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Groupoids decomposition, propagation and operator
K -theory

Hervé Oyono-Oyono

Abstract. In this paper, we streamline the technique of groupoids coarse decomposition for purpose
of K-theory computations of groupoids crossed products. This technique was first introduced by
Guoliang Yu in his proof of Novikov conjecture for groups with finite asymptotic dimension. The
main tool we use for these computations is controlled operator K-theory.
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1. Introduction

The concept of coarse decomposability for locally compact groupoids was introduced
by several authors [3, 11,21, 30] in order to compute K-theory of reduced C *-algebras
and of reduced crossed product algebras of locally compact groupoids. It generalizes the
“cut-and-pasting” technique developed by Yu in [32] to prove the Novikov conjecture for
groups with finite asymptotic dimension. The “cut-and-pasting” has been then extended
by Guentner, Tessera and Yu in [8] in order to study topological rigidity of manifolds.
In this work, they consider a class of finitely generated groups which satisfy a metric
property called finite decomposition complexity. In particular, they proved that if the fun-
damental group of a closed aspherical manifold is in this class, then it satisfied the bounded

2020 Mathematics Subject Classification. Primary 19K35; Secondary 22A22, 461.80.
Keywords. Groupoids, operator K -theory, coarse geometry, Baum—Connes conjecture.


https://creativecommons.org/licenses/by/4.0/

H. Oyono-Oyono 752

Borel conjecture and the stable Borel conjecture. In [9], finite decomposition complexity
for metric spaces has been studied in full detail. This property can be interpreted in terms
of decomposition complexity of the coarse groupoid associated to the metric space, which
leads naturally to extend this notion to locally compact groupoids. A first generalization
was provided by Guentner, Willett and Yu in [10] in order to study the dynamical prop-
erties of finitely generated group actions on locally compact spaces with at each order
of length a one step decomposition into pieces with “finite dynamic”. In [11], the same
authors consider the case of finitely generated group actions on locally compact spaces
which, given a sequence of lengths, decompose in a finite number of steps into pieces
with “finite dynamic”. They give a new proof of the Baum—Connes conjecture (with triv-
ial coefficients) for these action groupoids. This approach is of great interest since it does
not involve infinite dimension analysis and can be generalized to computations in non
C *-algebraic situations (for instance to £7-crossed products as considered in [5]). The
main tool used in this proof is quantitative K-theory. Quantitative K-theory was first
introduced in [32] for obstruction algebras in order to prove the Novikov conjecture for
groups with finite asymptotic dimension. It has been then extended in [20] to the setting
of C*-algebras equipped with a filtration arising from a length and in [6] to the general
framework of C *-algebras filtered by an abstract coarse structure which allows to replace
lengths by abstract orders. A controlled Mayer—Vietoris exact sequence in quantitative K-
theory associated to decomposition in “ideals at order »”” which turned out to be tailored
for K-theory computations under groupoid decomposability (see [6] for the extension to
general filtrations) was stated in [21]. It has been applied in [3] to the Kiinneth formula
in K-theory for groupoid C*-algebras and crossed product algebras. Any locally com-
pact Hausdorff groupoid is provided by a canonical order (see Definition 2.9) and loosely
speaking, we consider decomposition of the set of elements of a given order of a groupoid
as the union of two open subgroupoids (see Definition 2.13). Following [11], we say that
a locally compact groupoid § has finite complexity decomposition with respect to a fam-
ily D of open subgroupoids if starting with a given sequence of orders, then iterating the
above decomposition ends up with elements belonging to D in a finite number of steps
(see Definition 2.17). The main result of this paper is the following:

Let § be locally compact groupoid with finite decomposition complexity with respect
to a family D of relatively clopen subgroupoids (see Definition 2.2) and let f: A — B be
a homomorphism of §-algebras. If the morphism

Ki(A X, H) — Ki(B %, H)
induced in K-theory by f is an isomorphism for any # in D, then so is
Ki«(A %, 8) > Ki(B %, 9).

We then extend this result to morphisms induced by elements in KKZ (A, B). An
important application of the latter result is the heredity of the Baum—Connes conjecture
under the decomposition described above for second countable and locally compact Haus-
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dorff groupoids admitting a y-element in sense of [28]. All these stability results should
be compared with those obtained by Willett in [30] using different technics.

Our prominent examples will be action groupoids of groups with finite decomposition
complexity acting on its Stone—Cech compactification. Indeed these groupoids are known
to be amenable. This is a consequence of [8, Theorem 4.3] and [26, Theorem A.9]. This
result has been extended in [11, Theorem A.9] to étale groupoids with finite dynamical
complexity. In Section 2.6, we generalize the later result and prove that a locally com-
pact Hausdorff groupoid with finite decomposition complexity respectively to a family of
open and amenable subgroupoids is amenable. In view of [27], these groupoids satisfy the
Baum-—Connes conjecture and hence, our approach does not provide so far new examples.
But, as emphasized before, our approach is more geometric.

In the case of a groupoid with finite decomposition complexity with respect to a fam-
ily O of relatively clopen subgroupoids satisfying the Haagerup property, it is less clear
that the later property is preserved and applying once again [27], our approach might be
the source of new examples. Even if so far we have no idea of what kind of groupoid
can be obtained is this way, interesting new examples might also arise using [15, 16] by
considering a decomposing family O of relatively clopen subgroupoids satisfying some
hyperbolic properties (see Section 6.4 for some general perspectives).

Outline of the paper. Section 2 starts with some basic definitions concerning locally
compact groupoids and their actions. Then we introduce the notion of §-order for a locally
compact groupoid & which can be viewed as the generalization both of a length on a group
and of a distance on a proper metric space. Following the idea of [11, Definition 3.14], the
notion of R-decomposition for a §-order R is then introduced. This leads to the concept
of P-decomposability of an open subgroupoid of § with respect to a family <D of open
subgroupoids and to finite decomposition complexity with respect to a family of open
subgroupoids, generalizing finite dynamical complexity defined in [11]. We end this sec-
tion with generalization of [11, Theorem A.9] and prove that a locally compact groupoid
with finite decomposition complexity with respect to a family of open and amenable sub-
groupoids is amenable.

Section 3 is devoted to some reminders on groupoid actions on C *-algebras and their
reduced crossed product algebras.

In Section 4 is introduced the primary tool for the proof of our main theorem, the con-
trolled Mayer—Vietoris exact sequence in quantitative K-theory associated to a groupoid
decomposition. We first review from [6] the main features of quantitative K-theory for
C *-algebra filtered by an abstract coarse structure. It is pointed out that §-orders provide
such a structure on crossed product algebras of a groupoid §. The definition of a controlled
Mayer—Vietoris pair is recalled and we show that groupoid decompositions of order R
give rise to controlled Mayer—Vietoris pairs. Eventually, we recall the statement of the
controlled Mayer—Vietoris exact sequence in quantitative K-theory associated to a con-
trolled Mayer—Vietoris pair.

The main result of the paper is proven in Section 5. Although the proof is tedious,
the principle is quite simple as it is the extension of the Five lemma to the setting of
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controlled exact sequences. We then extend our main result to the case of the morphisms
induced in K-theory by elements of §-equivariant K K -theory. This is done by noticing
that every such element is up to KK-equivalence given by an equivariant homomor-
phism.

In Section 6, applications to the Baum—Connes conjecture for locally compact groupo-
ids are given. We first recall from [28] the statement of the Baum—Connes conjecture in
the setting of locally compact groupoids and the definition of y-elements. This section is
ended with hereditary results of the Baum—Connes conjecture for groupoids with D-finite
decomposition complexity which admit a y-element in sense of [28] and with a discussion
concerning the range of applicability of our approach.

2. Coarse decomposition for groupoids

Coarse decomposability for locally compact Hausdorff groupoids is the generalization of
the concept of decomposability for a family of metric spaces introduced in [9]. In this
section, after some reminders concerning locally compact groupoids and their actions, we
introduce for a locally compact Hausdorff groupoid § the notion of §-orders generalizing
on one hand distances on metric spaces and on the other hand lengths on groups. Following
in particular ideas of [11, Section 3 and Appendix A], this allows us to define decompo-
sition of order R for a subgroupoid of § which leads naturally to coarse decomposability
and to finite decomposition complexity with respect to a set of open subgroupoids of §.

2.1. Groupoids

We assume that the reader is familiar with the basic definition concerning groupoids. For
more details, we refer to [22,23].
A groupoid with space of units X consists of a set § provided with

e twomapss:¥ — X and r:§ — X called the source map and the range map, respec-
tively;

e amapu: X — §,x — uy, called the unit map, which is a section both for s and r;

 an associative composition § xy § — §:(y,y) >y -y’ with g xx § = {(y,y') €
G xG:s(y) =r(y)}suchthats(y - y') = s(y’) and r(y - ') = r(y) for any (y.y')
ing xy Fandy -ugy) =Ury) -y =y foranyying;

1 1

+ aninversemap ¥ — 9,y y Lsuchthats(y ™)) =r(y),r(y ™) =s(y), y-y ' =

Ur(y), and y 1 -y = uy(,) forany y in §.

Notation 2.1. Let ¥ be a groupoid with space of units X and source and range maps
s, r8 — X.
e Let Z be a subset of §. We set the following:

- Z7'={yhyezy
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- foranyY C X,Zy =s'(Y)NZand Z¥ =r~1(Y)N Z;
— for any subsets Y; and Y, of X, Z;z =zrn Zy,.
e Let Z; and Z, be subsets in §. We set

Zy-Zy={y1y2:v1 € Z1, y2 € Zr and s(y1) = r(y2)}.

A locally compact groupoid is a groupoid provided with a locally compact topol-
ogy and such that the structure maps are continuous. In this paper, all the groupoids
are assumed to be locally compact and Hausdorff. An open subgroupoid of § is a sub-
groupoid J of § which is open as a subset and such that the space of units is open in the
space of unit of §. Notice that the latter condition always holds if the source map of § is
open, for instance if § is provided with a Haar system [28, Lemma 6.5].

Definition 2.2. Let ¢ be a locally compact groupoid. A relatively clopen subgroupoid
of § is an open subgroupoid J of § such that if ¥ stands for the unit space of #, then #
is closed in Gy .

Remark 2.3. Let § be locally compact groupoid and let # be a relatively clopen sub-
groupoid of § with unit space Y. Then # is clopen in €Y and in ﬁ}’ .

The next lemma is straightforward to prove.

Lemma 2.4. Let § be a locally compact groupoid and let K be an open subgroupoid
of § with unit space Y. Then H is relatively clopen if and only if K N K is compact for
any compact subset K of §y.

We recall that a locally compact groupoid with space of units X is proper if the map
> XxX, y=(r(y).sk)
is proper. As a consequence of Lemma 2.4, we obtain the following corollary.
Corollary 2.5. Let § be a locally compact proper groupoid. Then relatively clopen sub-
groupoids of § are proper.
2.2. Groupoid actions

Let us recall first the definition of a (left) action of a groupoid. Let § be a groupoid with
space of units X and source and range maps s and r and unit map u. An action of the
groupoid § on a set Z consist of a map p: Z — X called the anchor map and a map

SxxZ—>Z7Z, Wz)—>vy-z,

with¥ xy Z ={(y,z) € § x Z:s(y) = p(z)} such that

(i) forany y and ¢’ in ¢ and z in Z such that (y, ') isin § xx § and (y’, z) is in
G xx Z,then (y,y’-z) belongsto g xy Zandy-(y'-z) = (y-y')-z;

(ii) Upz)-z =z forany zin Z.
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Notice that these conditions imply that p(y - z) = r(y) and y~! - y - z = z for any (y, z)
in§ xy Z.If x is an element in X, then the fiber of Z at x is Z, &f p~1({x}) and more
generally, if Y is a subset of X, we set Zy &f p~1(Y).If g is alocally compact groupoid
and if Z is a locally compact space, we require the anchor map and the action map to
be continuous. In this case, Z will be called a §-space. In what follows, all §-spaces are
supposed to be Hausdorff. If Z and Z’ are §-spaces with anchor maps pz and pz’, a map
f:Z — Z’iscalled a §-map if f is continuous, pz' o f = pzand f(y-z) =y - f(2)
forall (y,z)in§ xx Z.
Let ¥ be a groupoid with space of units X acting on a set Z with anchor map
p: Z — X. Then the action groupoid that corresponds to the action of § on Z denoted by
G x Z isthe set § xy Z, with Z as space of units with source map

SxZ—>7Z, Wz)—z
and range map
Sx2Z—>7Z, ((z)—>y-z,
unit map (1 being the unit map of §)
Z—>8§%xZ, z+> (Upe) 2),
composition
ExZ)xz(ExZ). (r.v'2) -2~ @y.2)

and inverse
ExZ—>ExZ, (2 y-2).

If § is a locally compact groupoid and Z is a §-space, then § x Z is a locally compact
groupoid. A §-space Z is called proper (or the action of & on Z is said to be proper) if
the action groupoid § x Z is proper.

Remark 2.6. Let § be a locally compact groupoid with space of units X acting on
a locally compact space Y. Then
(i) a¥g x Y-space is precisely a §-space Z together witha §-map f:Z — Y
(ii)  in this case,
IxZ > ExY)xZ, (y,2) (y, f(2),2)
is a groupoid isomorphism;
(iii) in consequence, a § x Y -space Z is proper if and only if it is proper as a §-
space;
(iv) in particular, if Z is a proper §-space, then Z xy Y is a proper ¥ x Y -space

with anchor map given by the projection on the second factor (here Z xx Y
stands for the fiber product over the two anchor maps).

Remark 2.7. Let § be locally compact groupoid and let J be a relatively clopen sub-
groupoid of § with unit space Y. For any left §-space Z, the subgroupoid # x Zy is
relatively clopenin § x Z.
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2.3. Induced actions

We recall now from [2, Section 2] the notion of induced action to a groupoid from a sub-
groupoid action. Let § be a locally compact groupoid with space of units X and open
source and range maps, let J be a relatively clopen subgroupoid of ¥ with space of
units Y and let Z be a (left) #-space with anchor map p: Z — Y. Let us define on

g xy Z o {(y,z) € § x Z such that s(y) = p(z)}

the J-action with anchormap § xy Z — Y, (y,z) + p(z) by
v 2) =y Ly

for any y in # and (y’,z) in g xy Z suchthats(y) = p(z). The #-action defined in this
way is proper and the quotient space

S xx Z ¥ (9 xy 2))5

is Hausdorff and locally compact. Let us denote by [y, z] the class in § x g Z of an element
(y,z)in§ xg Z.Then § x g Z is provided with a §-action with anchor map

GxpZ —>X, [yz]—>r(y)

defined by y - [y’,z] = [yy’,z] forany y in § and [y’, z] in § x g Z suchthats(y) = r(y’)
and is called the §-space induced by the J-space Z.

Proposition 2.8 ([2, Lemma 2.12]). Let § be a locally compact groupoid with open
source and range maps, let J be a relatively clopen subgroupoid of § and let Z be a
proper H -space. Then the induced §-space § x g Z is proper.

2.4. §-orders

Definition 2.9. Let § be a locally compact groupoid with space of units X. A §-order is
a subset R of § such that

o u(s(R)) C R;

¢« Rl =R (R is symmetric).

» for every compact subset Y of X, then Ry is compact.

Remark 2.10. Let § be a locally compact groupoid with unit space X .

(i) For any compact subset K of &, then K U K~! U r(K) U s(K) is a compact §-
order and hence for any compact subset K of &, there exists a compact §-order
R such that K € R.

(i) If R1 and R, are §-orders, then R{ U R, and R N R, are §-orders.

Lemma 2.11. Let § be a locally compact groupoid, then any §-order is closed.
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Proof. Let R be a §-order. Let us prove that R N K is compact for any compact subset K
of §. Letus set Y = s(K). Since Y is compact, then Ry is compact and hence

KNR=KNRy
is compact. ]

If R and R, are two §-orders, then
Ry * Ra = (Ry+ Ra) U (Ra - Ry) Uu(s(K) U u(s(Kz))

isag-order. If R is a §-order and n is an integer, then R*" stands for R * - -+ * R (n prod-
ucts). Notice that according to the first point of Definition 2.9, we have that R C R*" for
every integer n. Let &g be the set of §-orders. Then &g is a poset for the inclusion and
ordered semi-group for x. Moreover, &g is a lattice with the infimum given by the inter-
section and the supremum given by the union. We denote by &g . the set of compact
§-order. Then Eg . is an ordered semi-group for * and a lattice for the partial order given
by the inclusion, as well.

2.5. R-decomposition of a groupoid
Remark 2.12. Let § be a locally compact groupoid and let # be a relatively clopen
subgroupoid of §.

(i) Let R be a §-order, then R N H is an -order denoted by R, z.

(ii) &g — Ex: R — R,z is amap of posets such that

JR]/J( * eﬂz/gg C (R * 4722)/;,1{
for any §-orders R; and R,.

Definition 2.13. Let § be a locally compact groupoid, and let # be a subgroupoid of &
with space of units ¥ and let R be a §-order. Then

(i) an R-decomposition of # is a quadruple (V1, V2, #1, #2) where

e V7 and V5 are open subsets of ¥ with Y = V; U V; and such that there exists
a partition of unity (defined on Y') subordinated to (V1, V»);

* J; and H, are subgroupoids of J which are openin §.
* Ry, N H is contained in H; fori = 1,2.

(i1) a coercive R-decomposition of J is an R-decomposition (V7, V3, H1, H3) of H
such that #; and #, are relatively clopen in §.

Remark 2.14. If the space of units of § is second countable, then the existence of the
partition of unity in the first item of Definition 2.13 is guaranteed.

Following the route of [11, Definition A.4], we introduce the notion of decomposabil-
ity with respect to a set of open subgroupoids.
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Definition 2.15. Let § be a locally compact groupoid and let D be a set of open sub-
groupoids of §. A subgroupoid # of § is D-decomposable if for every compact §-
order R, there exists an R-decomposition (Vy, V,, #H1, #H») with #; and H#H; in D.

For étale groupoids, this definition differs slightly from [11, Definition A.4] but can
be compared under the assumption of second countability:

e D-decomposability in the latter sense implies -decomposability in the former one;

» the converse is true if D is stable under taking open subgroupoids (see also Lem-
ma 2.18).

Lemma 2.16. Let § be a locally compact groupoid and let J be a subgroupoid of §.
Then

(1) if D is a set of open subgroupoids of § such that K is D-decomposable, then H
is an open subgroupoid of §;

(i) if D is a set of relatively clopen subgroupoids of § such that K is D-decompos-
able, then K is a relatively clopen subgroupoid of §.

Proof. Let us prove the first point. Let y be an element in #. According to point (i) of
Remark 2.10, there exists a compact §-order R such that y lies in R. Let (V1, V3, #1, #2)
be an R-decomposition of # with J; and #5 in D. By definition of an R-decomposition,
we see that y belongs to #; U J, which is an open subset of § contained in # .

For the second point, assume now that every subgroupoid in D is relatively clopen and
let # be a D-decomposable subgroupoid of §. Let us prove that J is relatively clopen.
Let Y be the unit space of . According to Lemma 2.4, it is enough to prove that # N K
is compact if K is a compact subset of §y. Consider a compact §-order R such that
K C R (see point (i) of Remark 2.10) and let (V1, V2, #1, #>) be an R-decomposition
for /. The existence of a partition of unity subordinated to (V7, V2) ensures that there
exist two closed subsets F; and F> of Y contained in V; and V5, respectively, and such
that Y = F; U F». Let us set K1 = K N g, and K» = K N §F,. Then K; and K,
are compact subsets respectively contained in §y, and §y,, and moreover, we have K =
K U K. Furthermore, since K; € Ry, and K, C Ry, and using the definition of an R-
decomposition, we have # N K; = #; N Ky and K N K, = #H, N K,. Since K1 and H;
are relatively clopen subgroupoids, then #; N K; and #, N K, are compact and hence
J N K is compact. |

Let § be a locally compact groupoid. A set O of open subgroupoids of § is closed
under coarse decompositions if every £-decomposable subgroupoid of § is indeed in D.
If O is a set of open subgroupoids of &, let D be the smallest set of open subgroupoids
of § closed under coarse decompositions.

Definition 2.17. Let § be a locally compact groupoid and let £ be a family of open
subgroupoids of §. We say that an open subgroupoid # of § has finite decomposition
complexity with respect to D if F# belongs to D.
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Lemma 2.18. Let § be a locally compact groupoid and let D be a set of open sub-
groupoids of § closed under taking open subgroupoids. Then D is closed under taking
open subgroupoids.

Proof. Let D’ be the set of open subgroupoids J# of § such that every open subgroupoid
of J lies in . We have inclusions D € D’ € D. Let us show that D’ is closed under
coarse decompositions. Let # be an open subgroupoid of § which is £’-decomposable
and let J¢’ be an open subgroupoid of J# with unit space Y. Let R be a compact §-order
and let us consider an R-decomposition (Vy, Va, J1, Hp) of H with H1 in Hp in D’.
Then (Vi NY,VoNY, 1 NH, HN Jﬁ”) is an R-decomposition of H’ with J1 N K’
and J6, N ' in D. As a result, #/ is in D for any open subgroupoid and hence # is
in D’. We conclude that D € D’ and hence D = D'. [

Lemma 2.19. Let § be a locally compact groupoid and let D be a set of relatively clopen
subgroupoids of §. Then

G) If K isin D, then H is relatively clopen.
@ii) If D is closed under taking relatively clopen subgroupoids, then so is D.

Proof. To prove the first point, let us consider the set D’ of relatively clopen subgroupoids
of § that belongs to D. Then we have inclusions D cC P c D and we deduce from
Lemma 2.16 that D’ is closed under coarse decompositions. Hence we have D’ = D.
To prove the second point, we proceed as in the proof of Lemma 2.18 by considering
the set of subgroupoids # of § for which every relatively clopen subgroupoid is in D
and by noticing that the intersection of two relatively clopen subgroupoids is relatively
clopen. ]

Example 2.20. Let X be a metric discrete space with bounded geometry and with finite
decomposition complexity in the sense of [8, Definition 2.3] and consider then §y the
coarse groupoid of X defined in [26, Section 3]. Then $x has finite decomposition com-
plexity with respect to the set of its compact open subgroupoids (see [11, Theorem A.7]).
In the particular case of a finitely generated group I" with finite decomposition complexity
with respect to any word metric, let us denote by |I"| the underlying metric space struc-
ture. If we consider the action of I" on its Stone—Cech compactification B, then the action
groupoid I' x Br is isomorphic to §r| (see [26, Proposition 3.4]) and hence I' x fBr has
finite decomposition complexity with respect to the set of its compact open subgroupoids.

2.6. Groupoid amenability and coarse decomposition

It was shown in [8, Theorem 4.3] that a discrete metric space with bounded geometry X
and finite decomposition complexity has property (A4) defined in [33]. Therefore, accord-
ing to [26, Theorem A.9], its coarse groupoid Gy is amenable. In view of this result,
we prove in this subsection that amenability is closed under coarse decomposition. This
generalizes [11, Theorem A.9], and indeed, a slight modification of the argument used
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there can be applied to our situation. We refer to [1] for a comprehensive discussion on
amenable groupoids. Let us first introduce the notion of Haar system [23, Definition 2.2]
that we shall also use in Section 3 to define reduced cross products of groupoids. In what
follows, for a locally compact groupoid &, C. (&) will denote the algebra of continuous
complex valued and compactly supported functions on ¢, and C. (€)™ will denote the set
of positive functions of C.(§).

Definition 2.21. Let ¥ be a locally compact groupoid with space of units X. A Haar
system is a family (1¥)xex of Radon measures on § such that

(i)  for every x in X, the support of A* is §%;

(i) forevery f in C.(9), then

X—>C, x| fdir*
gx

is continuous;

(iii) for every y in g, we have

/ Foy)dR D) = / £ AT,
gs) er)

We shall use the following definition of amenability for a locally compact groupoid
(see [1, Proposition 2.2.13]).

Definition 2.22. Let § be a locally compact groupoid with space of units X provided
with a Haar system (A*),cx. The groupoid § is amenable (with respect to (A*)xex) if
there exists a net (g;);jes valued in C¢(§)™ such that

()  [gx gjdA* < 1forany x in X and any j in J;

(i)  (fgx gidA*)jes converges to 1 uniformly on every compact subset of X

(i) (fgron 1€ Y — & () dA" ™ (y"))jes converges to 0 uniformly on every
compact subset of §.

Remark 2.23. This notion is called in [1] topological amenability.

The proof that amenability is closed under coarse decomposition follows from the
existence of suitable almost invariant partitions of unity for groupoid decomposition (see
[11, Lemma A.12]). This will require the following two preliminary lemmas.

Lemma 2.24. Let S be a locally compact groupoid, and let H be an open subgroupoid
of § with space of units Y and let K be a compact subset of §. Then {x € Y such that
K* C H#} is an open subset of Y .

Proof. Let us show that {x € Y: K* < J} is closed in Y. Let (x,) be a net in ¥ such
that K** € J for every A converging to x in Y. Let us show that K* & #. For every A,
there exists y; in K** such that y,; ¢ #. Since K is compact, we can assume passing to
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a subnet that (y,) converges to y in K. As # is open, we have y ¢ # and by continuity
of r, we have r(y) = x and hence K* € J. |

The next lemma should be compared with [10, Lemma 7.5].

Lemma 2.25. Let § be a locally compact groupoid. Then for any compact subset K of §
and for any integer N, there exists a compact §-order R containing K for which the
following is satisfied:

* for any open subgroupoid ¥ of § containing K;
* for any R-decomposition (V1, Va, H1, H2) of K,

there exist nested sequences
v cu®Wc...cu™ P cu™ jori=1,2

of open and relatively compact subsets of the space of units of #; such that
@ s(K)UrK) cu®uul;

(ii) S(KUf"_l)) U cu® fori =1,2andn =1,...,N;

. @™
(iii) fori = 1,2, we have K”i = C J;.
Proof. We can assume without loss of generality that
K=K"' u(s(K)SK and u(r(K)) CK.

We set K, = K*" for every integer n, with Ko = u(s(K)) = u(r(K)). Since u(s(K)) =
u(r(K)) € K, we have K, C K, for all integer n. Let R be a compact §-order con-
taining Ky +1, let # be an open subgroupoid of § containing K and let (V1, V2, #1, #2)
be an R-decomposition of .

Fori =1,2andn =0,..., N, we set

VW = {x € ViKY, 1o, € Hi).

According to Lemma 2.24, we see that Vi(") is an open subset of Y¥; and moreover, we
have Vi("_l) C Vi(") forn = 1,..., N. By definition of an R-decomposition, we have
Vi € Vi(o) fori = 1,2 and hence Vl(o) U VZ(O) =Y.

Let U 1(0) and UZ(O) be relatively compact open subsets of ¥ such that
. s(K)yur(kK)cu®uu®;
¢ W < VI(O)
fori = 1, 2. We have then

- 0) (0)
s(KU”) € s(KUy € s(KY).
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© . ©
Let us show that s(K"i ’ ) C Vi(l). Let x be an element in s(K i ! ) and let y be an element

. . 0)
in K% . Let us prove that y belongs to ;. Let y’ be an element in K Vi such that s(y") =
1—1,,/

x =r(y)and write y = y'~'y’y.
e since ¥’y lies in Ky4+1 and r(y'y) = r(y’) belongs to Vi(o), we deduce from the
definition of Vi(o) that y’y is in J;;
e since we have(a/s)sume that u(s(K)) € K, we have that K € Ky41 and hence y’
r(y

belongs to Ky’ ; with r(y’) in Vi(o). Once again, from the definition of Vi(o), we

deduce that ¥ and hence y'~! is in H;.

©
From this we conclude that y belongs to #; and hence s(K"i ’ ) C Vi(l).

Fori = 1,2, let Ui(l) be a relatively compact open subset of Vi(l) such that
kU™ uu® cu® cu® c v,
By iterating this process, we obtain a nested sequence
u® cu® c...cy®n cy®
of open and relatively compact subsets of the space of units of #¢; such that
SRV YU c U™ fori=1.2andn=1,....N.

. .. .. )
Since Ui(N) - Vi(N) , it is clear from the definition of Vi(N) that KYi~ C H;. [

In view of the proof of [11, Theorem A.9], the heredity of amenability under groupoid
decomposability is a consequence of the following proposition.

Proposition 2.26. Let § be a locally compact groupoid. Then for any compact subset K
of § and for any positive number ¢, there exists a compact §-order R containing K for
which the following is satisfied:

» for any open subgroupoid ¥ of § containing K;
* for any R-decomposition (V1, V,, #H1, H2) of H,
fori = 1,2 there exist continuous functions ¢;: Y — [0, 1] such that
(i)  ¢; is compactly supported in the space of units of H; fori = 1,2;
(i) ¢1+¢2<1;
(1) ¢1(x) + ¢2(x) =1 forall x in s(K) U r(K);
(i) [@i(s(¥)) —@i(r(y)| < eforanyyin K andi =1,2;
(v) KwPoi C J; fori =1,2.

Proof. Following the arguments of the proof of [ 11, Lemma A.12], we can assume without
loss of generality that K = K1, u(s(K)) € K and u(r(K)) € K. Let us pick an integer N
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such that % < &. Let R be a compact §-order as in Lemma 2.25, let £ be an open
subgroupoid of § containing K, let (V1, V5, #1, #>) be an R-decomposition for F and let

be a nested sequence of open and relatively compact subsets of the space of units of J;
which satisfies the conclusion of Lemma 2.25. Forn = 1,...,Nandi =1, 2, let

™ X - [0,1]

be a continuous function compactly supported in Ui(") and such that 1/fi(")(x) = 1for x in
U™V Let us set then

N

Ly, R /B
Vi = N Zwi and = max{y + V2, 1}

n=1
The two first points are clearly satisfied. For the third one, since s(K) U r(K) € U 1(0) u
Ul(o), we get that ¥ (x) + ¥2(x) = 1 for all x in s(K) U r(K) and hence ¢, (x) +
¢2(x) = 1. The last point is a consequence of the inclusions supp ¢; < Ui(N) and of the

third point of Lemma 2.25.
Let us prove the fourth point. For y in K andi = 1, 2, let us define

M =M,; = min {n such that r(y) € Ui(n)}

ifr(y) Ui(N) and M = N + 1 otherwise. We clearly have
« Y@y =1iftn =M+ 1,
e y0@y) =0ifn <M —1.
From this we deduce that
N-M N+1-M

N SVt s —F—- 2.1)

Since s(KUi(M)) c Ui(M+1), we get that s(y) is in Ui(M'H). Since r(y) ¢ Ui(M_l), we
deduce from the inclusion .
S(KUi ) C Ui(M_l)

-1 yM-2) 1 vM-2 .
that s(y=") ¢ s(K"i ) and hence y~* ¢ KVi . Since we have assumed that K =
K1, then y~!is in K and hence s(y) = r(y~!) ¢ Ul-(M_z). We obtain from that the

inequality
N_M—1<w(())<
— S V(s <
N P

Combining equations (2.1) and (2.2), we obtain that

N+2-M

v (2.2)

s T -
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fori = 1,2 and y in K. A straightforward computation leads to

6
i)~ < 5
and hence we get the fourth point. ]

We are now in position to prove that amenability is closed under £-decomposition.

Proposition 2.27. Let § be a locally compact groupoid provided with a Haar system and
let D be a family of open and amenable subgroupoids of §. Then any D-decomposable
subgroupoid of § is amenable.

Proof. Let J be a D-decomposable subgroupoid of § with space of units Y. Let ¢ be
a positive number and let K and K’ be respectively compact subsets of Y and J. Let R
be a compact §-order as in Proposition 2.26 with respect to ¢ and to K’ U u(K). Let
(1, Va, H#1, #H>) be an R-decomposition for H with #; and > in D and, let ¢;: Y —
[0, 1] be fori = 1,2 continuous compactly supported functions satisfying properties (i)—(v)
of Proposition 2.26. If we set K; = K Nsupp¢; and K/ = K'*"PP%i for i = 1,2, we
have then

« K CH;

d K = K] U Kz;

+ K'=K|UKj.

Let ¥; be for i = 1, 2 the space of units of #;. The groupoid #; being amenable, there
exists a function g; in C.(#;)™ such that

() [yx &gidA* < 1forevery x in ¥;;
(i) 1— [4x gidA* < &forevery x in K;;

(i) [y 1€ (y 1Y) — () dAT P (y') < & for every y in K].

Let us set then

g=¢10r-gr+¢20r-gs.

Then g belongs to C.(§)™ and for any x in Y, we have
/ gdAXZ/ ¢107‘-g1d1x~|—/ ¢2OV'g2dA,x
x Fx Jx
=¢1(x)/ g1 dkx+¢2(x)/ g1 dr*
HX Hx

—o) [ di o [ an

<d1(x) +¢a(x) < 1.
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For every x in K, we have

1—/ gdkx=¢1(x)+¢2(x)—/ ¢1°r'g1d)tx—/ pror-grdr*
Jex Jex Jex

=¢1(x)(1 —/w 1 dxx) +¢2(x)(1 —/w gszX)

=01 [ mar) v [ eair)
< (P1(x) + ¢a2(x))e < .
For y in K, if we set x = r(y) and y = s(y), we have
i)~ B < .

Let us show that
[ g7y = g0 ax ) <

We have
[ 80 — g0 dA() = + / 31081 + (g2
Fx Jex
—91(x)g1 (") — p2(x)g2(y) dA*(¥")
< / 6108 (1Y) — $1) g1 ()] dAE ()
(%.x

766

4 [ 162)82001Y) = b2(0)g20/) dA ().
Jex

Let us give a majoration for each summand of the right-hand side. Fori = 1, 2, we have

/.;e g ry) = ()2 (1A
< [ 0 —h@la'y)ar Q)
+0i00) [ 107 = 0001437 0)
i
<3| meare) e [ 1607y - a0
<5 Lm0 0 a0 [ 1807 -0 a0

<3+ [ 10 -t @),

< E/ gy Y dA*(y) +¢i(x)[ lgi (v 'y — g (Y1 dA* ()
H* Jex
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If x = r(y) is in supp ¢;, then y is in K*"PP% and hence belongs to #;. We deduce from
this that

f, 0 = s1ax o) = [l - s001ax 0 <
Eventually, we obtain that
[ a7 = gm0l ar o) < 5
and hence that
| g7 = g0 ax ) < .
As a consequence, we obtain that amenability is closed under coarse decomposition.

Theorem 2.28. Let § be a locally compact groupoid provided with a Haar system with
finite decomposition complexity with respect to a family of open and amenable subgrou-
poids. Then § is amenable.

3. Reduced crossed product of a groupoid

In this section, we review the construction of the reduced crossed-product for a groupoid
action on a C *-algebra. Some good material for this construction can be found in [17, 18].

3.1. C(X)-algebra

Definition 3.1. Let X be a locally compact space. A C(X)-algebra is a C*-algebra A
together with a morphism W: Co(X) — Z(M(A)), where Z(M(A)) stands for the center
of the multiplier algebra of A, such that

{¥(f)-a: f eCo(X)anda € A}

is dense in A.

From now on, for f in Cy(X) and a in A, we will denote W( f) -a by f - a and omit
the structure map ®.

Let A be a C(X)-algebra and let us consider for x in X the ideal 7, defined as the
closure of

{f-a:f € Cy(X)anda € A suchthat f(x) = 0}.

We define the fiber of A at x as the quotient C*-algebra Ay &y /1. For a in A, we
denote by a(x) the image of a under the quotient map A — A,. Then we have the follow-
ing classical result [31, Proposition C.10].
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Lemma 3.2. Let X be a locally compact space and let A be a C(X)-algebra. Then for
anyain A,

(i) themap X — R, x — ||a(x)| is upper semi-continuous and vanishing at infinity;
(i) [lall = supex la(x)].

Let X and Y be locally compact spaces, let A be a C(Y)-algebra and let f: X — Y
be a continuous map. The algebra Cy(X, A) of continuous functions §: X — A vanishing
at infinity is then a C(X x Y)-algebra. Consider in Co(X, A) the ideal I/ defined as the
closure of

{h-&heCy(X xY), & e Cyo(X,A)suchthat h(x, f(x)) =0Vx € X}.

The pull back algebra of A by f is by definition f*A &f Co(X, A)/1r. Pointwise mul-
tiplication by Co(X) on Co(X, A) induces then a C(X)-algebra structure on f*A. The
fiber of f*A at an element x of X is canonically isomorphic to As(y), this isomorphism
being induced by the map

Co(X.A) > Ay, § > E0)(f(x)).

Let A and B be two C(X)-algebras. A morphism of C*-algebra W: A — B is called
a morphism of C(X)-algebra if it is in addition Co(X)-linear. It is straightforward to
check that a morphism of C(X)-algebra ¥: A — B induced for every x in X a morphism
W,: A, — By. Moreover, W is an isomorphism (resp. injective, surjective) if and only
if W, is an isomorphism (resp. injective, surjective) for any x in X.

It is clear that if X and Y are locally compact spaces, f: X — Y is a continuous map
and A and B are C(Y)-algebras, then any morphism of C(Y)-algebras ¥: A — B gives
rise to a morphism of C(X)-algebras

f*U: f*A— fxB
such that, up to the canonical identifications of the fibers described above,
(f*V)x = Wr(y).
3.2. Groupoid actions on C *-algebras

Groupoid actions generalize to the setting of groupoid the notion of group actions by
automorphisms on a C *-algebra.

Definition 3.3. Let § be a locally compact groupoid with X as space of units and let A
be a C(X)-algebra. An action of & on A is given by a C(§)-isomorphism o: s*A — r* A

which satisfies
/

Qyy =Qyoq,

for any y and y’ in ¢ such that s(y) = r(y’), where

oyt Asiy) = Ariy)
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is the morphism fiberwise induced by « at y in § under the canonical isomorphisms
(s*A)y = Agy) and (r*A), = A, (). A C(X)-algebra equipped with an action of § will
be called a §-algebra.

In what follows, for a §-algebra A with respect to an action «: s*A4 — r* A, we shall
denote for short the morphism induced fiberwise at y in § by

y: As(y) g A,-(y), at— ay(a).

Example 3.4. Let § be a locally compact groupoid with space of units X and let Z be
a §-space with respect to the anchor map pz: Z — X.

(1) The anchor map provides a C(X)-algebra structure on C(Z) which is acted upon
by § in the following way. Let us define

s«Z ={(y,z) € § x Z suchthats(y) = pz(2)}

and
r«Z ={(y,z) € § x Z such that r(y) = pz(2)}.

Then we have canonical isomorphisms Cy (54 Z) == s*(Co(Z)) and Co(r«Z) = r*(Co(Z))
and under these identifications, the homeomorphism

Z — s« Z, (v.z2) (v, y_lz)
gives rise to a C(§)-isomorphism
a: s*(Co(Z)) —> r*(Co(Z)).

Let y be an element in §. The fibers at y of s*(Co(Z)) and r*(Cy(Z)) are under the
above identifications respectively Co(Zs(,)) and Co(Z,(,)) and « induces fiberwise at y
the isomorphism

CO(ZS()/)) g CO(Zr(y))7 f g V(f)a

where y(f)(z) = f(y~!-z) forany z in Z,(,) and any f in Co(Z(y))-
(ii) If A is a C(Z)-algebra, then an action of § x Z on A is simply an action

a:s¥A—r*A

of § on A which is C(Z)-linear, where A is viewed as a C (X )-algebra by using the anchor
map.

Let § be a locally compact groupoid with space of units X and let A and B be §-
algebras. A C(X)-morphism f: A — B is a homomorphism of §-algebras if

y o fs(y) = fr(y) oy

forevery y in §.
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3.3. Reduced crossed products

Let § be a locally compact groupoid with space of units X and let C.(¥) be the set of
complex valued and compactly supported continuous function on §. We assume from now
on that § is provided with a Haar system (1*)cx (see Definition 2.21). Let L?(§) be the
Co(X)-Hilbert module obtained by completion of C, (&) with respect to the Co (X )-scalar
product

@ = [ 76 ar )

for any 1 and 7 in C.(¥). An element / of Co(X) acts on L?(§) by multiplication by
hos.

Let A be a §-algebra. Recall that r* A4 is a C(§)-algebra and that for /2 in r* A4 and y
in§, h(y) € A,(y) is the fiber evaluation of / at y under the identification between (r* A4),
and A, (y). For & in r* A, the support of 4, denoted by supp 7, is the complementary of the
largest open subset of & on which y > h(y) vanishes. Let us set C.(X; g, r*A) the set
of elements of r* A with compact support. In the same way, we can define C.(X; §,s*A)
as the set of elements of s* A with compact support.

If A is a §-algebra, we set

Lz(g, A) = Lz(g) ®C0(X) A.

Notice that C.(X; g, s*A) embeds in L2(&, A) and for any n and ' in C.(X; &, s* A), the
fiber evaluation of (1, n’) at an element x € X is the element of A uniquely determined by

()@ = [ e,

Recall that C.(X; &, r* A) is provided with an involutive algebra structure such that

fem=[ 10w e marOw)

and
@) =r(fH"
forany f and gin C.(X;§,r*A) and any y in §. Moreover, for any f in C.(X;§,r*A),

the map
Co(X:8,5"A) > Co(X: 6,57 A), £ f-&

with

(F0m = [y s A e

extends to an adjointable endomorphism of L2(¥, A) and we obtain in this way an invo-
lutive and faithful representation of C.(X; &, r*A). The reduced crossed product algebra
A %, g is then the closure of C.(X: ¥, r*A) in the algebra £(L?(§, A)) of adjointable
endomorphisms of L2(§, A).



Groupoids decomposition, propagation and operator K -theory 771

It is clear that if A and B are two §-algebras and W: A — B is a homomorphism of
§-algebras, then
r*U(C.(X;8,r*A)) C C.(X;4,r*B)

and
C(X:8,r*A) > C.(X;6,r*B), [ —=r*"y(f)
extends to a C *-algebra homomorphism Wg: A x, § — B %, §.
Lemma 3.5. Let § be a locally compact groupoid with space of units X provided with

a Haar system. Let V be an open subset and let ¢: X — C be a bounded and continuous
function with support in V. Then there exists a bounded operator

A;:Ax,§—>A>4r‘§

such that

(i) Ay has operator norm bounded by sup,.cx |¢(x)|;
(i) Ag(h) =h-¢posforallhinCc(X:9, r*A).

Proof. Letusset M = sup,cx |¢(x)|. The map
Cc(§) > Cc(9). fr[f-gpor

extends to an adjointable operator Ty: L2(§) — L?(§) such that || Ty | < M. Then right
multiplication by Ty ®c,(x) Id4 on E(L?(8, A)) preserves the subalgebra A x, § and
hence induces a bounded operator A;: A %, § — A %, § which satisfies the required
conditions. ]

Remark 3.6. In the same way, left multiplication by Ty ®c,(x) Id4 on E(L%(8, A))
preserves A <, § and hence induces a bounded operator A;: A %, § — A %, § such that
() A} has operator norm bounded by M = sup,.cx [¢(x)];
() Ag(h) = h-¢orforall hin C.(X;8,r*A);

(iii) Ay and A}, commute for any continuous and bounded function ¢': X — C with
support in V;

(iv) A% oAy (h) = por-h-posforallhin Co(X:8,r*A);
) A(% oAy A%, § — Ax, § is positive with operator norm bounded by M 2,
For any open subgroupoid #¢ of ¢ with unit space Y, let A,y be the closure of

{f-a:feCo(Y)anda € A}

in A. Then A,y is an J¢-algebra and moreover, the Haar system of & induces by restriction
a Haar system on . We will denote the crossed product A,y x, # by A x, H#. Notice
that since J# is an open subgroupoid of &, then A x, J can be viewed as a C *-subalgebra
of A x, 8.
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4. Controlled Mayer—Vietoris exact sequence in quantitative
K -theory

The concept of quantitative operator K-theory was first introduced in [32] for localization
algebras in order to prove the Novikov conjecture for finitely generated groups with finite
asymptotic dimension. It has been then extended in [20] to the setting of C*-algebras
equipped with a filtration arising from a length. Dell’ Aiera developed in [6] quantitative
K-theory in the general framework of C *-algebras filtered by abstract coarse structure.

4.1. Review of quantitative K -theory

In this subsection, we review from [6] the main features of quantitative K-theory in the
framework of C *-algebras filtered by an abstract coarse structure.

Definition 4.1. A coarse structure & is an ordered abelian semi-group which is a lattice for
the order. Recall that a lattice is a poset for which every pair (E, E’) admits a supremum
E v E’ and an infimum E A E’.

Example 4.2. If § is a locally compact groupoid, then the semi-group (&g, *) of §-
orders partially ordered by the inclusion is a coarse structure with supremum and infimum
respectively given by the union and the intersection. The same holds for the set &g . of
compact §-orders.

Definition 4.3. Let & be a coarse structure. A &-filtered C *-algebra A is a C*-algebra
equipped with a family (Ag)geg of closed linear subspaces such that

s Ag CAp ifE < E';

* Ag is stable by involution;

* Ag-Ap C Ag+Es

* the subalgebra | Jz ¢ AE is dense in A.

Elements of Ag for E in & are called elements with &-propagation (less than) E. If A is

unital, we also require that the unit is an element of Ag forevery £ in &.

Let & be a coarse structure and let A and B be two E-filtered C *-algebras. A C*-
algebras homomorphism ¢: A — B is called &-filtered if ¢(Ag) € Bg forany E in €.

Example 4.4. Let § be alocally compact groupoid provided with a Haar system and let A
be a §-algebra. For any §-order R, we define A x, R as the closure in A %, § of the set
of elements g in C.(X; &, r* A) with support in R. Then

* (A X R)reg, provides A x, § with a structure of Eg-filtered C *-algebra;
* (A%, R)geg,, provides A x, § with a structure of &g .-filtered C *-algebra;

» if J is an open subgroupoid of &, then A X, J is an Eg-filtered C *-subalgebra of
Ax, G, ie., Ax, Hisfiltered by (A x, H) N (A X, R)reey;

* in the same way, A X, H# is an &g -filtered C *-subalgebra of A x, §.
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Notice that if A and B are two §-algebras and if ¢: A — B is a homomorphism of
§-algebras, then the induced homomorphism ¢g: A %, § — B X, § is an Eg-filtered
homomorphism. The same holds for &g ..

Let & be a coarse structure and let A4 be an &-filtered C *-algebra. If A is not unital,
let us denote by AT its unitarization, i.e.,

AT ={(x,)):x e A, 1eC}
with the product
(x, V(" A) = (xx" + Ax" + A'x, AL)
for all (x, A) and (x’,A") in AT. Then A" is &-filtered with
AL ={(x,A\):x € Ag, L € C}

for any E in &. We also define pq: AT — C, (x, 1) — A.
Let & be a coarse structure and let A be a unital &-filtered C *-algebra. For any positive
number ¢ with ¢ < % and any element £ in &, we call
* anelementu in A an e-E-unitary ifu isin Ag, |[u*-u — 1| <eand |lu-u* — 1| <e.
The set of e- E-unitaries on 4 will be denoted by U%Z (A4).

+ anelement p in A an &- E-projection if p isin Ag, p = p* and ||p? — p|| < &. The
set of &- E-projections on A will be denoted by P*% (4).

Then ¢ is called the control and E is called the propagation of the ¢- E-projection or of
the e- E-unitary. Notice that an e- E-unitary is invertible, and that if p is an e- E-projection
in A, then it has a spectral gap around % and then gives rise by functional calculus to a pro-
jection ko (p) in A such that || p — ko(p)|| < 2¢. Let us first review from [20, Section 1.2]
the standard properties of ¢- E-projections and ¢- E-projections. We have in the context of
&-filtered C *-algebras the analog of [20, Lemma 1.7].

Lemma 4.5. Let & be a coarse structure and let A be a unital &-filtered C*-algebra for
(Ag)Ecg- Then for any ¢ in (0, 41_1) and any E in & the following holds:

(1) If p is an e-E-projection in A and q is a self-adjoint element of Ag such that
lp—qll < %2_1’", then q is an e-E-projection. In particular, if p is an e-E-
projection in A and if q is a self-adjoint element in Ag such that ||p — q| < &,
then q is a 5¢-E-projection in A and p and q are connected by a homotopy of
5¢-E-projections.

(i) If A is unital and if u is an e-E-unitary and v is an element of Ag such that
lu —v| < w, then v is an g-E-unitary. In particular, if u is an e-E-
unitary and v is an element of Ag such that |u — v|| < ¢, then v is a 4¢- E -unitary
in A and u and v are connected by a homotopy of 4¢- E -unitaries.

The next lemma can be proved in the same way as [20, Lemma 1.16].
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Lemma 4.6. Let & be a coarse structure and let A be a unital &-filtered C*-algebra.
Then for any ¢ in (0, %) and any E in & the following holds:

(1) Letu and v be e-E-unitaries in A, then diag(u, v) and diag(uv, 1) are homotopic
as 3e-2 E-unitaries in M5(A).
(ii) Let u be an ¢-E-unitary in A, then diag(u,u™) and I, are homotopic as 3¢-2E-
unitaries in M (A).
For any positive integer 1, we set Uf,’E (4) =U>E (M, (A)), Pf;E (4) =P5E (M, (4)).
Let us consider the inclusions

E 0
PoE(A) > PEE (4), pr (’5 0)

and

UsE(A) > USE (1), urs (g (1))

This allows us to define

UsE ) = [ JUugf4) and PEE(A) = (] PeE(4).
neN neN

For a unital filtered C *-algebra A, we define the following equivalence relations on
P%E(A) x N and on U%E (A4):
 If p and g are elements of P£R(A), [ and I’ are positive integers, (p, 1) ~ (¢,1) if
there exist a positive integer k and an element / of P%E (4]0, 1]) such that 7(0) =
diag(p, Ix+1) and h(1) = diag(q, Ix+1)-
e If u and v are elements of Ug’oE (A), then u ~ v if there exists an element & of
U382E (4]0, 1]) such that £(0) = u and (1) = v.
If p is an element of P&E (A) and [ is an integer, we denote by [p, []c £ the equiva-
lence class of (p, /) modulo ~ and if u is an element of UZ;DE (A) we denote by [u], £ its
equivalence class modulo ~.

Definition 4.7. Let & be a coarse structure, let A be an &-filtered C *-algebra, let E be an
element of & and ¢ be positive numbers with & < %. We define
() K&F(A)=P5E (4) x N/~ if Ais unital and K& (4) = {[p.l]e.c € P>F(4T) x
N/~ such that rank «o(p4(p)) = I} if A is non-unital (ko (p4(p)) being the spec-
tral projection associated to p4(p));

(i) K&F(4) = USE (A)/~ if A is unital and K& (4) = USE (4T)/~ if not.

We refer to [20, Section 1.3] for the basic properties of quantitative K-theory. In par-
ticular, KS’E (A) turns to be an abelian group, where

(p. e + [P 'le.e = [diag(p. p'), ] +']e.E
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for any [p,[]e.g and [p’,!']e g in KS’E(A). According to Corollary 4.6, Kf’E(A) is
equipped with a structure of abelian group such that

[ule.e + [']e.p = [diag(u. u)]e.

for any [u], £ and [u'],. g in K& (A).

If & is a coarse structure, we have for any &-filtered C *-algebra A, any E, E’ in & and
any positive numbers € and &’ with e < &’ < % and E < E’ natural group homomorphisms
called the structure maps:

. LS’E: K(";’E(A) — Ko(A), [p,l]e,g — [ko(p)] — [1;] (Where ko(p) is the spectral pro-
jection associated to p);

« GEKPE () > Ki(4), [uleg > ul;

- S =g e fF

o« GOEELREE ) > Ky (), [p. ek > [P p

o SOEELREE L) 5 KOE (), [uleg o U)o p
Li,s/,E,E/ _ L(s),e/,E,E/ ® li’s/’E’E/.
If some of the indices E, E’ or ¢, & are equal, we shall not repeat them in ti’s/’E B /.
In order to avoid overloading superscript in the structure maps, we shall write t;’e/’E/ for
&% EE" When ¢ and E in the source are implicit, (&5~ for & FE When ¢ and E’ in
the range are implicit and t,,”~ where ¢ and E in the source and ¢’ and E’ in the range are
both implicit.

There is the equivalent of the standard form in the setting of quantitative K-theory
(see [21, Lemmas 1.7 and 1.8]). First, we deal with the even case.

Lemma 4.8. Let & be a coarse structure and let A be a non-unital & -filtered C*-algebra.
Let ¢ be in (0, %) and let E be an element in &. Then for any x in KS’E (A), there exist
* two integers k and n with k < n;
* a9e¢-E-projection q in My, (fT)
such that pa(q) = diag(Iy., 0) and x = [q. kloe.g in Kg=F (A).

We have a similar result in the odd case.

Lemma 4.9. Let & be a coarse structure and let A be a non-unital & -filtered C*-algebra.
Let € be in (0, ﬁ) and let E be an element in &. Then

(i) for any x in Kf’E (A), there exists a 21e-E-unitary u in M, (AT) such that
pa(u) = I,, and L'i’zm’E(x) = [u]21e,E in KIZIS’E (A);

(ii) if u and v are two e-E-unitaries in My,(A") such that pg(u) = pa(v) = I,
and [ulg, g = [V]e,E in Kf’E (A), then there exist an integer k and a homotopy
(Wr)tefo,1] of 21e- E-unitaries of M, (A™) between diag(u, Iy) and diag(v, Iy.)
such that pg(w;) = Ik for every t in [0, 1].
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Let & be a coarse structure and let ¢: A — B be a homomorphism of &-filtered C*-
algebras. Then ¢ preserves ¢- E-projections and e- E-unitaries and hence ¢ induces for
any £ in & and any ¢ € (0, i) a group homomorphism

p2f: KB (4) — K2F(B).

Moreover, quantitative K-theory is homotopy invariant with respect to homotopies which
preserve &-propagation [20, Lemma 1.26]. There is also a quantitative version of Morita
equivalence [20, Proposition 1.28]. If 4 is an &-filtered C *-algebra for some coarse struc-
ture & and if J is a separable Hilbert space, then (K(#) ® Ar)Egeg provides a structure
of &-filtered algebra for I(H) ® A.

Proposition 4.10. Let & be a coarse structure, let A be an &-filtered algebra and let J
be a separable Hilbert space, then the homomorphism

a
A->KH)® A, ar 0

induces a (Z»-graded) group isomorphism (the Morita equivalence)
MGE: KEE (4) - KEE (K () ® 4)
forany E in & and any ¢ € (0, %).

The following observation establishes a connection between quantitative K -theory and
classical K-theory (see [20, Remark 1.17]).

Proposition 4.11. Let & be a coarse structure.

(1) Let A be an &-filtered C*-algebra. For any posmve £< 7 and any element y of
K« (A), there exist E in & and an element x of KeR (A4) such that 3 (x) = y.

(ii) There exists a positive number Ao > 1 such that for any &-filtered C* algebra A
any E in &, any € in (0, 2 vy ) and any element x of KoE (A) for which 1% (x)
in K«(A), then there exists E' in & with E' > E such that 1% Aoe BB (x) = 0 in
K2ooE (4),

Apply to §-orders of a locally compact groupoid provided with a Haar system, we
deduce the following result.

Lemma 4.12. Let S be a locally compact groupoid and let A be a §-algebra. Then
(1) for every g in (0, %) and any y in K«(A X, §), there exist a compact §-order R
and an element x in Kg"R(A X, §) such that Ls"R(x) =y
(i) there exists Ay = 1 such that for any ¢ in (0, - v ——), any §-order R and any x in
K2 'R(A X, §) satisfying (& (x) = 0in Ki(A x, §), there exist a §-order R’
with R € R’ such that 15 os. R (x) =01in Kjoo® (A x, G). The constant Lg

depends neither on A nor on '§. Moreover, if R is compact, then R’ can be chosen
compact.
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Quantitative K-theory inherits many features from K-theory. In particular, there is
a quantitative version of Bott periodicity and of the six-term exact sequence. As we shall
not use this material in the paper, we will not go further on this point. More details can be
found in [20, Sections 3 and 4].

4.2. Controlled Mayer-Vietoris pair

The concept of controlled Mayer—Vietoris pair was introduced in [21] to streamline the
“cut-and-pasting” technology developed by Yu in [32] to prove the Novikov conjecture
for groups with finite asymptotic dimension. It was then extended in [6] to the gen-
eral setting of C *-algebras filtered by a coarse structure. It gives rise to a controlled
exact sequence that allows to compute the K-theory by letting the propagation go to
infinity.

Definition 4.13. Let & be a coarse structure, let A be an &-filtered C *-algebra, let E be
an element of & and let A be a closed linear subspace of Ag. Then a sub-C *-algebra B
of A is called an E-controlled A-neighborhood-C *-algebra if

* Bisfiltered by (B N Ag/)g/eg;

* A+ Asg-A+A-Asg + Asp-A-Asg € B.

Definition 4.14. Let & be a coarse structure, let A be an &-filtered C *-algebra, let E be
an element of & and let ¢ be a positive number. A completely coercive decomposition
pair of order E for A is a pair (A1, Az) of closed linear subspaces of Ag such that for
any E’ in & with E/ < E, for any integer n and for any x in M, (Ag’), there exists x;
in M,(A1 N Ag/) and x5 in M, (A, N Ag), both with norm at most c||x|| and such that
X = x1 + x2. The positive number c is called the coercivity of (A, Aj).

Definition 4.15. Let S; and S, be two subsets of a C *-algebra A. The pair (S, S,) is
said to have complete intersection approximation property (CIA) if there exists ¢ > 0 such
that for any positive number &, any integer n, any x € M,,(S7) and any y € M, (S) with
|lx — |l < e, there exists z € M, (S; N S) satisfying

lz—x| <ce, |z—yl <ce.
The positive number c¢ is called the coercivity of the pair (S1, S2).

Definition 4.16. Let & be a coarse structure, let A be an &-filtered C *-algebra and let E
be an element in &. An E-controlled Mayer—Vietoris pair for 4 is a quadruple (A1, A,
Ap,, Aa,) such that for some positive number ¢ the following holds:
1) (A1, Ap) is a completely coercive decomposition pair for A of order E with
coercivity c;
(ii) Aa, is an E-controlled A;-neighborhood-C *-algebra fori = 1,2;
(iii) the pair (Aa,,g’, An, E’) has the CIA property with coercivity ¢ for any E’
in§.
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The positive number ¢ is called the coercivity of the E-controlled Mayer—Vietoris pair
(Ala AZa AAl 5 AAZ)'

Remark 4.17. In the above definition,
i) (A1NAg,AyN Ag/, Ap,, Aa,) is an E’-controlled Mayer—Vietoris pair for
any E’ in & with E’ < E with same coercivity as (A1, Az, Aa,, Aa,).
(i) Aa, N A, is &-filtered by (Aa,,g N AAz,E)EeS-
(iii) If A is a unital, we will view AZI the unitarization of Ax, as Aa, +C-1C A4
and similarly for Aa, and Aa, N Ax,.

For the purpose of rescaling the control and the propagation of an - E-projection or
of an e- E-unitary, we introduce the following concept of &-control pair.

Definition 4.18. A control pair is a pair (A, &), where
* Aisapositive number with A > 1;
h: (0, ﬁ) — N\ {0}, ¢ — h, is a non-increasing map.

The set of control pairs is equipped with a partial order: (A, h) < (A/,h') if A < A" and
he < R, for all € in (0, ﬁ).

The next proposition is the fundamental point to state the existence of Mayer—Vietoris
controlled exact sequence (see [21, Propositions 2.11 and 2.12]).

Proposition 4.19. For every positive number c, there exists a control pair («, 1) such that
the following holds.

Let & be a coarse structure, let A be a unital &-filtered C*-algebra, let E be an
element in &, let (A1, Az, Ap,, An,) be controlled Mayer—Vietoris pair for A of order E
and coercivity c.

Then for any ¢ in (0, ﬁ) and any e-E-unitary u in A homotopic to 1, there exist
a positive integer k and two ae-l¢ E -unitaries wy and wy in My (A) such that

* w; — Iy is an element of the matrix algebra My (Aa,) fori = 1,2;

s fori = 1,2, there exists a homotopy (W;t)sefo,1] of a&-lg E-unitaries between 1 and
w; such that w;; — Iy € My (Aa;) forallt in [0, 1];

| diag(u, Ix—1) — wiwz| < ae.

If A is a non-unital &-filtered C*-algebra, then the same result holds for u in AY such

that u — 1 is in A and u is homotopic to 1 as an s-E-unitary in A™.

4.3. Applications to coercive decompositions of groupoids

In this subsection, we show that coercive decompositions of groupoids give rise to con-
trolled Mayer—Vietoris pairs. In what follows, § is a locally compact groupoid equipped
with a Haar system and A is a §-algebra in the sense of Definition 3.3.

For any §-order R and any open subset V' of the unit space of &, we define A x, Ry
as the closure of the set of elements / in C.(X; &, r*A) with support in Ry .
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Lemma 4.20. Let § be a locally compact groupoid with unit space X provided with a
Haar system and let A be a §-algebra. Let V1 and V, be open subsets of X with X =
Vi1 UV, and such that there exists a partition of unity subordinated to (V1, V). Then
(A %, Ry, A %y Ry,) is for any §-order R a completely coercive R-decomposition
pair for A x, § with coercivity 1.

Proof. Let (¢1, ¢2) be a partition of unity for X subordinated to (V1, V3). Let us consider
the bounded operator

A;i:Axr§—>A><|,‘§, i=1,2

of Lemma 3.5 and for any x in A », R, letus setx; = Aj (x). According to Lemma 3.5,
we have x = x; + X2, ||x;|| < 1 and x; lies in A x, Ry, for i = 1, 2. Replacing A by
M,,(A), we get the complete coercivity. |

Notice that if R’ is a §-order with R C R’ and V is an open subset of the unit space
of §,then A x, Ry € A %, R),.

Lemma 4.21. Let § be a locally compact groupoid with unit space X provided with
a Haar system. Let R and R’ be §-orders such that R’ C R and let V be an open subset
of X. Then

Axp Ry =Ax, Ry NAx, R.

Proof. We clearly have A x, R}, € A x, Ry N A x, R'. Conversely, let x be an ele-
ment in A X, RyNA x, R’ Then there exist two sequences (1,)sen and (h),)nen in
C.(X; ¢, r*A) with support respectively in Ry and in R’ converging to x. Let us set
K,, = s(supp hy) for any integer n and let ¢,: X — [0, 1] be continuous compactly sup-
ported in V and such that ¢,(x) = 1 for any x in K. According to Lemma 3.5, we
see that

(hn — h;l “¢n 0 8)nen = ((hy — h;) “¢n 0 5)peN = (Asn(hn - h;))neN

converges to zero in A X, § and hence (h), - ¢, © S)neN is a sequence of elements in
Cc(X:§,r*A) with support in &, converging to x. |

As a consequence, we obtain the following corollary.

Corollary 4.22. Under the assumption of Lemma 4.20, then (A X Ry,, A X Ry, ) is for
any §-order R a completely coercive R-decomposition pair for A X, § with coercivity 1.

Proof. Since for every integer n and for §-order R’ such that R’ C R, we have
(A %, R") & Mp(C)) N ((A %, Ry;) ® Mu(C)) = (A ® My (C)) xr Ry,

fori = 1,2, the result is a consequence of Lemma 4.20. [
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Lemma 4.23. Let § be a locally compact groupoid provided with a Haar system and
let I be a relatively clopen subgroupoid of § with unit space Y. Then for any compactly
supported continuous function ¢p:Y — C and for any §-algebra A, there exists a com-
pletely positive continuous linear map Yg: A X § — A X, H such that
O Ye(f)=¢or- fra ogos, forany [ in Co(X:;8,r*A), where Jrae:H —C
is the restriction of f to J.

(i) Yy is completely bounded in norm by sup,cy |$(y) 2.
(iii) Yy maps A, R to A X, R g for any G-order R.

Proof. Let us denote by A = (1¥)xex the Haar system for §. Then the restriction of A
to J is a Haar system for J that we shall denote by A /3 = (A;’ s¢)yey - Using the inclusion
C.(H#) < C.(§), we see that L?(H) can be viewed as a Cy(X)-Hilbert submodule of
L?($) and therefore L2(J, A) is a right A-Hilbert submodule of L?(§, A). Since K is
clopen in €Y, we get that ¢ o r: # — C extends to a continuous function ¥: § — C
defined by ¥ (y) = ¢ or(y) if y isin # and ¥ (y) = O else. We have supp ¥ C H# and
|¥(y)| < M for any y in J with M = sup,cy |$#(y)|. Define Ty: L2(8) — L?($) as
the unique bounded operator extending the map

Cc(9) = Cc(9), §m Yk

Then Ty has operator norm bounded by M and Im Ty, € L?(J#). In consequence Ty ®
Id4 maps L2(¢, A) to L2(H#, A). Consider the map

Yp: Ax, § - L(L*(H,A)., x> Ty -x-Ty.

Since T; = Ty, we deduce that Y is a positive operator with norm bounded by M 2 By
replacing the C *-algebra A in the above formula by M, (A) for any positive integer ,
we obtain the complete positivity and boundedness statements. Moreover, for any f in
Ce(X;8,r*A),any £in Co(Y; #H,s*Ay) and any y in #, we have

(o (/) HF) =¥ (1) /g Y TTEYETIEG T ) ()
= 1/_f(V)/ y VO TIEY T ARG

or(y) / UGN 0 sOHEG ) AL )

¢
[ e a )
with B ~
gy)=¢or(y)-¢osy)- f)=v@) - v f(y) 4.1)

for any y in J¢. Moreover, g has support in supp ¥ N supp f N supp™ ! V. Since supp V¥ is
closed in § and contained in #, we deduce that g is in C.(Y; #,r*A). Hence Yy maps
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C.(X;86,r*A) to A x, J and by continuity maps A X, § to A x, J. Itis then clear that
Yy satisfies the required conditions. ]

Remark 4.24. (i) According to equation (4.1) and since # is open in §, we see that
if fisin C.(X;§,r*A), then Yg(f) is supported in J N supp f.

(i) Let B be any C *-algebra and let us consider the spatial tensor product Ax,§ ® B.
Since Yy is completely positive and completely bounded, we deduce that there is
a well-defined positive and bounded map (with the same bound as the complete
bound of Tg)
YTy ®Idp: AX, §QB > A% §§QB

defined on elementary tensor by
(Tp ®Idp)(x ® b) = Ty(x) ® b
for any x in A %, § and any b in B.

Corollary 4.25. Let # be a relatively clopen subgroupoid of a locally compact grou-
poid §, let R be a §-order and let V' be an open subset of X. Then we have

(Ax, H)N(AX R) = Axr Rz
for any §-algebra A.

Proof. We clearly have A 3, R/3 € (A %, ) N (A %, R). Conversely, let x be an
element in (A4 x, H) N (A %, R). Then there exist two sequences (/1,)sen and (1)) nen
in C.(X; 8, r*A) with support respectively in # and in R converging to x. Let us set
K, = s(supp hy,) U r(supp h,) for any integer n and let ¢,: X — [0, 1] be a continuous
function compactly supported in the unit space of # and such that ¢, (x) = 1 for any x
in K. According to Lemma 4.23, we see that

(hn — Y, (hp))nen = (Y, (hn — hy))nen

converges to zero in A X, §. In view of the first point of Remark 4.24, we deduce that
Y4, (h;,) has compact supportin R N H = Rz, and thus (Y, (h;,))nen is a sequence in
Cc(X:§,r* A) with support in R g converging to x and hence x belongs to Ax, R/ 3. =

Corollary 4.26. Let § be a locally compact groupoid with unit space X provided with
a Haar system. Let #1 and H# be relatively clopen subgroupoids of §. Then the following
holds:

(i) Ax, (H1 N Ha) = (Axy Hp) N (A X, Ho);
(i) Axr Ryge,nge, = (AXr Ryge,) N (A X, R, 3,) for any G-order R.

Proof. Let us prove the first point. We clearly have

A Ay (Jel N %2) c (A Ny Jel) n (A Ay %2)
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Conversely, let x be an element in (4 %, #1) N (A X, J>). Then there exist two sequences
(hn)nen and (B} nen in Co(X; 8, r* A) with support respectively in #; and #, converg-
ing to x. Let us set K,, = s(supp /,,) U r(supp ) for any integer n and let ¢,: X — [0, 1]
be a continuous function compactly supported in the unit space of #; and such that
¢n(x) = 1 for any x in K,. According to Lemma 4.23, we see that

(hn - Td)n (h;,))nEN = (T¢n (hn - h;z))nGN

converges to zero in A x, §. In view of the first point of Remark 4.24, we deduce that
Yy, (h),) has compact support in #; N H», and thus that (Y, (1},))seN is a sequence in
C.(X; 8, r*A) with support in J; N H, converging to x and hence x belongs to A x,
(H#1 N H>). To prove the second point, let us observe that according to Corollary 4.25 we

have
AXy Rygeinge, = A X RN AX, (H1 N Hy).

The result is then a consequence of the first point. ]
Remark 4.27. The proof of the first point only requires #; to be relatively clopen.

Theorem 4.28. Let § be a locally compact groupoid provided with a Haar system, let A
be a §-algebra and let R and R’ be §-orders such that R*® € R'. Assume that (V1, Va,
H1, Hy) is a coercive R’'-decomposition for §. Then

(A Xr e(/?V1314 X'r ‘RV25 A X'r JelvA Xr J€2)
is an R-controlled Mayer—Vietoris pair with coercivity 2.

Proof. According to Corollary 4.22, (A X, Ry,, A X, Ry,) is a completely coercive R-
decomposition pair for A x, § with coercivity 1. Let us prove that A x, #; isfori = 1,2
an R-controlled A x, Ry, -neighborhood-C *-algebra. By Lemma 4.25, we see that the
C *-algebra A x, H; is filtered by
(A%, i) N (A% R))regy, = (A Xy Ry3,) Reey -
Since R*¢ C R/, ‘R/V, C H; and J#; is a subgroupoid of &, we see that
s Ry, C Hi;
- RS Ry, € Wi
s Ry, - R* C Hy;
. R*S.Ry RS CH
and hence
o Ax Ry, CAx Hi;
o Ax, Ry - Ax, R* C Ax, Hy;
o Ax, R*-Ax, Ry, € Ax, Hy;
o AX, R*¥ A Ry, - Axp R* C Ax, K.
This proves that A x, #; is an R-controlled A x, Ry, -neighborhood-C *-algebra.
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Let us prove that (4 %, J1, A X, J,) satisfies the CIA property with coercivity 2.
Up to replacing A by A ® M, (C), it is enough to show that for every positive number
and any xy in A X, R, g, and x, in A X, R, g, such that |x; — x2| < &, there exists z in
(Axr Ry3e,) N (A X, R, g,)suchthat ||z — x| <e. Notice that in view of Corollary 4.26,
we have

(Axy Ryge,) N (A X Ryge,) = A X Rygenger)-

Set @« = ¢ — ||x1 — x3|| and let & be an element in C.(X; ¢, r* A) with support included
in R/, and such that ||x; — k|| < 5. Let ¢:§ — [0, 1] be a continuous function com-
pactly supported in the space of unit of #; and such that ¢(x) = 1 for all x in r(supp r) U
s(supph). According to Lemma 4.23, we see that Y (1) = h, Yy (x2) belongs to A x, Rz,
and

lxr =Yg (x2) || < llx1 = Al + (I — Yy (x2) |
o o
<5 M) = To(x)ll < 5 + |Ih — xa

— + h—x + |[x1 —x — 4+ =4+ |x1 —x E.
2 ! ! 2 2 2 ! 2

But x is a limit of elements of C.(X;§,r*A) with support in R, %, and hence according
to the first point of Remark 4.24, Y4 (x2) is also a limit of element of C.(§, r*A) with
support in R g, and therefore Y (x2) belongs to A x, Rz, . |

Remark 4.29. In view of the second point of Remark 4.24, we can show in the same way
that under assumptions of Lemma 4.20, then (4 %, Ry,, A X Ry,, A Xy H1, A X, H2)
is an R-controlled nuclear Mayer—Vietoris pair in the sense of [21, Definition 4.8] for
A i, g with coercivity 2.

4.4. The Mayer-Vietoris controlled exact sequence

An R-controlled Mayer—Vietoris pair gives rise to a controlled six-term exact sequence
that computes the quantitative K-theory up to the order of the pair and up to rescaling by
a control pair. In view of Theorem 4.28, it turns out that this controlled Mayer—Vietoris
six-term exact sequence is a powerful tool for K-theory computations in the setting of
coercive decompositions for groupoids.

Notation 4.30. Let & be a coarse structure, let A be an &-filtered C *-algebra, let E be an
element in & and let (A, Az, Aa,, Aa,) be an E-controlled Mayer—Vietoris pair for A.
We denote by

o Ja;tAA — 4
o JA A, — A4
* JALA AN NAA, = Aays
* JAsAAa, NAA, = Ap,

the obvious inclusion maps.
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Proposition 4.31. For every positive number c, there exists a control pair («,!) such that
for any coarse structure &, any &-filtered C*-algebra A, any E in & and any E-controlled
Mayer-Vietoris pair
(A1, Az, Aay, Any)
for A with coercivity c, the following holds:
For any ¢ in (0, ﬁ), any E’ in € such that I, - E' < E, any y; in Ki’E,(AAl) and
any y; in Ki’E,(AAZ) such that

JRE 00 = s8E (v in KEF(4),
there exists an element x in Kff's’l'sE/(AAl N Aa,) such that
JARE () = o E (1) in KEE (4,
JasRe () = G E () in RS (44,

In other words, this means that the composition

o0 o0
(]Al,*ijAz,*

) ) D) )
K" (An) @ K (Ap,) — K7 (4)

LX) o0
AL Ay x0T Ay Ay %
- >

.0 (
Ko (Aa, N AAz)

is “exact at order E, up to rescaling by («, [)” (see [21, Proposition 3.2] for a proof of this
proposition). We shall see later on that this composition fits at order E into a controlled
six-term exact sequence (called in [3, Theorem 8.4] E-controlled Mayer—Vietoris exact
sequence).

We introduce first the quantitative boundary map of this controlled Mayer—Vietoris
exact sequence (see [21, Lemma 3.3]).

Lemma 4.32. For every positive number c, there exists a control pair (A, k) such that the
following holds:

Let & be a coarse structure, let A be a unital &-filtered C*-algebra, let E be an
element in & and let (A1, Az, Ap,, Ap,) be an E-controlled Mayer—Vietoris pair for A
with coercivity c. Let E' be an element in & such that 2 - E' < E, let ¢ be in (0, ﬁ), let

m and n be integers and let u be in U,f’E,(A), let v be in U,f,’E/(A) and let wy, wyp be
&-E'-unitaries in My 4, (A) such that

*  W; — Iyym is an element in the matrix algebra M, 1, (Aa,;) fori =1,2;
e |diag(u,v) — wiw;| < e
Then,
(1)  there exists a Ae-k E'-projection q in My 4+, (A) such that
o g —diag(l,,0) is an element in the matrix algebra My (A, N Ap,);
v llg — w} diag(L. 0wy | < Ae;
o |lg —wadiag({,, O)ws|| < Ae.
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(ii) ifq and q' are two Ae-k¢ E’-projections in My m(A) that satisfy the first point,
then
[q.n)2e k.5 = 19" a2 ko7
2 /
in Kg o E'(4p, N Ap,).

(iil) Let (w1, w2) and (wy, wy) be two pairs of e-E'-unitaries in M,ffr;, (A) satis-
fying the assumption of the lemma and let ¢ and q' be Ae-k, - E'-projections
in My +m(A) that satisfy the first point relatively to respectively (wy, wy) and
(w}. w)), then

/
(9. n]33¢0k, B0 = 14" n]p3e 2k, B/

3 /
in Ké &2ksE (Aa, N Ap,).

Remark 4.33. We have a similar statement in the non-unital case with u in U, ’E/(A+)
and v in USE (A1) such that u — I,, and v — I, have coefficients in A.

We recall now the definition of the quantitative boundary map associated to a con-
trolled Mayer—Vietoris pair. Let & be a coarse structure, let A be an &-filtered C *-algebra
and let (A1, Az, Ar,, Ap,) be an E-controlled Mayer—Vietoris pair for A with coerciv-
ity c. Assume first that A is unital.

Let (o, /) be a control pair as is Proposition 4.19. For any ¢ in (0, ﬁ), any E'in &
such that 2E’ < E and any &-E’-unitary u in M, (A), let v be an ¢-E’-unitary in some
M, (A) such that diag(u, v) is homotopic to 1,4, as a 3e-2E’-unitary in M, 4+, (A), we
can take for instance v = u™* (see Lemma 4.6). According to Proposition 4.19 and up to
replacing v by diag(v, I}) for some integer k, there exist two 3ae-2/3, E’-unitaries w;
and wy in My, 4, (A) such that

*  W; — Iy, is an element in the matrix algebra My, 4, (Aa,) fori = 1,2;

» fori = 1,2, there exists a homotopy (w;)refo,1] of 3ae-2/3¢ E’-unitaries between 1
and w; such that w; ; — I, 4, is an element in the matrix algebra M, 1,,(A,) for all ¢
in [0, 1].

o |diag(u, v) — wiws| < 3ae.

Let (A, k) be the control pair of Lemma 4.32 (recall that (A, k) depends only on the
coercivity ¢). Then if ¢ is in (0, ﬁ), there exists a 3aAg-2l3.k3q: E'-projection ¢ in
M, +m (A) such that

* g —diag(/,,0) is an element in the matrix algebra

My ym(Aainay,):
* |lg —wy diag(1,, 0)w:|| < 3ade;
*  |lg —wydiag({,, O)ws| < 3ade.

In view of the second and the third points of Lemma 4.32, the class [¢, 1]3423¢,475, k30 E’
in
3aA3e,4l3ck3gc E'
Ko omebee™ (Ap, N Ag,)
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does not depend on the choice of wy, wy or ¢. Set then o, = 3aA> and

1
ke: (o, 4%) S NA{OY, &> dlapksa

and define 8‘2?;2,1([14]8,15/) = [¢, n]a.e k. £’- Then for any ¢ in (0, i) and any E’ in &
such that k. . E’ < E, the morphism

EN E' cekcE'
asAlyAz,l' Kis (A) - Kg ‘ (AAl N AAz)

is well defined.
In the non-unital case d%" ,_ , is defined similarly by noticing that in view of Lem-
1,82,

ma 4.9 and up to rescaling ¢, every element x in K fE (A) is the class of an e- E-unitary u
in some M,,(A™") such that u — I,, has coefficients in A. It is straightforward to check that
82: A,.1 is compatible with the structure morphisms, i.e.,

e o = U 0
for any & and &” in (0, z5-) and any E’ and E” in € with E' < E” and ke E' <
kcjg”E// < E.

In the even case, the quantitative boundary map associated to a controlled Mayer—
Vietoris pair is defined by using controlled Bott periodicity [6, Section 2]. Up to rescal-
ing the control pair (&, k.), we obtain for any ¢ in (0, t) and any E’ in & such that
ke E' < E, the morphism

’
ace,ke e E

& E’ . &8 E’
8A1,A2,0‘ KO (4) — K (Aa, N Anp,).
We set then
& E’ _ a&,E’ & E’
8A1,A2,* - aAl,Az,O ® aAl,Az,l'
Then

E' . JE' cekeE'
O ppet K& (A) = KI5 (A, N Apy)

is a morphism of degree 1 compatible with the structure morphisms called the ¢-E’-
quantitative Mayer—Vietoris boundary map.

Notice that the quantitative boundary map associated to an E-controlled Mayer—Vie-
toris pair is natural in the following sense: let & be a coarse structure, let A and B be
&-filtered C *-algebras, let E be an element in &, let (A, Ay, Aa,, Aa,) and (A}, A},
Bpi, By, ) be respectively E-controlled Mayer—Vietoris pairs for A and B with coer-
civity ¢ and let f: A — B be a homomorphism of &-filtered C *-algebras such that
f(A) S AL, f(AR) C AL, f(Aa,) C Bp, and f(Aa,) € Ba,. Then we have

oCc“?,kc,sE/ & E’ _ a8 E’ & E’
f/AAlﬂAAz,* SN 4.2)
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1

for any ¢ in (0, v

) and any E’ in & with k. . E’ < E, where
f/AAlﬁAAZ: AA1 ﬂAAZ — BA/I N BA’2

is the restriction of f to Aa, N Aa,.

We now investigate the controlled exactness at the domain for the quantitative bound-
ary map associated to a controlled Mayer—Vietoris pair. We start with the following lemma
which will play a key role in the proof of the main theorem (see [21, Lemma 3.5] for
a proof).

Lemma 4.34. There exists a control pair (A, 1) such that the following statement is satis-

fied:

* for any coarse structure &, any unital §-filtered C*-algebra A and any subalge-
bras Ay and A, of A such that Ay, A, and Ay N Ay are filtered by (A1 N Ag)Ece,
(A N Ag)geg and (A1 N Ay N Ag)Ecs, respectively;

* for any positive number ¢ with ¢ < ﬁ, any E in &, any integers n and m and any
e-E-unitaries uy in M, (A) and u, in My, (A);

* for any e-E-unitaries vy and vy in My, (Ai") and My 4, (A;), respectively, such
that
- ||diag(u1,uz) — viva|| < &

— there exists an e-E-projection q in My4,(A) such that q — diag(l,, 0) is in
My im(A1 0 A2), [lg — v} diag(Ip.0)v1|| <& and [q.n]e g = 0in K§® (A1 N A).

Then there exist an integer k and Le-l E-unitaries wq and wy respectively in My, 4k (A'l")

and M, 1y (A;‘) such that

[ diag(uy . [x) — diag(wiwy)|| < Ae.

Moreover, if v; — I, 1k lies in My 4 (A;) fori = 1,2, then wy and w, can be chosen such
that w; — L4k lies in My (A;) fori = 1,2.

As a consequence, we deduce the controlled exactness at the domain for the quantita-
tive boundary map associated to a controlled Mayer—Vietoris pair (see [21, Corollary 3.6]).
Moreover, this controlled exactness is persistent at any order in the sense that the vanish-
ing may occur (up to compose with the structure maps) at any order (and not just at the
order of the Mayer—Vietoris pair).

Corollary 4.35. For any positive number c, there exists a control pair (A, 1) such that the

following statement is satisfied:

e for any coarse structure & and any &-filtered C*-algebra A;

» forany E in & and any E-controlled Mayer-Vietoris pair (A1, Az, Aa,, Aa,) for A
with coercivity c¢;

e for any positive numbers & and &’ with 0 < a.¢’ <&’ < ﬁ and any E' and E" in &
withk, g E' < E andk, o E' < E".
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Then for any y in Ki’E/(A) such that

e E" 6 9o E (=0

* ASWAV I,
. /" " . . A //’l E// . A’ //’l E//
in KiJj (Aa, N An,), there exist x1 in K. (Aa,) and x, in Ko (An,)
such that

— A" 1L E" A" 1 E" A& 1 E"
Ly ¢ (y) = .IAI,* ¢ (xl) - ]Az,*s// (x2)~

‘We now investigate the controlled exactness at the codomain of the quantitative bound-
ary map associated to a controlled Mayer—Vietoris pair. We start with the following lemma
which will play a key role in the proof of the main theorem (see [21, Lemma 3.8] for the

proof).

Lemma 4.36. There exists a control pair (A, h) such that the following holds:

* Let & be a coarse structure, let A be a unital &-filtered C*-algebra and let Ay and
Ay be subalgebras of A such that Ay, Ay and Ay N Ay are filtered by (A1 N AE)Ees,
(A N Ag)ges and (A1 N Ay N Ag)Ecs, respectively;

e letebein (0, ﬁ) andlet E bein &;

* et n and N be positive integers such that n < N, and let p be an - E-projection in
My ((A1 N A2)™) such that pa,na,(p) = diag(Iy,0).

Assume that

*  pis homotopic to diag(1,, 0) as an - E-projection in My (AT);

*  p is homotopic to diag(I,,0) as an - E-projection in My (A;“).

Then there exist an integer N’ with N’ = N and four Ae-h,E-unitaries wy and wy in

Mpy:(A), uin My (A) and v in My:—,(A) such that

o w; — Iy is an element in My (A;) fori = 1,2;

*  |wi diag(/,,0)w; — diag(p. 0)|| < Ae and ||w, diag({,, 0)w; — diag(p,0)| < Ae.

s fori =1,2, w; is connected to Iy by a homotopy of Ae-hg E-unitaries (wj t)efo,1]
in My+(A) such that w; ; — I is in My/(A;) for all t in [0, 1].

o |diag(u,v) — wiws| < Ae.

As a consequence, we deduce the controlled exactness at the codomain for the quan-

titative boundary map associated to a controlled Mayer—Vietoris pair (see [21, Proposi-
tion 3.9]).

Proposition 4.37. For every positive number c, there exists a control pair («, 1) such that
for any coarse structure &, any & -filtered C*-algebra A, any E in & and any E-controlled
Mayer—Vietoris pair (A1, Ay, Ap,, An,) for A with coercivity c, the following holds:
for any ¢ in (0, ﬁ) and any E" in & with k¢ j.I.E' < E, any y in Ki’E,(AAl N Aa,)
such that ) ,

Ja ) =0 in K2F (4a))
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and
E' . !
]Zz,A1,*(y) =0 in Ki’E (Aa,),

’
there exists an element x in Kij_’i”E (A) such that

! —,0cAeke jele E . Aeke ol E'
PE (1) = o ETIR T () in KA (Aa, N Agy).

Example 4.38. With notations of Theorem 4.28, we denote by

J12.40 Axp (H N JH) —> Ax, Hy,

J2.1,40 A X (H N FHa) — A X, Ho,
Ji,a: AXy Hy — Ax, G,
J2,40 AXp Hy — Ax. §

the obvious inclusions; for any ¢ in (0, 1) and any Ry in & such that k. Ry € R, we
denote by

R R . R acekeeR
336’1,?%2,,4,* = 8i1>4,(27€1,A>4,J€2,*' Kf (A%, 8) > K, "(A %, (H1 N Ha))

the e-Rp-quantitative Mayer—Vietoris boundary map associated to the Ry-controlled

Mayer—Vietoris pair

(A Ry, A Xy Ryyy A Xy Hiy A Xy Ha).

5. Statement of the main result

Recall from Section 3.3 that any homomorphism of §-algebras f: A — B induces a homo-
morphism of C *-algebras
Jexi AX, 8§ - Bx §.

Theorem 5.1. Let § be a locally compact groupoid provided with a Haar system and let
f: A — B be a homomorphism of §-algebras. Let us assume that there exists a subset D
of relatively clopen groupoids of §, closed under taking relatively clopen subgroupoids
and such that

1) S Ke(A %, H) — Ki(B %, H) is an isomorphism for any H in D
(ii) & has finite decomposition complexity with respect to D.
Then fg x: K«(A %, §) — Ky (B X, §) is an isomorphism.

Theorem 5.1 is a consequence of the following result.

Lemma 5.2. Let § be a locally compact groupoid provided with a Haar system, let J be
a relatively clopen subgroupoid of G, let f: A — B be a homomorphism of §-algebras.
Let us assume that there exists a subset D of relatively clopen groupoids of G, closed
under taking relatively clopen subgroupoids and such that
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) Sfaer v Ku(A X, H') — Ki(B %, H') is an isomorphism for any K’ in D.
(ii) H is D-decomposable.
Then fg0 +: Ki(A X, H) — Ky (B %, H#) is an isomorphism.

Proof. By Bott periodicity, this amounts to prove that
St Ki(Ax, #) — Ki(B %, H)

is an isomorphism. Let

Egim—)er%

be the unitalization of fg with Eg, m and m respectively equal to f,
A X, # and B x, H if fy is already a morphism of unital C *-algebras, and fj‘;, (A %,
H)T and (B x, )™ otherwise. Let us fix a control pair (A, /) such that

e ) = Ao, where A is the constant of Lemma 4.12;
* (A,1) is larger than

— the control pair corresponding to the quantitative boundary map associated to a
coarse Mayer—Vietoris pair with coercivity ¢ = 2 (see Section 4.4),

— the control pairs of Proposition 4.19 and of Lemmas 4.34 and 4.36.

We proceed by using a quantitative version of the Five lemma.

5.1. Injectivity part

Let x be an element in K (A4 X, #) such that fz .(x) = 0in K;(B X, J). Let us show
then that x = 0. We divide the proof into five steps.

Step I. Let us fix a positive number ¢ in (0, ﬁ). According to Lemma 4.12, there exist,
up to stabilization, a compact §-order Ry and an e-Rp-unitary in 1 + A X, ¢ such that
¢ G (uleg,) = X

— ) R
o [frW)ler, =0in K7 (B x, H).
Let (V1, V2, #1, J2) be a (6l, - Rp)-decomposition of H with #; and H; in D. In view
of Theorem 4.28, we see that

(A Ar ‘RV19A Ay ‘RV25 A Ay %I,A Ay %2)
is an [, - Ro-controlled Mayer—Vietoris pair relatively to A %, # and
(B % Ry,, B, Ry,, B X, #H1, B ¥, H2)

is an [, - Ro-controlled Mayer—Vietoris pair relatively to B x, J. For the sake of simplic-
ity, we rescale (o, k) to be equal to (4,/).

According to Proposition 4.19 applied with coercivity ¢ = 2, there exist, up to stabi-
lization, two Ae-(/ - Ro)-unitaries v and v, in B x, J such that
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e p;—1lisin B x, J; fori = 1,2;
* v, is homotopic to 1 as a Ae-(I; - Rp)-unitary in m fori =1,2;

o | fr@) —viva| < Ae.

Step I1. By naturality of the quantitative Mayer—Vietoris boundary map (see equation (4.2)
of Section 4.4), we have

Agle-R R R R
f%fmf}fz,o* ° a;ﬁ,?}fz,A,*([u]EaRO) = a;fl,?%z,B,* ° f;f,*o([u]esﬁo)

= 057% 5 (e ]em,)

=0.

In particular,

Ag,le- R R _ Agle R Al R R
*8 0o aejel,?}ez,A,*([u]s,Ro) - L*g ©00 J(f,;fz’z,* ° 8:9761,?7(2,14,*([1’{]8,30)

:0,

NENE Y

and since f, ng,,« is injective, we deduce from Lemma 4.12 that there exists a compact
G-order R containing /, - R such that

—R2eR  geR _
LT 005 4k (Ulero) = 0.

Step I1l. According to Lemma 4.34, up to stabilization and up to replacing R by /2, - R,
there exist two A3e-R-unitaries w; and w, in A %, # such that

e w; —1lisin A %, J¢ fori = 1,2;

o lu—wiws| < A3e.

In particular, according to the first point of Lemma 4.6, we have

3A36,2:R 3A36,2:R
[Ulsi3eom = Jiae  (Wilsiseor) + 15 a0 (Walsi3e2.-R) (5.1)

. 350
in Kf’l &2R (4 x, J). Moreover, we have

lv1vs — Fre(wr) fre(wa)|| < 2A3%

and, in consequence,
[0} fe(w1) — va fe (w3)| < 817

The CIA-condition with coercivity ¢ = 2 implies that, up to replacing R by 2 - R, there
exists an element v in 1 + B X, R, g,nx, such that

v — vl fe(wy)|| < 16A% and [[v — va fze*(w2)]| < 16A%.

In view of the second point of Lemma 4.5, v is a A’e-R-unitary with A’ = 6413. More-
over, v is homotopic to v} fg(w1) as a A’e-R-unitary in B x, J; and homotopic to
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Uzz;(*(wz) as a A'e-R-unitary in m. By surjectivity of f,ng,,« and in view
of Lemma 4.12, there exist a compact §-order R’ containing R and an element z in
Kf“\ o (A x, (#1 N H3)) such that
Ale, R
Tatingene (@) = [Vawe
in KR (B %, (3, N J6y)).

Step IV. Let us set

AN e, R AN e, R
21—112;*(2) and 22—121(?4*(2)

We deduce from the discussion at the end of the previous step that

’ / AA R/
R ) = R o g 2T )

AL
= AR ([F Fae, (W) e ®7)
A'A/ / i
= AR (e, (WD) are.rr)
! !
=[x 0 LR ([wilawe ).

where the third equality holds because v; is homotopic to 1 as a Ae-I; - Rp-unitary in
B x, ;. Since fg, « is one-to-one, we get that

e R ‘e, R/
R () = ZXOR (ilawes)

f]{l*ot

and similarly,
AN e, R _ AN e, R
G0 (22) = =0T ([walawve,®)-
Step V. According to Lemma 4.12, there exists a compact §-order R” containing R and
such that

— 22y "
L*,A/{e,ﬁ (Zl)= AL e, R (Z)—

[wlhz)vs’ﬂu and [ —[wz]kz;vs,ﬂ,/.

From equation (5.1), we deduce

Azl/ ,R// —— /12/1/ ,R// ——
[Uliererr = It Ax" 0 () = Jhax" o (22)

— 2y " 2, ” 123/ " 297 ”
zt*,k Ae,R ° A* A e, R (Z)_t*,/\ Ae,R ° A A e, R (22)

1,A,% 2,4,
_ = A2V e, R A2 e, R" AN e, R /12/1’5,52” /10/1 &R’
=L oUnax  °J12,4% —J2,4% Jodax ()
=0
!’ "
and hence x = Li AR [W]p2pe.27 = 0.

5.2. Surjectivity part

Let us set ag = 567A°. In view of Lemma 4.12, let us prove that for every ¢ in (0, 4ao)
any §-order R and any y in K’ Ro (B %, G), there exist a compact G-order R; contain-
ing Ry and an element x in K“"s R1(4 %, G) such that f;{, H(x) = GeosRoRi(yy iy
K%*®1(B %, G). We divide this proof into four steps.
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Step 1. Up to replacing of ¢ by 21¢ and in view of the first point of Lemma 4.9, we can
assume that there exists an e-Ro-unitary u’ in Iy + M/ (B %, J) for some integer N’
such that y = [u']; R,. Let (V1, Va, #H1, #2) be a (61, - Ro)-decomposition for H with F;
and #» in . Since fy, g, « is onto and according to Lemma 4.12, there exist a compact
§-order R containing /. - R and an element x; » in Kéze"{R (A %, (#1 N H3)) such that

A’e,R —A2eR | 5eR
f]f]ﬁ\](z,*(xl!Z) = L* ° ° 8361,?762,3,*(')}).

Let us set
A2e,R . A2e,R
X1 = jl,ZTA,*(xl’z) m KO & (A Ay e}f]),
A2e,R . A2e,R
X2 = Jz,le,A,*(xl,Z) mn K() ¢ (A x, H2).

Then we have

PR =47 o o5 )

PR o pRaR G Vo (0 )

BB o R o f e (x12)
BB o LR 0T 0057, 5L ()

A2e, R —— AesleRo £,Ro
A IR IR S b))

fJC’l,* ol

=0

2
and in the same way fy, x 0 Li S’R(xz) = 0. Since fg, « and fg, « are one-to-one, we
2 2
deduce that L'l &R (x1) = 0 and Li &R (x2) = 0. According to Lemma 4.12, there exists
a compact -order R’ containing R and such that

AR A2, R,— AR A2e,R,—
LoasOl O (x12) =0 and 5 4 0 P (x12) = 0.

Step II. In view of Lemma 4.8, there exists for some positive integers n and N withn < N
a 9A2e-R-projection in diag([,;, 0) + My (A x, #) such that

22,912
FeER (v 5) = [ponloreen

in KgAZS"R(A X, (H1 N H3)). According to Lemma 4.36 and up to stabilizatio/rl,\thire
exist four 9/\38—19,12/_6&mitaries, vy and vy in Iy + My (A %, #), uy in My (A %, #)
and up in My_, (A %, ) such that
o |lv¥diag(l,,0)v; — p|| < 9A3e;
o |lvadiag(1,,0)v5 — p|l < 9A3e;
*  |diag(uy.uz) — vivz| < 9A3e;

+ fori = 1,2 v; is connected to Iy by a homotopy of 9A3e-Iy,2,R-unitaries in Iy +
My (A Ay ng)
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Step III. By construction of the controlled Mayer—Vietoris boundary applied to —y =
[4"*]¢, R, there exist (up to stabilization) two Ae-/¢-unitaries w; and wo in Man/ (B X, H)
and a Ae-I-projection ¢ in diag(/n, 0) + Man/(B %, J) such that
o w; — Irn liesin Moy/(B X, #;) fori = 1,2;
o |diag(u’*,u’) — wiws| < Ae;
* |widiag({n/,0)w; — gl < Ae and ||w, diag(/n/, 0)w; —¢q| < Ae;
R
_a:;g’l ?76’2 B, *(Z) =[q. N/]AS,IS~RO~

Step IV. 1f we apply Lemma 4.34 to diag(}’;g (uy),u'™), diag(ﬁg (u2),u’) and to the matri-
ces obtained from diag( f# (v1), wy), diag( f3 (v2), wy) and diag( f# (p), ¢) by flipping
the coordinates n + 1,..., N and N + 1,..., N + N’, we see that, up to replacing R’
by 293, R’, there exists for some integer N” and for i = 1,2 a 9A*s-R’-unitary v} in
Inv + Mp» (B %, J;) such that
[Vilarnseqr + Wolarase e = e )]arase, o — 274570 (1)

(we have also used the first point of Corollary 4.6).

Since fg, « and fz, « are onto and according to Lemma 4.12, there exist a compact
§-order Rl containing R’ and for i = 1,2 an element x; in K27,1 &R (A x, ;) such

that f27'1 &R (x;) = —[i]27256.%, in 1(27)L &R1(B x, J;). Then we have
27056, R0, R 27036, Ry, 2TA%e,R 2703, R
EETOTNY) = [k P U ) 0T () + [alagase Ry
and hence fz . is onto. n

5.3. Extension to Kasparov product

The aim of this section is to extend Theorem 5.1 to morphisms induced in K-theory by
right Kasparov product (under second countability assumption for groupoids and separa-
bility assumption for §-algebras). Indeed, this a consequence of the following standard
fact which says that up to KK-equivalence, a Kasparov element is equivalent to a C *-
algebra homomorphism (see [19] for an approach via triangulated categories). Useful
material for groupoid equivariant K K-theory can be found in [17, 18].

Lemma 5.3. Let § be a second countable and locally compact groupoid provided with a
Haar system, let A and B be separable §-algebras and let z be an element in KK? (A, B).
Then there exist

e A’ and B’ two separable §-algebras;

e f: A" — B’ a homomorphism of §-algebras;

o ain KK¥%(A,A")and B in KKZ (B’, B) invertible elements,
such that

zZ = f*(Ot) ®p’ ,3
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Proof. Let us first prove the result for z in KK lg (A, B). The imprimitivity K(£2(¢, A))-
A-bimodule £2(§, A) gives rise to an invertible element [M] in KKZ (K(£2(8, A)). A)
and hence, this reduces to proving the result for [M] ®4 z. According to [15, Appendix,
Lemma 3.5] (see also [2, Section 5]), this amounts to prove the result for any element z in
KK f (A, B) that can be represented by a Kasparov K-cycle (&, m, F) such that F: & — &
is §-equivariant. Up to adding a degenerate Kasparov K-cycle, we can assume without
loss of generality that the linear space generated by {(£, v): £ and v in &} is dense in B.
Letusset P = %(F + Idg) and let us consider the §-algebra

Ep ={(a,T)inA® £(&) suchthat T — P - w(a) - P belongs to K(&)}.
Then the projection on the first factor of Ep gives rise to an extension of ¥-algebra
0->X(E)— Ep—>A—>0 5.2)
semi-split by
A— Ep, awr(a,P-n(a)-P).

Let [M] be the element in KK? (X(&), B) corresponding to the K(&)-B-imprimitivity
bimodule &. Then [M] is invertible and z ® g [M]™! is the class in KK;‘; (A,K(&)) of
the semi-split extension (5.2). Hence this amounts to prove that the lemma holds for the
class [07,4] in KKf(A/I, I') of any semi-split extension 0 - I — A — A/l — 0. We
proceed by using the mapping cone. For B that is a §-algebra, let us set

B(0,1] ={f:]0,1] — C continuous such that f(0) = 0},
B(0,1) = {f:[0, 1] — C continuous such that f(0) = f(1) = 0},

and let us consider the class [dg] in KK lg (B, B(0, 1)) of the semi-split extension of §-
algebras

0— B(0,1) = B(0,1] -5 B — 0,

where evy: B(0, 1] — B is the evaluation at 1. Recall that [0g] is invertible. For a semi-split
extension
0>1—A-25 4/ 0,

we define the mapping cone algebra of 4 by
Cys={(x,f)e A® A/I(0,1] such that f(1) = q(x)}.
Let us consider the morphisms of §-algebras
eg: I > C4, x> (x,0)

and
$q: A/1(0,1) > Cq, [ (0, f).
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According to [25, pp. 195-196], the element [e,] in K K¥(I, C,) induced by e, is invert-
ible and moreover,
eqx[01,4] = ¢g,x[04/1].
Hence we have
[07,4] = ¢g,x[04/1] ®c, leg] ™"

Since [d4,7] is an invertible element in KKf (A/I,A/I(0,1)), we deduce that the con-
clusion of the lemma holds for [d7 4].

Let us prove now that the result holds in the even case. Let z be an element in
KK(? (A, B). Noticing that [d4] is invertible in KKlg (A, A(0, 1)) and applying the odd
case to [04] ! ®4 z, we deduce the result for z. L]

As a consequence, we can extend Theorem 5.1 to K K-elements. Recall that for any
second countable and locally compact groupoid § provided with a Haar system

Jg: KK%(e,0) > KK.(o %, &, 0%, §)

stands for the Kasparov transformation. For any ¥ -algebras A and B and for any element z
in KKf(A, B), we denote by

®Jg(z): Ki(A %, §) > Ki(B %, 9)

the morphism induced by Kasparov right multiplication by Jg(z) (see [17] for the descrip-
tion of this transformation in the setting of groupoids). For z in KKZ (A, B) and for #
that is a relatively clopen subgroupoid of &, we also denote by z,5 the restriction of z
to #, i.e., the image of z under the morphism

KK?(A,B) — KK (A)y, B)y)

corresponding under functoriality in the groupoids to the inclusion # — § (see [18,
Section 7.1]).

Corollary 5.4. Let § be a second countable and locally compact groupoid provided
with a Haar system, let A and B be separable §-algebras and let z be an element in
KKZ (A, B). Let us assume that there exists a subset D of relatively clopen groupoids
of §, closed under taking relatively clopen subgroupoids and such that

(1) 8 has finite decomposition complexity with respect to D;
(ii) for any K in O, the morphism ®J 3 (z;30): Kx(A X, #H) — Ki(B %, H) is an
isomorphism.
Then ®Jg(z): K«(A %, §) = Ky (B X, §) is an isomorphism.

Proof. Let A’ and B’ be separable §-algebras, let f: A’ — B’ be a morphism of §-
algebras and let & in KK?(A4, A’) and B in KKZ(B’, B) be invertible elements as in
Lemma 5.3. Then

RJg(z): Ki(A X, &) —> Ki«(B %, §)
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is an isomorphism if and only if fg «: K«(A’ X, §) — K«(B’ X, §) is an isomorphism,
and in the same way

®J5(z/5): Ka(A X H) — Ki(B x4, H)
is an isomorphism if and only if fg .: K«(A" %, H) — Ky(B' %, H) is an isomorphism.

Then the corollary is the consequence of Theorem 5.1 applied to f: A" — B’. ]

Using the same argument as in the proof of [15, Proposition A.5.1], we also have the
following consequence of Lemma 5.3.

Corollary 5.5. Let § be a second countable and locally compact groupoid provided with
a Haar system, let A, B and D be §-algebras with A and B separable and let z be an
element in KKZ (A, B). Let us assume that there exists a subset D of relatively clopen
groupoids of §, closed under taking relatively clopen subgroupoids and such that

(1) g has finite decomposition complexity with respect to D.
(i) for any subgroupoid J, the morphism
®J7#(tp(2)15): Ki((A® D) %, H) = Ki((B Q D) %, H)
is an isomorphism.
Then @J¢(tp(2)): K«((A ® D) %, §) - K«((A ® B) %, §) is an isomorphism.

6. Application to the Baum—-Connes conjecture

In this section, we show that for groupoids that admit a y-element in the sense of [28], the
Baum—Connes conjecture is closed under coarse decomposability.

6.1. The Baum-Connes conjecture for groupoids

Let us recall the statement of the Baum—Connes conjecture for groupoids. Let § be a
locally compact groupoid provided with a Haar system, let 4 be a §-algebra and let 4 X,
§ be the reduced crossed product of A by § (with respect to the given Haar system). Then
the Baum—Connes conjecture for the pair (4, ) is the claim that the assembly map

pag: K (8, A) > Ko(Ax, 9)

is an isomorphism, the left-hand side being the topological K-theory for the groupoid §
with coefficients in A, defined as the inductive limit

lim KK (Co(X). A).

where X runs through §-compact subsets of the universal example for proper actions
of G (see [28, Section 5.1] for a complete description of the Baum—Connes conjecture in
the setting of groupoids). Although the conjecture holds for a large class of pairs (4, ),
(e.g., if § is an amenable groupoid [27]), counterexamples have been given by Higson,
Lafforgue and Skandalis in [12].
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6.2. The case of groupoids admitting a y -element

The concept of y-element was introduced by Kasparov in [13] in order to prove the
Novikov conjecture for discrete subgroups of almost connected groups. He showed that
for an almost connected group G acting on a C*-algebra A strongly continuously by
automorphisms, the image of the Baum—Connes assembly map is the range of y acting
on K. (A x, G) as an idempotent. The notion of y-element was extended to groupoid by
Tu in [28, Proposition 5.20 and Remark 5.21], where he developed an abstract setting for
such an element.

Definition 6.1. A second countable locally compact groupoid § admits a y-element if
there exist an element y in KKZ(Co(X), Co(X)), a proper §-space Z, a § x Z-alge-
bra A, an element 77 in KKZ (Cy(X), A) and an element D in KKZ (Cy(X), A) such that

s y=1nQ®aD;

* pyy=1lin KZ"Z(Cy(Z), Co(Z)) for every proper §-space Z, where pz:§ x Z —
§ is the forgetful map.

Such an element, if it exists, is unique and is called a y-element. As in the case of the
y-element of Kasparov, a y-element is an idempotent of KKZ (Co(X), Co(X)) and acts
as an idempotent on K.(A X, §). This idempotent is given by right Kasparov product
by Jg(t4(y)), where 74(y) € KKZ (A, A) is obtained by tensorization over C(X) by A.
Moreover, it is related to the Baum—Connes conjecture in the following way (see [28,
Proposition 5.23]):

Proposition 6.2. Let § be a second countable locally compact groupoid provided with a
Haar system admitting a y-element and let A be a §-algebra. Then the following asser-
tions are equivalent:

(i) pag: KP (8, A) — K. (A x, §) is an isomorphism;
(1) Jg(za(y)) acts as the identity by right Kasparov product on K+«(A %, §).

Remark 6.3. Since Jg(z4(y)) is an idempotent, it acts as the identity by right Kasparov
product on K4 (A X, &) if and only if it acts as an isomorphism.

The restriction of a y-element to a relatively clopen subgroupoid is a y-element.

Lemma 6.4. Let § be a second countable and locally compact groupoid and let K be
a relatively clopen subgroupoid of §. If § admits a y-element, then the restriction of y
to K is a y-element for K.

Proof. Let us denote respectively by X and Y the space of units of § and #. Let Z be
a proper §-space, let A be a § x Z-algebra, let n be an element in KKZ (Cy(X), A) and
let D be an element in K Kf (A, Co(X)) as in Definition 6.1. According to Remark 2.7
and Corollary 2.5, the proper action of ¥ on Z restricts to a proper action of # on Zy.
Let A;z, be the restriction of A to Zy. According to the second point of Example 3.4,
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Az, is an J x Zy-algebra. Let y,5 in KK (Co(Y), Co(Y)), ny5 in KK (Co(Y),
A;zy)and D ;g in KK¥ (A;zy,Co(Y)) be respectively the restriction of y, nand D to #
(i.e., induced by functoriality in the groupoids by the inclusion # < §). According to [18,
Proposition 7.2 (b)], the restriction respects Kasparov products and hence we deduce that
Vige = 1/3 @4z, D, g. Let us check the second point of the definition of a y-element.
Let Z’' be a proper J-space, let Z"” = § xg Z’ be the proper induced §-space (see
Section 2.3) and let us recall that pzs:§ x Z” — & stands for the forgetful map. We
have by definition of a y-element that p},y = 1 in KZ"™%(Cy(Z"), Co(Z")). We have
an obvious inclusion of groupoids

HNZ —ExZ" (y.2) = (V. [Up, ). 2]

which pulls back p%,y to p%,y,3 (using [18, Proposition 7.2 (a)]) and hence p7,y/5 = 1
in K2 (Co(Z"), Co(Z")). We conclude that v/ is a y-element for #. [

Remark 6.5. As a consequence and using induced algebras [2, Section 3], we can prove
that if ¥ is a second countable and locally compact groupoid which admits a y-element
and satisfies the Baum—Connes conjecture with coefficients, then any relatively clopen
subgroupoid of ¥ satisfies the Baum—Connes conjecture with coefficients.

An action groupoid of a groupoid with a y-element has a y-element.

Lemma 6.6. Let § be a second countable and locally compact groupoid and let Y be
a second countable and locally compact (left) §-space. If § admits a y-element, then the
action groupoid § x Y admits a y-element.

Proof. Let us denote by X the space of units of § and let gy: Y — X be the anchor
map for the §-action on Y. Let Z be a proper §-space, let A be a § x Z-algebra, let
1 be an element in KKZ (Co(X), A) and let D be an element in KK? (A4, Co(X)) as in
Definition 6.1. Let py:§ x Y — § be the forgetful map with respect to the §-action
on Y. According to the fourth point of Remark 2.6, we see that Z xx Y is a proper
§ x Y -space with anchor map gzx,v:Z xx Y — Y given by the projection on the second
factor. Consider then the elements yy = pyy in KKZ*Y (Cy(Y), Co(Y)), ny = pynin
KKZ*Y (Co(Y),q} A) and Dy = p3 D in KKZ*Y (¢} A, Co(Y)). Using the second point
of Example 3.4, we see that gy A = A ®cy(x) Co(Y) isa (¥ x Y) x (Z xx Y)-algebra
and since p;‘, preserves Kasparov products (see [18, Proposition 7.2 (b)]), we have

Yy =1y ®gz4 Dy.

Let us check now the second condition of Definition 6.1. Let Z’ be a proper § x Y -space.
According to the first and to the third point of Remark 2.6, we see that Z’ is a proper
G-space equipped with a §-map Z’ — Y. Let

pz/: (g[)(Y)D(Z/ﬁgD(Y
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be the forgetful map with respect to the § x Y -action on Z'. Then we have

pzyvy = p7(pyy) = (py o pz)*y.

But under the identification between (§ x Y) x Z’ and § x Z' of the second point of
Remark 2.6, then

pyopz: (§xY)xZ — ¢

corresponds to the forgetful map € x Z’ — § with respect to the proper §-action on Z’.
From this we deduce that p%,yy = 1 in KKEV<Z (Co(Z"), Co(Z")) and hence yy is
a y-element for § x Y. n

Example 6.7. The following examples of second countable and locally compact groups G
are known to have a y-element:

(1)  if G acts properly on a simply connected manifold with non-positive sectional
curvature [13];

(i) if G is (a closed subgroup of) an almost connected group [13];
(ii1) if G is a group acting properly on an Euclidean buildings [14];

(iv) if G is a countable discrete group that coarsely embeds into a Hilbert space
(see [7, Theorem 9.2] and [29]).

For any action of such a group G on a second countable locally compact space X, the
action groupoid G x X has a y-element.

6.3. The Baum—Connes conjecture and coarse decomposability

Theorem 6.8. Let § be a second countable and locally compact groupoid provided with
a Haar system which moreover admits a y-element in sense of [28, Proposition 5.20]
and let A be a §-algebra. Assume that there exists a subset D of relatively clopen sub-
groupoids of G, closed under taking relatively clopen subgroupoids such that

(i) every groupoid in D satisfies the Baum—Connes conjecture with coefficients in A;
(ii) & has finite decomposition complexity with respect to D.

Then § satisfies the Baum—Connes conjecture with coefficients in A.

Proof. According to Proposition 6.2 and Remark 6.3, this amounts to prove that the action
of Jg(z4(y)) by right Kasparov product on K (A x, §) is an isomorphism. If A is sep-
arable, this is the consequence of Corollary 5.4 applied to t4(y) and of Lemma 6.4, by
noticing that 74(y),5 = ta(y,s) for any relatively clopen subgroupoids # in D. If A is
not separable, this is a consequence of Corollary 5.5. ]

We end this subsection with an application to the Baum—Connes conjecture with coef-
ficients.



Groupoids decomposition, propagation and operator K -theory 801

Corollary 6.9. Let § be a second countable and locally compact groupoid provided with
a Haar system and which moreover admits a y-element in sense of [28, Proposition 5.20].
Assume that there exists a subset D of relatively clopen subgroupoids of § such that

(i) every groupoid in D satisfies the Baum—Connes conjecture with coefficients;
(ii) & has finite decomposition complexity with respect to D.

Then § satisfies the Baum—Connes conjecture with coefficients.

Proof. Let D’ be the set of all relatively clopen subgroupoids of elements of D. Accord-
ing to Remark 6.5, any groupoid J# in D’ satisfies the Baum—Connes conjecture with
coefficients. Since ¥ has finite D-complexity, it has finite $’-complexity. Then the result
is a consequence of Theorem 6.8. ]

6.4. Perspectives and open questions

We end this paper with a discussion about the range of applicability of Theorem 6.8. Even
if we are asking more questions than giving answers, the idea is to inspire further works
on the quest of new examples of groupoids satisfying the Baum—Connes conjecture. As
we have seen in Section 2.6, groupoid amenability is closed under coarse decomposition
and hence if we start with a family £ of amenable subgroupoids (which satisfies the
Baum—Connes conjecture with coefficients by [27]), then Theorem 6.8 does not bring any
new example of groupoid satisfying the Baum—Connes conjecture. The situation might be
different for groupoid which have the Haagerup property. This property was introduced
in [27, Section 3] in terms of affine and proper action on a continuous field of real and
affine Hilbert spaces. We shall use an equivalent definition using functions conditionally
of negative type (see [24, Proposition 2.13]).

Definition 6.10. Let § be a locally compact groupoid with space of units X. A function
W:§ — R is conditionally of negative type if
(i) WY(u(x)) = 0forevery x in X;
(i) W(y)=V¥(y ') foranyying;
(iii) for any positive integer n, any x in X, any y1,. .., ¥, in §* and any real numbers
Al,...,Apsuchthat Ay +---+ A, =0,

> LAty <.
1<i,j<n

We are now in position to give the definition of the Haagerup property for groupoids
in terms of functions conditionally of negative type.

Definition 6.11. A locally compact groupoid § has the Haagerup property if § admits
a conditionally of negative type function ¥: ¥ — R which is locally proper, i.e., for any
compact subset K of §, the restriction of W to ﬁg is proper.
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According to [27, Proposition 3.8 and Théoreme 0.1], any locally compact and second
countable groupoid with the Haagerup property satisfies the Baum—Connes conjecture
with coefficients. In consequence, under the assumptions of Corollary 6.9, if § has finite
decomposition complexity with respect to a family £ of relatively clopen subgroupoids
which have the Haagerup property, then § satisfies the Baum—Connes conjecture with
coefficients.

Question 6.12. Can we obtain, using the coarse decomposition, groupoids which do not
have the Haagerup property and provide in this way new examples of groupoids satisfying
the Baum—Connes conjecture with coefficients?

Another source of inspiration to provide genuinely new examples of groupoids sat-
isfying the Baum—Connes conjecture is the work of Lafforgue on hyperbolic groups and
groupoids [15, 16].

Let O be a family of relatively clopen subgroupoids of a second countable and locally
compact groupoid §. Assume that every groupoid in # is a relatively clopen subgroupoid
of a finitely generated group action groupoid I' x X, where I' is a Gromov hyperbolic
group acting on a second countable and locally compact space X. According to [16,
Théoreme 0.4], to [4, Corollary 0.2] and to Remark 6.5, any groupoid in D satisfies
the Baum—Connes conjecture with coefficients. Hence, under the assumptions of Corol-
lary 6.9, if § has finite decomposition complexity with respect to O, then § satisfies the
Baum—Connes conjecture with coefficients.

According to [15, Corollaire 4.0.2], we have a similar result for the Baum—Connes
conjecture with commutative coefficients if O is a family of relatively clopen subgrou-
poids of Poincaré groupoids of foliations with compact base space and which admit
a longitudinal Riemannian metric of negative sectional curvature.
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