction (see Proposi-
tions 6.11 and 7.10). However, we remark that this characterization relies on the following
key points: the fact that stabilizers of equivalence classes ofWn�2-stars contain a maximal
free abelian subgroup and the fact that it contains a direct product of n� 3 nonabelian free
groups. The characterization also features a study of the group of twists of a Wn�2-star,
which is a direct product of two virtually nonabelian free groups by a result of Levitt [28]
and such that each of which has finite index in the centralizer in Out.Wn/ of the other.

This characterization being preserved by commensurations of Out.Wn/, it induces
a homomorphism from Comm.Out.Wn// to the group Bij.VXn/ of bijections of the set of
vertices ofXn. In order to show that this map extends to the edge set ofXn, we also present
an algebraic characterization of compatibility ofWn�2-stars, which is essentially based on
the fact that if the intersection of stabilizers of equivalence classes of Wn�1-stars contains
a maximal abelian subgroup of Out.Wn/, then the Wn�1-stars are pairwise compatible
(see Propositions 6.13 and 8.1). We deduce that the map Comm.Out.Wn//! Bij.VXn/
extends to a map Comm.Out.Wn//! Aut.Xn/, which completes our proof.

Finally, we prove in the appendix the rigidity of another natural graph endowed with
an Out.Wn/-action, called the graph of Wn�1-stars. It is the graph whose vertices are
Wn-equivariant homeomorphism classes of Wn�1-stars, where two vertices � and � 0 are
adjacent if there exist S 2 � and S 0 2 � 0 such that S and S 0 have a common refinement.
This graph arises naturally in the study of Out.Wn/ and its action on the free splitting
graph xKn as it is isomorphic to the full subgraph of xKn whose vertices are the equivalence
classes of Wk-stars, with k varying in ¹0; : : : ; n � 1º. This gives another geometric rigid
model for Out.Wn/ (see Theorem A.1).

2. Preliminaries

2.1. Commensurations

Let G be a group. The abstract commensurator of G, denoted by Comm.G/, is the group
whose elements are the equivalence classes of isomorphisms between finite index sub-
groups of G for the following equivalence relation. Two isomorphisms between finite
index subgroups f WH1 ! H2 and f 0WH 01 ! H 02 are equivalent if they agree on some
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common finite index subgroupH of their domains. If f is an isomorphism between finite
index subgroups, we denote by Œf � the equivalence class of f . The identity of Comm.G/
is the equivalence class of the identity map on G. Let Œf �; Œf 0� 2 Comm.G/, and let
f WH1 ! H2 and f 0WH 01 ! H 02 be representatives. The composition law Œf � � Œf 0� is
given by Œf � � Œf 0�D Œf ı f 0jf 0�1.H1/\H 01 �. Note that ifH is a finite index subgroup ofG,
then the natural map Comm.G/! Comm.H/ obtained by restriction is an isomorphism.

Two subgroups G1 and G2 in G are commensurable if G1 \ G2 has finite index in
both G1 and G2. Being commensurable is an equivalence relation. If H is a subgroup
of G, we will denote by ŒH � its commensurability class in G. The group Comm.G/ acts
on the set of all commensurability classes as follows. Let ŒH � be the commensurability
class of a subgroup H . Let Œf � 2 Comm.G/ and let f WH1 ! H2 be a representative
of Œf �. Then we define Œf � � ŒH � by setting Œf � � ŒH � D Œf .H \H1/�.

The next result, due to Horbez and Wade, gives a sufficient condition for Comm.G/ to
be rigid. It comes from ideas due to Ivanov when studying mapping class groups (see [26]).
It requires the existence of a graph on which G acts by graph automorphisms.

Proposition 2.1 ([25, Proposition 1.1]). LetG be a group. LetX be simplicial graph such
that G acts on X by graph automorphisms. Let Aut.X/ be the group of graph automor-
phisms of X . Assume that

(1) the natural homomorphism G ! Aut.X/ is an isomorphism,

(2) given two distinct vertices v and w of X , the groups StabG.v/ and StabG.w/ are
not commensurable in G,

(3) the sets 	 D ¹ŒStabG.v/� j v 2 VXº, J D ¹.ŒStabG.v/�; ŒStabG.w/�/ j vw 2 EXº
are Comm.G/-invariant (in the latter case with respect to the diagonal action).

Then any isomorphism f WH1 ! H2 between finite index subgroups of G is given by
the conjugation by an element of G and the natural map G ! Comm.G/ is an isomor-
phism.

2.2. Free splittings and free factor systems of Wn

Let n be an integer greater than 1. Let F D Z=2Z be a cyclic group of order 2 and
Wn D �nF be a universal Coxeter group of rank n. A splitting of Wn is a minimal,
simplicial Wn-action on a simplicial tree S such that:

(1) The finite graph WnnS is not empty and not reduced to a point.

(2) Vertices of S with trivial stabilizer have degree at least 3.

Here minimal means that Wn does not preserve any proper subtree of S . A splitting S
of Wn is free if all edge stabilizers are trivial. A splitting S 0 is a blow-up, or equivalently
a refinement, of a splitting S if S is obtained from S 0 by collapsing some edge orbits
in S 0. Two splittings are compatible if they have a common refinement. We define an
equivalence class in the set of free splittings, where two splittings S and S 0 are equivalent
if there exists a Wn-equivariant homeomorphism between them.
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A free factor system of Wn is a set F of conjugacy classes of subgroups of Wn which
arises as the set of all conjugacy classes of nontrivial point stabilizers in some (nontrivial)
free splitting of Wn. Equivalently, there exist k 2 Nn¹0; 1º and ŒA1�; : : : ; ŒAk � conjugacy
classes of nontrivial, proper subgroups of Wn such that Wn D A1 � � � � � Ak and F D

¹ŒA1�; : : : ; ŒAk �º. The free factor system is sporadic if k D 2, and nonsporadic otherwise.
The set of all free factor systems of Wn has a natural partial order, where F � F 0 if
every factor of F is conjugate into one of the factors of F 0. Remark that if ¹x1; : : : ; xnº
is a standard generating set of Wn, then for every free factor system F of Wn and every
i 2 ¹1; : : : ; nº, there exists ŒA� 2 F such that xi is conjugate into A. In other words, the
free factor system ¹Œx1�; : : : ; Œxn�º is a minimum for the partial order on the set of free
factor systems of Wn.

Let F be a free factor system of Wn. We denote by Out.Wn; F / the subgroup of
Out.Wn/ consisting of all outer automorphisms that preserve all the conjugacy classes
of subgroups in F . If F D ¹ŒA1�; : : : ; ŒAk �º, we denote by Out.Wn;F .t// the subgroup
of Out.Wn;F / consisting of all outer automorphisms which have a representative whose
restriction to each Ai with i 2 ¹1; : : : ; kº is a global conjugation by some gi 2 Wn.

A .Wn;F /-tree is an R-tree equipped with a Wn-action by isometries and such that
every subgroup of Wn whose conjugacy class belongs to F is elliptic. A free splitting
of Wn relative to F is a free splitting of Wn such that every free factor in F is elliptic.
A free factor of .Wn;F / is a subgroup of Wn which arises as a point stabilizer in a free
splitting of Wn relative to F . A free factor of .Wn;F / is proper if it is nontrivial, not
equal to Wn and not conjugate to an element of F . An element g 2 Wn is F -peripheral
(or simply peripheral if there is no ambiguity) if it is conjugate into one of the subgroups
of F , and F -nonperipheral otherwise. In particular, for every free factor system F ofWn,
and every element x 2 Wn appearing in a standard generating set of Wn, we see that x is
F -peripheral.

2.3. The outer space of .Wn; F /

Recall the definition of the unprojectivized outer space of .Wn;F /, denoted by O.Wn;F /

and introduced by Guirardel and Levitt in [17]. It is the set of all .Wn;F /-equivariant
isometry classes � of metric simplicial trees with a nontrivial action of Wn, with triv-
ial arc stabilizers and such that a subgroup is elliptic if and only if it is peripheral. The
set O.Wn;F / is equipped with the Gromov–Hausdorff equivariant topology introduced
in [31]. The projectivized outer space of .Wn; F /, denoted by PO.Wn; F /, is defined
as the space of homothety classes of trees in O.Wn; F /. The spaces O.Wn; F / and
PO.Wn;F / come equipped with a right action of Out.Wn;F / given by precomposition
of the actions.

The space PO.Wn;F / has a natural structure of a simplicial complex with missing
faces. Indeed, every element � 2 PO.Wn;F / defines an open simplex as follows. Let S
be a representative of � such that the sum of the edge lengths of WnnS is equal to 1. We
associate an open simplex by varying the lengths of the edges, so that the sum of the edge
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lengths is still equal to 1. A homothety class � 0 2 PO.Wn;F / of a splitting S 0 defines
a codimension 1 face of the simplex associated with � if we can obtain S 0 from some
representative S of � by contracting one orbit of edges in S .

The closure O.Wn;F / of outer space in the space of all isometry classes of mini-
mal nontrivial Wn-actions on R-trees, equipped with the Gromov–Hausdorff equivariant
topology, was identified in [24] with the space of all very small .Wn;F /-trees, which are
the .Wn;F /-trees whose arc stabilizers are either trivial, or cyclic, root-closed and non-
peripheral, and whose tripod stabilizers are trivial. The space PO.Wn;F / equipped with
the quotient topology is compact (see [24, Theorem 1]).

We recall the definition of a simplicial complex on which the space PO.Wn; F /

retracts Out.Wn;F /-equivariantly, called the spine of outer space of .Wn;F / and denoted
by K.Wn;F /. It is the flag complex whose vertices are the Wn-equivariant homeomor-
phism classes � of free splittings relative to F with the property that, if S 2 � , then all
elliptic subgroups in S are peripheral. Two vertices � and � 0 in K.Wn; F / are linked
by an edge if there exist S 2 � and S 0 2 � 0 such that S refines S 0 or conversely. There
is an embedding F WK.Wn;F / ,! PO.Wn;F / whose image is the barycentric spine of
PO.Wn;F /. We will from now on identify K.Wn;F / with F.K.Wn;F //. If F consists
of exactly n copies of F , we simply write Kn for K.Wn;F /. In this case, the dimension
of the simplicial complex Kn is n � 2. Indeed, if � is an equivalence class of a free split-
ting S in Kn such that the number of edges of WnnS is minimal, then, the number of
edges in WnnS is equal to n � 1. If � is an equivalence class of a free splitting S in Kn
such that the number of edges of WnnS is maximal, then WnnS has n leaves and every
vertex of WnnS that is not a leaf has degree equal to 3. As S is a tree, this shows that the
number of edges inWnnS is equal to 2n� 3. Since, every splitting S ofKn collapses onto
a splitting S 0 such that WnnS 0 has n � 1 edges, we see that the dimension of Kn is equal
to 2n � 3 � .n � 1/ D n � 2.

The free splitting graph of Wn, denoted by xKn, is the following graph. The vertices
of xKn are the Wn-equivariant homeomorphism classes of free splittings. Two distinct
equivalence classes � and � 0 are joined by an edge in xKn if there exist S 2 � and S 0 2 � 0

such that S refines S 0 or conversely. The free splitting graph of Wn is the 1-skeleton of
the closure of Kn in the space of free splittings of Wn. The group Aut.Wn/ acts on xKn on
the right by precomposition of the action. As Inn.Wn/ acts trivially on xKn, the action of
Aut.Wn/ induces an action of Out.Wn/ on xKn.

2.4. The free factor graph of .Wn; F /

Let F be a free factor system of Wn. We now define a Gromov hyperbolic graph on
which Out.Wn;F / acts by isometries. The free factor graph relative to F , denoted by
FF.Wn;F /, is the following graph. Its vertices are the Wn-equivariant homeomorphism
classes of free splittings of Wn relative to F . Two equivalence classes � and � 0 are joined
by an edge if there exist S 2 � and S 0 2 � 0 such that S and S 0 are compatible or share
a common nonperipheral elliptic element. The free factor graph is always hyperbolic
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(see [3,16,21]). The next proposition is due to Guirardel and Horbez. Here, if H is a sub-
group of Out.Wn/ and if F is a free factor system of Wn, we say that F is H -periodic if
there exists a finite index subgroup H 0 of H such that H 0.F / D F .

Proposition 2.2 ([16, Theorem 5.1]). Let n � 3 and let F be a nonsporadic free factor
system ofWn. LetH be a subgroup of Out.Wn;F /which acts on FF.Wn;F /with bounded
orbits. Then there exists an H -periodic free factor system F 0 such that F � F 0 and
F ¤ F 0.

The Gromov boundary of FF.Wn;F / has been described in terms of relatively ara-
tional trees (see the work of Reynolds [33] for the definition of an arational tree in the
context of a free group, the work of Bestvina and Reynolds and the work of Hamenstädt
[4, 20] for the description of the boundary in the case of a free group, and the work of
Guirardel and Horbez [16] in the case of a free product). A .Wn;F /-tree T is arational
if no proper .Wn;F /-free factor acts elliptically on T and, for every proper .Wn;F /-free
factor A, the A-minimal invariant subtree of T (that is the union of the axes of the loxo-
dromic elements of A for the action of Wn on T , see [8, Proposition 3.1]) is a simplicial
A-tree in which every nontrivial point stabilizer can be conjugated into one of the sub-
groups of F . We equip each arational .Wn;F /-tree with the observers’ topology: this is
the topology on a tree T such that a basis of open sets is given by the connected com-
ponents of the complements of points in T . We equip the set of arational .Wn;F /-trees
with an equivalence relation, where two arational .Wn;F /-trees are equivalent if they are
Wn-equivariantly homeomorphic with the observers’ topology.

Theorem 2.3 ([16, Theorem 3.4]). Let n � 3. Let F be a nonsporadic free factor system
of Wn. The Gromov boundary of FF.Wn;F / is Out.Wn;F /-equivariantly homeomorphic
to the space of all equivalence classes of arational .Wn;F /-trees.

Lemma 2.4 ([14, Proposition 13.5]). Let n� 3. Let F be a nonsporadic free factor system
ofWn, and letH be a subgroup of Out.Wn;F /. IfH fixes a point in @1FF.Wn;F /,H has
a finite-index subgroup that fixes the homothety class of an arational .Wn;F /-tree.

2.5. Groups of twists

Let S be a splitting of Wn, let v 2 VS , let e be an edge with origin v, and let z be an
element of the centralizer CGv .Ge/ of Gv in Ge . We define the twist by z around e to be
the automorphismDe;z ofWn defined as follows (see [28]). Let xS be the splitting obtained
from S by collapsing all the edges of S outside of the orbit of e. Then xS is a tree. Let xe be
the image of e in xS and let xv be the image of v in xS . Let xw be the endpoint of xe distinct
from xv. The automorphismDe;z is defined to be the unique automorphism that acts as the
identity onGxv and as conjugation by z onG xw . The element z is called the twistor ofDe;z .
It is well defined up to composing on the right by an element ofCWn.G xw/\CGv .Ge/. The
group of twists of S is the subgroup of Out.Wn/ generated by all twists around oriented
edges of S .
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We now give a description of the stabilizer of a point in xKn due to Levitt. If � 2 V xKn,
we denote by Stab.�/ the stabilizer of � under the action of Out.Wn/. Let S be a repre-
sentative of � . We denote by Stab0.�/ the subgroup of Stab.�/ consisting of all elements
F 2 Out.Wn/ such that the graph automorphism induced by F on WnnS is the identity.

Proposition 2.5 ([28, Propositions 2.2, 3.1 and 4.2]). Let n � 4 and � 2 V xKn. Let S be
a representative of � and let v1; : : : ; vk be the vertices ofWnnS with nontrivial associated
groups. For i 2 ¹1; : : : ; kº, let Gi be the group associated with vi .

(1) The group Stab0.�/ fits in an exact sequence

1! T ! Stab0.�/!
kY
iD1

Out.Gi /! 1;

where T is the group of twists of S .

(2) The group Stab0.�/ is isomorphic to

kY
iD1

G
deg.vi /�1
i Ì Aut.Gi /;

where Aut.Gi / acts on Gdeg.vi /�1
i diagonally.

(3) The group of twists T of S is isomorphic to

T '

kM
iD1

G
deg.vi /
i =Z.Gi /;

where the center Z.Gi / of Gi is embedded diagonally in Gdeg.vi /
i .

Remark 2.6. In [28, Proposition 2.2], Levitt shows that the kernel of the natural homo-
morphism Stab0.�/!

Qk
iD1 Out.Gi / given by the action on the vertex groups is gen-

erated by bitwists. Since edge stabilizers are trivial, the group of bitwists is equal to the
group of twists. More generally (see [28, Proposition 2.3]), if the outer automorphism
group of every edge stabilizer is finite (in particular, if edge stabilizers are isomorphic
to Z or to F ), then the group of twists is a finite index subgroup of the group of bitwists.

Finally, if the centralizer inWn of an edge stabilizer is trivial, then the group of bitwists
about this edge is trivial. Therefore, if the edge stabilizer is not cyclic, then the group of
bitwists about this edge is trivial. In all cases, we see that, for every equivalence class �

of a splitting S of Wn, the group of twists of � is a finite index subgroup of the group of
bitwists of Wn.

We establish one last fact about twists around edges whose centralizer is cyclic (see [7,
Lemma 5.3] for a similar statement in the context of the outer automorphism group of
a nonabelian free group).
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Lemma 2.7. Let n � 3 and let � be the equivalence class of a splitting S . Suppose that
there exists an edge e of S with cyclic stabilizer and let D be the outer automorphism
class of a twist about e. LetH� be the subgroup of Stab0.�/ which induces the identity on
the edge stabilizer Ge of e. Then D is central in H� . In particular, Stab0.�/ has a finite
index subgroup H� such that D is central in H� .

Proof. Let U be a splitting onto which S collapses (or S itself if S does not have a non-
trivial collapse), and let U be its equivalence class. Then Stab0.�/ � Stab0.U/. Thus,
we may suppose, up to collapsing all orbits of edges of S except the one containing e,
that S has exactly one orbit of edges. Let v and w be the two endpoints of e and let Gv
and Gw be their edge stabilizers. Let f 2H� and let F be a representative of f such that
F.Gv/ D Gv , F.Gw/ D Gw and F jGe D idGe (this representative exists since f 2 H� ).
Let z 2 CGv .Ge/ be such that De;z is a representative of D. Then, since F.z/ D z, for
every x 2 Wn, we have De;z ı F ıD�1e;z.x/ D F.x/. Hence f and D commute, and D
is central in H� . Since the outer automorphism group of a cyclic group is finite, we see
that H� is a finite index subgroup of Stab0.�/. This concludes the proof.

3. Geometric rigidity in the graph of Wk-stars

We start by defining Wk-stars, which are the main splittings of interest in this article.

Definition 3.1. Let n � 3, and let k � 1 be an integer.

(1) A free splitting S is a k-edge free splitting if WnnS has exactly k edges.

(2) Suppose that 0 � k � n� 2. AWk-star is an .n� k/-edge free splitting such that:

• the underlying graph of WnnS has n � k C 1 vertices and one of them, called
the center of WnnS , has degree exactly n � k,

• the group associated with the center ofWnnS is isomorphic toWk (we use the
convention that W0 D ¹1º and that W1 D F ),

• the group associated with any leaf of WnnS is isomorphic to F .

(3) A Wn�1-star is a one-edge free splitting S such that one of the vertex groups of
WnnS is isomorphic to Wn�1 while the other vertex group is isomorphic to F .

Note that, in [13], a Wn�1-star is called an F -one-edge free splitting. Using Proposi-
tion 2.5 (2), we see that, if k 2 ¹0; : : : ;n� 2º, and if � is the equivalence class of aWk-star,
then the group Stab0.�/ is isomorphic to W n�k�1

k
Ì Aut.Wk/.

Note that, if S is a Wk-star with k 2 ¹0; : : : ; n � 2º and S 0 is a splitting on which S
collapses, then there exists ` 2 ¹k; : : : ; n � 1º such that S 0 is a W`-star. In particular,
for every k 2 ¹0; : : : ; n � 2º, if S is a Wk-star, then every one-edge free splitting on
which S collapses is a Wn�1-star. A similar statement is also true for refinements of Wk-
stars (see Lemma 3.8).
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3.1. Rigidity of the graph of W�-stars

We introduce in this section a graph, the graph of one-edge compatible Wn�2-stars, on
which Out.Wn/ acts by simplicial automorphisms. We prove that this graph is a rigid
geometric model for Out.Wn/. The proof relies on the study of the rigidity of an additional
graph on which Out.Wn/ acts, the graph of W�-stars, to be defined after Theorem 3.3.

Definition 3.2. (1) The graph ofWn�2-stars, denoted by zXn, is the graph whose vertices
are the Wn-equivariant homeomorphism classes of Wn�2-stars, where two equivalence
classes � and � 0 are joined by an edge if there exist S 2 � and S 0 2 � 0 such that S and S 0

are compatible.

(2) The graph of one-edge compatibleWn�2-stars, denoted byXn, is the graph whose
vertices are the Wn-equivariant homeomorphism classes of Wn�2-stars where two equiv-
alence classes � and � 0 are joined by an edge if there exist S 2 � and S 0 2 � 0 such that S
and S 0 have a common refinement which is a Wn�3-star.

Note that the adjacency in the graph Xn is equivalent to having both a common col-
lapse (which is aWn�1-star) and a common refinement. The graphXn is a subgraph of zXn.
The group Aut.Wn/ acts on zXn and Xn by precomposition of the action. As Inn.Wn/
acts trivially on Xn, the action of Aut.Wn/ induces an action of Out.Wn/. We denote by
Aut.Xn/ the group of graph automorphisms of Xn. In Section 3.2, we prove the following
theorem.

Theorem 3.3. Let n � 5. The natural homomorphism

Out.Wn/! Aut.Xn/

is an isomorphism.

In order to prove this theorem, we take advantage of the action of Out.Wn/ on another
graph, namely the graph of W�-stars, denoted by X 0n. The vertices of this graph are the
Wn-equivariant homeomorphism classes of Wk-stars, with k varying in ¹0; : : : ; n � 2º.
Two equivalence classes � and � 0 are joined by an edge if there exist S 2 � and S 0 2 � 0

such that S refines S 0 or conversely. Note that we have a natural embedding X 0n ,! xKn.
We identify from now on X 0n with its image in xKn. In this section, we prove the following
theorem.

Theorem 3.4. Let n � 5. The natural homomorphism

Out.Wn/! Aut.X 0n/

is an isomorphism.

Theorem 3.4 relies on the fact that X 0n contains a rigid subgraph, namely the graph of
¹0º-stars andF -stars, and denoted byLn. The vertices of this graph are theWn-equivariant
homeomorphism classes of ¹0º-stars and F -stars. Two equivalence classes � and � 0 are
joined by an edge if there exist S 2 � and S 0 2 � 0 such that S refines S 0 or conversely.
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We recall the following theorem.

Theorem 3.5 ([13, Theorem 3.1, Corollary 3.2]). Let n � 4. Let f be an automorphism
of Ln preserving the set of ¹0º-stars and the set of F -stars. Then f is induced by the
action of a unique element 
 of Out.Wn/. In particular, for every n� 5, the natural homo-
morphism

Out.Wn/! Aut.Ln/

is an isomorphism.

The strategy in order to prove Theorem 3.4 is to show that every automorphism of X 0n
preserves Ln and that the natural map Aut.X 0n/! Aut.Ln/ is injective.

Remark 3.6. Using the same techniques, we may prove that the graph of Wn�1-stars is
rigid. This is done in the appendix (see Theorem A.1).

First we recall a theorem due to Scott and Swarup.

Theorem 3.7 ([34, Theorem 2.5]). Let n � 4. Any set ¹S1; : : : ; Skº of pairwise nonequiv-
alent, pairwise compatible, one-edge free splittings ofWn has a unique refinement S such
that WnnS has exactly k edges. Moreover, the equivalence class of S only depends on the
equivalence classes of S1; : : : ; Sk . If S is a free splitting such that WnnS has exactly k
edges, then S refines exactly k pairwise nonequivalent one-edge free splittings.

We also need the following lemma concerning refinements of Wk-stars.

Lemma 3.8. Let k; ` 2 ¹0; : : : ; n � 1º and let S and S 0 be respectively a Wk-star and
aW`-star. If S and S 0 have a common refinement, then there exists j 2 ¹0; : : : ; n� 2º and
a Wj -star S 00 which refines both S and S 0. Moreover, S 00 can be chosen such that S 00 is
a refinement of S and S 0 with the minimal number of orbits of edges.

Proof. Let S1; : : : ;Sn�k be n� k Wn�1-stars onto which S collapses and let S 01; : : : ;S
0
n�`

be n � ` Wn�1-stars onto which S 0 collapses. Then the set ¹S1; : : : ; Sn�k ; S 01; : : : ; S
0
n�`
º

is a set of pairwise compatible Wn�1-stars. For every s 2 ¹1; : : : ; n � kº and every t 2
¹1; : : : ; n� `º, let �s be the equivalence class of Ss and � 0t be the equivalence class of S 0t .
Let n � j D j¹�1; : : : ; �n�k ; � 01; : : : ; �

0
n�`
ºj. By Theorem 3.7, there exists a free split-

ting S 00 with n � j edges which refines every Wn�1-star of the set ¹S1; : : : ; Sn�k ; S 01;
: : : ; S 0

n�`
º. But, as F is freely indecomposable, a common refinement of two Wn�1-

stars U and U 0 is obtained from U by blowing-up an edge at the vertex of WnnU whose
associated group is isomorphic toWn�1. SinceU 0 is also aWn�1-star, this common refine-
ment has two orbits of edges and the two corresponding leaves have a stabilizer isomorphic
to F , hence it is a Wn�2-star. The same argument shows that, if U0 is a Wn�1-star and
if U1 is aWk-star with k 2 ¹1; : : : ; n� 1º compatible with U0, then a common refinement
of U0 and U1 with a minimal number of orbits of edges is either a Wk-star (if the equiv-
alence classes of U0 and U1 are adjacent in xKn) or a Wk�1-star. Therefore, by induction
on i 2 ¹1; : : : ; n � `º, we see that a common refinement of ¹S1; : : : ; Sn�k ; S 01; : : : ; S

0
n�`
º
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with the minimal number of orbits of edges is a Wj -star. This shows that S 00 is a Wj -star.
This concludes the proof.

Lemma 3.8 implies that the set of Wk-stars with k varying in ¹0; : : : ; n � 1º is closed
under taking collapse and taking refinement with a minimal number of orbits of edges.

Lemma 3.9. Let n � 5. For every f 2 Aut.X 0n/, we have f .Ln/ D Ln. Moreover, if
f jLn D idLn , then f D idX 0n .

Proof. Let f 2 Aut.X 0n/. The fact that f .Ln/ D Ln follows from the fact that vertices of
Kn \X

0
n in X 0n are characterized by the fact that they are the vertices with finite valence.

The proof is identical to the proof of [13, Proposition 5.1].
Now suppose that f jLn D idLn and let � be the equivalence class of a Wn�2-star S .

Let us prove that f .�/D � . Let ¹x1; : : : ; xnº be a standard generating set ofWn such that
the free factor decomposition of Wn induced by S is

Wn D hx1i � hx2; : : : ; xn�1i � hxni:

Let X be the equivalence class of the F -star X depicted in Figure 1.

�

�

�

�

hx2i

hx3i

hx1i

hxni

�
�

�

�

�

hxi i

hx1i

hxi�1i

hxiC1i

hxni

Figure 1. The F -stars X (on the left) and X 0 (on the right) of the proof of Lemma 3.9.

We see that � and X are adjacent in X 0n. Therefore, as f .X/ D X, we see that f .�/
and X are adjacent in X 0n.

Let � 0 be the equivalence class of a Wn�2-star adjacent to X and distinct from � .
Then, as X and � 0 are adjacent, there exist distinct i; j 2 ¹1; : : : ; nº with i; j ¤ 2 and
a representative S 0 of � 0 such that the free factor decomposition of Wn induced by S 0 is

Wn D hxi i � hx1; : : : ; bxi ; : : : ; bxj ; : : : ; xni � hxj i:
Since � ¤ � 0, we may suppose that i … ¹1; nº. But then � is adjacent to the equivalence
class X0 of the F -star X 0 depicted in Figure 1 whereas � 0 is not adjacent to X0. Since
f .X0/ D X0, this shows that f .�/ ¤ � 0.

Finally, let k 2 ¹2; : : : ; n � 3º and let � .2/ be the equivalence class of a Wk-star S .2/

which is adjacent to X. We prove that f .�/ ¤ � .2/. Since k � n � 3, the underlying
graph of WnnS .2/ has at least 3 edges. Therefore, there exists i … ¹1; nº and a leaf v of
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the underlying graph of WnnS .2/ such that the preimage by the marking of WnnS .2/ of
the generator of the group associated with v is xi . But then the equivalence class � .2/ is
not adjacent to the equivalence class X0 of the F -star X 0 depicted in Figure 1. As � is
adjacent to X0 and as f .X0/ D X0, we see that f .�/ ¤ � .2/. Therefore, f .�/ D � .

The above paragraphs show that f fixes pointwise the set of equivalence classes of
Wn�2-stars. Let k 2 ¹2; : : : ; n � 3º and let T be the equivalence class of a Wk-star T .
By Theorem 3.7, the equivalence class T is uniquely determined by the set of Wn�1-stars
on which T collapses. Since two distinct equivalence classes of Wn�2-stars are adjacent
in xKn to distinct pairs of equivalence classes of Wn�1-stars, the equivalence class T is
uniquely determined by the set of Wn�2-stars on which it collapses. Since f fixes point-
wise the set of equivalence classes ofWn�2-stars, we see that f .T /D T . Hence f D idX 0n .
This concludes the proof.

Proof of Theorem 3.4. Let n � 5. We first prove the injectivity. By Theorem 3.5, the ho-
momorphism Out.Wn/! Aut.Ln/ is injective. Moreover, it factors through Out.Wn/!
Aut.X 0n/! Aut.Ln/. We therefore deduced the injectivity of Out.Wn/! Aut.X 0n/. We
now prove the surjectivity. Let f 2 Aut.X 0n/. By Lemma 3.9, we have a homomorphism
ˆWAut.X 0n/! Aut.Ln/ defined by restriction. By Theorem 3.5, the automorphism ˆ.f /

is induced by an element 
 2 Out.Wn/. Since the homomorphism Aut.X 0n/! Aut.Ln/ is
injective by Lemma 3.9, f is induced by 
 . This concludes the proof.

3.2. Rigidity of the graph of one-edge compatible Wn�2-stars

In this section, we prove Theorem 3.3. In order to do so, we construct an injective homo-
morphism

Aut.Xn/! Aut.X 0n/:

First, we need to show some technical results concerning the graph Xn. Indeed, let � be
a triangle (that is, a cycle of length 3) in Xn, and let �1, �2 and �3 be the vertices of this
triangle. By Theorem 3.7, for every i 2 ¹1; 2; 3º, there exists Si 2 �i such that S1, S2
and S3 have a common refinement S , and we suppose that S has the minimal number of
orbits of edges among the common refinements of S1, S2 and S3. Since S1, S2 and S3 are
Wn�2-stars, there exists k 2 ¹0; : : : ; n � 3º such that S is a Wk-star. By definition of the
adjacency in Xn, the splitting S is either a Wn�3-star or a Wn�4-star (see Figure 2). Our
first result shows that we can distinguish these two types of triangles.

Lemma 3.10. Let n � 5. Let �1; �2 and �3 be three equivalence classes of Wn�2-stars
which are pairwise adjacent in Xn. Let S1, S2 and S3 be representatives of �1, �2 and �3
which have a common refinement S . Suppose that S is the refinement of S1, S2 and S3
which has the minimal number of orbit of edges. Then S is aWn�4-star if and only if there
exists an equivalence class �4 of aWn�2-star S4 distinct from �1, �2 and �3 such that, for
every i 2 ¹1; 2; 3º, the equivalence classes �i and �4 are adjacent in Xn.
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�

� �

hx2; x3; x4i

hx1ihx5i

�

� �

hx1; x3; x4i

hx2ihx5i

�

� �

hx3; x4; x5i

hx2ihx1i

�

� �

hx2; x3; x4i

hx1ihx5i

�

� �

hx1; x3; x4i

hx2ihx5i

�

� �

hx1; x2; x4i

hx3ihx5i

Figure 2. Two triangles inXn, one corresponding to aWn�3-star (on the left) and one corresponding
to a Wn�4-star (on the right).

Proof. Suppose first that S is a Wn�4-star. Let ¹x1; : : : ; xnº be a standard generating set
of Wn such that the free factor decomposition of Wn induced by S is

Wn D hx1i � hx2i � hx3i � hx4i � hx5; : : : ; xni:

Since being adjacent inXn is equivalent to having a common refinement which is aWn�3-
star and having a common collapse which is a Wn�1-star, the Wn�2-stars S1 and S2
share a common collapse S 0 which is a Wn�1-star. Let � 0 be the equivalence class of S 0.
We claim that there exists an orbit of edgesE in S3 such that the splitting obtained from S3
by collapsing every orbit of edges of S3 except E is in � 0. Indeed, suppose towards a con-
tradiction that this is not the case. Then, as for every i 2 ¹1; 2º, the equivalence classes �i
and �3 are adjacent in Xn, we see that, for every i 2 ¹1; 2º, the splittings Si and S3 share
a common collapse onto aWn�1-star S 0i . Recall that we supposed that there does not exist
an orbit of edges E in S3 such that the splitting obtained from S3 by collapsing every
orbit of edges of S3 except E is in � 0. This implies that for every i 2 ¹1; 2º, the equiva-
lence class � 0i of S 0i is distinct from � 0. Since S1 and S2 areWn�2-stars, they collapse onto
exactly 2 distinct Wn�1-stars. Therefore, for every i 2 ¹1; 2º, the equivalence classes � 0

and � 0i are the two equivalence classes of Wn�1-stars onto which Si collapses. It follows
that a common refinement of S 01, S 02 and S 0 is also a common refinement of S1, S2 and S3.
But a common refinement of S 01, S 02 and S 0 is aWn�3-star. This contradicts the fact that S
has the minimal number of edges among common refinements of S1, S2 and S3. Thus S3
collapses onto aWn�1-star in the equivalence class � 0. Let j 2 ¹1; : : : ; 4º be such that the
free factor decomposition of Wn induced by S 0 is

Wn D hxj i � hx1; : : : ; bxj ; : : : ; xni:
Let �4 be the equivalence class of the Wn�2-star S4 whose induced free factor decompo-
sition is

Wn D hxj i � hx1; : : : ; bx5; : : : ; bxj ; : : : ; xni � hx5i:
Then, for every i 2 ¹1; 2; 3º, the equivalence classes �4 and �i are adjacent in Xn.



Y. Guerch 938

Conversely, suppose that S is a Wn�3-star. Let ¹x1; : : : ; xnº be a standard generating
set of Wn such that the free factor decomposition of Wn induced by S is

Wn D hx1i � hx2i � hx3i � hx4; : : : ; xni:

Then, up to reordering, we may suppose that, for every i 2 ¹1; 2; 3º the free factor decom-
position of Wn induced by Si is

Wn D hxi i � hxiC1i � hx1; : : : ; bxi ; bxiC1; : : : ; xni;
where, for i D 3, the index i C 1 is taken modulo 3. Let � 0 be the equivalence class of
aWn�2-star S 0 adjacent to �1 in Xn and distinct from �2 and �3. Then, up to changing the
representative S 0, there exists j 2 ¹1; 2º such that S 0 collapses onto the Wn�1-star whose
associated free factor decomposition is

Wn D hxj i � hx1; : : : ; bxj ; : : : ; xni:
If j D 1, then, as � 0 is distinct from �1 and �3, we see that � 0 is not adjacent to �2 in Xn.
If j D 2, then, as � 0 is distinct from �1 and �2, we see that � 0 is not adjacent to �3 in Xn.
In both cases, we see that there exists i 2 ¹2; 3º such that � 0 is not adjacent to �i . This
concludes the proof.

Corollary 3.11. Let n � 5. Let k � 4 and let �1; : : : ; �k be k equivalences classes of
Wn�2-stars which are pairwise adjacent in Xn. For i 2 ¹1; : : : ; kº, let Si be a representa-
tive of �i . Let S be a refinement of S1; : : : ; Sk whose number of orbits of edges is minimal.
Then S is a Wn�k�1-star.

Proof. For all distinct i; j 2 ¹1; : : : ; kº, the equivalence classes �i and �j are adjacent
in Xn. Hence, for every distinct i; j 2 ¹1; : : : ; kº, there exists a common refinement
of Si and Sj which is a Wn�3-star. This implies that, for every p 2 ¹1; : : : ; kº and for
all i1; : : : ; ip 2 ¹1; : : : ; kº, a common refinement of Si1 ; : : : ; Sip is obtained from a com-
mon refinement of Si1 ; : : : ; Sip�1 whose number of orbits of edges is minimal by adding
at most one orbit of edges. We claim that a common refinement of Si1 ; : : : ; Sip whose
number of orbits of edges is minimal has exactly pC 1 orbits of edges. Indeed, otherwise
there would exist i; j; ` 2 ¹1; : : : ; kº pairwise distinct such that a Wn�3-star which refines
both Si and Sj also refines S`. This is not possible by Lemma 3.10 since k � 4. This
proves the claim. Taking p D k concludes the proof.

Proposition 3.12. Let n � 5. There exists a Out.Wn/-equivariant injective homomor-
phism ẑ WAut.Xn/! Aut.X 0n/.

Proof. We first exhibit a map ˆWAut.Xn/! Bij.VX 0n/. Let f 2 Aut.Xn/. Let � be the
equivalence class of a Wk-star S with k 2 ¹0; : : : ; n � 2º. If k D n � 2, then we set
ˆ.f /.�/ D f .�/. If k � n � 3, let S0 be a Wn�1-star refined by S . Let S1; : : : ; Sn�k�1
be theWn�2-stars such that, for every i 2 ¹1; : : : ;n� k � 1º, S refines Si and Si refines S0
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(see Figure 3). For every i 2 ¹1; : : : ; n� k � 1º, let �i be the equivalence class of Si , and
let Ti be a representative of f .�i /. By Corollary 3.11, if n � k � 1 � 4, the Wn�2-stars
T1; : : : ; Tn�k�1 are refined by a Wk-star T 0. This Wk-star is unique up to Wn-equivariant
homeomorphism by Theorem 3.7. In the case where k D n � 3, we have n � k � 1 D 2
and, since f .�1/ and f .�2/ are adjacent in Xn, the splittings T1 and T2 are refined by
a Wn�3-star T 0 and it is unique up to Wn-equivariant homeomorphism by Theorem 3.7.
Finally, when k D n� 4, Lemma 3.10 implies that a common refinement of T1, T2 and T3
with the minimal number of orbits of edges is a Wn�4-star T 0, and it is unique up to Wn-
equivariant homeomorphism by Theorem 3.7. In all cases, let T 0 be the equivalence class
of T 0. We set ˆ.f /.�/ D T 0.

�

�

�

hx1; : : : ; xki

hxkC1i

hxni S

�

�

hx1; : : : ; xn�1i

hxni S0

�

�

�

hx1; : : : ; xk ; : : : ;

bxkCi ; : : : ; xn�1i

hxkCi i

hxni Si

Figure 3. The construction of the map Aut.Xn/! Aut.X 0n/.

We now prove that ˆ is well defined. Let k 2 ¹0; : : : ; n � 2º and let � be the equiv-
alence class of a Wk-star S . Let S0 and S 00 be two distinct Wn�1-stars onto which S
collapses and let �0 and � 00 be their equivalence classes. Let S1; : : : ; Sn�k�1 be theWn�2-
stars such that, for every i 2 ¹1; : : : ; n � k � 1º, S refines Si and Si refines S0 and let
S 01; : : : ; S

0
n�k�1

be theWn�2-stars such that, for every i 2 ¹1; : : : ; n� k � 1º, S refines S 0i
and S 0i refines S 00. For i 2 ¹1; : : : ; n � k � 1º, let �i be the equivalence class of Si and let
� 0i be the equivalence class of S 0i . For every i 2 ¹1; : : : ; n � k � 1º, let Ti be a represen-
tative of f .�i / and let T 0i be a representative of f .� 0i /. Let T be a Wk-star which refines
T1; : : : ; Tn�k�1 and let T 0 be aWk-star which refines T 01; : : : ; T

0
n�k�1

. Finally, let T be the
equivalence class of T and let T 0 be the equivalence class of T 0. We claim that T D T 0.
Indeed, we first remark that there exist i; j 2 ¹1; : : : ; n � k � 1º such that �i D � 0j : it is
the equivalence class of theWn�2-star which refines both S0 and S 00. Up to reordering, we
may suppose that i D j D 1, that S1 D S 01 and that T1 D T 01. Therefore, both T and T 0

collapse onto T1.
Let U2; : : : ; Un�k�1 be the Wn�3-stars such that, for every j 2 ¹2; : : : ; n � k � 1º,

the Wn�3-star Uj refines S1 and Uj is refined by S . For every j 2 ¹2; : : : ; n � k � 1º,
there exist `; `0 2 ¹2; : : : ; n� k � 1º such that S` and S 0

`0
are refined by Uj . Therefore, the

map gW ¹2; : : : ; n � k � 1º ! ¹2; : : : ; n � k � 1º sending ` to `0 is a bijection. Thus, we
may suppose that g is the identity, that is, we may suppose that j D `D `0. It follows that
for every j 2 ¹2; : : : ; n� k � 1º, the equivalence class of the Wn�3-star which refines S1
and Sj is the same one as the equivalence class of the Wn�3-star which refines S1 and S 0j .
Therefore, for every i 2 ¹2; : : : ; n � k � 1º, the set ¹�1; �i ; � 0iº defines a triangle in Xn
which corresponds to the equivalence class of a Wn�3-star. By Lemma 3.10, for every
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i 2 ¹2; : : : ; n� k � 1º, the set ¹f .�1/; f .�i /; f .� 0i /º defines a triangle inXn which corre-
sponds to the equivalence class of aWn�3-star. Thus, up to changing the representative T 0i ,
for every i 2 ¹1; : : : ; n � k � 1º, the Wn�3-star which refines T1 and Ti is the same one
as the Wn�3-star which refines T1 and T 0i . As T and T 0 are characterized by the set
of equivalence classes of Wn�3-stars which collapses onto T1 and on which T and T 0

collapse, we see that T D T 0. Therefore, the map ˆ.f /W VX 0n ! VX 0n is well defined.
As ˆ.f / ıˆ.f �1/ D ˆ.f ı f �1/ D id, we see that ˆ.f / is a bijection.

We now prove that the map ˆWAut.Xn/! Bij.VX 0n/ induces a monomorphism ẑ :
Aut.Xn/ ! Aut.X 0n/. Let f 2 Aut.Xn/ and let us prove that ˆ.f / preserves EX 0n.
Let � , � 0 be adjacent vertices in X 0n. Up to exchanging the roles of � and � 0, we may
suppose that there exist S 2 � and S 0 2 � 0 such that S 0 collapses onto S . Let k; ` 2
¹1; : : : ; n � 2º be such that S is a Wk-star and S 0 is a Wk�`-star. Let S0 be a Wn�1-
star such that S refines S0. Let S1; : : : ; Sn�k�1 be the Wn�2-stars such that, for every i 2
¹1; : : : ;n� k � 1º, S refines Si and Si refines S0. As S 0 refines S , there exist ` Wn�2-stars
Sn�k ; : : : ; Sn�kC`�1 such that the Wn�2-stars S1; : : : ; Sn�kC`�1 are the n � k C ` � 1
Wn�2-stars which collapse onto S0 and which are refined by S 0. For every i 2 ¹1; : : : ; n�
k C ` � 1º, let �i be the equivalence class of Si . By definition of ˆ.f /, there exist a rep-
resentative T of ˆ.f /.�/ and representatives T1; : : : ; Tn�k�1 of f .�1/; : : : ; f .�n�k�1/
such that T is a common refinement of T1; : : : ; Tn�k�1. Moreover, there exist a rep-
resentative T 0 of ˆ.f /.� 0/ and representatives Tn�k ; : : : ; Tn�kC`�1 of f .�n�k/; : : : ;
f .�n�kC`�1/ such that this T 0 is a common refinement of f .�1/; : : : ; f .�n�kC`�1/.
As ¹f .�1/; : : : ; f .�n�k�1/º is a subset of ¹f .�1/; : : : ; f .�n�kC`�1/º, we see that f .�/
and f .� 0/ are adjacent. This shows that the application ˆ.f /W VXn ! VX 0n induces
a homomorphism ẑ WAut.Xn/ ! Aut.X 0n/. Finally, the facts that ẑ is injective and is
Out.Wn/-equivariant follow from the fact that, for every equivalence class � of Wn�2-
stars, we have f .�/ D ˆ.f /.�/. This concludes the proof.

Proof of Theorem 3.3. Let n � 5. We first prove the injectivity. By Theorem 3.4, the
homomorphism Out.Wn/!Aut.X 0n/ is injective. Moreover, it factors through Out.Wn/!
Aut.Xn/! Aut.X 0n/. We therefore deduce the injectivity of Out.Wn/! Aut.Xn/. We
now prove the surjectivity. Let f 2 Aut.Xn/. By Proposition 3.12, we have a homomor-
phism ẑ WAut.Xn/! Aut.X 0n/. By Theorem 3.4, the automorphism ẑ .f / is induced by
an element 
 2 Out.Wn/. Since the homomorphism Aut.Xn/! Aut.X 0n/ is injective by
Proposition 3.12, f is induced by 
 . This concludes the proof.

4. The group of twists of a Wn�1-star

In this section, we study the centralizers in Out.Wn/ of twists about a Wn�1-star. We
first show that to a free factor of Wn isomorphic to Wn�1, one can associate a canonical
equivalence class ofWn�1-star (see Lemma 4.4). We then show that, for an outer automor-
phism f in the stabilizer of the equivalence class � of aWn�1-star, there exists a canonical
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representative F of f such that f commutes with a twist T of � if and only if F fixes the
twistor of T (see Lemma 4.12). We first need some preliminary results about stabilizers
of free factors of Wn isomorphic to Wn�1.

Let ¹x1; : : : ; xnº be a standard generating set of Wn. For distinct i; j 2 ¹1; : : : ; nº, let
�j;i WWn ! Wn be the automorphism sending xj to xixjxi and, for k ¤ j , fixing xk . For
distinct i; j 2 ¹1; : : : ; nº, let .i j / be the automorphism of Wn switching xi and xj and,
for k ¤ i; j , fixing xk . The following theorem is due to Mühlherr.

Theorem 4.1 ([30, Theorem B]). Let n � 2. The set ¹�i;j j i ¤ j º [ ¹.i j / j i ¤ j º is
a generating set of Aut.Wn/.

We now introduce a finite index subgroup of Out.Wn/ which will be used throughout
the remainder of this paper. For all i; j 2 ¹1; : : : ; nº distinct, both �i;j and .i j / pre-
serve the set of conjugacy classes ¹Œx1�; : : : ; Œxn�º. Since ¹�i;j j i ¤ j º [ ¹.i j / j i ¤ j º
generates Aut.Wn/ by Theorem 4.1, we see that we have a well-defined homomorphism
Out.Wn/! Bij.¹Œx1�; : : : ; Œxn�º/. Let Out0.Wn/ be the kernel of this homomorphism. The
group Out0.Wn/ has finite index in Out.Wn/. We will mostly work in Out0.Wn/ from now
on because of the following lemma.

Lemma 4.2. Let n � 3 and let f 2 Out0.Wn/. Suppose that f fixes the equivalence
class � of a free splitting S . Then the graph automorphism of the underlying graph of
WnnS induced by f is the identity. Therefore, we have

StabOut0.Wn/.�/ D Stab0Out0.Wn/
.�/:

Proof. The underlying graph WnnS of WnnS is a tree. Moreover, since S is a free split-
ting, ifL is the set of leaves ofWnnS , then the set ¹ŒGv�ºv2L is a free factor system ofWn.
Note that, as ¹Œx1�; : : : ; Œxn�º is a free factor system ofWn which is minimal for inclusion,
for every i 2 ¹1; : : : ; nº, there exists one v 2 VS such that xi 2 Gv . Since S is a free
splitting, for every i 2 ¹1; : : : ; nº, the element xi is contained in a unique vertex group.
Moreover, for every v 2 L, there exist k 2 ¹0; : : : ; n � 1º and ¹i1; : : : ; ikº � ¹1; : : : ; nº
such that Gv is isomorphic to Wk and ¹Œxi1 � \Gv; : : : ; Œxik � \Gvº is a free factor system
of Gv . As f 2 Out0.Wn/, and as f fixes � , it follows that, for every v 2 L, we have
f .ŒGv�/ D ŒGv�. Hence the graph automorphism yf of WnnS induced by f acts as the
identity on L. As any graph automorphism of a finite tree is determined by its action on
the set of leaves, it follows that yf D id. This concludes the proof.

Remark 4.3. The subgroup Out0.Wn/ of Out.Wn/ is our (weak) analogue of the subgroup
IAN .Z=3Z/ of Out.FN /, which is defined as the kernel of the natural homomorphism
Out.FN /! GL.N;Z=3Z/. Indeed, the group IAN .Z=3Z/ satisfies a statement similar
to Lemma 4.2, but it has the additional property that if � 2 IAN .Z=3Z/ has a periodic
orbit in the free splitting graph of FN , then the cardinality of this orbit is equal to 1. In the
context of Out0.Wn/, we do not know if Out0.Wn/ contains a torsion free finite index
subgroup which satisfies this property.
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The next lemma relates the stabilizer of a free factor of Wn isomorphic to Wn�1 and
the stabilizer of a Wn�1-star.

Lemma 4.4. Let n� 3. Let A be a free factor ofWn isomorphic toWn�1. Then, up toWn-
equivariant homeomorphism, there exists a unique free splitting S in which A is elliptic.
In particular, if f 2 Out.Wn/ is such that f .ŒA�/ D ŒA�, then f fixes the equivalence
class of S .

Proof. By definition of a free factor, there exists a free splitting S of Wn such that A is
elliptic in S . This proves the existence. We now prove the uniqueness statement. We may
assume that ¹x1; : : : ; xn�1º is a standard generating set of A and xn 2 Wn is such that

Wn D A � hxni:

Then, the free factor system F D ¹ŒA�; Œhxni�º is a sporadic free factor system which
contains ŒA�. Let F 0 be a free factor system of Wn which contains ŒA�. Since the free
factor system ¹Œhx1i�; : : : ; Œhxni�º is the minimal element of the set of free factor systems
of Wn, we see that there exists ŒB� 2 F 0 such that xn 2 B . As F 0 contains ŒA� and as
Wn D A � hxni, it follows that Wn D A � B and that B � hxni. Therefore,

ŒB� D Œhxni� and F 0 D ¹ŒA�; Œhxni�º:

We deduce that F is the unique nontrivial free factor system which contains ŒA�. But the
spine K.Wn;F / of the outer space relative to F is reduced to a point, i.e., it is reduced to
a unique equivalence class of free splittings. This proves the uniqueness statement.

Remark 4.5. In the context of Out.FN /, the analogue of the splitting given by Lemma 4.4
is the following one. Let ŒA� be the conjugacy class of a free factor of FN isomorphic
to FN�1. Then the canonical splitting associated with A is the splitting corresponding
to the HNN extension FN D A� over the trivial group. However, there does not exist
a natural choice (up to conjugacy) of an element g 2 FN such that ¹ŒA�; Œhgi�º is a free
factor system of FN .

Let S be a splitting with exactly one orbit of edges, whose stabilizer is root-closed and
isomorphic to Z. Then the group of twists of S is isomorphic to Z by a result of Levitt
(see [28, Proposition 3.1]). The next proposition is similar to a result in the case of the
outer automorphism group of a free group (see [6] and [25, Lemma 2.7]). Recall that an
element w 2 Wn is root-closed if there does not exist w0 2 Wn and an integer n � 2 such
that w D wn0 .

Lemma 4.6. Let n � 3. Let A be a free factor of Wn isomorphic to Wn�1 and let w 2 A
be a root-closed element of infinite order. Let x 2 Wn be such that Wn D A � hxi. Let �

be the equivalence class of a splitting S whose associated amalgamated decomposition
of Wn is the following:

Wn D A �hwi .hwi � hxi/:
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Let D be a nontrivial twist about S . Let R be the equivalence class of a free splitting R
of Wn such that D.R/ D R. Let R0 and S 0 be metric representatives of R and S , let R0

and � 0 be their Wn-equivariant isometry classes and let ŒR0� and Œ� 0� be their homothety
classes.

(1) In PO.Wn/, there exists an increasing function  WN ! N such that

lim
n!1

D .n/.ŒR0�/ D Œ� 0�:

(2) The splittings S and R are compatible.

Proof. We prove the first part. As PO.Wn/ is compact, up to passing to a subsequence,
there exist a sequence .�n/n2N 2 .R�C/

N and a Wn-equivariant isometry class T of an
R-tree T such that

lim
n!1

�nD
n.R0/ D T :

Since translation length functions are continuous for the Gromov–Hausdorff topology
(see [31]), for every g 2 Wn, we have

lim
n!1

�nkgkDn.R0/ D kgkT ;

where kgkT is the translation length of g in T . Hence, for every g 2 Wn, the limit
limn!1 �nkgkDn.R0/ is finite. But as D has infinite order, we have limn!1 �n D 0.
As there exists a representative � 2 Aut.Wn/ of D such that �A D idA, for every g 2 A,
we have

lim
n!1

�nkgkDn.R0/ D lim
n!1

�nkgkR0 D 0:

Hence every element of A fixes a point in T . As A is finitely generated, this implies that A
fixes a point in T (see for instance [8, Section 3]). Similarly, we see that hwi � hxi fixes
a point in T . As Wn D A � hxi, we see that A and hwi � hxi cannot fix the same point
in T . Let U be the free splitting of Wn associated with the free factor decomposition
Wn D A � hxi. Let v0 be the vertex of U fixed by A, let v1 be the vertex fixed by x and
let v2 be the vertex fixed by wxw�1. Let e1 be the edge between v0 and v1 and e2 be
the edge between v0 and v2. The arguments above show that we have a canonical Wn-
equivariant morphism from U to T . This morphism is obtained by a fold of the edges e1
and e2 of U and this fold is extendedWn-equivariantly. Since w is root-closed, there is no
other edge of U that can be folded as otherwise the stabilizer of an edge of T would not
be cyclic. Therefore, the R-tree T is simplicial and the decomposition of Wn associated
with WnnT is

Wn D A �hwi .hwi � hxi/:

Hence T D � 0 and the first statement follows.
Let us prove the second statement. For every n 2N, the equivalence classes �nDn.R/

and R have compatible representatives. But as limn!1 �nD
n.R/ D � , it follows from

[19, Corollary A.12] that, in the limit, the splittings S and R are compatible.
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Lemma 4.7. Let n � 3 and let � be the equivalence class of a Wn�1-star S . Let T be the
group of twists of � and let f 2 T be an element of infinite order. Let R be the equivalence
class of a Wn�1-star R such that f .R/ D R. Then S and R are compatible.

Proof. Let
Wn D A � hxni

be a free factor decomposition of Wn associated with S and let zf 2 A be the twistor
of f . Let z be a root-closed element of A such that there exists m � 1 with zm D zf . Let
h 2 T be the twist about z. We see that hm D f . Let S 0 be the splitting associated with
the following amalgamated decomposition of Wn:

Wn D A �hzi .hxni � hzi/:

Let � 0 be the equivalence class of S 0. Let T 0 be the group of twists of � 0. Since A is
isomorphic to Wn�1 and since z is root-closed, we see that CA.z/ D hzi. Therefore, T 0 is
isomorphic to Z and a generator of T 0 is h. As f .R/ D R, Lemma 4.6 implies that S 0

and R are compatible. Let U be a common refinement of S 0 and R whose number of
orbits of edges is minimal. Since both S 0 and R are one-edge splittings and are different,
the splitting U has 2 orbits of edges. It follows that WnnU is obtained from WnnS

0 by
blowing-up an edge at one of the two vertices of WnnS 0. Let zv be the vertex of S 0 whose
stabilizer isA and let v be its image inWnnS 0. Let zw be the vertex of S 0 fixed by hxni � hzi
and let w be its image in WnnS 0.

Claim 4.8. Either � D R or the splitting WnnU is obtained from WnnS
0 by blowing-up

an edge at v.

Proof. Suppose that WnnU is obtained from WnnS
0 by blowing-up an edge at w. Then,

since the group Gw associated with w is hxni � hzi and since z must fix an edge of U ,
we see that a free splitting of Gw , such that z fixes a vertex, is a .Gw ; ¹hzi; hxniº/-free
splitting. But .Gw ; ¹hzi; hxniº/ has exactly one such equivalence class of one-edge free
splitting: the one with vertex stabilizers conjugated with hzi and hxni. This implies that
R D � . The claim follows.

Suppose that R ¤ � . The claim implies that the amalgamated decomposition of Wn
associated with U is

Wn D B � C �hzi .hzi � hxni/;

where B and C are free factors ofWn such that AD B �C and z 2 C . Let U 0 be a refine-
ment of U whose associated amalgamated decomposition of Wn is

Wn D B � C �hzi hzi � hxni;

that is, z and xn fix distinct points in U 0. Then, since A D B � C , the splitting U 0 is
a refinement of S . This concludes the proof of Lemma 4.7.
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Proposition 4.9. Let n � 3. Let S be a Wn�1-star and let f 2 Out.Wn/ be a twist
about the unique edge of WnnS . Let g 2 Out0.Wn/ be such that g 2 COut.Wn/.f /. Then
g.�/ D � .

Proof. Let
Wn D hx1; : : : ; xn�1i � hxni

be the free factor decomposition associated with S and let � be the equivalence class
of S . By Lemma 4.4, in order to prove that g.�/ D � , it suffices to show that g preserves
the conjugacy class of A D hx1; : : : ; xn�1i. Let zf be a representative of f such that
zf jA D idA. Let zg be a representative of g. Suppose towards a contradiction that zg does

not preserve the conjugacy class of A. By hypothesis, there exists I 2 Inn.Wn/ such that
zf ı zg D I ı zg ı zf . Thus,

zf ı zg.A/ D I ı zg ı zf .A/ D I ı zg.A/:

Therefore, f preserves the conjugacy class of zg.A/. By Lemma 4.4, f fixes the unique
equivalence class R of the Wn�1-star R associated with zg.A/. By Lemma 4.7, the split-
tings S and R are compatible. Since we suppose that zg.A/ … ŒA�, there exists a common
refinement S 0 of S and R which is a Wn�2-star. Thus, there exists yn 2 Wn such that the
free factor decomposition associated with S 0 is

Wn D hxni � B � hyni;

whereB is such thatADB � hyni andB � hxni is a conjugate of zg.A/. Up to changing the
representative zg.A/, we may suppose that zg.A/D B � hxni. This implies that xn 2 zg.A/,
that is zg�1.xn/ 2 A. But, since A D hx1; : : : ; xn�1i, we see that Œzg�1.xn/� 2 ¹Œx1�; : : : ;
Œxn�1�º. This contradicts the fact that g 2 Out0.Wn/.

Combining Lemma 4.7 and Proposition 4.9, we have the following corollary.

Corollary 4.10. Let n � 3. Let � and R be two distinctWn-equivariant homeomorphism
classes of two Wn�1-stars S and R. Let f and g be twists about respectively S and R
such that f and g commute. Then S and R are compatible.

Proof. Let k � 1 be such that gk 2 Out0.Wn/. By Proposition 4.9, since gk and f com-
mute, we have gk.�/ D � . Since gk is a twist about R, by Lemma 4.7, we have that S
and R are compatible.

Let � be the equivalence class of a Wn�1-star S and let

Wn D hx1; : : : ; xn�1i � hxni

be the free factor decomposition of Wn associated with S . Let A D hx1; : : : ; xn�1i.
Let f 2 StabOut.Wn/.�/. Then any representative of f sends A to a conjugate of itself.
Let zf 0 be a representative of f such that zf 0.A/ D A. Since the vertices in S fixed by A
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and xn are adjacent, and since the stabilizer of every vertex in S adjacent to the vertex
fixed by A is a conjugate of hxni by an element of A, we see that zf 0.xn/ D xxnx

�1

with x 2 A. Therefore, there exists a representative zf of f such that zf .A/ D A and
zf .xn/ D xn. The automorphism zf is the unique representative of f such that zf .A/ D A

and zf .xn/ D xn.
We have a similar result for Wn�2-stars. Indeed, let � 0 be the equivalence class of

a Wn�2-star S 0 and let

Wn D hx1i � hx2; : : : ; xn�1i � hxni

be the free factor decomposition ofWn associated with S 0 and let B D hx2; : : : ; xn�1i. Let
f 2 StabOut0.Wn/.�

0/. A similar argument as in the case of a Wn�1-star shows that there
exists a representative zf of f such that zf .B/ D B and zf .xn/ D xn.

Lemma 4.11. Let n � 4. Let � be the Wn-equivariant homeomorphism class of a Wn�1-
star S . Let T be the group of twists of � . Let � 0 be the Wn-equivariant homeomorphism
class of a Wn�2-star S 0 which refines S . Let e be the edge of WnnS 0 such that a represen-
tative of � is obtained from WnnS

0 by collapsing the edge distinct from e. Let T 0 be the
group of twists of S 0 about the edge e. Then T \ StabOut0.Wn/.�

0/ � T 0.

Proof. Let

Wn D hx1i � hx2; : : : ; xn�1i � hxni

be the free factor decomposition of Wn induced by S 0 and let A D hx2; : : : ; xn�1i. Let

Wn D B � hyni

be the free factor decomposition associated with S . Up to changing the representative S ,
we may suppose thatB Dhx1; : : : ;xn�1i and that ynD xn. Let f 2 T \ StabOut0.Wn/.�

0/.
Let zf be the representative of f such that zf .B/ D B and zf .xn/ D xn, which exists
since f 2 StabOut.Wn/.�/. Since f 2 T , there exists g 2 B such that zf jB is the global
conjugation by g. Let zf 0 be a representative of f such that zf 0.A/ D A and zf 0.xn/ D xn,
which exists since f 2 StabOut0.Wn/.�

0/. Since the centralizer in Wn of xn is hxni and
since A is malnormal in Wn, we see that zf D zf 0. Hence zf .A/ D A, and, since A is
malnormal, we see that g 2 A. Therefore, f 2 T 0, which concludes the proof.

Lemma 4.12. Let n � 3. Let � be the equivalence class of a Wn�1-star S and let

Wn D hx1; : : : ; xn�1i � hxni

be the free factor decomposition associated with S . Let A D hx1; : : : ; xn�1i. Let T be the
group of twists of S . For f 2 T , let zf 2 A be the twistor of f . Let g 2 Stab.�/ and let zg
be a representative of g such that zg.A/ D A and zg.xn/ D xn. Then g 2 COut.Wn/.hf i/ if
and only if zg.zf / D zf .
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Proof. By Proposition 2.5 (2), the group Stab.�/ is isomorphic to Aut.A/. The isomor-
phism Stab.�/! Aut.A/ is defined by sending f 2 Stab.�/ to its representative zf such
that zf .A/ D A and zf .xn/ D xn. In particular, for every h1; h2 2 Out.Wn/ \ Stab.�/,
we see that h1 and h2 commute if and only if there exist representatives zh1 and zh2
of h1 and h2, respectively, such that zh1.A/ D A, zh2.A/ D A, zh1.xn/ D zh2.xn/ D xn and
zh1 ı zh2 D zh2 ı zh1. Moreover, Proposition 2.5 (2) identifies the group of twists T with the
group Inn.A/. For a 2 A, let ada be the inner automorphism of A induced by a. Since, for
every h 2 Aut.A/ and every a 2 A, we have h ada h�1 D adh.a/, we see that h commutes
with ada if and only if h.a/ D a. Hence g 2 COut.Wn/.hf i/ if and only if zg.zf / D zf .

5. Direct products of nonabelian free groups in Out.Wn/

Following [25, Section 6], we define the product rank of a groupH , denoted by rkprod.H/,
to be the maximal integer k such that a direct product of k nonabelian free groups embeds
in H . Note that, if H 0 is a finite index subgroup of H , then rkprod.H

0/ D rkprod.H/.
Moreover, if �WH ! Z is a homomorphism, then rkprod.ker.�//D rkprod.H/. The aim of
this section is to prove the following theorem.

Theorem 5.1. The groups Aut.Wn/ and Out.Wn/ satisfy the following properties:

(1) For every n � 3, we have rkprod.Aut.Wn// D n � 2.

(2) For every n � 4, we have rkprod.Out.Wn// D n � 3.

(3) Suppose that n � 5. IfH is a subgroup of Out.Wn/ isomorphic to a direct product
of n� 3 nonabelian free groups, thenH has a subgroupH 0 isomorphic to a direct
product of n � 3 nonabelian free groups which virtually fixes the Wn-equivariant
homeomorphism class of a Wn�1-star. In addition, H does not virtually fix the
Wn-equivariant homeomorphism class of any one-edge free splitting that is not
a Wn�1-star.

We first recall an estimate regarding product ranks and group extensions due to Horbez
and Wade.

Lemma 5.2 ([25, Lemma 6.3]). Let 1! N ! G ! Q! 1 be a short exact sequence
of groups. Then rkprod.G/ � rkprod.N /C rkprod.Q/.

In order to compute the product rank of Out.Wn/, we take advantage of its action on
the Gromov hyperbolic free factor complex. We recall a general result concerning actions
of direct products on a hyperbolic space.

Lemma 5.3 ([25, Proposition 4.2 and Lemma 4.4]). LetX be a Gromov hyperbolic space,
and let H be a group acting by isometries on X . Assume that H contains a normal sub-
group K isomorphic to a direct product K D

Qk
iD1Ki .

If there exists j 2 ¹1; : : : ;kº such thatKj contains a loxodromic element, then
Q
i¤jKi

has a finite orbit in @1X .
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If there exist two distinct i; j 2 ¹1; : : : ; kº such that both Ki and Kj contain a loxo-
dromic element, then H has a finite orbit in @1X .

If, for every j 2 ¹1; : : : ; kº, the groupKj does not contain a loxodromic element, then
either K has a finite orbit in @1X or H has bounded orbits in X .

Let F be a free factor system of Wn. Recall that O.Wn;F / is the outer space of Wn
relative to F . Given T 2 O.Wn;F /, let ŒT � be the homothety class of T . The homothetic
stabilizer Stab.ŒT �/ is the stabilizer of ŒT � for the action of Out.Wn;F / on PO.Wn;F /.
Equivalently,ˆ 2 Out.Wn;F / lies in Stab.ŒT �/ if there exists a lift ẑ 2 Aut.Wn;F / ofˆ
and a homothety I ẑ WT ! T such that, for all g 2 Wn and x 2 T , we have

I ẑ .gx/ D ẑ .g/I ẑ .x/:

The scaling factor of I ẑ does not depend on the choice of a representative of ˆ, and we
denote it by �T .ˆ/. This gives a homomorphism

Stab.ŒT �/! R�C; ˆ 7! �T .ˆ/:

The kernel of this morphism is called the isometric stabilizer of T and is denoted by
Stabis.T /. It is the stabilizer of T for the action of Out.Wn;F / on O.Wn;F /.

Lemma 5.4 ([16, Lemma 6.1]). Let n � 3. Let F be a nonsporadic free factor system
ofWn. For every T 2 O.Wn;F /, the image of the morphism �T is a cyclic (maybe trivial)
subgroup of R�C.

We will also use a theorem due to Guirardel and Horbez which assigns to every
nonempty collection of free splittings whose elementwise stabilizer is infinite, a canonical
(not necessarily free) splitting.

Theorem 5.5 ([15, Theorem 6.12]). Let n � 3. There exists an Out.Wn/-equivariant map
which assigns to every nonempty collection C of free splittings of Wn whose elementwise
Out.Wn/-stabilizer is infinite, a nontrivial splitting UC of Wn whose set of vertices V UC

has a Wn-invariant partition V UC D V1 q V2 with the following properties:

(1) For every vertex v 2 V1, the following holds:

(a) either some edge incident to v has trivial stabilizer, or the set of stabilizers
of edges incident to v induces a nontrivial free factor system of the vertex
stabilizer Gv ,

(b) there exists a finite index subgroup H0 of the elementwise stabilizer of the
collection C such that every outer automorphism in H0 has a representative
in Aut.Wn/ which restricts to the identity on Gv .

(2) The collection of all conjugacy classes of stabilizers of vertices in V2 is a free
factor system of Wn.

Finally, we state a proposition due to Guirardel and Horbez concerning the isometric
stabilizer of an arational tree.



Commensurations of the outer automorphism group of a universal Coxeter group 949

Proposition 5.6 ([16, Proposition 6.5]). Let n � 3. Let F be a nonsporadic free factor
system ofWn, and let T be an arational .Wn;F /-tree. LetH be a subgroup of Out.Wn;F /
which is virtually contained in Stabis.T /. Then H has a finite index subgroup H 0 which
fixes infinitely many .Wn;F /-free splittings, and in particular,H fixes the conjugacy class
of a proper .Wn;F /-free factor.

Note that the statement of Proposition 5.6 in [16] only mentions that H 0 fixes one
.Wn;F /-free splitting, but the proof uses an arbitrary free splitting of Wn, so that one
can construct infinitely many pairwise distinct free splittings fixed by H 0 by varying the
chosen free splitting of Wn.

Proof of Theorem 5.1. The proof is inspired by [25, Theorem 6.1] due to Horbez and
Wade and [23, Theorem 4.3] due to Hensel, Horbez and Wade.

We first prove that if n � 4, then rkprod.Out.Wn// � n � 3 and that, if n � 3, then
rkprod.Aut.Wn// � n � 2. Pick a standard generating set ¹x1; : : : ; xnº of Wn. Then the
group H generated by ¹x1x2; x2x3º is a nonabelian free group (see [30, Theorem A]).

Suppose first that n � 4. For i 2 ¹4; : : : ; nº and h 2 H , let Fi;h be the automorphism
sending xi to hxih�1 and, for j ¤ i , fixing xj . Then, for all distinct i; j 2 ¹4; : : : ; nº and
for every g; h 2 H , the automorphisms Fi;g and Fj;h commute, giving a direct product
of n � 3 nonabelian free groups in Out.Wn/. Moreover, for all g; h 2 H , and every i 2
¹4; : : : ; nº, the inner automorphism adg commutes with Fi;h, which yields a direct product
of n� 2 nonabelian free groups in Aut.Wn/. In the case where n D 3, the group Aut.W3/
contains the subgroup hadhih2H , which is a nonabelian free group.

We now prove that, if n � 3, then rkprod.Aut.Wn// � n � 2, if n D 3, then we have
rkprod.Out.Wn// D 1 and if n � 4, then rkprod.Out.Wn// � n � 3. The proof is by induc-
tion on n. The base case where n D 3 follows from the fact that the group Aut.W3/ is
isomorphic to Aut.F2/ (see [36, Lemma 2.3]) and the fact that the group Aut.F2/ does
not contain a direct product of two nonabelian free groups (see [25, Lemma 6.2]). More-
over, by [12, Proposition 2.2], the group Out.W3/ is isomorphic to PGL.2;Z/ which is
virtually free.

Let k � max¹n � 3; 2º and let H D H1 �H1 � � � � �Hk be a subgroup of Out.Wn/
isomorphic to a direct product of k nonabelian free groups. Note that k D n � 3 if n � 5
and k D 2 if n D 4. We prove that there exists a subgroup K of H isomorphic to a direct
product of k nonabelian free groups which virtually fixes a one-edge free splitting of Wn.
Let F be a maximal H -periodic free factor system. If F is sporadic, then H virtually
fixes a one-edge free splitting, so we are done. Therefore, we may suppose that F is
nonsporadic. As F is supposed to be maximal, by Proposition 2.2, the group H acts on
FF.Wn;F / with unbounded orbits. Lemma 5.3 implies that, after possibly reordering the
factors, the group H 0 D H1 �H2 � � � � �Hk�1 has a finite orbit in @1FF.Wn;F /. By
Lemma 2.4, the groupH 0 virtually fixes the homothety class ŒT � of an arational .Wn;F /-
tree T .

Let H0 be a normal subgroup of finite index in H 0 that is contained in Stab.ŒT �/.
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Claim 5.7. The group H contains a subgroup isomorphic to a direct product of k non-
abelian free groups, which fixes the equivalence class of a one-edge free splitting.

Proof. By Lemma 5.4, the homomorphism �T jH0 from H0 to R�C given by the scaling
factor has cyclic image. As H0 contains a direct product of k � 1 nonabelian free groups,
so does P D ker.�T jH0/ (see the beginning of Section 5). In particular, the intersection
of P with every direct factor Hi of H 0 is a nonabelian free group. As P is contained
in the isometric stabilizer of T , Proposition 5.6 implies that P contains a finite index
subgroup P0 which fixes infinitely many .Wn;F /-free splittings.

Let C be the (nonempty) collection of all .Wn;F /-free splittings fixed by the infinite
group P0, let UC be the splitting provided by Theorem 5.5, and let UC be its equivalence
class. Since P0 commutes with Hk , the equivalence class UC is .P0 �Hk/-invariant.

Suppose first that the splitting UC contains an edge e 2 EUC with trivial stabilizer.
Let U 0 be the splitting obtained from UC by collapsing every edge of UC that is not
contained in the orbit of e, and let U0 be its equivalence class. Then U0 is the equivalence
class of a one-edge free splitting virtually fixed by P0 �Hk . Since P0 contains a direct
product of k � 1 nonabelian free groups, the claim follows.

Thus, we can suppose that all edge stabilizers of UC are nontrivial. We show that this
leads to a contradiction. Let V UC D V1 q V2 be the partition of V UC given by The-
orem 5.5. Let P 0 be a finite index subgroup of P0 which acts trivially on the quotient
WnnUC . We claim that the intersection of P 0 with the group of twists of UC is trivial.
Indeed, let e be an oriented edge of UC . As every subgroup of Wn with nontrivial central-
izer is cyclic, if the edge stabilizer Ge of e is not cyclic, the group of twists around this
edge is trivial. Thus, oriented edges with nontrivial group of twists have cyclic stabiliz-
ers. But twists about edges with cyclic stabilizers are central in a finite index subgroup of
Stab0.UC / by Lemma 2.7. Let P 00 be a finite index subgroup of P 0. Then the intersec-
tion of P 00 with every direct factor Hi of H 0 is a nonabelian free group. Therefore, every
element of P 00 is contained in a nonabelian free subgroup of P 00. In particular, the center
of every finite index subgroup of P 0 is trivial. Thus, we see that the intersection of P 0

with the group of twists is trivial. By Remark 2.6, up to passing to a further finite index
subgroup of P 0, we may suppose that the intersection of P 0 with the group of bitwists is
trivial.

By Proposition 2.5 (1) and Remark 2.6, the fact that the intersection of P 0 with the
group of bitwists is trivial implies that we have an injective homomorphism

P 0 !
Y

v2WnnVUC

Out.Gv/:

By Theorem 5.5 (1) (b), for every vertex v 2 V1, the homomorphism P 0 ! Out.Gv/ has
finite image. Therefore, up to passing to a finite index subgroup ofP 0, we have an injective
map

P 0 !
Y

v2WnnV2

Out.Gv/:
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By Theorem 5.5 (2), for every v 2 V2, the vertex stabilizerGv is an element of a free factor
system ofWn. Therefore, there exists k such that Gv is isomorphic toWk . By Lemma 5.2,
we have

n � 4 � k � 1 D rkprod.P
0/ �

X
v2WnnV2

rkprod.Out.Gv//:

By induction, we see that, if jWnnV2j � 2, thenX
v2WnnV2

rkprod.Out.Gv// � n � 6;

which leads to a contradiction. Thus jWnnV2j D 1. Let v 2 WnnV2. Then there exists
` 2 ¹1; : : : ; n � 1º such that Gv is isomorphic to W`. If ` � n � 2, then

rkprod.Out.Gv// � n � 5;

which leads to a contradiction. If ` D n� 1, then the free factor system F contains a free
factor isomorphic to Wn�1 and is therefore a sporadic free factor system, which leads to
a contradiction.

Therefore, we see that there exists a subgroup K of H isomorphic to a direct product
of k nonabelian free groups such that K fixes the Wn-equivariant homeomorphism class
of a one-edge-free splitting � . We now prove that � is the equivalence class of a Wn�1-
star. Let S be a representative of � , let v1 and v2 be the vertices of the underlying graph
of WnnS and, for i 2 ¹1; 2º, let ki be such that Wki is isomorphic to Gvi . Let K0 be the
finite index subgroup of K which acts as the identity on WnnS . Then K0 � Stab0.�/.
By Proposition 2.5 (2), the group Stab0.�/ is isomorphic to Aut.Wk1/ � Aut.Wk2/. Sup-
pose towards a contradiction that, for every i 2 ¹1; 2º, we have that ki ¤ 1. Suppose first
that, for every i 2 ¹1; 2º, we have ki � 3. Then, by Lemma 5.2, we see that

k D rkprod.K0/ � rkprod.Aut.Wk1//C rkprod.Aut.Wk2//

� k1 � 2C k2 � 2 D n � 4;

where the second inequality comes from the induction hypothesis. If there exists i 2 ¹1; 2º
such that ki D 2, then, as Aut.W2/ is virtually cyclic (it is isomorphic to W2 by [35,
Lemma 1.4.2]), we see that

k D rkprod.K0/ � rkprod.Aut.Wk1//C rkprod.Aut.Wk2// � k1 � 2 � n � 4:

In both cases, we have a contradiction as k � n � 3 when k � 5 and k D n � 2 when
n D 4. Thus, there exists i 2 ¹1; 2º such that ki D 1. This shows that S is a Wn�1-star.
In particular, when k D n � 3, that is, when n � 5, this proves Theorem 5.1 (3).

Since K0 � Stab0.�/, Proposition 2.5 (2) implies that

k D rkprod.K0/ � rkprod.Aut.Wn�1// D n � 1 � 2 D n � 3:
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When n D 4, then k D 2 D n � 2. Therefore, we have a contradiction in this case. This
shows that, for all n � 4, the product rank of Out.Wn/ is equal to n � 3. This concludes
the proof of Theorem 5.1 (2).

It remains to prove that, if n � 4, we have rkprod.Aut.Wn// � n � 2. We have the
following short exact sequence

1! Wn ! Aut.Wn/! Out.Wn/! 1:

By Lemma 5.2, as Wn is virtually free, we see that

rkprod.Aut.Wn// � rkprod.Wn/C rkprod.Out.Wn// D 1C n � 3 D n � 2:

This concludes the proof of Theorem 5.1 (1).

6. Subgroups of stabilizers of Wn�1-stars

In the next two sections, we prove an algebraic characterization of stabilizers of equiv-
alence classes of Wn�2-stars. In this section, we take advantage of properties satisfied
by stabilizers of equivalence classes of Wn�2-stars which are sufficiently rigid to show
that a subgroupH of Out.Wn/ which satisfies these properties virtually fixes aWn�1-star.
In the next section, we will take advantage of the fact that stabilizers of equivalence classes
of compatible Wn�2-stars have large intersections to give a characterization of stabilizers
of equivalence classes of Wn�2-stars.

Let � be a finite index subgroup of the group Out0.Wn/ (defined after Theorem 4.1).
We introduce the following algebraic property for a subgroup H � � .

.PWn�2/ The group H satisfies the following three properties:

(1) The group H contains a normal subgroup isomorphic to a direct product
K1 �K2 of two normal subgroups such that each one contains a nonabelian
finitely generated normal free subgroup of finite index and such that for every
i 2 ¹1; 2º, for every nontrivial normal subgroup P of a finite index sub-
group K 0i of Ki , and for every finite index subgroup P 0 of P , the group
COut0.Wn/.P

0/ contains KiC1 as a finite index subgroup (where indices are
taken modulo 2).

(2) The group H contains a direct product of n � 3 nonabelian free groups.

(3) The group H contains a subgroup isomorphic to Zn�2.

Remark 6.1. (1) Notice that property .PWn�2/ is closed under taking finite index sub-
groups.

(2) Hypothesis .PWn�2/ (1) implies that, if for every i 2 ¹1; 2º, the group Pi is a finite
index subgroup of a nontrivial normal subgroup of a finite index subgroup of Ki , the
centralizer in Out0.Wn/ of P1 � P2 is finite.



Commensurations of the outer automorphism group of a universal Coxeter group 953

We first prove that the stabilizer in � of the equivalence class of a Wn�2-star satisfies
.PWn�2/. We then show that a group satisfying .PWn�2/ virtually fixes the equivalence
class of a Wn�1-star.

6.1. Properties of ZRC -factors

In order to prove that the stabilizer in � of the equivalence class of a Wn�2-star satisfies
.PWn�2/, we first need some background concerning ZRC -splittings. Let G be a finitely
generated group. A ZRC -splitting of G is a splitting of G such that every edge stabilizer
is either trivial or isomorphic to Z and root-closed. A ZRC -factor ofG is a subgroup ofG
which arises as a vertex stabilizer of a ZRC -splitting ofG. Note that since edge stabilizers
are root-closed, so are the vertex stabilizers.

We now describe a finite index subgroup ofWn that we will use in the proof of Proposi-
tion 6.3. Let F be the kernel of the homomorphismWn! F which sends every generator
of a standard generating set of Wn to the nontrivial element of F . Remark that F does not
depend on the choice of the basis. Indeed, if ¹x1; : : : ; xnº is a standard generating set of
Wn, and if x is an element of Wn of order 2, there exists i 2 ¹1; : : : ; nº and g 2 Wn such
that x D gxig�1. We have the following result due to Mühlherr.

Lemma 6.2 ([30, Theorem A]). The group F is a nonabelian free group of rank n � 1
which is a characteristic subgroup of Wn. Moreover, the natural restriction homomor-
phism

Aut.Wn/! Aut.F/

is injective.

We now outline here some properties of ZRC -factors (see, e.g., [25, Proposition 7.3]).

Proposition 6.3. Let n � 3. The ZRC -factors of Wn satisfy the following properties:

(1) Let H be a finitely generated subgroup of Wn which is not virtually cyclic. There
exists g 2 H which is not contained in any proper ZRC -factor of H .

(2) There exists C 2 N� such that, for every strictly ascending chain G1 ¨ � � � ¨ Gk
of ZRC -factors of Wn, one has k � C .

(3) If a subgroup K of Wn is not contained in any proper ZRC -factor of Wn and if
P is either a finite index subgroup of K or a nontrivial normal subgroup of K,
then P is not contained in any proper ZRC -factor of Wn.

(4) A subgroup K of Wn is contained in a proper ZRC -factor of Wn if and only if
every element of K is contained in a proper ZRC -factor of Wn.

Proof. The first assertion is a consequence of [11, Lemma 4.3] due to Genevois and
Horbez.

For the second assertion, let G1 ¨ � � � ¨ Gk be a sequence of strictly ascending ZRC -
factors. Then, since ZRC -factors are root-closed, for every i � 3 the group Gi is not
cyclic. Thus, as we want an upper bound on the number of subgroups of such a sequence,
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we may suppose that for every i 2 ¹1; : : : ; nº, the group Gi is not cyclic. We claim that,
for every i 2 ¹1; : : : ; kº, there exists �i 2 Aut.Wn/ such that Fix.�i / D Gi . Indeed, let Si
be a ZRC -splitting of Wn such that there exists v 2 VSi whose stabilizer is equal to Gi .
Up to collapsing edges, we may suppose that every vertex of Si has nontrivial stabilizer.
Let e1; : : : ; e` be the edges with origin v which are in pairwise distinct orbits. Let F0 �
¹e1; : : : ; e`º be the subset made of all edges with nontrivial stabilizer. By the definition of
a ZRC -splitting, for every es 2 F0, the group Ges is cyclic. For every es 2 F0, let zs be
a generator of Ges . For every es0 2 ¹e1; : : : ; e`ºnF0, let zs0 2 Gi be such that, if ws0 is the
endpoint of es0 distinct from v, we have zs0Gws0 z

�1
s0 ¤Gws0 . Let �i DDe1;z1 ı � � � ıDe`;z`

be a multitwist about every edge with origin v. Then, as the centralizer of an infinite cyclic
subgroup of Wn is infinite cyclic, we have Fix.�i / D Gi . Therefore, in order to prove the
second assertion, it suffices to prove that there exists C 2 N� such that for every strictly
ascending chain Fix.�1/ ¨ � � � ¨ Fix.�k/ of fixed points sets of automorphisms of Wn,
one has k � C .

Let F be the characteristic subgroup of Wn given by Lemma 6.2 and let

ˆW Aut.Wn/! Aut.F/

be the natural injective homomorphism given by restriction. Then

Fix.ˆ.�1// � � � � � Fix.ˆ.�k//

is an ascending chain of fixed points sets.

Claim 6.4. For every i2¹2; : : : ;k� 1º, the set ¹Fix.ˆ.�i�1//;Fix.ˆ.�i //;Fix.ˆ.�iC1//º
contains at least 2 elements.

Proof. Suppose towards a contradiction that

j¹Fix.ˆ.�i�1//;Fix.ˆ.�i //;Fix.ˆ.�iC1//ºj D 1:

As Fix.�i�1/¨ Fix.�i / and Fix.ˆ.�i�1//D Fix.ˆ.�i //, there exists a 2WnnF such that
�i .a/ D a and �i�1.a/¤ a. Since the index of F is equal to 2, we see that �i�1.a2/D a2.
Therefore, �i�1.a/2 D a2 and �i�1.a/ is a square root of a2. If a2 has infinite order, its
only square root is a. This implies that �i�1.a/D a, a contradiction. Thus, we can assume
that a has order 2 and, up to changing the basis ¹x1; : : : ; xnº, we may suppose that aD x1.

As the index of F is equal to 2, we have Wn D F q x1F . Let x 2 Fix.�iC1/nF . Then
there exists y 2 F such that x D x1y. As x1 2 Fix.�i / and Fix.�i / ¨ Fix.�iC1/, we have
that �iC1.x1/ D x1. Hence �iC1.y/ D y. As y 2 F and Fix.ˆ.�i // D Fix.ˆ.�iC1//, we
see that

�i .y/ D y and �i .x/ D �i .x1y/ D x1y D x:

Therefore, we have that Fix.�i / D Fix.�iC1/, which is a contradiction. Then the claim
follows.
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From Claim 6.4, we have that the length of the strictly ascending chain associated
with Fix.ˆ.�1// � � � � � Fix.ˆ.�k// is at least equal to k

2
. But any strictly ascending

chain of fixed subgroups in a free group on n � 1 generators has length at most 2.n � 1/
(see [29, Theorem 4.1]). Therefore, there exists C which depends only on n such that
k � C . The second assertion of Proposition 6.3 follows.

We now prove the third assertion. Let P and K be as in Proposition 6.3 (3). If K
is a virtually infinite cyclic group, then K is either isomorphic to Z or to W2. Let a be
a generator of the subgroup of K isomorphic to Z and root-closed in K. Since hai is
a finite index subgroup of K and since K is not contained in any proper ZRC -factor
of Wn, then neither is a. Remark that any nontrivial normal subgroup of K intersects the
subgroup hai nontrivially. Therefore, if P is contained in a proper ZRC -factor of Wn,
then a is elliptic in a ZRC -splitting. This contradicts the fact that a is not contained in any
proper ZRC -factor of Wn.

So we can assume that K is not virtually cyclic. As every finite index subgroup con-
tains a nontrivial normal subgroup of K, we may assume that P is a nontrivial normal
subgroup of K. Notice that P is necessarily noncyclic. Suppose towards a contradiction
that P is contained in a ZRC -factor. Then there exists a ZRC -splitting S of Wn such
that P is elliptic in S . Since edge stabilizers are cyclic, the group P fixes a unique ver-
tex x of S . But, as P is normal inK, for every k 2 K, we have that kx is also fixed by P ,
hence we have kx D x. Therefore, x is fixed by K, which contradicts the fact that K is
not contained in any proper ZRC -factor.

We finally prove Proposition 6.3 (4). Suppose that K is contained in a proper ZRC -
factor. Then it is clear that every element of K is contained in a proper ZRC -factor.

Conversely, assume that K is not contained in any proper ZRC -factor of Wn. Let us
prove that there exists g 2 K such that g is not contained in any proper ZRC -factor.
By Proposition 6.3 (2), there exists a bound on the length of an increasing chain of ZRC -
factors of Wn. Therefore, the group K contains a finitely generated subgroup K 0 which is
not contained in any proper ZRC -factor. By Proposition 6.3 (1), there exists g 2 K 0 such
that g is not contained in a proper ZRC -factor of K 0. Let S be a ZRC -splitting of Wn.
As K 0 is not contained in any proper ZRC -factor of Wn, the group K 0 has a well-defined,
nontrivial minimal subtree SK0 with respect to the action of K 0 on S . As S is a ZRC -
splitting of Wn, the splitting SK0 is a ZRC -splitting of K 0. Since g is not contained in
any proper ZRC -factor of K 0, it follows that g is a hyperbolic isometry of SK0 and is
not elliptic in S . As S is arbitrary, it follows that g is not contained in any ZRC -factor
of Wn.

Proper ZRC -factors appear naturally when studying stabilizers of conjugacy classes
of elements as shown by the following theorem. Recall that, if H D ¹H1; : : : ; Hkº is
a finite family of finitely generated subgroups of Wn, the group Out.Wn;H .t// is the sub-
group of Out.Wn/ consisting of all outer automorphisms � 2 Out.Wn/ such that, for every
i 2 ¹1; : : : ; kº, there exists a representative z�i 2 Aut.Wn/ of � such that z�i .Hi / D Hi
and z�i jHi D idHi .
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Theorem 6.5 ([18, Theorem 7.14]). Let n � 3, g 2 Wn. Then the subgroup Out.Wn; hgi/
of outer automorphisms which preserve hgi up to conjugacy is infinite if and only if g is
contained in a proper ZRC -factor of Wn.

More generally, LetG be a finitely generated Gromov hyperbolic group. If H is a finite
family of finitely generated subgroups of G, then the group Out.G;H .t// is infinite if and
only if there exists a nontrivial ZRC -splitting S of G such that every subgroup of H fixes
a vertex of S .

6.2. Stabilizers of Wn�2-stars satisfy .PWn�2
/

Lemma 6.6. Let n � 5 and let � be a finite index subgroup of Out0.Wn/. Let � be the
equivalence class of a Wn�2-star S . Let e1 and e2 be the two edges of WnnS and, for
i 2 ¹1; 2º, let T 0i be the group of twists about ei in Stab�.�/. Let i 2 ¹1; 2º, let Ti be
a finite index subgroup of T 0i and let P 0 be a finite index subgroup of a nontrivial normal
subgroup of Ti . Then for every finite index subgroup P0 of P 0, the group P0 fixes exactly
one equivalence class of Wn�2-stars.

Proof. Let
Wn D hx1i � hx3; : : : ; xni � hx2i

be a free factor decomposition associated with WnnS and A D hx3; : : : ; xni. Up to ex-
changing the roles of e1 and e2, we may suppose that P 0 is contained in the group of twists
of the equivalence class of the Wn�1-star S1 whose associated free factor decomposition
of Wn is, up to global conjugation:

Wn D hx1i � hx2; x3; : : : ; xni:

Let B D hx2; x3; : : : ; xni and let �1 be the equivalence class of S1. Finally, let �2 be the
equivalence class of the Wn�1-star S2 whose associated free factor decomposition of Wn
is, up to global conjugation:

Wn D hx2i � hx1; x3; : : : ; xni:

Let C D hx1; x3; : : : ; xni D A � hx1i.
We claim that the only equivalence classes of Wn�1-stars fixed by any finite index

subgroup of P 0 are �1 and �2. Indeed, fix i 2 ¹1; 2º. The group Ti is isomorphic to a finite
index subgroup N of Wn�2. By Proposition 6.3 (3) applied with K D Wn�2 and P D N ,
as n � 5, the group N is not contained in any proper ZRC -free factor of Wn�2. By Pro-
position 6.3 (4), there exists g 2 N such thatWn�2 is freely indecomposable relative to g.
Hence there exists g 2 A such that A is freely indecomposable relative to g and P 0 con-
tains the twist about e1 whose twistor is g. Note that this twist can be seen as a twist about
theWn�1-star S1. Let � 01 be the equivalence class of the one-edge cyclic splitting S 01 whose
associated amalgamated decomposition of Wn is, up to global conjugation:

Wn D .hx1i � hgi/ �hgi B:
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Let �3 be the equivalence class of aWn�1-star S3 fixed by some finite index subgroup
of P 0 and distinct from �1. Let

Wn D hyi �D

be the free factor decomposition associated with S3. We claim that �3 D �2. As P 0 con-
tains the twist about g, by Lemma 4.7, the splitting S3 is compatible with S 01. Let U be
a two-edge refinement of S 01 and S3. Then U is obtained from S3 by blowing-up an edge
at vertices whose stabilizers are conjugate to D. Moreover, U is obtained from S 01 by
blowing-up an edge at vertices whose stabilizers are conjugate to B or by blowing-up an
edge at the vertices whose stabilizers are conjugate to hx1i � hgi. But, the second case can
only occur when �3 D �1 (see Claim 4.8). Therefore, we may suppose that U is obtained
from S 01 by blowing up an edge at vertices whose stabilizers are conjugate to B . Thus, up
to applying a global conjugation, we may assume that hx1i � hgi � D. But, as g is not
contained in any proper ZRC -factor of A and as A \D is a free factor of A, we see that
A \D D A. Hence A � hx1i � D, and, as A � hx1i is isomorphic to Wn�1, we have in
fact A � hx1i DD. It follows that C DD and, by Lemma 4.4, we see that �2 D �3. Thus
the only equivalence classes of Wn�1-stars fixed by finite index subgroups of P 0 are �1
and �2.

Therefore, the only equivalence classes of Wn�2-stars fixed by finite index subgroups
of P 0 are the equivalence classes of the Wn�2-stars which refine S1 and S2. As S1 and S2
are refined by a unique (up to Wn-equivariant homeomorphism) Wn�2-star by Theo-
rem 3.7, we conclude that � is the only equivalence class of Wn�2-star fixed by finite
index subgroups of P 0. This completes the proof.

Proposition 6.7. Let n � 5 and let � be a finite index subgroup of Out0.Wn/. Let � be the
equivalence class of a Wn�2-star S . Then Stab�.�/ satisfies .PWn�2/. Moreover, we can
choose for the subgroupK1 �K2 of property .PWn�2/ (1) the direct product of the groups
of twists of � about the two edges of S .

Proof. The fact that Stab�.�/ satisfies .PWn�2/ (2) follows from the fact that Stab�.�/
contains the stabilizer in � of the equivalence class of a W3-star obtained from S by
blowing-up n � 5 edges at the center of WnnS . Indeed, Proposition 2.5 (3) ensures that
the group of twists of a W3-star is isomorphic to a direct product of n � 3 copies of W3.

The fact that Stab�.�/ satisfies .PWn�2/ (3) follows from the fact that Stab�.�/ con-
tains the stabilizer in � of the equivalence class of aW2-star obtained from S by blowing-
up n � 4 edges at the center of WnnS . Indeed, the group of twists of a W2-star is isomor-
phic to a direct product of n � 2 copies of W2 by Proposition 2.5 (3).

Let us now prove that Stab�.�/ satisfies .PWn�2/ (1). Let T 0 be the group of twists
of � and let T D T 0 \ � . The group T is normal in Stab�.�/ since � � Out0.Wn/.
By Proposition 2.5 (3), the group T 0 is isomorphic to T 01 � T

0
2, where, for i 2 ¹1; 2º, T 0i is

the group of twists in Out.Wn/ about one edge of WnnS . For i 2 ¹1; 2º, let Ti D T 0i \ � .
For every i 2 ¹1; 2º, the group Ti is a normal subgroup of Stab�.�/ and the group T1 � T2
is a normal subgroup of Stab�.�/. Let T .2/1 be a finite index subgroup of T1 and let P 0
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be a finite index subgroup of a nontrivial normal subgroup of T .2/1 . We prove that the
centralizer of P 0 in � contains T2 as a finite index subgroup. This will conclude the proof
of the proposition by symmetry of T1 and T2. By Lemma 6.6, the equivalence class � is
the only equivalence class ofWn�2-star fixed by every finite index subgroup of P 0. Hence
C�.P

0/ fixes � .
Let H be a finite index subgroup of C�.P 0/ which fixes � . Let

Wn D hx1i � hx3; : : : ; xni � hx2i

be a free factor decomposition associated with WnnS and A D hx3; : : : ; xni. By Propo-
sition 2.5 (1), the kernel of the natural homomorphism H ! Out.A/ is isomorphic to
H \ T . We claim that the image of H in Out.A/ is finite. Indeed, as P 0 is a finite index
subgroup of a nontrivial normal subgroup of a finite index subgroup of T1 and as T1 is
isomorphic to a finite index subgroup of Wn�2, we see that P 0 is isomorphic to a finite
index subgroup N of a nontrivial normal subgroup of a finite index subgroup of Wn�2.
By Proposition 6.3 (3), N is not contained in any proper ZRC -factor of Wn�2. By Propo-
sition 6.3 (4), there exists g 2 N such that g is not contained in any proper ZRC -factor
of Wn�2. Thus, there exists g 2 A such that g is not contained in any proper ZRC -factor
of A and the twist about g is contained in P 0. As H commutes with the twist about g,
Lemma 4.12 implies that H preserves the conjugacy class of g. Hence, by Theorem 6.5,
the image of H in Out.A/ is finite.

Thus,H \ T has finite index inH and in C�.P 0/. But, asH commutes with P 0 � T1,
and as T1 is virtually a nonabelian free group, the intersection H \ T2 has finite index in
H \ T , hence has finite index in C�.P 0/. This completes the proof.

6.3. Groups satisfying .PWn�2
/ and stabilizers of Wn�1-stars

We prove in this section that if H is a subgroup of Out.Wn/ which satisfies .PWn�2/,
thenH virtually fixes the equivalence class of aWn�1-star. We first recall a general lemma.

Lemma 6.8. Let G be a group and let N be a finitely generated normal subgroup of G.
Let n 2 N�.

(1) There exist only finitely many subgroups of N of index equal to n.

(2) For every finite index subgroup N 0 of N there exists a finite index subgroup G0

of G such that N 0 is a normal subgroup of G0.

Proof. Assertion .1/ is well known, we only prove assertion .2/. Let N 0 be a subgroup
of N of index n and let g 2 G. As N is a normal subgroup of G, the automorphism
adg WG ! G induces an automorphism adg jN WN ! N by restriction. Therefore, adg
permutes the subgroups of index n in N . Since there exists a finite number of subgroups
of index n in N by the first assertion, we see that there exists a finite index subgroup G0

of G such that, for every g 2 G0, we have adg.N 0/ D N 0. Therefore, N 0 is a normal
subgroup of G0. This concludes the proof.
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Lemma 6.9. Let n� 5. LetH be a subgroup of Out0.Wn/ satisfying .PWn�2/. LetK1�K2
be a normal subgroup of H given by .PWn�2/ .1/. Then one of the following holds:

(1) For every i 2 ¹1; 2º, the group Ki does not virtually fix the equivalence class of
a free splitting.

(2) The group H virtually fixes the equivalence class of a one-edge free splitting.

Proof. Suppose that there exists i 2 ¹1; 2º such that Ki virtually fixes the equivalence
class of a free splitting. Up to reordering, we may assume that i D 1. Let K 01 be a finite
index subgroup ofK1 which fixes the equivalence class of a free splitting, and let C be the
set of all equivalence classes of free splittings fixed byK 01. SinceK1 is a finitely generated
normal subgroup of H , by Lemma 6.8 (2), there exists a finite index subgroup H0 of H
such that K 01 is a normal subgroup of H0. In particular, the set C is preserved by H0.

Suppose first that the set C is finite. Then the set C is virtually fixed pointwise by H0.
Hence the group H virtually fixes the equivalence class of a free splitting.

So we may assume that the set C is infinite. Let UC be the splitting provided by Theo-
rem 5.5, and let UC be its equivalence class. By the equivariance property in Theorem 5.5
the equivalence class UC is H0-invariant. Suppose first that the splitting UC contains an
edge e 2 EUC with trivial stabilizer. Let U 0 be the splitting obtained from UC by collaps-
ing every edge of UC that are not contained in the orbit of e, and let U0 be its equivalence
class. Then U0 is the equivalence class of a one-edge free splitting virtually fixed by H .

Thus, we may assume that all edge stabilizers of UC are nontrivial. We show that this
leads to a contradiction. Let H 0 be the subgroup of finite index in H0 which acts trivially
on WnnUC . We claim that the intersection of H 0 with the group of twists of UC is finite.
Indeed, let e be an oriented edge of UC . As Wn is virtually free, if the edge stabilizer Ge
of e is not cyclic, the group of twists about this edge is trivial. Thus, as we suppose that all
edge stabilizers are nontrivial, oriented edges with nontrivial group of twists have cyclic
stabilizers. But by Lemma 2.7, twists about edges with cyclic stabilizers are central in
a finite index subgroup of Stab0.UC /. Note that Remark 6.1 (2) implies that the center
of every finite index subgroup of H 0 is finite. Therefore, the intersection of H 0 with the
group of twists is finite. By Remark 2.6, the intersection of H 0 with the group of bitwists
is finite. Thus, up to passing to a finite index subgroup, we may suppose that the map

H 0 !
Y

v2V.WnnUC /

Out.Gv/

given by the action on the vertex groups is injective.
Let V UC D V1 q V2 be the partition of V UC given by Theorem 5.5 and, for every

i 2 ¹1; 2º, let Hi be the subgroup of H 0 made of all automorphisms whose image inQ
v2WnnVi

Out.Gv/ is trivial. Then H1 and H2 centralize each other and, according to
Theorem 5.5 (1) (b), the group H1 \K 01 is a finite index subgroup of K 01. Thus H2 cen-
tralizes a finite index subgroup ofK 01. We prove that rkprod.H2/� 2, which will contradict
the fact that the centralizer of every finite index subgroup of K 01 is virtually free.
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By Theorem 5.5 (2), the set of all conjugacy classes of groupsGv with v 2 V2 is a free
factor system of Wn. In particular, for every v 2 V2, there exists kv 2 ¹0; : : : ; n � 1º such
that Gv is isomorphic to Wkv . Suppose first that jWnnV2j � 3. In this case, by Theo-
rem 5.1 (2) and since rkprod.Out.W3// D 1 and rkprod.Out.W2// D 0, for all v 2 V2, we
have rkprod.Out.Wkv // � kv � 2. Hence

rkprod

� Y
v2WnnV2

Out.Gv/
�
� n � 6:

Since rkprod.H
0/ D n � 3, using Lemma 5.2, we see that rkprod.H2/ � 3. This leads to

a contradiction. Suppose now that jWnnV2j D 2 and let v1; v2 2 WnnV2 be distinct. Then
for every i 2 ¹1; 2º there exists ki 2 ¹1; : : : ; n � 1º such that Gvi is isomorphic to Wki .
If Wn D Wk1 �Wk2 , then the group H 0 virtually fixes the equivalence class of the one-
edge free splitting determined by this free factor decomposition ofWn. So we may assume
that Wn ¤ Wk1 �Wk2 . This implies that k1 C k2 � n � 1. Hence

rkprod

� Y
v2WnnV2

Out.Gv/
�
� n � 5:

Since rkprod.H
0/ D n � 3, using Lemma 5.2, we see that rkprod.H2/ � 2. This leads to

a contradiction. Suppose now that jWnnV2j D 1, and let v 2 WnnV2. Then there exists
k 2 ¹1; : : : ; n � 1º such that Gv is isomorphic to Wk . Suppose first that k � n � 2. Then
according to Theorem 5.1 (2), and since rkprod.Out.W3// D 1, rkprod.Out.W1// D 0 and
rkprod.Out.W2// D 0, if n ¤ 5, we have

rkprod.Out.Wk// � n � 5:

Thus, by Lemma 5.2, we see that rkprod.H2/ � 2. When n D 5, the case where k D 3 and
rkprod.Out.Wk// D 1 D n � 4 can occur. But by property .PWn�2/ (3), the group H 0 con-
tains a subgroup isomorphic to Z3. Since Out.W3/ is virtually free, the groupH2 contains
a subgroup isomorphic to Z2. This contradicts the fact that the centralizer of every finite
index subgroup of K 01 is virtually nonabelian free. Hence we have k D n � 1. But then,
by Lemma 4.4, the groupH 0 (and hence the groupH ) virtually fixes the equivalence class
of a Wn�1-star. This concludes the proof.

Lemma 6.10. Let n � 5. Let F be a nonsporadic free factor system. Let H be a sub-
group of Out0.Wn/ \ Out.Wn;F / containing a direct product of n � 3 nonabelian free
groups. ThenH cannot contain a finite index subgroup which fixes the homothety class of
a .Wn;F /-arational tree.

Proof. Suppose towards a contradiction that H has a finite index subgroup which fixes
the equivalence class of a .Wn; F /-arational tree. Up to passing to a finite index sub-
group, we may suppose that H itself fixes the homothety class of a .Wn;F /-arational
tree. By Lemma 5.4, there exists a homomorphism from H to Z whose kernel K 0 is
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exactly the isometric stabilizer of a .Wn;F /-arational tree. Note that K 0 contains a direct
product of n � 3 nonabelian free groups as it is the kernel of a homomorphism from H

to Z. By Proposition 5.6, there exists a finite index subgroup K of K 0 such that K fixes
infinitely many equivalence classes of free splittings. Let C be the collection of all equiv-
alence classes of free splittings fixed by K.

We claim that C is in fact finite, which will lead to a contradiction. Since K �
Out0.Wn/, Lemma 4.2 implies that if � is the equivalence class of a free splitting S fixed
by K, then the group K fixes the equivalence class of every one-edge free splitting onto
which S collapses. By Theorem 3.7, if � is the equivalence class of a free splitting S ,
then � is determined by the finite set of equivalence classes of one-edge free splittings
onto which S collapses. Therefore, it suffices to show that K can only fix finitely many
equivalence classes of one-edge free splittings. Let � be the equivalence class of a one-
edge free splitting fixed by K. Since K contains a direct product of n � 3 nonabelian free
groups, Theorem 5.1 (3) implies that S is a Wn�1-star. Let

Wn D hx1; : : : ; xn�1i � hxni

be a free factor decomposition associated with S and let AD hx1; : : : ; xn�1i. By Proposi-
tion 2.5 (1), the kernel of the natural homomorphismK! Out.A/ is the intersection ofK
with the group of twists T of � . By Theorem 5.1 (2), the product rank of Out.A/ is equal
to n � 4. Since K contains a direct product of n � 3 nonabelian free groups, we see that
K \ T is infinite. Therefore, for every equivalence class � of a Wn�1-star S fixed by K,
the group K contains an infinite twist about � .

Let � and � 0 be two distinct equivalence classes of Wn�1-stars fixed by K. Let S
be a representative of � and let S 0 be a representative of � 0. We claim that S and S 0 are
compatible. Indeed, by the above, there exists f 2K of infinite order such that f is a twist
about � . Since f fixes � 0, Lemma 4.7 implies that S and S 0 are compatible. Therefore,
for all distinct equivalence classes � and � 0 of one-edge free splittings fixed by K, there
exist S 2 � and S 0 2 � 0 such that S and S 0 are compatible. By Theorem 3.7, this is only
possible when C is finite. This leads to a contradiction since K must fix infinitely many
equivalence classes of free splittings. This concludes the proof.

Proposition 6.11. Let n � 5. Let H be a subgroup of Out0.Wn/ satisfying .PWn�2/.
Then H virtually fixes the equivalence class of a Wn�1-star.

Proof. The proof is inspired by [25, Proposition 8.2] and [23, Proposition 6.5]. We prove
that H virtually fixes the equivalence class of a one-edge free splitting. Since H con-
tains a direct product of n � 3 nonabelian free groups, we will then conclude by Theo-
rem 5.1 (3). Suppose towards a contradiction thatH does not virtually fix the equivalence
class of a one-edge free splitting. Let F be a maximal H -periodic free factor system.
We can assume that F is nonsporadic, otherwise H virtually fixes the equivalence class
of a one-edge free splitting and we are done. As F is maximal, by Proposition 2.2, the
group H acts with unbounded orbits on FF.Wn;F /.
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Let K1 � K2 be a normal subgroup of H given by .PWn�2/ (1). Suppose first that
neither K1 nor K2 contains a loxodromic element on FF.Wn;F /. As H has unbounded
orbits on FF.Wn;F /, Lemma 5.3 implies thatK1 �K2 has a finite orbit in @1FF.Wn;F /.

By Lemma 2.4, there exists a finite index subgroup K 01 � K
0
2 of K1 � K2 such that

K 01 �K
0
2 fixes the homothety class of an arational .Wn;F /-tree T . Since K1 �K2 does

not contain a loxodromic element, K 01 � K
0
2 fixes T up to isometry, not just homoth-

ety (see, e.g., [16, Proposition 6.2]). By Proposition 5.6, the group K 01 � K
0
2 virtually

fixes infinitely many equivalence classes of .Wn;F /-free splittings. By Lemma 6.9, the
group H virtually fixes the equivalence class of a one-edge free splitting of Wn.

So we may suppose that there exists a loxodromic element ˆ 2 K1 �K2. First sup-
pose that there exists a unique i 2 ¹1; 2º such that the group Ki contains a loxodromic
element ˆi . We may assume, up to reordering, that only K2 contains a loxodromic ele-
ment ˆ. Therefore, by Lemma 5.3, the group K1 virtually fixes a point in @1FF.Wn;F /.
By Lemma 2.4, the group K1 virtually fixes the homothetic class an arational .Wn;F /-
tree T . Let K 01 be a normal subgroup of K1 of finite index that is contained in Stab.ŒT �/.
As K 01 does not contain any loxodromic element, as in the above step, K 01 fixes T up
to isometry. By Proposition 5.6, the group K 01 fixes the equivalence class of a free split-
ting relative to F . By Lemma 6.9, the group H virtually fixes the equivalence class of
a one-edge free splitting of Wn.

Now suppose that for every i 2 ¹1;2º, the groupKi contains a loxodromic element. By
Lemma 5.3, the whole group H virtually fixes a point in @1FF.Wn;F /. By Lemma 2.4,
the group H virtually fixes the homothety class of an arational tree. This contradicts
Lemma 6.10.

Hence in all cases, the group H virtually fixes the equivalence class � of a one-edge
free splitting S . By Theorem 5.1 (3), sinceH contains a direct product of n� 3 nonabelian
free groups, the group H virtually fixes the equivalence class of a Wn�1-star.

We now prove a proposition which gives a sufficient condition for equivalence classes
of Wn�1-stars provided by Proposition 6.11 to be compatible. We first need the following
result due to Krstić and Vogtmann.

Proposition 6.12 ([27, Corollary 10.2]). Let n � 3. The virtual cohomological dimension
of Out.Wn/ is equal to n � 2. In particular, the maximal rank of a free abelian subgroup
of Out.Wn/ is equal to n � 2.

Proposition 6.13. Let n � 5 and let � be a subgroup of Out0.Wn/ of finite index. Let
k 2 N� and let H1; : : : ; Hk be subgroups of � which satisfy .PWn�2/ and such that the
intersection

Tk
iD1Hi contains a subgroup H isomorphic to Zn�2. For i 2 ¹1; : : : ; kº,

let �i be the equivalence class of a Wn�1-star Si which is virtually fixed by Hi . Then, for
every i; j 2 ¹1; : : : ; kº, the Wn�1-stars Si and Sj are compatible.

Proof. Let i; j 2 ¹1; : : : ; kº be distinct integers. Let H 0 be a finite index subgroup of H
contained in Stab�.�i / \ Stab�.�j /. Let Ai and Aj be the vertex groups isomorphic
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to Wn�1 of WnnSi and WnnSj , respectively (well-defined up to conjugation). By Propo-
sition 6.12, the rank of a maximal abelian subgroup of Out.Wn�1/ is equal to n � 3.
Therefore, the kernel of the homomorphismsH 0! Out.Ai / andH 0! Out.Aj / given by
the action on the vertex group contains an element of infinite order. Let fi 2 ker.H 0 !
Out.Ai // and fj 2 ker.H 0! Out.Ai // be infinite order elements. By Proposition 2.5 (1),
fi and fj are twists about Si and Sj , respectively. As fi and fj commute, by Corol-
lary 4.10, Si and Sj are compatible. This concludes the proof.

7. Algebraic characterization of stabilizers of Wn�2-stars

In this section, we give an algebraic characterization of stabilizers of Wn�2-stars. By the
previous section, we know that groups which satisfy .PWn�2/ virtually stabilize equiva-
lence classes of Wn�1-stars, and we have given an algebraic criterion to show that these
Wn�1-stars are compatible. In order to prove that a groupH which satisfies .PWn�2/ virtu-
ally stabilizes the equivalence class of a Wn�2-star, we study the intersection of a normal
subgroup K1 �K2 of H given by .PWn�2/ (1) with the group of twists of the equivalence
class of a Wn�1-star virtually fixed by H .

7.1. Groups of twists in groups satisfying .PWn�2
/

We start this section with a lemma which gives a sufficient condition for a group H satis-
fying .PWn�2/ to be the stabilizer of a Wn�2-star.

Lemma 7.1. Let n � 5 and let � be a subgroup of finite index of Out0.Wn/. Let H be
a subgroup of � which satisfies .PWn�2/ and let K1 � K2 be a normal subgroup of H
given by .PWn�2/ .1/. Let �1 be the equivalence class of a Wn�1-star S1 virtually fixed
by H and let T1 be the group of twists of �1.

Suppose that T1 \ K1 is infinite and that there exists an equivalence class �2 of
a Wn�1-star S2 such that the intersection of K2 with the group of twists T2 of �2 is
infinite. Then S1 and S2 are compatible and H virtually fixes the equivalence class �

of the Wn�2-star which refines S1 and S2. Moreover, � is the unique equivalence class
of a Wn�2-star virtually fixed by H . Finally, the groups T1 \ Stab�.�/ and K1 (resp.
T2 \ Stab�.�/ and K2) are commensurable.

Proof. For i 2 ¹1; 2º, let fi 2 Ti \Ki be of infinite order. First remark that, as f1 and f2
generate a free abelian group of order 2, we have T1 ¤ T2 because the group of twists of
aWn�1-star is virtually a nonabelian free group. Hence we have �1¤ �2. AsK1 commutes
with f2, Proposition 4.9 shows thatK1 fixes �2. AsK1 contains a twist of �1, Lemma 4.7
shows that S1 and S2 are compatible.

Let S be a Wn�2-star which refines S1 and S2, let � be its equivalence class and
let T be the group of twists of � in � . Then T contains a finite index normal subgroup
isomorphic to K�1

1 � K
�2
2 , where K�1

1 and K�2
2 are virtually nonabelian free groups.



Y. Guerch 964

By Proposition 6.7, we can choose K�1
1 � K

�2
2 such that K�1

1 � K
�2
2 is a group satis-

fying property .PWn�2/ (1). Moreover, up to reordering, K�1
1 � T1 and K�2

2 � T2. Since
K1 fixes both �1 and �2, we see thatK1 fixes � . Therefore, by Proposition 2.5 (1), we have
a homomorphismˆWK1! Out.Wn�2/ whose kernel is exactlyK1 \ T . By Lemma 4.11,
we see that T1 \ Stab�.�/\K

�1
1 is a finite index subgroup of T1 \ Stab�.�/. AsK1 \ T1

is infinite, so is K1 \K
�1
1 . Let

P D ker.ˆ/ \K�1
1 D K1 \K

�1
1 :

Then, sinceK1 � Out0.Wn/, the groupK�1
1 \K1 is a normal subgroup ofK1. Therefore,

P is a nontrivial normal subgroup of K1. By property .PWn�2/ (1), we see that K2 is
a finite index subgroup of C�.P /. But P is centralized by K�2

2 since P � K�1
1 . Hence

K
�2
2 \ K2 is a finite index subgroup of K�2

2 . As K�1
1 is a finite index subgroup of the

centralizer of K�2
2 by property .PWn�2/ (1), and as K1 is a finite index subgroup of the

centralizer of K2, we see that K�1
1 \K1 has finite index in K1 and therefore P has finite

index in K1. Let
Wn D hx1i � hx3; : : : ; xni � hx2i

be the free factor decomposition of Wn induced by S and let A D hx3; : : : ; xni. Then, up
to reordering, for every f 2 P , there exist zf 2 A and a representative F of f such that F
sends x1 to zf x1z�1f , and, for every i ¤ 1, fixes xi .

Claim 7.2. The only equivalence classes of Wn�1-stars which are virtually fixed by K1
are �1 and �2.

Proof. Let �3 be the equivalence class of a Wn�1-star S3 virtually fixed by K1. Suppose
towards a contradiction that �3 is distinct from both �1 and �2. LetK 01 DK1 \ Stab�.�3/
and P 0 D P \ Stab�.�3/. Then, as P is an infinite subgroup of the group of twists of �1,
and as P 0 is a finite index subgroup of P , we see that P 0 is an infinite subgroup of the
group of twists of �1. By Lemma 4.7, we see that S1 and S3 are compatible. Let S 0 be
a Wn�2-star that refines S1 and S3 and let � 0 be its equivalence class. Let

Wn D hy1i � hy3; : : : ; yni � hy2i

be the free factor decomposition of Wn induced by S 0 and let B D hy3; : : : ; yni. Since S
is a refinement of S1, we may suppose that B � hy2i D A � hx2i and that y1 is a conjugate
of x1 by an element ofB � hy2i. Up to applying a global conjugation, we may also suppose
that y1 D x1 and that B � hy2i D A � hx2i.

Let T 0 be the group of twists of � 0. Then T 0 contains a finite index normal subgroup
isomorphic to P 01 � P

0
2, where both P 01 and P 02 are virtually nonabelian free subgroups

of T 0 which correspond to the groups of twists about the two edges of WnnS 0. Then,
as P 0 is a group of twists of �1, and as P 0 fixes � 0, by Lemma 4.11, up to reordering, the
group P 0 is contained in P 01.

Let f 0 2 P 01, let F 0 be the representative of f 0 which acts as the identity on B � hy2i
and let zf 0 2 B be the twistor of F 0. Then F 0 acts as the identity on A � hx2i and
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F 0.x1/ D zf 0x1z
�1
f 0

. Recall that for every  2 P 0, there exists a unique z 2 A and
a unique representative ‰ of  such that ‰ sends x1 to z x1z�1 , and, for every i ¤ 1,
fixes xi . Thus, a necessary condition for f 0 to be in P 0 is that zf 0 2 A \ B .

But as A and B are free factors of Wn, the group A \ B is a free factor of B . To see
this, let U be a free splitting of Wn such that A is a vertex stabilizer of U and let UB be
the minimal subtree of B in U . Then, as U is a free splitting of Wn, we see that UB is a
free splitting of B . But then, as A is a vertex stabilizer in U , we see that A\B is a vertex
stabilizer inUB . Therefore,A\B is a free factor ofB . Thus one can find aWn�3-star S .2/

which refines S 0 and such that, for every f 0 2 P 0, the twistor zf 0 fixes a vertex of S .2/.
Indeed, one can equivariantly blow up an edge e at the vertex of S 0 whose stabilizer is B
such that the stabilizer of one of the endpoints of e is a subgroup C isomorphic to Wn�3
with A\B � C . Therefore, we may also assume that S .2/ is aWn�3-star. Let � .2/ be the
equivalence class of S .2/. By Proposition 2.5 (3), the group of twists of � .2/ is isomorphic
to a direct product W 3

n�3 of three infinite groups, where each factor is a group of twists
about an edge of WnnS .2/. This implies that P 0 is contained in exactly one of the three
factors isomorphic to Wn�3. It follows that the centralizer of P 0 contains two elements
which generate a free abelian group of order 2. This contradicts the fact that the centralizer
of P 0 is virtually a nonabelian free group by .PWn�2/ (1). The claim follows.

The claim above then implies, as K1 is a normal subgroup of H , that H virtually
fixes �2. As H virtually fixes �1, we see that H virtually fixes the equivalence class � .
Moreover, the above claim shows that � is the unique equivalence class of a Wn�2-star
virtually fixed by K1, and hence virtually fixed by H .

We finally prove that K1 and T1 \ Stab�.�/ (resp. K2 and T2 \ Stab�.�/) are com-
mensurable. By Lemma 4.11, for every i 2 ¹1; 2º we see that K�i

i \ Ti \ Stab�.�/
is a finite index subgroup of Ti \ Stab�.�/. Moreover, for every i 2 ¹1; 2º and every
f 2 K

�i
i , the twist f of � is also a twist of �i . Hence we have K�i

i � Ti \ Stab�.�/.
Therefore, for every i 2 ¹1; 2º, the groups K�i

i and Ti \ Stab�.�/ are commensurable.
Hence it suffices to show that, for every i 2 ¹1; 2º, the groups Ki and K�i

i are commen-
surable.

Recall that K�2
2 \ K2 is a finite index subgroup of K�2

2 and that K�1
1 \ K1 has

finite index in K1. Since H virtually fixes � , and since K�2
2 is a normal subgroup of

Stab�.�/, we see that K�2
2 \K2 is a normal subgroup of a finite index subgroup of K2.

We know that K�2
2 \K2 commutes with K�1

1 because K�1
1 and K�2

2 commute with each
other. Thus, by property .PWn�2/ (1) applied to K1 � K2, the centralizer of K�2

2 \ K2
contains K1 as a finite index subgroup. This shows that K1 \ K

�1
1 is a finite index sub-

group of K�1
1 . Hence K1 and K�1

1 are commensurable. By property .PWn�2/ (1) applied
to K�1

1 �K
�2
2 , the centralizer of a finite index subgroup of K�1

1 contains K�2
2 as a finite

index subgroup. Moreover, the centralizer of a finite index subgroup ofK1 containsK2 as
a finite index subgroup. Hence the centralizer of K1 \K

�1
1 contains both K2 and K�2

2 as
finite index subgroups. Thus K2 and K�2

2 are commensurable. This completes the proof
of Lemma 7.1.
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Lemma 7.1 suggests that in order to show that a groupH which satisfies .PWn�2/ is in
fact virtually the stabilizer of the equivalence class of a Wn�2-star, it suffices to study the
intersections ofH with groups of twists. A first step towards such a result is the following
lemma.

Lemma 7.3. Let n � 5 and let � be a subgroup of Out0.Wn/ of finite index. Let H be
a subgroup of � satisfying .PWn�2/ and let K1 � K2 be a normal subgroup of H given
by .PWn�2/ .1/. Let � be the equivalence class of a Wn�1-star S virtually fixed by H and
let T be the group of twists of � contained in � .

There exists a unique i 2 ¹1; 2º such that Ki \ T is infinite. Moreover, H \ T \Ki
has finite index in H \ T .

Proof. Up to passing to a finite index subgroup ofH , we may suppose thatH fixes � . The
uniqueness assertion follows from the fact that T is virtually a nonabelian free group and
thatK1 �K2 is a direct product. Therefore, up to reordering, we may suppose thatK1 \ T
is finite. Since Out.Wn/ is virtually torsion free by [17, Corollary 5.3], there exists a finite
index subgroup K 01 of K1 such that K 01 \ T is trivial. Since K1 is a finitely generated
normal subgroup of H , Lemma 6.8 implies that there exists a finite index subgroup H 0

of H such that K 01 is a normal subgroup of H 0. Therefore, we may suppose that K1 \ T
is trivial. By Proposition 2.5 (1), the natural homomorphism K1 ! Out.Wn�1/ given by
the action on the vertex groups is injective.

We claim thatH \ T is infinite. Indeed, consider the natural homomorphismˆWH !

Out.Wn�1/. The rank of a maximal free abelian subgroup of Out.Wn�1/ is equal to n � 3
by Proposition 6.12. As H contains a subgroup isomorphic to Zn�2 by .PWn�2/ (3), the
kernel ofH ! Out.Wn�1/ is infinite. But, by Proposition 2.5 (1), this is preciselyH \ T .
Therefore, H \ T is infinite.

We now prove that H \ T \ K2 has finite index in H \ T . This will conclude the
proof as H \ T is infinite. Let K D ˆ�1.ˆ.K2//. Note that H \ T � K. Then, as K2 is
normal in H , we see that K is a normal subgroup of H which contains H \ T and K2.
We claim that K \K1 is finite. Indeed, suppose towards a contradiction that there exists
f 2 K \K1 of infinite order. Then, as the homomorphism

ˆjK1 W K1 ! Out.Wn�1/

is injective, the element ˆ.f / has infinite order. By definition of K, we see that

ˆ.f / 2 ˆ.K1/ \ˆ.K2/:

But, as the homomorphism ˆjK1 WK1 ! Out.Wn�1/ is injective, and as K1 is virtually
a nonabelian free group, there exists g 2 K1 of infinite order such that ˆ.g/ does not
commute with ˆ.f /. Since ˆ.f / 2 ˆ.K2/, this contradicts the fact that K1 and K2
commute with each other. Hence K \K1 is finite.

The groupsK andK1 are two normal subgroups ofH with finite intersection. LetK.2/1
be a finite index normal subgroup of K1 such that K \K.2/1 D ¹1º. Since K1 is finitely



Commensurations of the outer automorphism group of a universal Coxeter group 967

generated, by Lemma 6.8 (2), there exists a finite index subgroupH .2/ ofH such thatK.2/1
is a normal subgroup of H .2/. Hence K.2/1 and K \H .2/ are normal subgroups of H .2/

with trivial intersection. Therefore,K \H .2/ � C�.K
.2/
1 /. But, property .PWn�2/ (1) im-

plies that K and K2 are commensurable. Since K contains H \ T , we see that K2 \ T
and H \ T are commensurable. This concludes the proof.

7.2. Groups satisfying .PWn�2
/ and stabilizers of Wn�2-stars

In this section, we prove that a subgroup of Out0.Wn/ which satisfies .PWn�2/ virtually
fixes the equivalence class of aWn�2-star. We first prove a series of properties for elements
of Out.Wn/.

Lemma 7.4. Let n� 3. Letw 2Wn be a root-closed element of infinite order. Let � be the
equivalence class of a splitting S whose associated amalgamated decomposition of Wn is

Wn D A �hwi B;

where A and B are subgroups of Wn containing w. Let D be a nontrivial twist about S .
Let h 2 Wn. Then D preserves the conjugacy class of h if and only if there exists h0 2 Wn
such that h0 2 Œh� and h0 2 A [ B .

Proof. It is clear that D preserves the conjugacy classes of elements in A and B . Con-
versely, let h 2 Wn be such that D.Œh�/ D Œh�. Let R be a Grushko splitting of Wn. Let R0

and S 0 be metric representatives of R and S , let R0 and � 0 be theirWn-equivariant isome-
try classes and let ŒR0� and Œ� 0� be their homothety classes. As PO.Wn/ is compact, up to
passing to a subsequence, there exists a sequence .�n/n2N 2 .R�C/

N and aWn-equivariant
isometry class T of an R-tree T such that limn!1 �nD

n.R0/ D T . Since translation
length functions are continuous for the Gromov–Hausdorff topology (see [31]), for every
g 2 Wn, we have

lim
n!1

�nkgkDn.R0/ D kgkT ;

where kgkT is the translation length of g in T . Hence, for every g 2 Wn, the limit
limn!1 �nkgkDn.R0/ is finite. But as there exists g0 2 Wn such that kg0kDn.R0/ tends
to infinity as n goes to infinity, we have limn!1 �n D 0. As there exists a representative
� 2 Aut.Wn/ of D such that �A D idA, for every g 2 A, we have

lim
n!1

�nkgkDn.R0/ D lim
n!1

�nkgkR0 D 0:

Hence every element of A fixes a point in T . As A is finitely generated, this implies
that A fixes a point in T (see for instance [8, Section 3]). Similarly, we see that the
groups B and hhi fix points in T . As Wn D hA; Bi, we see that A and B cannot fix the
same point in T . Thus, there exists a naturalWn-equivariant application‰WS 0! T . Let us
prove that‰ is an isometry. It suffices to prove that‰ is a local isometry, that is, it suffices
to prove that the application ‰ does not fold edges. By Wn-equivariance and symmetry,
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it suffices to prove that, If e and e0 are two distinct edges of S 0 whose origin is the vertex
fixed by A, then‰.e/¤‰.e0/. Suppose towards a contradiction that‰.e/D‰.e0/. Then
hGe; Ge0i fixes ‰.e/. Note that Ge and Ge0 are isomorphic to Z. Moreover, since w is
root-closed, we neither have Ge � Ge0 nor Ge0 � Ge . Since Ge is a malnormal subgroup
of Wn and since Ge0 is a nontrivial conjugate of Ge , we see that Ge \ Ge0 D ¹1º. Hence
hGe; Ge0i is a nonabelian free group which fixes an arc in T . But arc stabilizers in T are
cyclic, a contradiction. Hence ‰ is an isometric embedding and, by minimality of T , the
application ‰ is aWn-equivariant isometry. Therefore, as h fixes a point in T , it also fixes
a point in S 0. Therefore, h is contained in a conjugate of A or B .

For the next proposition, recall the definition of the subgroup F of Wn from Lem-
ma 6.2.

Proposition 7.5. Let n� 3. Let .HN /N2N� be an increasing sequence of subgroups of F .
There exists an integer n0 such that for every N � n0, we have

Out.Wn;H
.t/
N / D Out.Wn;H .t/

n0
/:

Proof. We show that the result is a consequence of a similar result in the context of the
automorphism group of a nonabelian free group due to Martino and Ventura [29, Corol-
lary 4.2]. Since F is a nonabelian free group, we may suppose that, for every N 2 N�, the
groupHN is a nonabelian free group. Hence for everyN 2N�, we haveCWn.HN / D ¹1º.
Therefore, for everyN 2N� and every � 2Out.Wn;H

.t/
N /, there exists a unique represen-

tative ˆ 2 Aut.Wn/ of � such that ˆ.HN / D HN and ˆjHN D idHN . This implies that,
for everyN 2N�, we have an injective homomorphism Out.Wn;H

.t/
N / ,!Aut.Wn;HN /,

where Aut.Wn;HN / is the group of automorphisms ofWn which fix every element ofHN .
Therefore, it suffices to prove the result for Aut.Wn; HN /. Since there exists an injective
homomorphism Aut.Wn/ ! Aut.F/ and since, for every N 2 N�, we have HN � F ,
it suffices to prove that there exists n0 2 N� such that, for every N � n0, we have
Aut.F ;HN / D Aut.F ;Hn0/. We then conclude using [29, Corollary 4.2].

We now recall a theorem due to Guirardel and Levitt which provides a canonical split-
ting for a relative one-ended hyperbolic group (recall that a group G is one-ended relative
to a family of subgroups H if G does not have a one-edge splitting with finite edge stabi-
lizers such that every subgroup of H fixes a point).

Theorem 7.6 ([19, Theorem 9.14]). Let G be a hyperbolic group and let H be a family
of subgroups such that G is one-ended relative to H . There exists a splitting S of G such
that

(1) Every edge stabilizer is virtually infinite cyclic.

(2) For every H 2 H , the group H is elliptic in S .

(3) The tree S is invariant under all automorphisms of G preserving H . Moreover,
S is compatible with every splitting S 0 with virtually cyclic edge stabilizers and
such that for every H 2 H , the group H is elliptic in S 0.
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(4) Let H 2 H be such that H is virtually a (possibly not finitely generated) non-
abelian free group, and let v be the vertex of S fixed by H . Let Incv be the finite
set of representatives of all conjugacy classes of groups associated with edges in S
which are incident to v. Then the group Out.Gv; ¹H; Incvº.t// is finite.

Assertion .4/ is a bit stronger than what is stated in [19], hence we add some ex-
planations.

Proof of assertion .4/ of Theorem 7.6. Let S , H and v be as in assertion .4/. By, for in-
stance, [32, Proposition 2.5], the set Incv is finite. Note that every group in Incv is virtually
cyclic by assertion .1/. Thus, the set Incv is a finite set of finitely generated groups.
Up to taking finite index subgroups, we may suppose that H � F and that for every sub-
group H 0 in Incv , the group H 0 is contained in F . Suppose towards a contradiction that
Out.Gv; ¹H; Incvº.t// is infinite. Suppose first, following the terminology of [19], that the
vertex v is rigid. By Proposition 7.5, there exists a finitely generated subgroup K of H
such that

Out.Wn;H .t// D Out.Wn; K.t//:

By [18, Theorem 7.14], there exists a one-edge splitting U of Gv whose edge stabilizer
is isomorphic to Z such that K and every group in Incv are elliptic in U . Since v is
a rigid vertex, there exists h 2H such that h acts loxodromically on U . Since every group
in Incv fixes a point in U , one can blow up the splitting U at the vertex v of S . This gives
a refinement S 0 of S . LetD0 be a nontrivial infinite twist of U . ThenD0 induces a twistD
of S 0. By Lemma 7.4, the element D fixes the conjugacy class of K but does not fix the
conjugacy class of h. This contradicts Out.Wn;H .t// D Out.Wn; K.t//.

So we may suppose, following the terminology of [19], that the vertex v is flexible.
By [19, Theorem 9.14 (2)], as H is virtually a nonabelian free group, the vertex v is
a QH vertex (see [19, Definition 5.13]). But the definition of a QH vertex implies, as H
is contained in H , that the group H must be virtually contained in a boundary subgroup
of the fundamental group of the orbifold associated with Gv . Thus the group H must be
virtually cyclic, a contradiction.

We also need some results about splittings over virtually cyclic groups, whose gener-
alization to virtually free groups is due to Cashen.

Theorem 7.7 ([5, Theorem 1.2]). Let G1 and G2 be finitely generated virtually non-
abelian free groups, and let C be a virtually cyclic group which is a proper subgroup
of both G1 and G2. Then G1 �C G2 is virtually a nonabelian free group if and only if
there exists i 2 ¹1; 2º such that Gi has a splitting with finite edge stabilizers such that C
is a vertex stabilizer.

Corollary 7.8. Let n � 3 and let G1, G2 be subgroups of Wn such that Wn D G1 �C G2
is a nontrivial amalgamated product ofWn, where C is isomorphic to W2 and G1 and G2
are not virtually cyclic.
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(1) There exists i2 ¹1;2º such thatC is a free factor ofGi . Moreover, if j 2 ¹1;2ºn¹iº,
then Gj is a free factor of Wn.

(2) There exist 3� k1; k2 � n� 1 such that k1C k2 D nC 2 and, for every i 2 ¹1;2º,
the group Gi is isomorphic to Wki . In particular, n � 4.

Proof. .1/ By Lemma 6.2, the subgroup F ofWn is a nonabelian free group of finite index.
Since both G1 and G2 are not virtually cyclic, the intersections G1 \ F and G2 \ F are
finite index subgroups of G1 and G2 which are nonabelian free groups. Hence G1 and G2
are virtually nonabelian free groups. Moreover, since Wn and C are finitely generated, so
areG1 andG2. By Theorem 7.7, up to exchanging the roles ofG1 andG2, we may suppose
that G1 has a splitting S such that every edge stabilizer is finite and C is the stabilizer of
a vertex v 2 VS . Note that, since the finite subgroups of Wn are all isomorphic to F ,
every edge stabilizer of S is either trivial or isomorphic to F . Since every element of Wn
of order 2 is a conjugate of an element in a standard generating set ofWn, every nontrivial
edge stabilizer is a free factor of both of its endpoint stabilizers. Let V1 be the set of
vertices of S distinct from v and fixed by a subgroup of C isomorphic to F . Therefore,
for every w 2 V1, there exists a subgroup Aw of Gw and an element xw 2 C of order 2
such that Gw D Aw � hxwi. Let S0 be a splitting of Wn obtained from S by blowing-
up, at every vertex w 2 V1, the free splitting Aw � hxwi and by attaching the edge fixed
by xw to its corresponding fixed point. Let S 0 be the splitting of Wn obtained from S0 by
collapsing every edge with nontrivial stabilizer. Then the stabilizer in G1 of every edge
of S 0 adjacent to the vertex fixed by C has trivial stabilizer. Thus, C is a free factor of G1
and there exists H1 � G1 such that G1 D H1 � C . This proves the first assertion of .1/.
The second assertion of .1/ follows from the fact that

Wn D G1 �C G2 D .H1 � C/ �C G2 D H1 �G2:

Hence H1 and G2 are free factors of Wn.
.2/ Therefore, there exist h1; k2 2 ¹1; : : : ; n � 2º with h1 C k2 D n such that H1 is

isomorphic to Wh1 and G2 is isomorphic to Wk2 . Thus G1 is isomorphic to Wh1C2. Set
k1 D h1 C 2. Since the amalgamated product is nontrivial and since G1 and G2 are not
virtually cyclic, we have 3 � k1; k2 � n � 1. This proves .2/.

Lemma 7.9. Let n � 4 and let S be a splitting of Wn. Let � be its equivalence class.
Let v1 and v2 be adjacent vertices of S and let e be the edge between v1 and v2. Suppose
that Ge is isomorphic to W2. Let f 2 StabOut.Wn/.�/ be such that

(1) the graph automorphism of WnnS induced by f is trivial;

(2) the natural homomorphisms hf i ! Out.Gv1 ; Ge/ and hf i ! Out.Gv2 ; Ge/ are
trivial.

Then f has a representative which acts as the identity on hGv1 ; Gv2i.

Proof. By .2/, the outer automorphism f has two representatives F1 and F2 such that for
every i 2 ¹1; 2º, we have Fi .Gvi / D Gvi and Fi jGvi D idGvi . Note that Gv1 \Gv2 D Ge .
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Hence F1 and F2 act as the identity on Ge . Therefore, F1 and F2 differ by an inner
automorphism adz with z 2 CWn.Ge/. However, since Ge is isomorphic to W2, we have
CWn.Ge/ D ¹eº. Hence F1 D F2. This concludes the proof.

Proposition 7.10. Let n � 5 and let � be a finite index subgroup of Out0.Wn/. Let H be
a subgroup of � which satisfies .PWn�2/. ThenH virtually stabilizes the equivalence class
of a Wn�2-star. Moreover, this equivalence class is unique.

Proof. By Proposition 6.11, the groupH virtually fixes the equivalence class � of aWn�1-
star S . Let Wn D A � hxni be the free factor decomposition of Wn induced by S . Up to
passing to a finite index subgroup, we may suppose that H fixes � . Let T be the group
of twists of � contained in � . By Proposition 2.5 (2), the group Stab.�/ is isomorphic to
Aut.A/ and the group of twists of � is identified with the inner automorphism group of A.

Let K1 � K2 be a normal subgroup of H given by property .PWn�2/ (1). According
to Lemma 7.3, up to exchanging the roles of K1 and K2, we may assume that K1 \ T
is infinite, that H \ T \ K1 is a finite index subgroup of H \ T and that K2 \ T is
finite. Up to passing to a finite index subgroup of H , we may assume that K2 \ T D ¹1º.
In particular, the natural homomorphism �WK2 ! Out.A/ is injective. Let K � A be the
group of twistors associated with twists contained in K1. Note that to every splitting S0
of A such that K fixes a unique vertex of S0, one can deduce a splitting S 00 of Wn such
that K fixes a point of S 00. Indeed, by blowing-up the splitting S0 at the vertex v of S
whose associated group is A, and by attaching the edges of S adjacent to v to the vertex
fixed by K, we obtain a splitting S 00 of Wn such that K fixes a point of S 00. Let � 00 be the
equivalence class of S 00. We claim that the group K1 \ T fixes � 00. Indeed, let e0 be the
edge of S 00 adjacent to the vertex v0 fixed by K and the vertex fixed by hxni. Since the
stabilizer of e0 is trivial, Proposition 2.5 implies that the group of twists about e0 at the
vertex v0 contains all the twists whose twistor is an element ofK. HenceK1 \ T fixes � 00.

We now construct a one-edge free splitting S0 of A such that K fixes a vertex of S0.
By the above discussion, this will give a two-edge free splitting of Wn such that K fixes
a vertex of this splitting which is not a leaf and whose equivalence class is fixed byK1 \T .
We distinguish between three cases, according to whether A is one-ended relative to K
and according to the edge stabilizers of a splitting of A relative to K.

Case 1. There exists a free splitting S0 of A such that K fixes a vertex of S0.
In particular, the corresponding splitting S 00 ofWn constructed above is a free splitting

of Wn. We claim that the splitting S 00 has two orbits of edges. Indeed, suppose that S 00
has k orbits of edges, with k � 3. Then, S 00 is obtained from S by blowing-up at least two
orbits of edges at v. Therefore, the group of twistors K is contained in a free factor B
of Wn isomorphic to Wn�3. Let B 0 be a free factor of Wn isomorphic to W2 such that

Wn D hxni � B � B
0

and let R be the free splitting associated with this decomposition. Then the equivalence
class R of R is a free splitting of Wn fixed by K1 \ T . But by Proposition 2.5 (3), the
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group of twists of R is isomorphic to B � B �W2. Moreover, the group K1 \ T is con-
tained in one of the factors of B � B � W2 isomorphic to B . Therefore, the centralizer
of K1 \ T contains a free abelian group of rank 2. Since K1 \ T is a normal subgroup
ofK1, this contradicts the fact that the centralizer ofK1 \ T is virtually a nonabelian free
group by property .PWn�2/ (1). Therefore, the splitting S 00 is a two-edge free splitting.

Case 2. There exists a splitting S0 of A such thatK fixes a vertex of S0 and such that one
of the edge stabilizers of S0 is finite.

Let S 00 be the corresponding splitting of Wn constructed in the above discussion. If S0
has an edge e0 with trivial stabilizer, then by collapsing every orbit of edges of S0 except
the one containing e0, we obtain a splitting S1 of A such that K fixes a vertex of K. Then
the corresponding splitting S 01 of Wn is a free splitting. Thus, we can apply case 1.

Therefore, we may assume that every edge stabilizer of S0 is infinite or a nontrivial
finite subgroup of Wn. By collapsing every edge of S0 with infinite stabilizer and by
collapsing all but one orbit of edges with finite edge stabilizer, we may suppose that S0
is a one-edge splitting such that every edge stabilizer of S0 is a nontrivial finite subgroup
of Wn. Every finite subgroup of Wn is isomorphic to F and is in fact a free factor of Wn.
We claim that we can construct a splitting X0 of A which contains an edge with trivial
stabilizer and such that K fixes a vertex of X0. Indeed, let x0 be the vertex of S0 fixed
by K, let f0 be an edge adjacent to x0 and let x1 be the vertex of f0 distinct from v0.
Let Gx0 be the stabilizer of x0, let Gx1 be the stabilizer of x1 and let Gf0 be the stabilizer
of f0. Note that, since there does not exist HNN extensions inWn, the groupsGx0 andGx1
are not conjugate in Wn. The group Gf0 is a free factor of both Gx0 and Gx1 . Thus, there
exists a free factor A0 of Gx1 such that Gx1 D Gf0 � A

0. Let U be the splitting of A
such that the underlying tree of WnnU is the same one as the underlying tree of WnnS0,
such that the stabilizer of every vertex which is not in the orbit of x1 is the same one
as the stabilizer of the corresponding vertex in S0 and the stabilizer of x1 is A0. Then
the edge f0 has trivial stabilizer in U and K fixes a vertex of U . This proves the claim.
Therefore, case 2 is a consequence of case 1.

Case 3. The group A is one-ended relative to K.
We prove that this assumption leads to a contradiction. By Theorem 7.6, there exists

a canonical splitting S0 of A whose edge stabilizers are virtually infinite cyclic, such
that K fixes a point of S0 and such that every automorphism of A preserving K fixes the
equivalence class of S0. Let S 00 be the corresponding splitting of Wn, and let � 00 be its
equivalence class. Recall that the group K1 \ T is a normal subgroup of H contained in
Inn.A/. Let k 2 K and let f 2 H . Let F be a representative of f which fixes xn and
which preserves A. As K1 \ T is a normal subgroup of H , there exists k0 2 K such that

F ı adk ı F �1 D adF.k/ D adk0 :

Since the center of A is trivial, we have F.k/D k0. Hence the groupH viewed as a subset
of Aut.A/ preserves K. Thus H preserves � 00.
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Let v0 be the vertex of S 00 fixed by K and let e0 be the edge of S 00 between v0 and the
point fixed by hxni. By construction, the stabilizer of every edge of S 00 which is not in the
orbit of e0 is virtually cyclic, that is, it is isomorphic either to Z or to W2. By Lemma 2.7,
a twist about an edge whose stabilizer is isomorphic to Z is central in a finite index
subgroup of StabOut.Wn/.�

0
0/. Since any finite index subgroup of H has finite center by

Remark 6.1 (2), we see that the stabilizer of every edge of S 00 which is not in the orbit
of e0 is isomorphic to W2. Therefore, Remark 2.6 implies that the group of bitwists about
every edge of S 00 which is not in the orbit of e0 is trivial. Thus, the group of bitwists T0
of � 00 is reduced to the group of twists about e0.

Let WnnS 00 be the graph associated with WnnS 00. For every vertex v 2 V.WnnS 00/, let
Incv be the set containing the conjugacy class of the edge group of every edge adjacent
to v (seen as a subgroup of Gv). Let xv0 be the image of v0 in WnnS 00 and let xe0 be the
image of e0 in WnnS 00. By Proposition 2.5 and Remark 2.6, up to taking a finite index
subgroup of H , we have a natural homomorphism

‰W H ! Out.Gv0 ; ¹K; Incxv0º/ �
Y

v2V.WnnS
0
0/;v¤xv0

Out.Gv; Incv/;

whose kernel is T0 \H . Note that every edge stabilizer is isomorphic to W2, hence the
outer automorphism group of every edge stabilizer is finite. Thus, up to taking a finite
index subgroup of H , we may suppose that the image of ‰ is contained in

Out.Gv0 ; ¹K; Inc.t/
xv0
º/ �

Y
v2V.WnnS

0
0/;v¤xv0

Out.Gv; Inc.t/v /:

Recall that K2 \ T0 D ¹1º, hence ‰jK2 is injective. Moreover, as K2 commutes with K1,
the group K2 is contained in Out.Wn; K.t//. Recall that Theorem 7.6 (4) implies that the
group Out.Gv0 ; ¹K; Incxv0º

.t// is finite. Since ‰jK2 is injective, this implies thatY
v2V.WnnS

0
0/;v¤xv0

Out.Gv; Inc.t/v /

is infinite. Since the graph WnnS 00 is finite, there exists v 2 V.WnnS 00/ such that v ¤ xv0
and Out.Gv; Inc.t/v / is infinite.

Suppose first that there exist two distinct vertices v andw ofWnnS 00 such that v;w¤xv0
and both Out.Gv; Inc.t/v / and Out.Gw ; Inc.t/v / are infinite. SinceGv andGw are subgroups
of Wn whose outer automorphism groups are infinite, they are virtually nonabelian free
groups. Thus, we can apply Theorem 6.5 to both .Gv; Incv/ and .Gw ; Incw/ to show that
there exist a ZRC -splitting Uv of Gv and Uw of Gw such that every group in Incv fixes
a point in Uv and every group in Incw fixes a point in Uw . One can then blow up the
splittings Uv and Uw at the vertices v and w of WnnS 00 and attach the edges adjacent to v
and w in WnnS 00 to the points fixed by their corresponding edge groups in Uv and Uw .
This gives a refinement S1 of S 00. Let �1 be the equivalence class of S1. Note that, since



Y. Guerch 974

the group of twists about the edge e0 of S 00 is contained in the group of twists of �1, the
group K1 \ T fixes �1. Note that the stabilizer of an edge in Uv or Uw is either finite or
isomorphic to Z. If there exists an edge in Uv or Uw with a finite edge stabilizer, as v
and w come from vertices in S0, we can apply case 2 to conclude. Suppose that every
edge stabilizer of Uv and Uw is isomorphic to Z. By Lemma 2.7, a twist about an edge
whose stabilizer is isomorphic to Z is central in a finite index subgroup of StabOut.Wn/.�1/.
Hence K1 \ T has a finite index subgroup which is centralized by a free abelian group of
rank 2. This contradicts property .PWn�2/ (1).

Suppose now that there exists a unique vertex v 2 V.WnnS 00/ such that v ¤ xv0 and
Out.Gv; Inc.t/v / is infinite. Recall that the image of the homomorphism ‰jK2 is con-
tained in

Out.Gv0 ; ¹K; Incxv0º
.t// �

Y
w2V.WnnS

0
0/;w¤xv0

Out.Gw ; Inc.t/w /:

In particular, as Out.Gv0 ;¹K; Incxv0º
.t// is finite, up to taking a finite index subgroup ofK2,

we may suppose that the image of ‰jK2 is contained in Out.Gv; Inc.t/v /.

Claim 7.11. Let f 2 K2 and let X be a connected subgraph of WnnS 00 such that every
vertex of X is distinct from v and such that the group associated with every edge of X is
isomorphic to W2. Then f has a representative which acts as the identity on hGwiw2VX .

Proof. We prove the result by induction on the numberm of edges ofX . IfX is reduced to
a vertex, then the conclusion is immediate. Suppose that jEX j Dm� 1. Letw1 andw2 by
two adjacent vertices in VX such thatw1 is a leaf ofX . Let e0 be the edge inX betweenw1
and w2. Let X 0 be the graph obtained from X be removing w1 and e0. The graph X 0 is
a connected subgraph ofWnnS 00 which satisfies the hypothesis of the lemma and such that
jEX 0j D m � 1. By the induction hypothesis, the element f has a representative which
acts as the identity on hGwiw2VX 0 . Let WnnS 02 be the graph of groups obtained from
WnnS

0
0 by collapsing X 0 and let pWWnnS 00 ! WnnS

0
2 be the natural projection. Since f

has a representative which acts as the identity on hGwiw2VX 0 , the element f fixes the
equivalence class ofWnnS 02. Note that the group associated with p.w2/ is hGwiw2VX 0 and
that the group associated with p.w1/ is Gw1 . Moreover, the group associated with p.e0/
is Ge0 , in particular, it is isomorphic to W2. Thus for every i 2 ¹1; 2º, the outer automor-
phism f has a representative Fi such that Fi .Gp.wi // D Gp.wi / and Fi jGp.wi / D idGp.wi / .
Thus, by Lemma 7.9 applied to WnnS 02, the outer automorphism f has a representative
which acts as the identity on

hGp.w1/; Gp.w2/i D hGwiw2VX :

The claim follows.

Let e0 be the edge adjacent to v inWnnS 00 which is contained in the path between v and
xv0 and let ze0 be a lift of e0 in S 00. Note that v is contained in the same connected component
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of WnnS 00nVxe0 as xv0. Thus the edges e0 and e0 are not in the same orbit. Moreover, the
stabilizer of e0 is isomorphic to W2. Let S 01 be the splitting of Wn obtained from S 00 by
collapsing every edge of S 00 which is not in the orbit of ze0 and e0. Let � 01 be the equivalence
class of S 01. Then S 01 has two orbits of edges. Let v2 be the vertex of S 01 fixed by K and
let v1 be the vertex of S 01 adjacent to v2 which is fixed by a conjugate of Gv . Let e be the
edge adjacent to v1 and v2. Note that, up to taking a finite index subgroup ofK2, the group
K2 fixes � 01. Thus, by Proposition 2.5 and Remark 2.6, we have a natural homomorphism
ˆWK2 ! Out.Gv1 ; Ge/ � Out.Gv2 ; Ge/ whose kernel is contained in K2 \ T0 D ¹1º.
Moreover, the claim applied to the connected component of WnnS 00n. Ve [ Vxe0/ containing
xv0 shows that every element f 2K2 has a representative which acts as the identity onGv2 .
Hence ˆ.K2/ is isomorphic to K2 and is contained in Out.Gv1 ; Ge/. We also see that, as
K is virtually a nonabelian free group, its centralizer inWn is trivial. Hence every element
f 2 K2 has a unique representative which acts as the identity on K. Let f 2 K2. Recall
thatWn D A � hxni. Then the representative of f which preserves A and fixes xn must fix
K by Lemma 4.12 (since f 2 K2 centralizes K1). As f has a representative which acts
as the identity on Gv2 and as K � Gv2 , we see that f has a representative which acts as
the identity on Gv2 � hxni.

Note that the group Gv1 �Ge Gv2 is a splitting of A such that Ge is isomorphic to W2.
Moreover, asK fixes v2, the group Gv2 is not virtually cyclic. Since the group Out.Gv/ is
infinite, the group Gv is not virtually cyclic. Hence the group Gv1 is not virtually cyclic.
Therefore, we may apply Corollary 7.8 to Gv1 �Ge Gv2 : there exist k1; k2 � 3 such that
for every i 2 ¹1; 2º, the group Gvi is isomorphic to Wki . Moreover, there exist i 2 ¹1; 2º
and j 2 ¹1; 2ºn¹iº such that Wki is a free factor of Wki and Ge is a free factor of Wkj .

Suppose first that Wk1 is a free factor of A and that Ge is a free factor of Wk2 . Let B
be such that Wk2 D Ge � B . Then B is a free factor of A since

A D Gv1 �Ge Gv2 D Gv1 �Ge .Ge � B/ D Gv1 � B:

Since k2 � 3, the group B is nontrivial. Let z be an infinite order element of Ge . Let F1
be the automorphism of Wn which acts as a global conjugation by z on B and which
fixes xn and Gv1 (recall that as Wn D B � Gv1 � hxni, the automorphism F1 is uniquely
determined). Let F2 be the automorphism of Wn which acts as a global conjugation by z
on A and which fixes xn. Then hŒF1�; ŒF2�i is a subgroup of Out.Wn/ isomorphic to a free
abelian group of rank 2. Recall that every element of K2 has a representative which acts
as the identity on Gv2 � hxni. Since ŒF1� and ŒF2� have representatives whose support is
contained in Gv2 � hxni, the group hŒF1�; ŒF2�i is contained in COut.Wn/.K2/. This contra-
dicts property .PWn�2/ (1) which says that the centralizer of K2 is virtually a nonabelian
free group.

Suppose now that Wk2 is a free factor of A and that Ge is a free factor of Wk1 . Let B
be such thatWk1 DGe �B . As before, the group B is a free factor ofA andAD B �Gv2 .
ButK is contained inGv2 . This contradicts the fact that A is one-ended relative toK. The
conclusion in case 3 follows.
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Therefore, we have constructed a free splitting S 00 of Wn which is a two-edge free
splitting fixed by K1 \ T . Moreover, the construction of the splitting is such that the
vertex of the underlying graph ofWnnS 00 whose associated group containsK is not a leaf.
We now prove that S 00 is a Wn�2-star. Let C be the vertex stabilizer of S 00 containing K,
and let C 0 be a vertex stabilizer of S 00 which is not a conjugate of C nor hxni. Then C 0 is
the vertex group of a leaf of the underlying graph of WnnS 00. By Proposition 2.5 (3), the
group of twists of � 00 is isomorphic to C �C �C 0=Z.C 0/. Since the centralizer ofK \ T1
is virtually a nonabelian free group by property .PWn�2/ (1), we conclude that C 0=Z.C 0/
is finite. Hence C 0 is isomorphic to F and S 00 is a Wn�2-star.

We now prove that H virtually fixes � 00. By Proposition 2.5 (3), the group of twists
of � 00 is isomorphic to Wn�2 �Wn�2. By Lemma 4.11, the group K1 \ T is contained in
one of the factors isomorphic to Wn�2 of the group of twists of � 00. Therefore, K1 \ T
is centralized by the other factor of the group of twists of � 00. Since the centralizer of
K1 \ T containsK2 as a finite index subgroup, the groupK2 contains a twist f of infinite
order about the edge e of S 00 which does not collapse onto S . This twist is a twist about
a Wn�1-star obtained from S 00 by collapsing the orbit of edges which does not contain e.
By Lemma 7.1, the group H virtually fixes � 00. Moreover, K1 is commensurable with
T \ Stab.� 00/, that isK1 is commensurable with the group of twists about one edge of S 00.
Lemma 6.6 then implies that K1 virtually fixes a unique equivalence class of Wn�2-stars.
Therefore, since K1 is a normal subgroup of H , we see that H virtually fixes a unique
equivalence class of Wn�2-stars. This concludes the proof.

Proposition 7.12. Let n � 5 and let � be a finite index subgroup of Out0.Wn/. Let
‰ 2 Comm.�/. Then for every equivalence class � of Wn�2-stars, there exists a unique
equivalence class � 0 of Wn�2-stars such that ‰.ŒStab�.�/�/ D ŒStab�.� 0/�.

Proof. The uniqueness statement follows from Lemma 6.6 which shows that the stabiliz-
ers in finite index subgroups of Out.Wn/ of two distinct equivalence classes ofWn�2-stars
are not commensurable.

We now prove the existence statement. Let f W�1 ! �2 be an isomorphism between
finite index subgroups of � that represents ‰. By Proposition 6.7, the group Stab�1.�/
satisfies .PWn�2/. As f is an isomorphism, we deduce that f .Stab�1.�// also satisfies
.PWn�2/. Proposition 7.10 implies that there exists a unique equivalence class of Wn�2-
stars � 0 such that f .Stab�1.�// � Stab�2.�

0/, where the inclusion holds up to a finite
index subgroup. Applying the same argument with f �1, we see that there exists an equiv-
alence class � 00 of a Wn�2-star such that

Stab�1.�/ � f
�1.Stab�2.�

0// � Stab�1.�
00/;

where the inclusion holds up to a finite index subgroup. Lemma 6.6 then implies that �

is the unique equivalence class of Wn�2-stars virtually fixed by Stab�1.�/. Therefore, we
see that � D � 00 and we have equality everywhere. This completes the proof.
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8. Algebraic characterization of compatibility of Wn�2-stars and
conclusion

8.1. Algebraic characterization of compatibility of Wn�2-stars

In this section, we give an algebraic characterization of the fact that two equivalence
classes of Wn�2-stars have both a common collapse and a common refinement. This will
imply that Comm.Out.Wn// preserves the set of pairs of commensurability classes of sta-
bilizers of adjacent pairs in the graph Xn introduced in Definition 3.2 (2).

Let n� 5 and let � be a finite index subgroup of Out0.Wn/. We consider the following
properties of a pair .H1;H2/ of subgroups of �:

.Pcomp/ The pair .H1;H2/ satisfies the following properties:

(1) For every i 2 ¹1; 2º, the group Hi satisfies .PWn�2/.
(2) For every normal subgroupsK.1/1 �K

.1/
2 ofH1 andK.2/1 �K

.2/
2 ofH2 given

by .PWn�2/ (1), there exist i; j 2 ¹1; 2º such that K.1/i \K
.2/
j is infinite.

(3) The group H1 \H2 contains a subgroup isomorphic to Zn�2.

Proposition 8.1. Let n � 5 and let � be a finite index subgroup of Out0.Wn/. Let �1
and �2 be two distinct equivalence classes of Wn�2-stars S1 and S2 and, for every i 2
¹1; 2º, let Hi D Stab�.�i /. Then S1 and S2 have a refinement S which is a Wn�3-star if
and only if .H1;H2/ satisfies property .Pcomp/.

Proof. We first assume that S1 and S2 have a common refinement S which is aWn�3-star.
Let � be the equivalence class of S . Let us prove that .H1;H2/ satisfies .Pcomp/. By Pro-
position 6.7, for every i 2 ¹1; 2º, the group Hi satisfies .PWn�2/. This proves that the pair
.H1;H2/ satisfies .Pcomp/ (1).

Let us check property .Pcomp/ (2). For every i 2 ¹1; 2º, let T .i/1 � T
.i/
2 be the group of

twists of �i and let K.i/1 D T
.i/
1 \ � and K.i/2 D T

.i/
2 \ � . By Proposition 6.7, for every

i 2 ¹1; 2º, the group K.i/1 �K
.i/
2 satisfies .PWn�2/ (1) and Lemma 7.1 implies that every

normal subgroup of Hi given by .PWn�2/ (1) is commensurable with K.i/1 �K
.i/
2 . Thus it

suffices to check .Pcomp/ (2) for K.1/1 �K
.1/
2 and K.2/1 �K

.2/
2 . The group of twists of �

is isomorphic to a direct product A1 � A2 � A3 of three copies of Wn�3. Since n � 5, we
have n � 3 � 2 and Wn�3 is infinite. Since S is a common refinement of S1 and S2 and
since S has 3 orbits of edges, there exists a Wn�1-star S0 which is a common collapse
of S1 and S2. Moreover, there exists k 2 ¹1; 2; 3º such that Ak is contained in the group of
twists of S0. Therefore, for every i 2 ¹1;2º, there exists j 2 ¹1;2º such that the groupAk is
contained in T .i/j . Thus, there exist i; j 2 ¹1; 2º such that Ak \ � � K

.1/
i \K

.2/
j . In par-

ticular, K.1/i \K
.2/
j is infinite. This shows .Pcomp/ (2).

Finally, since n � 5, the Wn�2-stars S1 and S2 have a common refinement which
is a W2-star (take any W2-star which refines S ). Since the group of twists of a W2-star
contains a subgroup isomorphic to Zn�2 by Proposition 2.5 (3), this shows .Pcomp/ (3).
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Conversely, suppose that .H1;H2/ satisfies .Pcomp/. For i 2 ¹1; 2º, let K.i/1 �K
.i/
2 be

the direct product of the groups of twists in � about the two edges of �i . Then for every
i 2 ¹1; 2º, the group .Hi \K

.i/
1 / � .Hi \K

.i/
2 / satisfies .PWn�2/ (1) by Proposition 6.7.

Hence property .Pcomp/ (2) implies that there exist i; j 2 ¹1; 2º such that

.H1 \K
.1/
i / \ .H2 \K

.2/
j /

is infinite. For i 2 ¹1; 2º, let S .i/1 and S .i/2 be the two distinct Wn�1-stars on which Si col-
lapses. By Proposition 6.13, sinceH1 \H2 fixes pointwise the set ¹� .1/1 ; �

.1/
2 ; �

.2/
1 ; �

.2/
2 º,

and since H1 \H2 contains a subgroup isomorphic to Zn�2 by .Pcomp/ (3), the Wn�1-
stars S .1/1 , S .1/2 , S .2/1 and S .2/2 are pairwise compatible. Hence S1 and S2 have a common
refinement S which is either a Wn�3-star or a Wn�4-star. Since the groups of twists of �1
and �2 have infinite intersection, the refinement S cannot be a Wn�4-star since otherwise
theWn�1-stars S .1/1 , S .1/2 , S .2/1 and S .2/2 would be pairwise nonequivalent and hence their
groups of twists would have trivial intersection. Thus S is a Wn�3-star.

8.2. Conclusion

In this last section, we complete the proof of our main theorem.

Theorem 8.2. Let n � 5 and let � be a finite index subgroup of Out0.Wn/. Then any
isomorphism f WH1!H2 between two finite index subgroups of � is given by conjugation
by an element of Out.Wn/ and the natural map

Out.Wn/! Comm.Out.Wn//

is an isomorphism.

Proof. Suppose that � and � 0 are two distinct equivalence classes of Wn�2-stars. Then
Stab�.�/ and Stab�.� 0/ are not commensurable by Lemma 6.6. Proposition 7.12 shows
that the collection 	 of all commensurability classes of �-stabilizers of equivalence class-
es of Wn�2-stars is Comm.�/-invariant. Proposition 8.1 shows that the collection J of
all pairs .ŒStab�.�/�; ŒStab�.� 0/�/ is also Comm.�/-invariant. Since the natural homo-
morphism Out.Wn/! Aut.Xn/ is an isomorphism by Theorem 3.3, the conclusion fol-
lows from Proposition 2.1 and the fact that Comm.�/ is isomorphic to Comm.Out.Wn//
since � has finite index in Out.Wn/.

A. Rigidity of the graph of Wn�1-stars

The graph ofWn�1-stars, denoted by Yn, is the graph whose vertices are theWn-equivari-
ant homeomorphism classes of Wn�1-stars, where two equivalence classes � and � 0 are
joined by an edge if there exist S 2 � and S 0 2 � 0 such that S and S 0 are compatible. This
graph arises naturally in the study of Out.Wn/ as it is isomorphic to the full subgraph of the
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free splitting graph xKn of Wn whose vertices are equivalence classes of Wk-stars, with k
varying in ¹0; : : : ; n � 1º. As Aut.Wn/ acts on xKn by precomposition of the marking,
we have an induced action of Aut.Wn/ on Yn. As Inn.Wn/ acts trivially on Yn, the action
of Aut.Wn/ induces an action of Out.Wn/. We denote by Aut.Yn/ the group of graph
automorphisms of Yn. In this section we prove the following theorem.

Theorem A.1. Let n � 4. The natural homomorphism

Out.Wn/! Aut.Yn/

is an isomorphism.

In order to prove this theorem, we take advantage of the action of Out.Wn/ on the
graph of ¹0º-stars and F -stars Ln. The strategy in order to prove Theorem A.1 is to con-
struct an injective homomorphism ˆWAut.Yn/! Aut.Ln/ such that every automorphism
in the image preserves the set of ¹0º-stars and the set of F -stars.

The homomorphism ˆWAut.Yn/! Aut.Ln/ is defined as follows. Let f 2 Aut.Yn/.
Let � be the equivalence class of a ¹0º-star and let S be a representative of � . By The-
orem 3.7, there exist exactly n Wn�1-stars S1; : : : ; Sn refined by S . Moreover, these
Wn�1-stars are pairwise compatible. For i 2 ¹1; : : : ; nº, let �i be the equivalence class
of Si . Since f is an automorphism of Yn, f .�1/; : : : ; f .�n/ are pairwise adjacent in Yn.
Let S 01; : : : ; S

0
n be representatives of respectively f .�1/; : : : ; f .�n/ that are pairwise com-

patible. Then Theorem 3.7 implies that there exists a unique common refinement S 0 of
S 01; : : : ; S

0
n with exactly n edges. Since, for every i 2 ¹1; : : : ; nº, the splitting S 0i is aWn�1-

star, the splitting S 0 is necessarily a ¹0º-star. Let � 0 be the equivalence class of S 0. We then
define ˆ.f /.�/ D � 0. If T is an F -star, we define ˆ.f /.T / similarly.

Lemma A.2. Let n � 4. Let f 2 Aut.Yn/. Let ˆ.f / be as above.

(1) The map ˆ.f /WVLn ! VLn induces a graph automorphism ẑ .f /WLn ! Ln.

(2) If ẑ .f / D idLn , then f D idYn .

Proof. We prove the first statement. As ˆ.f / ı ˆ.f �1/ D ˆ.f ı f �1/ D id, we see
that ˆ.f / is a bijection. Let � be the equivalence class of a ¹0º-star and let T be the
equivalence class of an F -star. Suppose that � and T are adjacent in Ln. We prove that
ˆ.f /.�/ and ˆ.f /.T / are adjacent in Ln. Applying the same result to f �1, this will
prove that � and T are adjacent in Ln if and only if ˆ.f /.�/ and ˆ.f /.T / are adjacent
in Ln, and this will conclude the proof. Let S and T be representatives of � and T ,
respectively. Let S1; : : : ; Sn be the n Wn�1-stars refined by S , and let T1; : : : ; Tn�1 be
the n � 1 Wn�1-stars refined by T . As S refines T , and as S refines exactly n Wn�1-
stars by Theorem 3.7, up to reordering, we can suppose that, for every i 2 ¹1; : : : ; n� 1º,
we have Si D Ti . For i 2 ¹1; : : : ; nº, let �i be the equivalence class of Si , and let S 0i
be a representative of ˆ.f /.�i / such that for distinct i; j 2 ¹1; : : : ; nº, Si and Sj are
compatible. Then, by Theorem 3.7, a representative T 0 of ˆ.f /.T / is the unique (up
to Wn-equivariant homomorphism) F -star such that, for every j 2 ¹1; : : : ; n � 1º, T 0 is
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compatible with S 0j . Moreover, a representative S 0 of ˆ.f /.�/ is the unique ¹0º-star such
that, for every i 2 ¹1; : : : ; nº, S 0 is compatible with S 0i . For i 2 ¹1; : : : ; nº, let xi be
the preimage by the marking of WnnS 0i (well-defined up to global conjugation) of the
generator of the vertex group isomorphic to F (which exists since S 0i is a Wn�1-star).
Then the preimages by the marking of WnnT 0 of the generators of the groups associated
with the n� 1 leaves of the underlying graph ofWnnT 0 are x1; : : : ; xn�1 and the preimage
by the marking of WnnT 0 of the generator of the group associated with the center of the
underlying graph of WnnT 0 is xn. Moreover, the preimages by the marking of WnnS 0 of
the generators of the groups associated with the n leaves of the underlying graph ofWnnS 0

are x1; : : : ; xn. Let vn be the leaf of the underlying graph ofWnnS 0 such that the preimage
by the marking of WnnS 0 of the generator of the group associated with vn is xn. Then T 0

is obtained from S 0 by contracting the edge adjacent to vn. Thus ˆ.f /.�/ and ˆ.f /.T /
are adjacent in Ln.

The proof of the second statement is identical to the proof of [13, Lemma 5.4]. We add
the proof for completeness as the statement of [13, Lemma 5.4] is about automorphisms
of xKn. Let � 2 V Yn and let S be a representative of � . We prove that f .�/ D � . Let

Wn D hx1; : : : ; xn�1i � hxni

be the free factor decomposition of Wn induced by S . Let S 0 be a representative of f .�/.
Let X be the equivalence class of the F -star X represented in Figure 4 on the left.

�

�

�

hx1i

hx2i

hxni

�

�

�

hxni

hx1i

hxn�1i

Figure 4. The F -stars X and X 0 from the proof of Lemma A.2.

Sinceˆ.f /.X/DX, the free splitting S 0 is aWn�1-star obtained fromX by collaps-
ing n� 1 edges. But if T is a Wn�1-star obtained from X by collapsing n� 1 edges, then
there exists i 2 ¹1; : : : ; nº such that the free factor decomposition of Wn induced by T is

Wn D hx1; : : : ; yxi ; : : : ; xni � hxi i:

For i 2 ¹1; : : : ; nº, we will denote by Ti the Wn�1-star with associated free factor decom-
position hx1; : : : ; yxi ; : : : ; xni � hxi i, and by Ti its equivalence class. For i ¤ n, the free
splitting Ti is a collapse of the F -star X 0 depicted in Figure 4 on the right, whereas S is
not a collapse of X 0.

Let X0 be the equivalence class of X 0. Since ˆ.f /.X0/ D X0, there does not exist
a representative of f .�/ that is obtained from a representative of X0 by collapsing a forest.
Thus, for all i ¤ n, we have f .�/¤ Ti . Hence, as � D Tn, we conclude that f .�/ D � .
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Proof of Theorem A.1. Let n � 4. We first prove injectivity. By Theorem 3.5, the homo-
morphism Out.Wn/! Aut.Ln/ is injective. Moreover, the homomorphism Out.Wn/!
Aut.Ln/ factors through Out.Wn/ ! Aut.Yn/ ! Aut.Ln/. Therefore, we deduce the
injectivity of Out.Wn/! Aut.Yn/. We now prove surjectivity. Let f 2 Aut.Yn/. By Lem-
ma A.2 (1), we have a homomorphism ˆWAut.Yn/! Aut.Ln/ whose image consists in
automorphisms preserving the set of ¹0º-stars and the set of F -stars. By Theorem 3.5, the
automorphism ˆ.f / is induced by an element 
 2 Out.Wn/. Since the homomorphism
Aut.Yn/! Aut.Ln/ is injective by Lemma A.2 (2), f is induced by 
 . This concludes
the proof.
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