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Groupoids decomposition, propagation and operator
K -theory

Hervé Oyono-Oyono

Abstract. In this paper, we streamline the technique of groupoids coarse decomposition for purpose
of K-theory computations of groupoids crossed products. This technique was first introduced by
Guoliang Yu in his proof of Novikov conjecture for groups with finite asymptotic dimension. The
main tool we use for these computations is controlled operator K-theory.
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1. Introduction

The concept of coarse decomposability for locally compact groupoids was introduced
by several authors [3, 11, 21, 30] in order to compute K-theory of reduced C �-algebras
and of reduced crossed product algebras of locally compact groupoids. It generalizes the
“cut-and-pasting” technique developed by Yu in [32] to prove the Novikov conjecture for
groups with finite asymptotic dimension. The “cut-and-pasting” has been then extended
by Guentner, Tessera and Yu in [8] in order to study topological rigidity of manifolds.
In this work, they consider a class of finitely generated groups which satisfy a metric
property called finite decomposition complexity. In particular, they proved that if the fun-
damental group of a closed aspherical manifold is in this class, then it satisfied the bounded
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Borel conjecture and the stable Borel conjecture. In [9], finite decomposition complexity
for metric spaces has been studied in full detail. This property can be interpreted in terms
of decomposition complexity of the coarse groupoid associated to the metric space, which
leads naturally to extend this notion to locally compact groupoids. A first generalization
was provided by Guentner, Willett and Yu in [10] in order to study the dynamical prop-
erties of finitely generated group actions on locally compact spaces with at each order
of length a one step decomposition into pieces with “finite dynamic”. In [11], the same
authors consider the case of finitely generated group actions on locally compact spaces
which, given a sequence of lengths, decompose in a finite number of steps into pieces
with “finite dynamic”. They give a new proof of the Baum–Connes conjecture (with triv-
ial coefficients) for these action groupoids. This approach is of great interest since it does
not involve infinite dimension analysis and can be generalized to computations in non
C �-algebraic situations (for instance to `p-crossed products as considered in [5]). The
main tool used in this proof is quantitative K-theory. Quantitative K-theory was first
introduced in [32] for obstruction algebras in order to prove the Novikov conjecture for
groups with finite asymptotic dimension. It has been then extended in [20] to the setting
of C �-algebras equipped with a filtration arising from a length and in [6] to the general
framework of C �-algebras filtered by an abstract coarse structure which allows to replace
lengths by abstract orders. A controlled Mayer–Vietoris exact sequence in quantitativeK-
theory associated to decomposition in “ideals at order r” which turned out to be tailored
for K-theory computations under groupoid decomposability (see [6] for the extension to
general filtrations) was stated in [21]. It has been applied in [3] to the Künneth formula
in K-theory for groupoid C �-algebras and crossed product algebras. Any locally com-
pact Hausdorff groupoid is provided by a canonical order (see Definition 2.9) and loosely
speaking, we consider decomposition of the set of elements of a given order of a groupoid
as the union of two open subgroupoids (see Definition 2.13). Following [11], we say that
a locally compact groupoid G has finite complexity decomposition with respect to a fam-
ily D of open subgroupoids if starting with a given sequence of orders, then iterating the
above decomposition ends up with elements belonging to D in a finite number of steps
(see Definition 2.17). The main result of this paper is the following:

Let G be locally compact groupoid with finite decomposition complexity with respect
to a family D of relatively clopen subgroupoids (see Definition 2.2) and let f WA! B be
a homomorphism of G -algebras. If the morphism

K�.A Ìr H /! K�.B Ìr H /

induced in K-theory by f is an isomorphism for any H in D , then so is

K�.A Ìr G /! K�.B Ìr G /:

We then extend this result to morphisms induced by elements in KKG
� .A; B/. An

important application of the latter result is the heredity of the Baum–Connes conjecture
under the decomposition described above for second countable and locally compact Haus-
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dorff groupoids admitting a  -element in sense of [28]. All these stability results should
be compared with those obtained by Willett in [30] using different technics.

Our prominent examples will be action groupoids of groups with finite decomposition
complexity acting on its Stone–Čech compactification. Indeed these groupoids are known
to be amenable. This is a consequence of [8, Theorem 4.3] and [26, Theorem A.9]. This
result has been extended in [11, Theorem A.9] to étale groupoids with finite dynamical
complexity. In Section 2.6, we generalize the later result and prove that a locally com-
pact Hausdorff groupoid with finite decomposition complexity respectively to a family of
open and amenable subgroupoids is amenable. In view of [27], these groupoids satisfy the
Baum–Connes conjecture and hence, our approach does not provide so far new examples.
But, as emphasized before, our approach is more geometric.

In the case of a groupoid with finite decomposition complexity with respect to a fam-
ily D of relatively clopen subgroupoids satisfying the Haagerup property, it is less clear
that the later property is preserved and applying once again [27], our approach might be
the source of new examples. Even if so far we have no idea of what kind of groupoid
can be obtained is this way, interesting new examples might also arise using [15, 16] by
considering a decomposing family D of relatively clopen subgroupoids satisfying some
hyperbolic properties (see Section 6.4 for some general perspectives).

Outline of the paper. Section 2 starts with some basic definitions concerning locally
compact groupoids and their actions. Then we introduce the notion of G -order for a locally
compact groupoid G which can be viewed as the generalization both of a length on a group
and of a distance on a proper metric space. Following the idea of [11, Definition 3.14], the
notion of R-decomposition for a G -order R is then introduced. This leads to the concept
of D-decomposability of an open subgroupoid of G with respect to a family D of open
subgroupoids and to finite decomposition complexity with respect to a family of open
subgroupoids, generalizing finite dynamical complexity defined in [11]. We end this sec-
tion with generalization of [11, Theorem A.9] and prove that a locally compact groupoid
with finite decomposition complexity with respect to a family of open and amenable sub-
groupoids is amenable.

Section 3 is devoted to some reminders on groupoid actions on C �-algebras and their
reduced crossed product algebras.

In Section 4 is introduced the primary tool for the proof of our main theorem, the con-
trolled Mayer–Vietoris exact sequence in quantitative K-theory associated to a groupoid
decomposition. We first review from [6] the main features of quantitative K-theory for
C �-algebra filtered by an abstract coarse structure. It is pointed out that G -orders provide
such a structure on crossed product algebras of a groupoid G . The definition of a controlled
Mayer–Vietoris pair is recalled and we show that groupoid decompositions of order R

give rise to controlled Mayer–Vietoris pairs. Eventually, we recall the statement of the
controlled Mayer–Vietoris exact sequence in quantitative K-theory associated to a con-
trolled Mayer–Vietoris pair.

The main result of the paper is proven in Section 5. Although the proof is tedious,
the principle is quite simple as it is the extension of the Five lemma to the setting of
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controlled exact sequences. We then extend our main result to the case of the morphisms
induced in K-theory by elements of G -equivariant KK-theory. This is done by noticing
that every such element is up to KK-equivalence given by an equivariant homomor-
phism.

In Section 6, applications to the Baum–Connes conjecture for locally compact groupo-
ids are given. We first recall from [28] the statement of the Baum–Connes conjecture in
the setting of locally compact groupoids and the definition of  -elements. This section is
ended with hereditary results of the Baum–Connes conjecture for groupoids with D-finite
decomposition complexity which admit a  -element in sense of [28] and with a discussion
concerning the range of applicability of our approach.

2. Coarse decomposition for groupoids

Coarse decomposability for locally compact Hausdorff groupoids is the generalization of
the concept of decomposability for a family of metric spaces introduced in [9]. In this
section, after some reminders concerning locally compact groupoids and their actions, we
introduce for a locally compact Hausdorff groupoid G the notion of G -orders generalizing
on one hand distances on metric spaces and on the other hand lengths on groups. Following
in particular ideas of [11, Section 3 and Appendix A], this allows us to define decompo-
sition of order R for a subgroupoid of G which leads naturally to coarse decomposability
and to finite decomposition complexity with respect to a set of open subgroupoids of G .

2.1. Groupoids

We assume that the reader is familiar with the basic definition concerning groupoids. For
more details, we refer to [22, 23].

A groupoid with space of units X consists of a set G provided with

• two maps sWG ! X and r WG ! X called the source map and the range map, respec-
tively;

• a map uWX ! G , x 7! ux , called the unit map, which is a section both for s and r ;

• an associative composition G �X G ! G W .;  0/ 7!  �  0 with G �X G D ¹.;  0/ 2

G � G W s./ D r. 0/º such that s. �  0/ D s. 0/ and r. �  0/ D r./ for any .;  0/
in G �X G and  � us./ D ur./ �  D  for any  in G ;

• an inverse map G ! G ,  7! �1 such that s.�1/D r./, r.�1/D s./,  � �1 D
ur./, and �1 �  D us./ for any  in G .

Notation 2.1. Let G be a groupoid with space of units X and source and range maps
s; r WG ! X .

• Let Z be a subset of G . We set the following:

– Z�1 D ¹�1W  2 Zº;
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– for any Y � X , ZY D s�1.Y / \Z and ZY D r�1.Y / \Z;

– for any subsets Y1 and Y2 of X , ZY2Y1 D Z
Y2 \ZY1 .

• Let Z1 and Z2 be subsets in G . We set

Z1 �Z2 D ¹12W 1 2 Z1; 2 2 Z2 and s.1/ D r.2/º:

A locally compact groupoid is a groupoid provided with a locally compact topol-
ogy and such that the structure maps are continuous. In this paper, all the groupoids
are assumed to be locally compact and Hausdorff. An open subgroupoid of G is a sub-
groupoid H of G which is open as a subset and such that the space of units is open in the
space of unit of G . Notice that the latter condition always holds if the source map of G is
open, for instance if G is provided with a Haar system [28, Lemma 6.5].

Definition 2.2. Let G be a locally compact groupoid. A relatively clopen subgroupoid
of G is an open subgroupoid H of G such that if Y stands for the unit space of H , then H

is closed in GY .

Remark 2.3. Let G be locally compact groupoid and let H be a relatively clopen sub-
groupoid of G with unit space Y . Then H is clopen in G Y and in G YY .

The next lemma is straightforward to prove.

Lemma 2.4. Let G be a locally compact groupoid and let H be an open subgroupoid
of G with unit space Y . Then H is relatively clopen if and only if K \H is compact for
any compact subset K of GY .

We recall that a locally compact groupoid with space of units X is proper if the map

G ! X �X;  7! .r./; s.//

is proper. As a consequence of Lemma 2.4, we obtain the following corollary.

Corollary 2.5. Let G be a locally compact proper groupoid. Then relatively clopen sub-
groupoids of G are proper.

2.2. Groupoid actions

Let us recall first the definition of a (left) action of a groupoid. Let G be a groupoid with
space of units X and source and range maps s and r and unit map u. An action of the
groupoid G on a set Z consist of a map pWZ ! X called the anchor map and a map

G �X Z ! Z; .; z/ 7!  � z;

with G �X Z D ¹.; z/ 2 G �ZW s./ D p.z/º such that

(i) for any  and  0 in G and z in Z such that .;  0/ is in G �X G and . 0; z/ is in
G �X Z, then .;  0 � z/ belongs to G �X Z and  � . 0 � z/ D . �  0/ � z;

(ii) up.z/ � z D z for any z in Z.
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Notice that these conditions imply that p. � z/ D r./ and �1 �  � z D z for any .; z/
in G �X Z. If x is an element in X , then the fiber of Z at x is Zx

def
D p�1.¹xº/ and more

generally, if Y is a subset of X , we set ZY
def
D p�1.Y /. If G is a locally compact groupoid

and if Z is a locally compact space, we require the anchor map and the action map to
be continuous. In this case, Z will be called a G -space. In what follows, all G -spaces are
supposed to be Hausdorff. IfZ andZ0 are G -spaces with anchor maps pZ and pZ0 , a map
f WZ ! Z0 is called a G -map if f is continuous, pZ0 ı f D pZ and f . � z/ D  � f .z/
for all .; z/ in G �X Z.

Let G be a groupoid with space of units X acting on a set Z with anchor map
pWZ ! X . Then the action groupoid that corresponds to the action of G onZ denoted by
G ËZ is the set G �X Z, with Z as space of units with source map

G ËZ ! Z; .; z/ 7! z

and range map
G ËZ ! Z; .; z/ 7!  � z;

unit map (u being the unit map of G )

Z ! G ËZ; z 7! .up.z/; z/;

composition
.G ËZ/ �Z .G ËZ/; .;  0z/ � . 0; z/ 7! . 0; z/

and inverse
G ËZ ! G ËZ; .; z/ 7! .�1;  � z/:

If G is a locally compact groupoid and Z is a G -space, then G Ë Z is a locally compact
groupoid. A G -space Z is called proper (or the action of G on Z is said to be proper) if
the action groupoid G ËZ is proper.

Remark 2.6. Let G be a locally compact groupoid with space of units X acting on
a locally compact space Y . Then

(i) a G Ë Y -space is precisely a G -space Z together with a G -map f WZ ! Y ;

(ii) in this case,

G ËZ ! .G Ë Y / ËZ; .; z/ 7! .; f .z/; z/

is a groupoid isomorphism;

(iii) in consequence, a G Ë Y -space Z is proper if and only if it is proper as a G -
space;

(iv) in particular, if Z is a proper G -space, then Z �X Y is a proper G Ë Y -space
with anchor map given by the projection on the second factor (here Z �X Y
stands for the fiber product over the two anchor maps).

Remark 2.7. Let G be locally compact groupoid and let H be a relatively clopen sub-
groupoid of G with unit space Y . For any left G -space Z, the subgroupoid H Ì ZY is
relatively clopen in G ÌZ.
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2.3. Induced actions

We recall now from [2, Section 2] the notion of induced action to a groupoid from a sub-
groupoid action. Let G be a locally compact groupoid with space of units X and open
source and range maps, let H be a relatively clopen subgroupoid of G with space of
units Y and let Z be a (left) H -space with anchor map pWZ ! Y . Let us define on

G �Y Z
def
D ¹.; z/ 2 G �Z such that s./ D p.z/º

the H -action with anchor map G �Y Z ! Y , .; z/ 7! p.z/ by

 � . 0; z/ D . 0�1; z/

for any  in H and . 0; z/ in G �Y Z such that s./D p.z/. The H -action defined in this
way is proper and the quotient space

G �H Z
def
D .G �Y Z/=H

is Hausdorff and locally compact. Let us denote by Œ;z� the class in G �H Z of an element
.; z/ in G �H Z. Then G �H Z is provided with a G -action with anchor map

G �H Z ! X; Œ; z� 7! r./

defined by  � Œ 0; z�D Œ 0; z� for any  in G and Œ 0; z� in G �H Z such that s./D r. 0/
and is called the G -space induced by the H -space Z.

Proposition 2.8 ([2, Lemma 2.12]). Let G be a locally compact groupoid with open
source and range maps, let H be a relatively clopen subgroupoid of G and let Z be a
proper H -space. Then the induced G -space G �H Z is proper.

2.4. G -orders

Definition 2.9. Let G be a locally compact groupoid with space of units X . A G -order is
a subset R of G such that

• u.s.R// � R;

• R�1 D R (R is symmetric).

• for every compact subset Y of X , then RY is compact.

Remark 2.10. Let G be a locally compact groupoid with unit space X .

(i) For any compact subset K of G , then K [K�1 [ r.K/ [ s.K/ is a compact G -
order and hence for any compact subset K of G , there exists a compact G -order
R such that K � R.

(ii) If R1 and R2 are G -orders, then R1 [R2 and R1 \R2 are G -orders.

Lemma 2.11. Let G be a locally compact groupoid, then any G -order is closed.
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Proof. Let R be a G -order. Let us prove that R\K is compact for any compact subsetK
of G . Let us set Y D s.K/. Since Y is compact, then RY is compact and hence

K \R D K \RY

is compact.

If R1 and R2 are two G -orders, then

R1 �R2
def
D .R1 �R2/ [ .R2 �R1/ [ u.s.K1// [ u.s.K2//

is a G -order. If R is a G -order and n is an integer, then R�n stands for R � � � � �R (n prod-
ucts). Notice that according to the first point of Definition 2.9, we have that R � R�n for
every integer n. Let EG be the set of G -orders. Then EG is a poset for the inclusion and
ordered semi-group for �. Moreover, EG is a lattice with the infimum given by the inter-
section and the supremum given by the union. We denote by EG ;c the set of compact
G -order. Then EG ;c is an ordered semi-group for � and a lattice for the partial order given
by the inclusion, as well.

2.5. R-decomposition of a groupoid

Remark 2.12. Let G be a locally compact groupoid and let H be a relatively clopen
subgroupoid of G .

(i) Let R be a G -order, then R \H is an H -order denoted by R=H .

(ii) EG ! EH WR 7! R=H is a map of posets such that

R1=H �R2=H � .R1 �R2/=H

for any G -orders R1 and R2.

Definition 2.13. Let G be a locally compact groupoid, and let H be a subgroupoid of G

with space of units Y and let R be a G -order. Then

(i) an R-decomposition of H is a quadruple .V1; V2;H1;H2/ where

• V1 and V2 are open subsets of Y with Y D V1 [ V2 and such that there exists
a partition of unity (defined on Y ) subordinated to .V1; V2/;

• H1 and H2 are subgroupoids of H which are open in G .

• RVi \H is contained in Hi for i D 1; 2.

(ii) a coercive R-decomposition of H is an R-decomposition .V1; V2;H1;H2/ of H

such that H1 and H2 are relatively clopen in G .

Remark 2.14. If the space of units of G is second countable, then the existence of the
partition of unity in the first item of Definition 2.13 is guaranteed.

Following the route of [11, Definition A.4], we introduce the notion of decomposabil-
ity with respect to a set of open subgroupoids.
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Definition 2.15. Let G be a locally compact groupoid and let D be a set of open sub-
groupoids of G . A subgroupoid H of G is D-decomposable if for every compact G -
order R, there exists an R-decomposition .V1; V2;H1;H2/ with H1 and H2 in D .

For étale groupoids, this definition differs slightly from [11, Definition A.4] but can
be compared under the assumption of second countability:

• D-decomposability in the latter sense implies D-decomposability in the former one;

• the converse is true if D is stable under taking open subgroupoids (see also Lem-
ma 2.18).

Lemma 2.16. Let G be a locally compact groupoid and let H be a subgroupoid of G .
Then

(i) if D is a set of open subgroupoids of G such that H is D-decomposable, then H

is an open subgroupoid of G ;

(ii) if D is a set of relatively clopen subgroupoids of G such that H is D-decompos-
able, then H is a relatively clopen subgroupoid of G .

Proof. Let us prove the first point. Let  be an element in H . According to point (i) of
Remark 2.10, there exists a compact G -order R such that  lies in R. Let .V1;V2;H1;H2/

be an R-decomposition of H with H1 and H2 in D . By definition of an R-decomposition,
we see that  belongs to H1 [H2 which is an open subset of G contained in H .

For the second point, assume now that every subgroupoid in D is relatively clopen and
let H be a D-decomposable subgroupoid of G . Let us prove that H is relatively clopen.
Let Y be the unit space of H . According to Lemma 2.4, it is enough to prove that H \K

is compact if K is a compact subset of GY . Consider a compact G -order R such that
K � R (see point (i) of Remark 2.10) and let .V1; V2;H1;H2/ be an R-decomposition
for H . The existence of a partition of unity subordinated to .V1; V2/ ensures that there
exist two closed subsets F1 and F2 of Y contained in V1 and V2, respectively, and such
that Y D F1 [ F2. Let us set K1 D K \ GF1 and K2 D K \ GF2 . Then K1 and K2
are compact subsets respectively contained in GV1 and GV2 , and moreover, we have K D
K1 [K2. Furthermore, sinceK1 �RV1 andK2 �RV2 and using the definition of an R-
decomposition, we have H \K1 DH1 \K1 and H \K2 DH2 \K2. Since H1 and H2

are relatively clopen subgroupoids, then H1 \K1 and H2 \K2 are compact and hence
H \K is compact.

Let G be a locally compact groupoid. A set D of open subgroupoids of G is closed
under coarse decompositions if every D-decomposable subgroupoid of G is indeed in D .
If D is a set of open subgroupoids of G , let yD be the smallest set of open subgroupoids
of G closed under coarse decompositions.

Definition 2.17. Let G be a locally compact groupoid and let D be a family of open
subgroupoids of G . We say that an open subgroupoid H of G has finite decomposition
complexity with respect to D if H belongs to yD .
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Lemma 2.18. Let G be a locally compact groupoid and let D be a set of open sub-
groupoids of G closed under taking open subgroupoids. Then yD is closed under taking
open subgroupoids.

Proof. Let D 0 be the set of open subgroupoids H of G such that every open subgroupoid
of H lies in yD . We have inclusions D � D 0 � yD . Let us show that D 0 is closed under
coarse decompositions. Let H be an open subgroupoid of G which is D 0-decomposable
and let H 0 be an open subgroupoid of H with unit space Y . Let R be a compact G -order
and let us consider an R-decomposition .V1; V2;H1;H2/ of H with H1 in H2 in D 0.
Then .V1 \ Y; V2 \ Y;H1 \H 0;H2 \H 0/ is an R-decomposition of H 0 with H1 \H 0

and H2 \H 0 in yD . As a result, H 0 is in yD for any open subgroupoid and hence H is
in D 0. We conclude that yD � D 0 and hence yD D D 0.

Lemma 2.19. Let G be a locally compact groupoid and let D be a set of relatively clopen
subgroupoids of G . Then

(i) If H is in yD , then H is relatively clopen.

(ii) If D is closed under taking relatively clopen subgroupoids, then so is yD .

Proof. To prove the first point, let us consider the set D 0 of relatively clopen subgroupoids
of G that belongs to yD . Then we have inclusions D � D 0 � yD and we deduce from
Lemma 2.16 that D 0 is closed under coarse decompositions. Hence we have D 0 D yD .

To prove the second point, we proceed as in the proof of Lemma 2.18 by considering
the set of subgroupoids H of G for which every relatively clopen subgroupoid is in yD
and by noticing that the intersection of two relatively clopen subgroupoids is relatively
clopen.

Example 2.20. Let X be a metric discrete space with bounded geometry and with finite
decomposition complexity in the sense of [8, Definition 2.3] and consider then GX the
coarse groupoid of X defined in [26, Section 3]. Then GX has finite decomposition com-
plexity with respect to the set of its compact open subgroupoids (see [11, Theorem A.7]).
In the particular case of a finitely generated group � with finite decomposition complexity
with respect to any word metric, let us denote by j�j the underlying metric space struc-
ture. If we consider the action of � on its Stone–Čech compactification ˇ� , then the action
groupoid � Ë ˇ� is isomorphic to Gj�j (see [26, Proposition 3.4]) and hence � Ë ˇ� has
finite decomposition complexity with respect to the set of its compact open subgroupoids.

2.6. Groupoid amenability and coarse decomposition

It was shown in [8, Theorem 4.3] that a discrete metric space with bounded geometry X
and finite decomposition complexity has property .A/ defined in [33]. Therefore, accord-
ing to [26, Theorem A.9], its coarse groupoid GX is amenable. In view of this result,
we prove in this subsection that amenability is closed under coarse decomposition. This
generalizes [11, Theorem A.9], and indeed, a slight modification of the argument used
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there can be applied to our situation. We refer to [1] for a comprehensive discussion on
amenable groupoids. Let us first introduce the notion of Haar system [23, Definition 2.2]
that we shall also use in Section 3 to define reduced cross products of groupoids. In what
follows, for a locally compact groupoid G , Cc.G / will denote the algebra of continuous
complex valued and compactly supported functions on G , and Cc.G /C will denote the set
of positive functions of Cc.G /.

Definition 2.21. Let G be a locally compact groupoid with space of units X . A Haar
system is a family .�x/x2X of Radon measures on G such that

(i) for every x in X , the support of �x is G x ;

(ii) for every f in Cc.G /, then

X ! C; x 7!

Z
Gx
f d�x

is continuous;

(iii) for every  in G , we haveZ
G s./

f . 0/ d�s./. 0/ D

Z
G r./

f . 0/ d�r./. 0/:

We shall use the following definition of amenability for a locally compact groupoid
(see [1, Proposition 2.2.13]).

Definition 2.22. Let G be a locally compact groupoid with space of units X provided
with a Haar system .�x/x2X . The groupoid G is amenable (with respect to .�x/x2X ) if
there exists a net .gj /j2J valued in Cc.G /C such that

(i)
R

Gx
gjd�

x 6 1 for any x in X and any j in J ;

(ii) .
R

Gx
gjd�

x/j2J converges to 1 uniformly on every compact subset of X ;

(iii) .
R

G r./
jgj .

�1 0/ � gj .
0/j d�r./. 0//j2J converges to 0 uniformly on every

compact subset of G .

Remark 2.23. This notion is called in [1] topological amenability.

The proof that amenability is closed under coarse decomposition follows from the
existence of suitable almost invariant partitions of unity for groupoid decomposition (see
[11, Lemma A.12]). This will require the following two preliminary lemmas.

Lemma 2.24. Let G be a locally compact groupoid, and let H be an open subgroupoid
of G with space of units Y and let K be a compact subset of G . Then ¹x 2 Y such that
Kx � Hº is an open subset of Y .

Proof. Let us show that ¹x 2 Y WKx ª Hº is closed in Y . Let .x�/ be a net in Y such
that Kx� ª H for every � converging to x in Y . Let us show that Kx ª H . For every �,
there exists � in Kx� such that � … H . Since K is compact, we can assume passing to
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a subnet that .�/ converges to  in K. As H is open, we have  … H and by continuity
of r , we have r./ D x and hence Kx ª H .

The next lemma should be compared with [10, Lemma 7.5].

Lemma 2.25. Let G be a locally compact groupoid. Then for any compact subset K of G

and for any integer N , there exists a compact G -order R containing K for which the
following is satisfied:

• for any open subgroupoid H of G containing K;

• for any R-decomposition .V1; V2;H1;H2/ of H ,

there exist nested sequences

U
.0/
i � U

.1/
i � � � � � U

.N�1/
i � U

.N/
i for i D 1; 2

of open and relatively compact subsets of the space of units of Hi such that

(i) s.K/ [ r.K/ � U
.0/
1 [ U

.0/
2 ;

(ii) s.KU
.n�1/
i / [ U

.n�1/
i � U

.n/
i for i D 1; 2 and n D 1; : : : ; N ;

(iii) for i D 1; 2, we have KU
.N/
i � Hi .

Proof. We can assume without loss of generality that

K D K�1; u.s.K// � K and u.r.K// � K:

We setKn D K�n for every integer n, withK0 D u.s.K// D u.r.K//. Since u.s.K// D
u.r.K// � K, we have Kn � KnC1 for all integer n. Let R be a compact G -order con-
tainingKNC1, let H be an open subgroupoid of G containingK and let .V1; V2;H1;H2/

be an R-decomposition of H .
For i D 1; 2 and n D 0; : : : ; N , we set

V
.n/
i D ¹x 2 Yi WK

x
NC1�n � Hiº:

According to Lemma 2.24, we see that V .n/i is an open subset of Yi and moreover, we
have V .n�1/i � V

.n/
i for n D 1; : : : ; N . By definition of an R-decomposition, we have

Vi � V
.0/
i for i D 1; 2 and hence V .0/1 [ V

.0/
2 D Y .

Let U .0/1 and U .0/2 be relatively compact open subsets of Y such that

• s.K/ [ r.K/ � U
.0/
1 [ U

.0/
2 ;

• U
.0/
1 � V

.0/
1

for i D 1; 2. We have then

s.KU
.0/
i / � s.KU

.0/
i / � s.KV

.0/
i /:
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Let us show that s.KV
.0/
i /� V

.1/
i . Let x be an element in s.KV

.0/
i / and let  be an element

inKxN . Let us prove that  belongs to Hi . Let  0 be an element inKV
.0/
i such that s. 0/D

x D r./ and write  D  0�1 0 .

• since  0 lies in KNC1 and r. 0/ D r. 0/ belongs to V .0/i , we deduce from the
definition of V .0/i that  0 is in Hi ;

• since we have assume that u.s.K// � K, we have that K � KNC1 and hence  0

belongs to Kr.
0/

NC1 with r. 0/ in V .0/i . Once again, from the definition of V .0/i , we
deduce that  0 and hence  0�1 is in Hi .

From this we conclude that  belongs to Hi and hence s.KV
.0/
i / � V

.1/
i .

For i D 1; 2, let U .1/i be a relatively compact open subset of V .1/i such that

s.KU
.0/
i / [ U

.0/
i � U

.1/
i � U

.1/
i � V

.1/
i :

By iterating this process, we obtain a nested sequence

U
.0/
i � U

.1/
i � � � � � U

.N�1/
i � U

.N/
i

of open and relatively compact subsets of the space of units of Hi such that

s.KU
.n�1/
i / [ U

.n�1/
i � U

.n/
i for i D 1; 2 and n D 1; : : : ; N :

Since U .N/i � V
.N/
i , it is clear from the definition of V .N/i that KU

.N/
i � Hi .

In view of the proof of [11, Theorem A.9], the heredity of amenability under groupoid
decomposability is a consequence of the following proposition.

Proposition 2.26. Let G be a locally compact groupoid. Then for any compact subset K
of G and for any positive number ", there exists a compact G -order R containing K for
which the following is satisfied:

• for any open subgroupoid H of G containing K;

• for any R-decomposition .V1; V2;H1;H2/ of H ,

for i D 1; 2 there exist continuous functions �i WY ! Œ0; 1� such that

(i) �i is compactly supported in the space of units of Hi for i D 1; 2;

(ii) �1 C �2 6 1;

(iii) �1.x/C �2.x/ D 1 for all x in s.K/ [ r.K/;

(iv) j�i .s.// � �i .r.//j < " for any  in K and i D 1; 2;

(v) Ksupp�i � Hi for i D 1; 2.

Proof. Following the arguments of the proof of [11, Lemma A.12], we can assume without
loss of generality thatKDK�1, u.s.K//�K and u.r.K//�K. Let us pick an integerN
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such that 6
N
< ". Let R be a compact G -order as in Lemma 2.25, let H be an open

subgroupoid of G containingK, let .V1;V2;H1;H2/ be an R-decomposition for H and let

U
.0/
i � U

.1/
i � � � � � U

.N�1/
i � U

.N/
i

be a nested sequence of open and relatively compact subsets of the space of units of Hi

which satisfies the conclusion of Lemma 2.25. For n D 1; : : : ; N and i D 1; 2, let

 
.n/
i W X ! Œ0; 1�

be a continuous function compactly supported in U .n/i and such that  .n/i .x/ D 1 for x in
U
.n�1/
i . Let us set then

 i D
1

N

NX
nD1

 
.n/
i and �i D

 i

max¹ 1 C  2; 1º
:

The two first points are clearly satisfied. For the third one, since s.K/ [ r.K/ � U .0/1 [

U
.0/
1 , we get that  1.x/C  2.x/ > 1 for all x in s.K/ [ r.K/ and hence �1.x/ C
�2.x/ D 1. The last point is a consequence of the inclusions supp �i � U

.N/
i and of the

third point of Lemma 2.25.
Let us prove the fourth point. For  in K and i D 1; 2, let us define

M DM;i D min
®
n such that r./ 2 U .n/i

¯
if r./ 2 U .N/i and M D N C 1 otherwise. We clearly have

•  
.n/
i .r.// D 1 if n > M C 1,

•  
.n/
i .r.// D 0 if n 6 M � 1.

From this we deduce that

N �M

N
6  i .r.// 6

N C 1 �M

N
: (2.1)

Since s.KU
.M/
i / � U

.MC1/
i , we get that s./ is in U .MC1/i . Since r./ … U .M�1/i , we

deduce from the inclusion
s.KU

.M�2/
i / � U

.M�1/
i

that s.�1/ … s.KU
.M�2/
i / and hence �1 … KU

.M�2/
i . Since we have assumed that K D

K�1, then �1 is in K and hence s./ D r.�1/ … U
.M�2/
i . We obtain from that the

inequality
N �M � 1

N
6  i .s.// 6

N C 2 �M

N
: (2.2)

Combining equations (2.1) and (2.2), we obtain that

j i .r.// �  i .s.//j 6
2

N
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for i D 1; 2 and  in K. A straightforward computation leads to

j�i .r.// � �i .s.//j 6
6

N

and hence we get the fourth point.

We are now in position to prove that amenability is closed under D-decomposition.

Proposition 2.27. Let G be a locally compact groupoid provided with a Haar system and
let D be a family of open and amenable subgroupoids of G . Then any D-decomposable
subgroupoid of G is amenable.

Proof. Let H be a D-decomposable subgroupoid of G with space of units Y . Let " be
a positive number and let K and K 0 be respectively compact subsets of Y and H . Let R

be a compact G -order as in Proposition 2.26 with respect to "
6

and to K 0 [ u.K/. Let
.V1; V2;H1;H2/ be an R-decomposition for H with H1 and H2 in D and, let �i W Y !
Œ0;1� be for i D 1;2 continuous compactly supported functions satisfying properties (i)–(v)
of Proposition 2.26. If we set Ki D K \ supp �i and K 0i D K 0 supp�i for i D 1; 2, we
have then

• K 0i � Hi ;

• K D K1 [K2;

• K 0 D K 01 [K
0
2.

Let Yi be for i D 1; 2 the space of units of Hi . The groupoid Hi being amenable, there
exists a function gi in Cc.Hi /

C such that

(i)
R

Hx
i
gid�

x 6 1 for every x in Yi ;

(ii) 1 �
R

Hx
i
gid�

x < " for every x in Ki ;

(iii)
R

H
r./
i

jgi .
�1 0/ � gi .

0/j d�r./. 0/ < "
4

for every  in K 0i .

Let us set then

g D �1 ı r � g1 C �2 ı r � g2:

Then g belongs to Cc.G /C and for any x in Y , we haveZ
Hx

gd�x D

Z
Hx

�1 ı r � g1 d�
x
C

Z
Hx

�2 ı r � g2 d�
x

D �1.x/

Z
Hx

g1 d�
x
C �2.x/

Z
Hx

g1 d�
x

D �1.x/

Z
Hx
1

g1 d�
x
C �2.x/

Z
Hx
2

g1 d�
x

6 �1.x/C �2.x/ 6 1:
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For every x in K, we have

1 �

Z
Hx

g d�x D �1.x/C �2.x/ �

Z
Hx

�1 ı r � g1 d�
x
�

Z
Hx

�2 ı r � g2 d�
x

D �1.x/
�
1 �

Z
Hx

g1 d�
x
�
C �2.x/

�
1 �

Z
Hx

g2 d�
x
�

D �1.x/
�
1 �

Z
Hx
1

g1 d�
x
�
C �2.x/

�
1 �

Z
Hx
2

g2 d�
x
�

< .�1.x/C �2.x//" < ":

For  in K 0, if we set x D r./ and y D s./, we have

j�i .y/ � �i .x/j <
"

4
:

Let us show that Z
Hx

jg.�1 0/ � g. 0/j d�x. 0/ < ":

We haveZ
Hx

jg.�1 0/ � g. 0/j d�x. 0/ DC

Z
Hx

j�1.y/g1.
�1 0/C �2.y/g2.

�1 0/

� �1.x/g1.
0/ � �2.x/g2.

0/j d�x. 0/

6
Z

Hx

j�1.y/g1.
�1 0/ � �1.x/g1.

0/j d�x. 0/

C

Z
Hx

j�2.y/g2.
�1 0/ � �2.x/g2.

0/j d�x. 0/:

Let us give a majoration for each summand of the right-hand side. For i D 1; 2, we haveZ
Hx

j�i .y/gi .
�1 0/ � �i .x/gi .

0/j d�x. 0/

6
Z

Hx

j�i .y/ � �i .x/jgi .
�1 0/ d�x. 0/

C �i .x/

Z
Hx

jgi .
�1 0/ � gi .

0/j d�x. 0/

<
"

4

Z
Hx

gi .
�1 0/ d�x. 0/C �i .x/

Z
Hx

jgi .
�1 0/ � gi .

0/j d�x. 0/

<
"

4

Z
Hy

gi .
0/ d�y. 0/C �i .x/

Z
Hx

jgi .
�1 0/ � gi .

0/j d�x. 0/

<
"

4

Z
Hx
i

gi .
0/ d�x. 0/C �i .x/

Z
Hx

jgi .
�1 0/ � gi .

0/j d�x. 0/

<
"

4
C �i .x/

Z
Hx

jgi .
�1 0/ � gi .

0/j d�x. 0/:
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If x D r./ is in supp�i , then  is in Ksupp�i and hence belongs to Hi . We deduce from
this thatZ

Hx

jgi .
�1 0/ � gi .

0/j d�x. 0/ D

Z
Hx
i

jgi .
�1 0/ � gi .

0/j d�x. 0/ <
"

4
:

Eventually, we obtain thatZ
Hx

j�i .y/gi .
�1 0/ � �i .x/gi .

0/j d�x. 0/ <
"

2

and hence that Z
Hx

jg.�1 0/ � g. 0/j d�x. 0/ < ":

As a consequence, we obtain that amenability is closed under coarse decomposition.

Theorem 2.28. Let G be a locally compact groupoid provided with a Haar system with
finite decomposition complexity with respect to a family of open and amenable subgrou-
poids. Then G is amenable.

3. Reduced crossed product of a groupoid

In this section, we review the construction of the reduced crossed-product for a groupoid
action on a C �-algebra. Some good material for this construction can be found in [17, 18].

3.1. C.X/-algebra

Definition 3.1. Let X be a locally compact space. A C.X/-algebra is a C �-algebra A
together with a morphism ‰WC0.X/! Z.M.A//, where Z.M.A// stands for the center
of the multiplier algebra of A, such that

¹‰.f / � aWf 2 C0.X/ and a 2 Aº

is dense in A.

From now on, for f in C0.X/ and a in A, we will denote ‰.f / � a by f � a and omit
the structure map ˆ.

Let A be a C.X/-algebra and let us consider for x in X the ideal Ix defined as the
closure of

¹f � aWf 2 C0.X/ and a 2 A such that f .x/ D 0º:

We define the fiber of A at x as the quotient C �-algebra Ax
def
D A=Ix . For a in A, we

denote by a.x/ the image of a under the quotient map A! Ax . Then we have the follow-
ing classical result [31, Proposition C.10].
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Lemma 3.2. Let X be a locally compact space and let A be a C.X/-algebra. Then for
any a in A,

(i) the map X ! R, x 7! ka.x/k is upper semi-continuous and vanishing at infinity;

(ii) kak D sup2X ka.x/k.

Let X and Y be locally compact spaces, let A be a C.Y /-algebra and let f WX ! Y

be a continuous map. The algebra C0.X;A/ of continuous functions �WX ! A vanishing
at infinity is then a C.X � Y /-algebra. Consider in C0.X; A/ the ideal If defined as the
closure of

¹h � �W h 2 C0.X � Y /; � 2 C0.X;A/ such that h.x; f .x// D 08x 2 Xº:

The pull back algebra of A by f is by definition f �A def
D C0.X; A/=If . Pointwise mul-

tiplication by C0.X/ on C0.X; A/ induces then a C.X/-algebra structure on f �A. The
fiber of f �A at an element x of X is canonically isomorphic to Af .x/, this isomorphism
being induced by the map

C0.X;A/! Af .x/; � 7! �.x/.f .x//:

Let A and B be two C.X/-algebras. A morphism of C �-algebra ‰WA ! B is called
a morphism of C.X/-algebra if it is in addition C0.X/-linear. It is straightforward to
check that a morphism of C.X/-algebra ‰WA! B induced for every x in X a morphism
‰x WAx ! Bx . Moreover, ‰ is an isomorphism (resp. injective, surjective) if and only
if ‰x is an isomorphism (resp. injective, surjective) for any x in X .

It is clear that if X and Y are locally compact spaces, f WX ! Y is a continuous map
and A and B are C.Y /-algebras, then any morphism of C.Y /-algebras ‰WA! B gives
rise to a morphism of C.X/-algebras

f �‰W f �A! f � B

such that, up to the canonical identifications of the fibers described above,

.f �‰/x D ‰f .x/:

3.2. Groupoid actions on C �-algebras

Groupoid actions generalize to the setting of groupoid the notion of group actions by
automorphisms on a C �-algebra.

Definition 3.3. Let G be a locally compact groupoid with X as space of units and let A
be a C.X/-algebra. An action of G on A is given by a C.G /-isomorphism ˛W s�A! r�A

which satisfies
˛ 0 D ˛ ı ˛

0


for any  and  0 in G such that s./ D r. 0/, where

˛ W As./ ! Ar./
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is the morphism fiberwise induced by ˛ at  in G under the canonical isomorphisms
.s�A/ Š As./ and .r�A/ Š Ar./. A C.X/-algebra equipped with an action of G will
be called a G -algebra.

In what follows, for a G -algebra A with respect to an action ˛W s�A! r�A, we shall
denote for short the morphism induced fiberwise at  in G by

 W As./ 7! Ar./; a 7! ˛ .a/:

Example 3.4. Let G be a locally compact groupoid with space of units X and let Z be
a G -space with respect to the anchor map pZ WZ ! X .

(i) The anchor map provides a C.X/-algebra structure on C.Z/ which is acted upon
by G in the following way. Let us define

s�Z D ¹.; z/ 2 G �Z such that s./ D pZ.z/º

and
r�Z D ¹.; z/ 2 G �Z such that r./ D pZ.z/º:

Then we have canonical isomorphismsC0.s�Z/Š s�.C0.Z// andC0.r�Z/Š r�.C0.Z//
and under these identifications, the homeomorphism

r�Z ! s�Z; .; z/ 7! .; �1z/

gives rise to a C.G /-isomorphism

˛W s�.C0.Z//
Š
�! r�.C0.Z//:

Let  be an element in G . The fibers at  of s�.C0.Z// and r�.C0.Z// are under the
above identifications respectively C0.Zs.// and C0.Zr.// and ˛ induces fiberwise at 
the isomorphism

C0.Zs.//! C0.Zr.//; f 7! .f /;

where .f /.z/ D f .�1 � z/ for any z in Zr./ and any f in C0.Zs.//.

(ii) If A is a C.Z/-algebra, then an action of G ËZ on A is simply an action

˛W s�A! r�A

of G onAwhich isC.Z/-linear, whereA is viewed as aC.X/-algebra by using the anchor
map.

Let G be a locally compact groupoid with space of units X and let A and B be G -
algebras. A C.X/-morphism f WA! B is a homomorphism of G -algebras if

 ı fs./ D fr./ ı 

for every  in G .
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3.3. Reduced crossed products

Let G be a locally compact groupoid with space of units X and let Cc.G / be the set of
complex valued and compactly supported continuous function on G . We assume from now
on that G is provided with a Haar system .�x/x2X (see Definition 2.21). Let L2.G / be the
C0.X/-Hilbert module obtained by completion of Cc.G / with respect to the C0.X/-scalar
product

h�; �0i.x/ D

Z
Gx
x�.�1/�0.�1/ d�x./

for any � and �0 in Cc.G /. An element h of C0.X/ acts on L2.G / by multiplication by
h ı s.

Let A be a G -algebra. Recall that r�A is a C.G /-algebra and that for h in r�A and 
in G , h./ 2Ar./ is the fiber evaluation of h at  under the identification between .r�A/
and Ar./. For h in r�A, the support of h, denoted by supph, is the complementary of the
largest open subset of G on which  7! h./ vanishes. Let us set Cc.X I G ; r�A/ the set
of elements of r�A with compact support. In the same way, we can define Cc.X IG ; s�A/
as the set of elements of s�A with compact support.

If A is a G -algebra, we set

L2.G ; A/ D L2.G /˝C0.X/ A:

Notice that Cc.X IG ; s�A/ embeds inL2.G ;A/ and for any � and �0 in Cc.X IG ; s�A/, the
fiber evaluation of h�;�0i at an element x 2X is the element ofAx uniquely determined by

h�; �0i.x/ D

Z
Gx
��.�1/�0.�1/ d�x./:

Recall that Cc.X IG ; r�A/ is provided with an involutive algebra structure such that

f � g./ D

Z
G r./

f . 0/ 0.g. 0
�1
// d�r./. 0/

and
f �./ D .f .�1/�/

for any f and g in Cc.X IG ; r�A/ and any  in G . Moreover, for any f in Cc.X IG ; r�A/,
the map

Cc.X IG ; s
�A/! Cc.X IG ; s

�A/; � 7! f � �

with
.f � �/./ D

Z
G r./

�1.f . 0//�. 0
�1
/d�r./. 0/

extends to an adjointable endomorphism of L2.G ; A/ and we obtain in this way an invo-
lutive and faithful representation of Cc.X IG ; r�A/. The reduced crossed product algebra
A Ìr G is then the closure of Cc.X I G ; r�A/ in the algebra L.L2.G ; A// of adjointable
endomorphisms of L2.G ; A/.
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It is clear that if A and B are two G -algebras and ‰WA! B is a homomorphism of
G -algebras, then

r�‰.Cc.X IG ; r
�A// � Cc.X IG ; r

�B/

and
Cc.X IG ; r

�A/! Cc.X IG ; r
�B/; f 7! r�‰.f /

extends to a C �-algebra homomorphism ‰G WA Ìr G ! B Ìr G .

Lemma 3.5. Let G be a locally compact groupoid with space of units X provided with
a Haar system. Let V be an open subset and let �WX ! C be a bounded and continuous
function with support in V . Then there exists a bounded operator

ƒs� W A Ìr G ! A Ìr G

such that

(i) ƒs� has operator norm bounded by supx2X j�.x/j;

(ii) ƒs�.h/ D h � � ı s for all h in Cc.X IG ; r�A/.

Proof. Let us set M D supx2X j�.x/j. The map

Cc.G /! Cc.G /; f 7! f � � ı r

extends to an adjointable operator T� WL2.G /! L2.G / such that kT�k 6 M . Then right
multiplication by T� ˝C0.X/ IdA on L.L2.G ; A// preserves the subalgebra A Ìr G and
hence induces a bounded operator ƒs� WA Ìr G ! A Ìr G which satisfies the required
conditions.

Remark 3.6. In the same way, left multiplication by T� ˝C0.X/ IdA on L.L2.G ; A//

preserves A Ìr G and hence induces a bounded operatorƒr� WA Ìr G ! A Ìr G such that

(i) ƒr� has operator norm bounded by M D supx2X j�.x/j;

(ii) ƒr�.h/ D h � � ı r for all h in Cc.X IG ; r�A/;

(iii) ƒs� andƒr�0 commute for any continuous and bounded function �0WX!C with
support in V ;

(iv) ƒr
x�
ıƒs�.h/ D

x� ı r � h � � ı s for all h in Cc.X IG ; r�A/;

(v) ƒr
x�
ıƒs� WA Ìr G ! A Ìr G is positive with operator norm bounded by M 2.

For any open subgroupoid H of G with unit space Y , let A=Y be the closure of

¹f � aWf 2 C0.Y / and a 2 Aº

inA. ThenA=Y is an H -algebra and moreover, the Haar system of G induces by restriction
a Haar system on H . We will denote the crossed product A=Y Ìr H by A Ìr H . Notice
that since H is an open subgroupoid of G , thenAÌr H can be viewed as a C �-subalgebra
of A Ìr G .
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4. Controlled Mayer–Vietoris exact sequence in quantitative
K -theory

The concept of quantitative operatorK-theory was first introduced in [32] for localization
algebras in order to prove the Novikov conjecture for finitely generated groups with finite
asymptotic dimension. It has been then extended in [20] to the setting of C �-algebras
equipped with a filtration arising from a length. Dell’Aiera developed in [6] quantitative
K-theory in the general framework of C �-algebras filtered by abstract coarse structure.

4.1. Review of quantitative K -theory

In this subsection, we review from [6] the main features of quantitative K-theory in the
framework of C �-algebras filtered by an abstract coarse structure.

Definition 4.1. A coarse structure E is an ordered abelian semi-group which is a lattice for
the order. Recall that a lattice is a poset for which every pair .E;E 0/ admits a supremum
E _E 0 and an infimum E ^E 0.

Example 4.2. If G is a locally compact groupoid, then the semi-group .EG ; �/ of G -
orders partially ordered by the inclusion is a coarse structure with supremum and infimum
respectively given by the union and the intersection. The same holds for the set EG ;c of
compact G -orders.

Definition 4.3. Let E be a coarse structure. A E-filtered C �-algebra A is a C �-algebra
equipped with a family .AE /E2E of closed linear subspaces such that

• AE � AE 0 if E 6 E 0;

• AE is stable by involution;

• AE � AE 0 � AECE 0 ;

• the subalgebra
S
E2E AE is dense in A.

Elements of AE for E in E are called elements with E-propagation (less than) E. If A is
unital, we also require that the unit is an element of AE for every E in E .

Let E be a coarse structure and let A and B be two E-filtered C �-algebras. A C �-
algebras homomorphism �WA! B is called E-filtered if �.AE / � BE for any E in E .

Example 4.4. Let G be a locally compact groupoid provided with a Haar system and letA
be a G -algebra. For any G -order R, we define A Ìr R as the closure in A Ìr G of the set
of elements g in Cc.X IG ; r�A/ with support in R. Then

• .A Ìr R/R2EG
provides A Ìr G with a structure of EG -filtered C �-algebra;

• .A Ìr R/R2EG ;c
provides A Ìr G with a structure of EG ;c-filtered C �-algebra;

• if H is an open subgroupoid of G , then A Ìr H is an EG -filtered C �-subalgebra of
A Ìr G , i.e., A Ìr H is filtered by .A Ìr H / \ .A Ìr R/R2EG

;

• in the same way, A Ìr H is an EG ;c-filtered C �-subalgebra of A Ìr G .
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Notice that if A and B are two G -algebras and if �W A ! B is a homomorphism of
G -algebras, then the induced homomorphism �G WA Ìr G ! B Ìr G is an EG -filtered
homomorphism. The same holds for EG ;c .

Let E be a coarse structure and let A be an E-filtered C �-algebra. If A is not unital,
let us denote by AC its unitarization, i.e.,

AC D ¹.x; �/W x 2 A; � 2 Cº

with the product

.x; �/.x0; �0/ D .xx0 C �x0 C �0x; ��0/

for all .x; �/ and .x0; �0/ in AC. Then AC is E-filtered with

ACE D ¹.x; �/W x 2 AE ; � 2 Cº

for any E in E . We also define �AWAC ! C, .x; �/ 7! �.
Let E be a coarse structure and letA be a unital E-filteredC �-algebra. For any positive

number " with " < 1
4

and any element E in E , we call

• an element u in A an "-E-unitary if u is in AE , ku� � u� 1k< " and ku � u� � 1k< ".
The set of "-E-unitaries on A will be denoted by U";E .A/.

• an element p in A an "-E-projection if p is in AE , p D p� and kp2 � pk < ". The
set of "-E-projections on A will be denoted by P";E .A/.

Then " is called the control and E is called the propagation of the "-E-projection or of
the "-E-unitary. Notice that an "-E-unitary is invertible, and that if p is an "-E-projection
inA, then it has a spectral gap around 1

2
and then gives rise by functional calculus to a pro-

jection �0.p/ in A such that kp � �0.p/k < 2". Let us first review from [20, Section 1.2]
the standard properties of "-E-projections and "-E-projections. We have in the context of
E-filtered C �-algebras the analog of [20, Lemma 1.7].

Lemma 4.5. Let E be a coarse structure and let A be a unital E-filtered C �-algebra for
.AE /E2E . Then for any " in .0; 1

4
/ and any E in E the following holds:

(i) If p is an "-E-projection in A and q is a self-adjoint element of AE such that
kp � qk < "�kp2�pk

4
, then q is an "-E-projection. In particular, if p is an "-E-

projection in A and if q is a self-adjoint element in AE such that kp � qk < ",
then q is a 5"-E-projection in A and p and q are connected by a homotopy of
5"-E-projections.

(ii) If A is unital and if u is an "-E-unitary and v is an element of AE such that
ku � vk < "�ku�u�1k

3
, then v is an "-E-unitary. In particular, if u is an "-E-

unitary and v is an element of AE such that ku� vk< ", then v is a 4"-E-unitary
in A and u and v are connected by a homotopy of 4"-E-unitaries.

The next lemma can be proved in the same way as [20, Lemma 1.16].
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Lemma 4.6. Let E be a coarse structure and let A be a unital E-filtered C �-algebra.
Then for any " in .0; 1

12
/ and any E in E the following holds:

(i) Let u and v be "-E-unitaries in A, then diag.u; v/ and diag.uv; 1/ are homotopic
as 3"-2E-unitaries in M2.A/.

(ii) Let u be an "-E-unitary in A, then diag.u; u�/ and I2 are homotopic as 3"-2E-
unitaries in M2.A/.

For any positive integer n, we set U";En .A/DU";E .Mn.A//, P";En .A/D P";E .Mn.A//.
Let us consider the inclusions

P";En .A/ ,! P";EnC1.A/; p 7!

�
p 0

0 0

�
and

U";En .A/ ,! U";EnC1.A/; u 7!

�
u 0

0 1

�
:

This allows us to define

U";E1 .A/ D
[
n2N

U";En .A/ and P";E1 .A/ D
[
n2N

P";En .A/:

For a unital filtered C �-algebra A, we define the following equivalence relations on
P";E1 .A/ �N and on U";E1 .A/:

• If p and q are elements of P";R1 .A/, l and l 0 are positive integers, .p; l/ � .q; l 0/ if
there exist a positive integer k and an element h of P";E1 .AŒ0; 1�/ such that h.0/ D
diag.p; IkCl 0/ and h.1/ D diag.q; IkCl /.

• If u and v are elements of U";E1 .A/, then u � v if there exists an element h of
U3";2E1 .AŒ0; 1�/ such that h.0/ D u and h.1/ D v.

If p is an element of P";E1 .A/ and l is an integer, we denote by Œp; l�";E the equiva-
lence class of .p; l/ modulo � and if u is an element of U";E1 .A/ we denote by Œu�";E its
equivalence class modulo �.

Definition 4.7. Let E be a coarse structure, let A be an E-filtered C �-algebra, let E be an
element of E and " be positive numbers with " < 1

4
. We define

(i) K
";E
0 .A/D P";E1 .A/�N=� ifA is unital andK";E0 .A/D¹Œp; l�";E 2 P";E .AC/�

N=� such that rank�0.�A.p//D lº if A is non-unital (�0.�A.p// being the spec-
tral projection associated to �A.p/);

(ii) K";E1 .A/ D U";E1 .A/=� if A is unital and K";E1 .A/ D U";E1 .AC/=� if not.

We refer to [20, Section 1.3] for the basic properties of quantitative K-theory. In par-
ticular, K";E0 .A/ turns to be an abelian group, where

Œp; l�";E C Œp
0; l 0�";E D Œdiag.p; p0/; l C l 0�";E
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for any Œp; l�";E and Œp0; l 0�";E in K";E0 .A/. According to Corollary 4.6, K";E1 .A/ is
equipped with a structure of abelian group such that

Œu�";E C Œu
0�";E D Œdiag.u; u0/�";E

for any Œu�";E and Œu0�";E in K";E1 .A/.
If E is a coarse structure, we have for any E-filtered C �-algebraA, anyE,E 0 in E and

any positive numbers " and "0 with " 6 "0 < 1
4

and E 6 E 0 natural group homomorphisms
called the structure maps:

• �
";E
0 WK

";E
0 .A/! K0.A/, Œp; l�";E 7! Œ�0.p/� � ŒIl � (where �0.p/ is the spectral pro-

jection associated to p);

• �
";E
1 WK

";E
1 .A/! K1.A/, Œu�";E 7! Œu�;

• �
";E
� D �

";E
0 ˚ �

";E
1 ;

• �
";"0;E;E 0

0 WK
";E
0 .A/! K

"0;E 0

0 .A/, Œp; l�";E 7! Œp; l�"0;E 0 ;

• �
";"0;E;E 0

1 WK
";E
1 .A/! K

"0;E 0

1 .A/, Œu�";E 7! Œu�"0;E 0 ;

• �
";"0;E;E 0

� D �
";"0;E;E 0

0 ˚ �
";"0;E;E 0

1 .

If some of the indices E, E 0 or ", "0 are equal, we shall not repeat them in �";"
0;E;E 0

� .
In order to avoid overloading superscript in the structure maps, we shall write ��;"

0;E 0

� for
�
";"0;E;E 0

� when " and E in the source are implicit, �";E;�� for �";"
0;E;E 0

� when "0 and E 0 in
the range are implicit and ��;�� where " and E in the source and "0 and E 0 in the range are
both implicit.

There is the equivalent of the standard form in the setting of quantitative K-theory
(see [21, Lemmas 1.7 and 1.8]). First, we deal with the even case.

Lemma 4.8. Let E be a coarse structure and let A be a non-unital E-filtered C �-algebra.
Let " be in .0; 1

36
/ and let E be an element in E . Then for any x in K";E0 .A/, there exist

• two integers k and n with k 6 n;

• a 9"-E-projection q in Mn. zA/

such that �A.q/ D diag.Ik ; 0/ and x D Œq; k�9";E in K9";E0 .A/.

We have a similar result in the odd case.

Lemma 4.9. Let E be a coarse structure and let A be a non-unital E-filtered C �-algebra.
Let " be in .0; 1

84
/ and let E be an element in E . Then

(i) for any x in K
";E
1 .A/, there exists a 21"-E-unitary u in Mn.A

C/ such that
�A.u/ D In and �";21";E1 .x/ D Œu�21";E in K21";E1 .A/;

(ii) if u and v are two "-E-unitaries in Mn.A
C/ such that �A.u/ D �A.v/ D In

and Œu�";E D Œv�";E in K";E1 .A/, then there exist an integer k and a homotopy
.wt /t2Œ0;1� of 21"-E-unitaries ofMnCk.A

C/ between diag.u; Ik/ and diag.v; Ik/
such that �A.wt / D InCk for every t in Œ0; 1�.
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Let E be a coarse structure and let �WA! B be a homomorphism of E-filtered C �-
algebras. Then � preserves "-E-projections and "-E-unitaries and hence � induces for
any E in E and any " 2 .0; 1

4
/ a group homomorphism

�";E� W K
";E
� .A/! K";E� .B/:

Moreover, quantitative K-theory is homotopy invariant with respect to homotopies which
preserve E-propagation [20, Lemma 1.26]. There is also a quantitative version of Morita
equivalence [20, Proposition 1.28]. If A is an E-filtered C �-algebra for some coarse struc-
ture E and if H is a separable Hilbert space, then .K.H /˝AE /E2E provides a structure
of E-filtered algebra for K.H /˝ A.

Proposition 4.10. Let E be a coarse structure, let A be an E-filtered algebra and let H

be a separable Hilbert space, then the homomorphism

A! K.H /˝ A; a 7!

0@a 0
: : :

1A
induces a (Z2-graded) group isomorphism (the Morita equivalence)

M
";E
A W K

";E
� .A/! K";E� .K.H /˝ A/

for any E in E and any " 2 .0; 1
4
/.

The following observation establishes a connection between quantitativeK-theory and
classical K-theory (see [20, Remark 1.17]).

Proposition 4.11. Let E be a coarse structure.

(i) Let A be an E-filtered C �-algebra. For any positive " < 1
4

and any element y of
K�.A/, there exist E in E and an element x of K";R� .A/ such that �";E� .x/ D y.

(ii) There exists a positive number �0 > 1 such that for any E-filtered C �-algebra A,
anyE in E , any " in .0; 1

4�0
/ and any element x ofK";E� .A/ for which �";E� .x/D 0

in K�.A/, then there exists E 0 in E with E 0 > E such that �";�0";E;E
0

� .x/ D 0 in
K
�0";E

0

� .A/.

Apply to G -orders of a locally compact groupoid provided with a Haar system, we
deduce the following result.

Lemma 4.12. Let G be a locally compact groupoid and let A be a G -algebra. Then

(i) for every " in .0; 1
4
/ and any y in K�.A Ìr G /, there exist a compact G -order R

and an element x in K";R� .A Ìr G / such that �";R� .x/ D y;

(ii) there exists �0 > 1 such that for any " in .0; 1
4�0
/, any G -order R and any x in

K
";R
� .A Ìr G / satisfying �";R� .x/ D 0 in K�.A Ìr G /, there exist a G -order R0

with R � R0 such that �";�0";R;R
0

� .x/ D 0 in K�0";R
0

� .A Ìr G /. The constant �0
depends neither on A nor on G . Moreover, if R is compact, then R0 can be chosen
compact.
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Quantitative K-theory inherits many features from K-theory. In particular, there is
a quantitative version of Bott periodicity and of the six-term exact sequence. As we shall
not use this material in the paper, we will not go further on this point. More details can be
found in [20, Sections 3 and 4].

4.2. Controlled Mayer–Vietoris pair

The concept of controlled Mayer–Vietoris pair was introduced in [21] to streamline the
“cut-and-pasting” technology developed by Yu in [32] to prove the Novikov conjecture
for groups with finite asymptotic dimension. It was then extended in [6] to the gen-
eral setting of C �-algebras filtered by a coarse structure. It gives rise to a controlled
exact sequence that allows to compute the K-theory by letting the propagation go to
infinity.

Definition 4.13. Let E be a coarse structure, let A be an E-filtered C �-algebra, let E be
an element of E and let � be a closed linear subspace of AE . Then a sub-C �-algebra B
of A is called an E-controlled �-neighborhood-C �-algebra if

• B is filtered by .B \ AE 0/E 02E ;

• �C A5E ��C� � A5E C A5E �� � A5E � B .

Definition 4.14. Let E be a coarse structure, let A be an E-filtered C �-algebra, let E be
an element of E and let c be a positive number. A completely coercive decomposition
pair of order E for A is a pair .�1; �2/ of closed linear subspaces of AE such that for
any E 0 in E with E 0 6 E, for any integer n and for any x in Mn.AE 0/, there exists x1
in Mn.�1 \ AE 0/ and x2 in Mn.�2 \ AE 0/, both with norm at most ckxk and such that
x D x1 C x2. The positive number c is called the coercivity of .�1; �2/.

Definition 4.15. Let S1 and S2 be two subsets of a C �-algebra A. The pair .S1; S2/ is
said to have complete intersection approximation property (CIA) if there exists c > 0 such
that for any positive number ", any integer n, any x 2Mn.S1/ and any y 2Mn.S2/ with
kx � yk < ", there exists z 2Mn.S1 \ S2/ satisfying

kz � xk < c"; kz � yk < c":

The positive number c is called the coercivity of the pair .S1; S2/.

Definition 4.16. Let E be a coarse structure, let A be an E-filtered C �-algebra and let E
be an element in E . An E-controlled Mayer–Vietoris pair for A is a quadruple .�1; �2;
A�1 ; A�2/ such that for some positive number c the following holds:

(i) .�1; �2/ is a completely coercive decomposition pair for A of order E with
coercivity c;

(ii) A�i is an E-controlled �i -neighborhood-C �-algebra for i D 1; 2;

(iii) the pair .A�1;E 0 ; A�2;E 0/ has the CIA property with coercivity c for any E 0

in E .
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The positive number c is called the coercivity of the E-controlled Mayer–Vietoris pair
.�1; �2; A�1 ; A�2/.

Remark 4.17. In the above definition,

(i) .�1 \ AE 0 ; �2 \ AE 0 ; A�1 ; A�2/ is an E 0-controlled Mayer–Vietoris pair for
any E 0 in E with E 0 6 E with same coercivity as .�1; �2; A�1 ; A�2/.

(ii) A�1 \ A�2 is E-filtered by .A�1;E \ A�2;E /E2E .

(iii) If A is a unital, we will view AC�1 the unitarization of A�1 as A�1 CC � 1 � A
and similarly for A�2 and A�1 \ A�2 .

For the purpose of rescaling the control and the propagation of an "-E-projection or
of an "-E-unitary, we introduce the following concept of E-control pair.

Definition 4.18. A control pair is a pair .�; h/, where

• � is a positive number with � > 1;

• hW .0; 1
4�
/! N n ¹0º, " 7! h" is a non-increasing map.

The set of control pairs is equipped with a partial order: .�; h/ 6 .�0; h0/ if � 6 �0 and
h" 6 h0" for all " in .0; 1

4�0
/.

The next proposition is the fundamental point to state the existence of Mayer–Vietoris
controlled exact sequence (see [21, Propositions 2.11 and 2.12]).

Proposition 4.19. For every positive number c, there exists a control pair .˛; l/ such that
the following holds.

Let E be a coarse structure, let A be a unital E-filtered C �-algebra, let E be an
element in E , let .�1; �2; A�1 ; A�2/ be controlled Mayer–Vietoris pair for A of order E
and coercivity c.

Then for any " in .0; 1
4˛
/ and any "-E-unitary u in A homotopic to 1, there exist

a positive integer k and two ˛"-l"E-unitaries w1 and w2 in Mk.A/ such that

• wi � Ik is an element of the matrix algebra Mk.A�i / for i D 1; 2;

• for i D 1; 2, there exists a homotopy .wi;t /t2Œ0;1� of ˛"-l"E-unitaries between 1 and
wi such that wi;t � Ik 2Mk.A�i / for all t in Œ0; 1�;

• kdiag.u; Ik�1/ � w1w2k < ˛".

If A is a non-unital E-filtered C �-algebra, then the same result holds for u in AC such
that u � 1 is in A and u is homotopic to 1 as an "-E-unitary in AC.

4.3. Applications to coercive decompositions of groupoids

In this subsection, we show that coercive decompositions of groupoids give rise to con-
trolled Mayer–Vietoris pairs. In what follows, G is a locally compact groupoid equipped
with a Haar system and A is a G -algebra in the sense of Definition 3.3.

For any G -order R and any open subset V of the unit space of G , we define A Ìr RV

as the closure of the set of elements h in Cc.X IG ; r�A/ with support in RV .
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Lemma 4.20. Let G be a locally compact groupoid with unit space X provided with a
Haar system and let A be a G -algebra. Let V1 and V2 be open subsets of X with X D
V1 [ V2 and such that there exists a partition of unity subordinated to .V1; V2/. Then
.A Ìr RV1 ; A Ìr RV2/ is for any G -order R a completely coercive R-decomposition
pair for A Ìr G with coercivity 1.

Proof. Let .�1; �2/ be a partition of unity for X subordinated to .V1; V2/. Let us consider
the bounded operator

ƒs�i W A Ìr G ! A Ìr G ; i D 1; 2

of Lemma 3.5 and for any x in A Ìr R, let us set xi D ƒs�i .x/. According to Lemma 3.5,
we have x D x1 C x2, kxik 6 1 and xi lies in A Ìr RVi for i D 1; 2. Replacing A by
Mn.A/, we get the complete coercivity.

Notice that if R0 is a G -order with R � R0 and V is an open subset of the unit space
of G , then A Ìr RV � A Ìr R0V .

Lemma 4.21. Let G be a locally compact groupoid with unit space X provided with
a Haar system. Let R and R0 be G -orders such that R0 �R and let V be an open subset
of X . Then

A Ìr R0V D A Ìr RV \ A Ìr R0:

Proof. We clearly have A Ìr R0V � A Ìr RV \ A Ìr R0. Conversely, let x be an ele-
ment in A Ìr RV \A Ìr R0. Then there exist two sequences .hn/n2N and .h0n/n2N in
Cc.X I G ; r

�A/ with support respectively in RV and in R0 converging to x. Let us set
Kn D s.supp hn/ for any integer n and let �nWX ! Œ0; 1� be continuous compactly sup-
ported in V and such that �n.x/ D 1 for any x in Kn. According to Lemma 3.5, we
see that

.hn � h
0
n � �n ı s/n2N D ..hn � h

0
n/ � �n ı s/n2N D .ƒ

s
�n
.hn � h

0
n//n2N

converges to zero in A Ìr G and hence .h0n � �n ı s/n2N is a sequence of elements in
Cc.X IG ; r

�A/ with support in R0V converging to x.

As a consequence, we obtain the following corollary.

Corollary 4.22. Under the assumption of Lemma 4.20, then .AÌr RV1 ;AÌr RV2/ is for
any G -order R a completely coercive R-decomposition pair for AÌr G with coercivity 1.

Proof. Since for every integer n and for G -order R0 such that R0 � R, we have

..A Ìr R0/˝Mn.C// \ ..A Ìr RVi /˝Mn.C// D .A˝Mn.C// Ìr R0Vi

for i D 1; 2, the result is a consequence of Lemma 4.20.
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Lemma 4.23. Let G be a locally compact groupoid provided with a Haar system and
let H be a relatively clopen subgroupoid of G with unit space Y . Then for any compactly
supported continuous function �W Y ! C and for any G -algebra A, there exists a com-
pletely positive continuous linear map ‡� WA Ìr G ! A Ìr H such that

(i) ‡�.f /D � ı r � f=H ı x� ı s; for any f in Cc.X IG ; r�A/, where f=H WH ! C
is the restriction of f to H .

(ii) ‡� is completely bounded in norm by supy2Y j�.y/j
2.

(iii) ‡� maps A Ìr R to A Ìr R=H for any G -order R.

Proof. Let us denote by � D .�x/x2X the Haar system for G . Then the restriction of �
to H is a Haar system for H that we shall denote by �=H D .�

y

=H
/y2Y . Using the inclusion

Cc.H / ,! Cc.G /, we see that L2.H / can be viewed as a C0.X/-Hilbert submodule of
L2.G / and therefore L2.H ; A/ is a right A-Hilbert submodule of L2.G ; A/. Since H is
clopen in G Y , we get that � ı r WH ! C extends to a continuous function  W G ! C
defined by  ./ D � ı r./ if  is in H and  ./ D 0 else. We have supp � H and
j ./j 6 M for any  in H with M D supy2Y j�.y/j. Define T WL2.G /! L2.G / as
the unique bounded operator extending the map

Cc.G /! Cc.G /; � 7!  �:

Then T has operator norm bounded by M and Im T � L
2.H /. In consequence T ˝

IdA maps L2.G ; A/ to L2.H ; A/. Consider the map

‡� W A Ìr G ! L.L2.H ; A//; x 7! T x � x � T :

Since T � D T x , we deduce that ‡� is a positive operator with norm bounded by M 2. By
replacing the C �-algebra A in the above formula by Mn.A/ for any positive integer n,
we obtain the complete positivity and boundedness statements. Moreover, for any f in
Cc.X IG ; r

�A/, any � in Cc.Y IH ; s�A=Y / and any  in H , we have

.‡�.f / � �/./ D x ./

Z
G r./

�1.f . 0// . 0�1/�. 0�1/ d�r./. 0/

D x ./

Z
H r./

�1.f . 0// . 0�1/�. 0�1/ d�
r./

=H
. 0/

D x� ı r./

Z
H r./

�1.f . 0//� ı s. 0/�. 0�1/ d�
r./

=H
. 0/

D

Z
H r./

�1.g. 0//�. 0�1/ d�
r./

=H
. 0/

with
g./ D x� ı r./ � � ı s./ � f ./ D x ./ �  .�1/ � f ./ (4.1)

for any  in H . Moreover, g has support in supp \ suppf \ supp�1 . Since supp is
closed in G and contained in H , we deduce that g is in Cc.Y IH ; r�A/. Hence ‡� maps
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Cc.X IG ; r
�A/ to A Ìr H and by continuity maps A Ìr G to A Ìr H . It is then clear that

‡� satisfies the required conditions.

Remark 4.24. (i) According to equation (4.1) and since H is open in G , we see that
if f is in Cc.X IG ; r�A/, then ‡�.f / is supported in H \ suppf .

(ii) LetB be anyC �-algebra and let us consider the spatial tensor productAÌrG˝B .
Since ‡� is completely positive and completely bounded, we deduce that there is
a well-defined positive and bounded map (with the same bound as the complete
bound of ‡�)

‡� ˝ IdB W A Ìr G ˝ B ! A Ìr G ˝ B

defined on elementary tensor by

.‡� ˝ IdB/.x ˝ b/ D ‡�.x/˝ b

for any x in A Ìr G and any b in B .

Corollary 4.25. Let H be a relatively clopen subgroupoid of a locally compact grou-
poid G , let R be a G -order and let V be an open subset of X . Then we have

.A Ìr H / \ .A Ìr R/ D A Ìr R=H

for any G -algebra A.

Proof. We clearly have A Ìr R=H � .A Ìr H / \ .A Ìr R/. Conversely, let x be an
element in .A Ìr H / \ .A Ìr R/. Then there exist two sequences .hn/n2N and .h0n/n2N

in Cc.X I G ; r�A/ with support respectively in H and in R converging to x. Let us set
Kn D s.supp hn/ [ r.supp hn/ for any integer n and let �nWX ! Œ0; 1� be a continuous
function compactly supported in the unit space of H and such that �n.x/ D 1 for any x
in Kn. According to Lemma 4.23, we see that

.hn � ‡�n.h
0
n//n2N D .‡�n.hn � h

0
n//n2N

converges to zero in A Ìr G . In view of the first point of Remark 4.24, we deduce that
‡�n.h

0
n/ has compact support in R\H DR=H , and thus .‡�n.h

0
n//n2N is a sequence in

Cc.X IG ; r
�A/with support in R=H converging to x and hence x belongs toAÌrR=H .

Corollary 4.26. Let G be a locally compact groupoid with unit space X provided with
a Haar system. Let H1 and H2 be relatively clopen subgroupoids of G . Then the following
holds:

(i) A Ìr .H1 \H2/ D .A Ìr H1/ \ .A Ìr H2/;

(ii) A Ìr R=H1\H2
D .A Ìr R=H1

/ \ .A Ìr R=H2
/ for any G -order R.

Proof. Let us prove the first point. We clearly have

A Ìr .H1 \H2/ � .A Ìr H1/ \ .A Ìr H2/:
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Conversely, let x be an element in .AÌr H1/\ .AÌr H2/. Then there exist two sequences
.hn/n2N and .h0n/n2N in Cc.X IG ; r�A/ with support respectively in H1 and H2 converg-
ing to x. Let us setKn D s.supphn/[ r.supphn/ for any integer n and let �nWX ! Œ0; 1�

be a continuous function compactly supported in the unit space of H1 and such that
�n.x/ D 1 for any x in Kn. According to Lemma 4.23, we see that

.hn � ‡�n.h
0
n//n2N D .‡�n.hn � h

0
n//n2N

converges to zero in A Ìr G . In view of the first point of Remark 4.24, we deduce that
‡�n.h

0
n/ has compact support in H1 \H2, and thus that .‡�n.h

0
n//n2N is a sequence in

Cc.X I G ; r
�A/ with support in H1 \H2 converging to x and hence x belongs to A Ìr

.H1 \H2/. To prove the second point, let us observe that according to Corollary 4.25 we
have

A Ìr R=H1\H2
D A Ìr R \ A Ìr .H1 \H2/:

The result is then a consequence of the first point.

Remark 4.27. The proof of the first point only requires H1 to be relatively clopen.

Theorem 4.28. Let G be a locally compact groupoid provided with a Haar system, let A
be a G -algebra and let R and R0 be G -orders such that R�6 � R0. Assume that .V1; V2;
H1;H2/ is a coercive R0-decomposition for G . Then

.A Ìr RV1 ; A Ìr RV2 ; A Ìr H1; A Ìr H2/

is an R-controlled Mayer–Vietoris pair with coercivity 2.

Proof. According to Corollary 4.22, .A Ìr RV1 ; A Ìr RV2/ is a completely coercive R-
decomposition pair for A Ìr G with coercivity 1. Let us prove that A Ìr Hi is for i D 1; 2
an R-controlled A Ìr RVi -neighborhood-C �-algebra. By Lemma 4.25, we see that the
C �-algebra A Ìr Hi is filtered by

..A Ìr Hi / \ .A Ìr R//R2EG
D .A Ìr R=Hi

/R2EG
:

Since R�6 � R0, R0Vi � Hi and Hi is a subgroupoid of G , we see that

• RVi � Hi ;

• R�5 �RVi � Hi ;

• RVi �R
�5 � Hi ;

• R�5 �RVi �R
�5 � Hi

and hence

• A Ìr RVi � A Ìr Hi ;

• A Ìr RVi � A Ìr R�5 � A Ìr Hi ;

• A Ìr R�5 � A Ìr RVi � A Ìr Hi ;

• A Ìr R�5 � A Ìr RVi � A Ìr R�5 � A Ìr Hi .

This proves that A Ìr Hi is an R-controlled A Ìr RVi -neighborhood-C �-algebra.
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Let us prove that .A Ìr H1; A Ìr H2/ satisfies the CIA property with coercivity 2.
Up to replacing A by A˝Mn.C/, it is enough to show that for every positive number
and any x1 in A Ìr R=H1

and x2 in A Ìr R=H2
such that kx1 � x2k < ", there exists z in

.AÌr R=H1
/\ .AÌr R=H2

/ such that kz� x1k<". Notice that in view of Corollary 4.26,
we have

.A Ìr R=H1
/ \ .A Ìr R=H2

/ D A Ìr R=.H1\H2/:

Set ˛ D " � kx1 � x2k and let h be an element in Cc.X I G ; r�A/ with support included
in R=H1

and such that kx1 � hk < ˛
2

. Let �W G ! Œ0; 1� be a continuous function com-
pactly supported in the space of unit of H1 and such that �.x/D 1 for all x in r.supph/[
s.supph/. According to Lemma 4.23, we see that‡�.h/D h,‡�.x2/ belongs toA Ìr R=H1

and

kx1 � ‡�.x2/k < kx1 � hk C kh � ‡�.x2/k

<
˛

2
C k‡�.h/ � ‡�.x2/k <

˛

2
C kh � x2k

<
˛

2
C kh � x1k C kx1 � x2k <

˛

2
C
˛

2
C kx1 � x2k < ":

But x2 is a limit of elements of Cc.X IG ; r�A/ with support in R=H2
and hence according

to the first point of Remark 4.24, ‡�.x2/ is also a limit of element of Cc.G ; r�A/ with
support in R=H2

and therefore ‡�.x2/ belongs to A Ìr R=H2
.

Remark 4.29. In view of the second point of Remark 4.24, we can show in the same way
that under assumptions of Lemma 4.20, then .A Ìr RV1 ; A Ìr RV2 ; A Ìr H1; A Ìr H2/

is an R-controlled nuclear Mayer–Vietoris pair in the sense of [21, Definition 4.8] for
A Ìr G with coercivity 2.

4.4. The Mayer–Vietoris controlled exact sequence

An R-controlled Mayer–Vietoris pair gives rise to a controlled six-term exact sequence
that computes the quantitative K-theory up to the order of the pair and up to rescaling by
a control pair. In view of Theorem 4.28, it turns out that this controlled Mayer–Vietoris
six-term exact sequence is a powerful tool for K-theory computations in the setting of
coercive decompositions for groupoids.

Notation 4.30. Let E be a coarse structure, let A be an E-filtered C �-algebra, let E be an
element in E and let .�1; �2; A�1 ; A�2/ be an E-controlled Mayer–Vietoris pair for A.
We denote by

• |�1 WA�1 ! A;

• |�2 WA�2 ! A;

• |�1;�2 WA�1 \ A�2 ! A�1 ;

• |�2;�1 WA�1 \ A�2 ! A�2

the obvious inclusion maps.
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Proposition 4.31. For every positive number c, there exists a control pair .˛; l/ such that
for any coarse structure E , any E-filteredC �-algebraA, anyE in E and anyE-controlled
Mayer–Vietoris pair

.�1; �2; A�1 ; A�2/

for A with coercivity c, the following holds:
For any " in .0; 1

4˛
/, any E 0 in E such that l" � E 0 6 E, any y1 in K";E

0

� .A�1/ and
any y2 in K";E

0

� .A�2/ such that

|
";E 0

�1;�
.y1/ D |

";E 0

�2;�
.y2/ in K";E

0

� .A/;

there exists an element x in K˛";l"E
0

� .A�1 \ A�2/ such that

|
˛";l"E

0

�1;�2;�
.x/ D ��;˛";l"E

0

� .y1/ in K˛";l"E
0

� .A�1/;

|
˛";l"E

0

�2;�1;�
.x/ D ��;˛";l"E

0

� .y2/ in K˛";l"E
0

� .A�2/:

In other words, this means that the composition

K
�;�
� .A�1 \ A�2/

.|
�;�
�1;�2;�

;|
�;�
�2;�1;�

/
// K�;�� .A�1/˚K

�;�
� .A�2/

.|
�;�
�1;�
�|
�;�
�2;�

/
// K�;�� .A/

is “exact at order E, up to rescaling by .˛; l/” (see [21, Proposition 3.2] for a proof of this
proposition). We shall see later on that this composition fits at order E into a controlled
six-term exact sequence (called in [3, Theorem 8.4] E-controlled Mayer–Vietoris exact
sequence).

We introduce first the quantitative boundary map of this controlled Mayer–Vietoris
exact sequence (see [21, Lemma 3.3]).

Lemma 4.32. For every positive number c, there exists a control pair .�; k/ such that the
following holds:

Let E be a coarse structure, let A be a unital E-filtered C �-algebra, let E be an
element in E and let .�1; �2; A�1 ; A�2/ be an E-controlled Mayer–Vietoris pair for A
with coercivity c. Let E 0 be an element in E such that 2 � E 0 6 E, let " be in .0; 1

4�3
/, let

m and n be integers and let u be in U ";E
0

n .A/, let v be in U ";E
0

m .A/ and let w1; w2 be
"-E 0-unitaries in MnCm.A/ such that

• wi � InCm is an element in the matrix algebra MnCm.A�i / for i D 1; 2;

• kdiag.u; v/ � w1w2k < ".

Then,

(i) there exists a �"-k"E 0-projection q in MnCm.A/ such that

• q � diag.In; 0/ is an element in the matrix algebra MnCm.A�1 \ A�2/;

• kq � w�1 diag.In; 0/w1k < �";

• kq � w2 diag.In; 0/w�2k < �".
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(ii) if q and q0 are two �"-k"E 0-projections in MnCm.A/ that satisfy the first point,
then

Œq; n��2";k"E 0 D Œq
0; n��2";k"E 0

in K�
2";k"E

0

0 .A�1 \ A�2/.

(iii) Let .w1; w2/ and .w01; w
0
2/ be two pairs of "-E 0-unitaries in M ";E 0

nCm.A/ satis-
fying the assumption of the lemma and let q and q0 be �"-k" � E 0-projections
in MnCm.A/ that satisfy the first point relatively to respectively .w1; w2/ and
.w01; w

0
2/, then

Œq; n��3";2k"E 0 D Œq
0; n��3";2k"E 0

in K�
3";2k"E

0

0 .A�1 \ A�2/.

Remark 4.33. We have a similar statement in the non-unital case with u in U ";E
0

n .AC/

and v in U ";E
0

m .AC/ such that u � In and v � Im have coefficients in A.

We recall now the definition of the quantitative boundary map associated to a con-
trolled Mayer–Vietoris pair. Let E be a coarse structure, let A be an E-filtered C �-algebra
and let .�1; �2; A�1 ; A�2/ be an E-controlled Mayer–Vietoris pair for A with coerciv-
ity c. Assume first that A is unital.

Let .˛; l/ be a control pair as is Proposition 4.19. For any " in .0; 1
4˛
/, any E 0 in E

such that 2E 0 6 E and any "-E 0-unitary u in Mn.A/, let v be an "-E 0-unitary in some
Mm.A/ such that diag.u; v/ is homotopic to InCm as a 3"-2E 0-unitary in MnCm.A/, we
can take for instance v D u� (see Lemma 4.6). According to Proposition 4.19 and up to
replacing v by diag.v; Ik/ for some integer k, there exist two 3˛"-2l3"E 0-unitaries w1
and w2 in MnCm.A/ such that

• wi � InCm is an element in the matrix algebra MnCm.A�i / for i D 1; 2;

• for i D 1; 2, there exists a homotopy .wi;t /t2Œ0;1� of 3˛"-2l3"E 0-unitaries between 1
and wi such that wi;t � InCm is an element in the matrix algebraMnCm.A�i / for all t
in Œ0; 1�.

• kdiag.u; v/ � w1w2k < 3˛".

Let .�; k/ be the control pair of Lemma 4.32 (recall that .�; k/ depends only on the
coercivity c). Then if " is in .0; 1

12˛�3
/, there exists a 3˛�"-2l3"k3˛"E 0-projection q in

MnCm.A/ such that

• q � diag.In; 0/ is an element in the matrix algebra

MnCm.A�1\A�2 /I

• kq � w�1 diag.In; 0/w1k < 3˛�";

• kq � w2 diag.In; 0/w�2k < 3˛�".

In view of the second and the third points of Lemma 4.32, the class Œq; n�3˛�3";4l3"k3˛"E 0
in

K
3˛�3";4l3"k3˛"E

0

0 .A�1 \ A�2/
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does not depend on the choice of w1, w2 or q. Set then ˛c D 3˛�3 and

kc W
�
0;

1

4˛c

�
! N n ¹0º; " 7! 4l3"k3˛"

and define @";E
0

�1;�2;1
.Œu�";E 0/ D Œq; n�˛c";kcE 0 . Then for any " in .0; 1

4˛c
/ and any E 0 in E

such that kc;"E 0 6 E, the morphism

@
";E 0

�1;�2;1
W K

";E 0

1 .A/! K
˛c";kcE

0

0 .A�1 \ A�2/

is well defined.
In the non-unital case @";s�1;�2;1 is defined similarly by noticing that in view of Lem-

ma 4.9 and up to rescaling ", every element x in K";E1 .A/ is the class of an "-E-unitary u
in someMn.A

C/ such that u� In has coefficients in A. It is straightforward to check that
@
�;�
�1;�2;1

is compatible with the structure morphisms, i.e.,

�
�;˛c"

00;kc;"00E
00

� ı @
";E 0

�1;�2;1
D @

"00;E 00

�1;�2;1
ı �"

0;E 0;�
�

for any "0 and "00 in .0; 1
4˛c
/ and any E 0 and E 00 in E with E 0 6 E 00 and kc;"0E 0 6

kc;"00E
00 6 E.

In the even case, the quantitative boundary map associated to a controlled Mayer–
Vietoris pair is defined by using controlled Bott periodicity [6, Section 2]. Up to rescal-
ing the control pair .˛c ; kc/, we obtain for any " in .0; 1

4˛c
/ and any E 0 in E such that

kc;"E
0 6 E, the morphism

@
";E 0

�1;�2;0
WK

";E 0

0 .A/! K
˛c";kc;"E

0

1 .A�1 \ A�2/:

We set then

@
";E 0

�1;�2;�
D @

";E 0

�1;�2;0
˚ @

";E 0

�1;�2;1
:

Then
@
";E 0

�1;�2;�
W K";E

0

� .A/! K
˛c";kcE

0

�C1 .A�1 \ A�2/

is a morphism of degree 1 compatible with the structure morphisms called the "-E 0-
quantitative Mayer–Vietoris boundary map.

Notice that the quantitative boundary map associated to an E-controlled Mayer–Vie-
toris pair is natural in the following sense: let E be a coarse structure, let A and B be
E-filtered C �-algebras, let E be an element in E , let .�1; �2; A�1 ; A�2/ and .�01; �

0
2;

B�01 ; B�
0
2
/ be respectively E-controlled Mayer–Vietoris pairs for A and B with coer-

civity c and let f W A ! B be a homomorphism of E-filtered C �-algebras such that
f .�1/ � �

0
1; f .�2/ � �

0
2; f .A�1/ � B�01 andf .A�2/ � B�02 . Then we have

f
˛c";kc;"E

0

=A�1\A�2 ;�
ı @

";E 0

�1;�2;�
D @

";E 0

�01;�
0
2;�
ı f ";E

0

� (4.2)
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for any " in .0; 1
4˛c
/ and any E 0 in E with kc;"E 0 6 E, where

f=A�1\A�2 W A�1 \ A�2 ! B�01 \ B�
0
2

is the restriction of f to A�1 \ A�2 .
We now investigate the controlled exactness at the domain for the quantitative bound-

ary map associated to a controlled Mayer–Vietoris pair. We start with the following lemma
which will play a key role in the proof of the main theorem (see [21, Lemma 3.5] for
a proof).

Lemma 4.34. There exists a control pair .�; l/ such that the following statement is satis-
fied:

• for any coarse structure E , any unital E-filtered C �-algebra A and any subalge-
bras A1 and A2 of A such that A1; A2 and A1 \ A2 are filtered by .A1 \ AE /E2E ,
.A2 \ AE /E2E and .A1 \ A2 \ AE /E2E , respectively;

• for any positive number " with " < 1
4�

, any E in E , any integers n and m and any
"-E-unitaries u1 in Mn.A/ and u2 in Mm.A/;

• for any "-E-unitaries v1 and v2 in MnCm.A
C
1 / and MnCm.A

C
2 /, respectively, such

that

– kdiag.u1; u2/ � v1v2k < ";

– there exists an "-E-projection q in MnCm.A/ such that q � diag.In; 0/ is in
MnCm.A1 \A2/, kq � v�1 diag.In; 0/v1k< " and Œq;n�";E D 0 inK";E0 .A1 \A2/.

Then there exist an integer k and �"-l"E-unitaries w1 and w2 respectively in MnCk.A
C
1 /

and MnCk.A
C
2 / such that

kdiag.u1; Ik/ � diag.w1w2/k < �":

Moreover, if vi � InCk lies inMnCk.Ai / for i D 1; 2, then w1 and w2 can be chosen such
that wi � InCk lies in MnCm.Ai / for i D 1; 2.

As a consequence, we deduce the controlled exactness at the domain for the quantita-
tive boundary map associated to a controlled Mayer–Vietoris pair (see [21, Corollary 3.6]).
Moreover, this controlled exactness is persistent at any order in the sense that the vanish-
ing may occur (up to compose with the structure maps) at any order (and not just at the
order of the Mayer–Vietoris pair).

Corollary 4.35. For any positive number c, there exists a control pair .�; l/ such that the
following statement is satisfied:

• for any coarse structure E and any E-filtered C �-algebra A;

• for any E in E and any E-controlled Mayer–Vietoris pair .�1; �2; A�1 ; A�2/ for A
with coercivity c;

• for any positive numbers "0 and "00 with 0 < ˛c"0 6 "00 < 1
4�

and any E 0 and E 00 in E

with kc;"0E 0 6 E and kc;"0E 0 6 E 00.
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Then for any y in K";E
0

� .A/ such that

��;"
00;E 00

� ı @
"0;E 0

�1;�2;�
.y/ D 0

in K"
00;E 00

�C1 .A�1 \ A�2/, there exist x1 in K�"
00;l"00E

00

� .A�1/ and x2 in K�"
00;l"00E

00

� .A�2/

such that
�
�;�"00;l"00E

00

� .y/ D |
�"00;l"00E

00

�1;�
.x1/ � |

�"00;l"00E
00

�2;�
.x2/:

We now investigate the controlled exactness at the codomain of the quantitative bound-
ary map associated to a controlled Mayer–Vietoris pair. We start with the following lemma
which will play a key role in the proof of the main theorem (see [21, Lemma 3.8] for the
proof).

Lemma 4.36. There exists a control pair .�; h/ such that the following holds:

• Let E be a coarse structure, let A be a unital E-filtered C �-algebra and let A1 and
A2 be subalgebras of A such that A1, A2 and A1 \A2 are filtered by .A1 \AE /E2E ,
.A2 \ AE /E2E and .A1 \ A2 \ AE /E2E , respectively;

• let " be in .0; 1
4�
/ and let E be in E;

• let n and N be positive integers such that n 6 N , and let p be an "-E-projection in
MN ..A1 \ A2/

C/ such that �A1\A2.p/ D diag.In; 0/.

Assume that

• p is homotopic to diag.In; 0/ as an "-E-projection in MN .A
C
1 /;

• p is homotopic to diag.In; 0/ as an "-E-projection in MN .A
C
2 /.

Then there exist an integer N 0 with N 0 > N and four �"-h"E-unitaries w1 and w2 in
MN 0.A/, u in Mn.A/ and v in MN 0�n.A/ such that

• wi � IN 0 is an element in MN 0.Ai / for i D 1; 2;

• kw�1 diag.In; 0/w1 � diag.p; 0/k < �" and kw2 diag.In; 0/w�2 � diag.p; 0/k < �".

• for i D 1; 2, wi is connected to IN 0 by a homotopy of �"-h"E-unitaries .wi;t /t2Œ0;1�
in MN 0.A/ such that wi;t � IN 0 is in MN 0.Ai / for all t in Œ0; 1�.

• kdiag.u; v/ � w1w2k < �".

As a consequence, we deduce the controlled exactness at the codomain for the quan-
titative boundary map associated to a controlled Mayer–Vietoris pair (see [21, Proposi-
tion 3.9]).

Proposition 4.37. For every positive number c, there exists a control pair .˛; l/ such that
for any coarse structure E , any E-filteredC �-algebraA, anyE in E and anyE-controlled
Mayer–Vietoris pair .�1; �2; A�1 ; A�2/ for A with coercivity c, the following holds:
for any " in .0; 1

4�˛c
/ and any E 0 in E with kc;�"l"E 0 6 E, any y in K";E

0

� .A�1 \ A�2/

such that
|
";E 0

�1;�2;�
.y/ D 0 in K";E

0

� .A�1/
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and
|
";E 0

�2;�1;�
.y/ D 0 in K";E

0

� .A�2/;

there exists an element x in K�";l"E
0

�C1 .A/ such that

@
�";l"E

0

�1;�2;�
.x/ D �

�;˛c�";kc;�"l"E
0

� .y/ in K
˛c�";kc;�"l"E

0

� .A�1 \ A�2/:

Example 4.38. With notations of Theorem 4.28, we denote by

|1;2;AW A Ìr .H1 \H2/ ,! A Ìr H1;

|2;1;AW A Ìr .H1 \H2/ ,! A Ìr H2;

|1;AW A Ìr H1 ,! A Ìr G ;

|2;AW A Ìr H2 ,! A Ìr G

the obvious inclusions; for any " in .0; 1/ and any R0 in E such that kc;"R0 � R, we
denote by

@
";R0

H1;H2;A;�
D @

";R0

AÌrH1;AÌrH2;�
W K

";R0

1 .A Ìr G /! K
˛c";kc;"R0

0 .A Ìr .H1 \H2//

the "-R0-quantitative Mayer–Vietoris boundary map associated to the R0-controlled
Mayer–Vietoris pair

.A Ìr RV1 ; A Ìr RV2 ; A Ìr H1; A Ìr H2/:

5. Statement of the main result

Recall from Section 3.3 that any homomorphism of G -algebras f WA!B induces a homo-
morphism of C �-algebras

fG ;�W A Ìr G ! B Ìr G :

Theorem 5.1. Let G be a locally compact groupoid provided with a Haar system and let
f WA! B be a homomorphism of G -algebras. Let us assume that there exists a subset D

of relatively clopen groupoids of G , closed under taking relatively clopen subgroupoids
and such that

(i) fH ;�WK�.A Ìr H /! K�.B Ìr H / is an isomorphism for any H in D

(ii) G has finite decomposition complexity with respect to D .

Then fG ;�WK�.A Ìr G /! K�.B Ìr G / is an isomorphism.

Theorem 5.1 is a consequence of the following result.

Lemma 5.2. Let G be a locally compact groupoid provided with a Haar system, let H be
a relatively clopen subgroupoid of G , let f WA! B be a homomorphism of G -algebras.
Let us assume that there exists a subset D of relatively clopen groupoids of G , closed
under taking relatively clopen subgroupoids and such that
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(i) fH 0;�WK�.A Ìr H 0/! K�.B Ìr H 0/ is an isomorphism for any H 0 in D .

(ii) H is D-decomposable.

Then fH ;�WK�.A Ìr H /! K�.B Ìr H / is an isomorphism.

Proof. By Bott periodicity, this amounts to prove that

fH ;�W K1.A Ìr H /! K1.B Ìr H /

is an isomorphism. Let ffH W
BA Ìr H ! BB Ìr H

be the unitalization of fH with ffH , BA Ìr H and BB Ìr H respectively equal to fH ,
A Ìr H and B Ìr H if fH is already a morphism of unital C �-algebras, and f C

H
, .A Ìr

H /C and .B Ìr H /C otherwise. Let us fix a control pair .�; l/ such that

• � > �0, where �0 is the constant of Lemma 4.12;

• .�; l/ is larger than

– the control pair corresponding to the quantitative boundary map associated to a
coarse Mayer–Vietoris pair with coercivity c D 2 (see Section 4.4),

– the control pairs of Proposition 4.19 and of Lemmas 4.34 and 4.36.

We proceed by using a quantitative version of the Five lemma.

5.1. Injectivity part

Let x be an element in K1.A Ìr H / such that fH ;�.x/ D 0 in K1.B Ìr H /. Let us show
then that x D 0. We divide the proof into five steps.

Step I. Let us fix a positive number " in .0; 1
256�5

/. According to Lemma 4.12, there exist,
up to stabilization, a compact G -order R0 and an "-R0-unitary in 1C A Ìr H such that

• �
";R0
� .Œu�";R0

/ D x;

• ŒffH .u/�";R0
D 0 in K";R0

1 .B Ìr H/.
Let .V1; V2;H1;H2/ be a .6l" �R0/-decomposition of H with H1 and H2 in D . In view
of Theorem 4.28, we see that

.A Ìr RV1 ; A Ìr RV2 ; A Ìr H1; A Ìr H2/

is an l" �R0-controlled Mayer–Vietoris pair relatively to A Ìr H and

.B Ìr RV1 ; B Ìr RV2 ; B Ìr H1; B Ìr H2/

is an l" �R0-controlled Mayer–Vietoris pair relatively to B Ìr H . For the sake of simplic-
ity, we rescale .˛c ; kc/ to be equal to .�; l/.

According to Proposition 4.19 applied with coercivity c D 2, there exist, up to stabi-
lization, two �"-.l" �R0/-unitaries v1 and v2 in BB Ìr H such that
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• vi � 1 is in B Ìr Hi for i D 1; 2;

• vi is homotopic to 1 as a �"-.l" �R0/-unitary in CB Ìr Hi for i D 1; 2;

• kffH .u/ � v1v2k 6 �".

Step II. By naturality of the quantitative Mayer–Vietoris boundary map (see equation (4.2)
of Section 4.4), we have

f
�";l"�R0

H1\H2;�
ı @

";R0

H1;H2;A;�
.Œu�";R0

/ D @
";R0

H1;H2;B;�
ı f

";R0

H ;�
.Œu�";R0

/

D @
";R0

H1;H2;B;�
.ŒffH .u/�";R0

/

D 0:

In particular,

fH1\H2;� ı �
�";l"�R0
� ı @

";R0

H1;H2;A;�
.Œu�";R0

/ D ��";l"�R0
� ı f

�";l"�R0

H1;H2;A;�
ı @

";R0

H1;H2;A;�
.Œu�";R0

/

D 0;

and since fH1\H2;� is injective, we deduce from Lemma 4.12 that there exists a compact
G -order R containing l" �R0 such that

��;�
2";R

� ı @
";R0

H1;H2;A;�
.Œu�";R0

/ D 0:

Step III. According to Lemma 4.34, up to stabilization and up to replacing R by l�2" �R,
there exist two �3"-R-unitaries w1 and w2 in BA Ìr H such that

• wi � 1 is in A Ìr Hi for i D 1; 2;

• ku � w1w2k < �
3".

In particular, according to the first point of Lemma 4.6, we have

Œu�3�3";2�R D |
3�3";2�R
1;A;� .Œw1�3�3";2�R/C |

3�3";2�R
2;A;� .Œw2�3�3";2�R/ (5.1)

in K3�
3";2�R

1 .A Ìr H /. Moreover, we have

kv1v2 � ffH .w1/ffH .w2/k < 2�
3"

and, in consequence,
kv�1

ffH .w1/ � v2ffH .w
�
2 /k < 8�

3":

The CIA-condition with coercivity c D 2 implies that, up to replacing R by 2 �R, there
exists an element v in 1C B Ìr R=H1\H2

such that

kv � v�1
ffH .w1/k < 16�

3" and kv � v2ffH
�.w2/k < 16�

3":

In view of the second point of Lemma 4.5, v is a �0"-R-unitary with �0 D 64�3. More-
over, v is homotopic to v�1ffH .w1/ as a �0"-R-unitary in B Ìr H1 and homotopic to
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v2ffH
�.w2/ as a �0"-R-unitary in CB Ìr H2. By surjectivity of fH1\H2;� and in view

of Lemma 4.12, there exist a compact G -order R0 containing R and an element z in
K
��0";R0

1 .A Ìr .H1 \H2// such that

f
��0";R0

H1\H2;�
.z/ D Œv���0";R0

in K��
0";R0

1 .B Ìr .H1 \H2//.

Step IV. Let us set

z1 D |
��0";R0

1;2;A;� .z/ and z2 D |
��0";R0

2;1;A;� .z/:

We deduce from the discussion at the end of the previous step that

fH1;� ı �
��0";R0

� .z1/ D �
��0";R0

� ı f
��0";R0

H1;�
.z1/

D ���
0";R0

� .Œv�1
efH1

.w1/���0";R0/

D ���
0";R0

� .ŒefH1
.w1/���0";R0/

D fH1;� ı �
��0";R0

� .Œw1���0";R0/;

where the third equality holds because v1 is homotopic to 1 as a �"-l" �R0-unitary in
CB Ìr H1. Since fH1;� is one-to-one, we get that

���
0";R0

� .z1/ D �
��0";R0

� .Œw1���0";R0/

and similarly,
���
0";R0

� .z2/ D ��
��0";R0

� .Œw2���0";R0/:

Step V. According to Lemma 4.12, there exists a compact G -order R00 containing R0 and
such that

��;�
2�0";R00

� .z1/ D Œw1��2�0";R00 and ��;�
2�0";R00

� .z2/ D �Œw2��2�0";R00 :

From equation (5.1), we deduce

Œu��2�0";R00 D |
�2�0";R00

1;A;� ı ��;�� .z1/ � |
�2�0";R00

2;A;� ı ��;�� .z2/

D ��;�
2�0";R00

� ı |
�2�0";R00

1;A;� .z1/ � �
�;�2�0";R00

� ı |
�2�0";R00

2;A;� .z2/

D ��;�
2�0";R00

� ı .|
�2�0";R00

1;A;� ı |
��0";R0

1;2;A;� � |
�2�0";R00

2;A;� ı |
�0�

0";R0

2;1;A;� /.z/

D 0

and hence x D ��
2�0";R00

� Œu��2�0";R00 D 0.

5.2. Surjectivity part

Let us set ˛0 D 567�5. In view of Lemma 4.12, let us prove that for every " in .0; 1
4˛0
/,

any G -order R0 and any y inK";R0

1 .B Ìr G/, there exist a compact G -order R1 contain-
ing R0 and an element x in K˛0";R1

1 .A Ìr G/ such that f ";R1

H ;�
.x/ D �

";˛0";R0;R1
� .y/ in

K
˛0";R1

1 .B Ìr G/. We divide this proof into four steps.
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Step I. Up to replacing of " by 21" and in view of the first point of Lemma 4.9, we can
assume that there exists an "-R0-unitary u0 in IN 0 CMN 0.B Ìr H / for some integer N 0

such that y D Œu0�";R0
. Let .V1; V2;H1;H2/ be a .6l" �R0/-decomposition for H with H1

and H2 in D . Since fH1\H2;� is onto and according to Lemma 4.12, there exist a compact
G -order R containing l" �R0 and an element x1;2 in K�

2";R
0 .A Ìr .H1 \H2// such that

f
�2";R

H1\H2;�
.x1;2/ D �

�;�2";R
� ı @

";R0

H1;H2;B;�
.y/:

Let us set

x1 D |
�2";R
1;2;A;�.x1;2/ in K�

2";R
0 .A Ìr H1/;

x2 D |
�2";R
2;1;A;�.x1;2/ in K�

2";R
0 .A Ìr H2/:

Then we have

fH1;� ı �
�2";R
� .x1/ D �

�2";R
� ı f

�2";R
H1;�

.x1/

D ��
2";R
� ı f

�2";R
H1;�

ı |
�2";R
1;2;A;�.x1;2/

D ��
2";R
� ı |

�2";R
1;2;B;� ı f

�2";R
H1\H2;�

.x1;2/

D ��
2";R
� ı |

�2";R
1;2;B;� ı �

�;�
� ı @

";R0

H1;H2;B;�
.y/

D ��
2";R
� ı ��;�� ı |

�";l"R0

1;2;B;� ı @
";R0

H1;H2;B;�
.y/

D 0

and in the same way fH2;� ı �
�2";R
� .x2/ D 0. Since fH1;� and fH2;� are one-to-one, we

deduce that ��
2";R
� .x1/ D 0 and ��

2";R
� .x2/ D 0. According to Lemma 4.12, there exists

a compact G -order R0 containing R and such that

|
�3";R0

1;2;A;� ı �
�2";R;�
� .x1;2/ D 0 and |

�3";R0

2;1;A;� ı �
�2";R;�
� .x1;2/ D 0:

Step II. In view of Lemma 4.8, there exists for some positive integers n andN with n6N
a 9�2"-R-projection in diag.In; 0/CMN .A Ìr H / such that

��
2";9�2";R
� .x1;2/ D Œp; n�9�2";R

in K9�
2";R

0 .A Ìr .H1 \H2//. According to Lemma 4.36 and up to stabilization, there
exist four 9�3"-l9�2"R-unitaries, v1 and v2 in IN CMN .A Ìr H /, u1 in Mn.BA Ìr H /

and u2 in MN�n.BA Ìr H / such that

• kv�1 diag.In; 0/v1 � pk < 9�3";

• kv2 diag.In; 0/v�2 � pk < 9�
3";

• kdiag.u1; u2/ � v1v2k < 9�3";

• for i D 1; 2 vi is connected to IN by a homotopy of 9�3"-l9�2"R-unitaries in IN C
MN .A Ìr Hi /.
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Step III. By construction of the controlled Mayer–Vietoris boundary applied to �y D
Œu0��";R0

, there exist (up to stabilization) two �"-l"-unitariesw1 andw2 inM2N 0.BB Ìr H /

and a �"-l"-projection q in diag.IN 0 ; 0/CM2N 0.B Ìr H / such that

• wi � I2N 0 lies in M2N 0.B Ìr Hi / for i D 1; 2;

• kdiag.u0�; u0/ � w1w2k < �";

• kw�1 diag.IN 0 ; 0/w1 � qk < �" and kw2 diag.IN 0 ; 0/w�2 � qk < �";

• �@
";R0

H1;H2;B;�
.z/ D Œq; N 0��";l"�R0

.

Step IV. If we apply Lemma 4.34 to diag.ffH .u1/;u
0�/, diag.ffH .u2/;u

0/ and to the matri-
ces obtained from diag.ffH .v1/; w1/, diag.ffH .v2/; w2/ and diag.ffH .p/; q/ by flipping
the coordinates nC 1; : : : ; N and N C 1; : : : ; N C N 0, we see that, up to replacing R0

by 2l9�3"R0, there exists for some integer N 00 and for i D 1; 2 a 9�4"-R0-unitary v0i in
IN 00 CMN 00.B Ìr Hi / such that

Œv01�27�4";R0 C Œv
0
2�27�4";R0 D Œ

ffH .u1/�27�4";R0 � �
";27�4";R0;R

0

� .y/

(we have also used the first point of Corollary 4.6).
Since fH1;� and fH2;� are onto and according to Lemma 4.12, there exist a compact

G -order R1 containing R0 and for i D 1; 2 an element xi in K27�
5";R1

1 .A Ìr Hi / such
that f 27�

5";R1

Hi ;�
.xi / D �Œv

0
i �27�5";R1

in K27�
5";R1

1 .B Ìr Hi /. Then we have

�";27�
5";R0;R1

� .y/ D f
27�5";R1

H ;�
.|
27�5";R1

1;A;� .x1/C |
27�5";R1

2;A;� .x2/C Œu1�27�5";R1
/;

and hence fH ;� is onto.

5.3. Extension to Kasparov product

The aim of this section is to extend Theorem 5.1 to morphisms induced in K-theory by
right Kasparov product (under second countability assumption for groupoids and separa-
bility assumption for G -algebras). Indeed, this a consequence of the following standard
fact which says that up to KK-equivalence, a Kasparov element is equivalent to a C �-
algebra homomorphism (see [19] for an approach via triangulated categories). Useful
material for groupoid equivariant KK-theory can be found in [17, 18].

Lemma 5.3. Let G be a second countable and locally compact groupoid provided with a
Haar system, letA andB be separable G -algebras and let z be an element inKKG

� .A;B/.
Then there exist

• A0 and B 0 two separable G -algebras;

• f WA0 ! B 0 a homomorphism of G -algebras;

• ˛ in KKG
� .A;A

0/ and ˇ in KKG
� .B

0; B/ invertible elements,

such that
z D f�.˛/˝B 0 ˇ:
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Proof. Let us first prove the result for z inKKG
1 .A;B/. The imprimitivity K.L2.G ; A//-

A-bimodule L2.G ; A/ gives rise to an invertible element ŒM� in KKG
� .K.L

2.G ; A//; A/

and hence, this reduces to proving the result for ŒM�˝A z. According to [15, Appendix,
Lemma 3.5] (see also [2, Section 5]), this amounts to prove the result for any element z in
KKG

1 .A;B/ that can be represented by a KasparovK-cycle .E;�;F / such that F WE! E

is G -equivariant. Up to adding a degenerate Kasparov K-cycle, we can assume without
loss of generality that the linear space generated by ¹h�; �iW � and � in Eº is dense in B .
Let us set P D 1

2
.F C IdE/ and let us consider the G -algebra

EP D ¹.a; T / in A˚L.E/ such that T � P � �.a/ � P belongs to K.E/º:

Then the projection on the first factor of EP gives rise to an extension of G -algebra

0! K.E/! EP ! A! 0 (5.2)

semi-split by
A! EP ; a 7! .a; P � �.a/ � P /:

Let ŒM � be the element in KKG
� .K.E/; B/ corresponding to the K.E/-B-imprimitivity

bimodule E . Then ŒM � is invertible and z ˝B ŒM ��1 is the class in KKG
1 .A;K.E// of

the semi-split extension (5.2). Hence this amounts to prove that the lemma holds for the
class Œ@I;A� in KKG

1 .A=I; I / of any semi-split extension 0! I ! A! A=I ! 0. We
proceed by using the mapping cone. For B that is a G -algebra, let us set

B.0; 1� D ¹f W Œ0; 1�! C continuous such that f .0/ D 0º;

B.0; 1/ D ¹f W Œ0; 1�! C continuous such that f .0/ D f .1/ D 0º;

and let us consider the class Œ@B � in KKG
1 .B; B.0; 1// of the semi-split extension of G -

algebras
0! B.0; 1/! B.0; 1�

ev1
�! B ! 0;

where ev1WB.0;1�!B is the evaluation at 1. Recall that Œ@B � is invertible. For a semi-split
extension

0! I ! A
q
�! A=I ! 0;

we define the mapping cone algebra of A by

Cq D ¹.x; f / 2 A˚ A=I.0; 1� such that f .1/ D q.x/º:

Let us consider the morphisms of G -algebras

eq W I ! Cq; x 7! .x; 0/

and
�q W A=I.0; 1/! Cq; f 7! .0; f /:
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According to [25, pp. 195–196], the element Œeq� in KKG
� .I; Cq/ induced by eq is invert-

ible and moreover,
eq;�Œ@I;A� D �q;�Œ@A=I �:

Hence we have
Œ@I;A� D �q;�Œ@A=I �˝Cq Œeq�

�1:

Since Œ@A=I � is an invertible element in KKG
1 .A=I; A=I.0; 1//, we deduce that the con-

clusion of the lemma holds for Œ@I;A�.
Let us prove now that the result holds in the even case. Let z be an element in

KKG
0 .A; B/. Noticing that Œ@A� is invertible in KKG

1 .A; A.0; 1// and applying the odd
case to Œ@A��1 ˝A z, we deduce the result for z.

As a consequence, we can extend Theorem 5.1 to KK-elements. Recall that for any
second countable and locally compact groupoid G provided with a Haar system

JG W KK
G
� .�; �/! KK�.� Ìr G ; � Ìr G /

stands for the Kasparov transformation. For any G -algebrasA andB and for any element z
in KKG

� .A;B/, we denote by

˝JG .z/W K�.A Ìr G /! K�.B Ìr G /

the morphism induced by Kasparov right multiplication by JG .z/ (see [17] for the descrip-
tion of this transformation in the setting of groupoids). For z in KKG

� .A; B/ and for H

that is a relatively clopen subgroupoid of G , we also denote by z=H the restriction of z
to H , i.e., the image of z under the morphism

KKG
� .A;B/! KKH

� .A=Y ; B=Y /

corresponding under functoriality in the groupoids to the inclusion H ,! G (see [18,
Section 7.1]).

Corollary 5.4. Let G be a second countable and locally compact groupoid provided
with a Haar system, let A and B be separable G -algebras and let z be an element in
KKG

� .A; B/. Let us assume that there exists a subset D of relatively clopen groupoids
of G , closed under taking relatively clopen subgroupoids and such that

(i) G has finite decomposition complexity with respect to D;

(ii) for any H in D , the morphism ˝JH .z=H /WK�.A Ìr H /! K�.B Ìr H / is an
isomorphism.

Then˝JG .z/WK�.A Ìr G /! K�.B Ìr G / is an isomorphism.

Proof. Let A0 and B 0 be separable G -algebras, let f W A0 ! B 0 be a morphism of G -
algebras and let ˛ in KKG

� .A; A
0/ and ˇ in KKG

� .B
0; B/ be invertible elements as in

Lemma 5.3. Then
˝JG .z/W K�.A Ìr G /! K�.B Ìr G /
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is an isomorphism if and only if fG ;�WK�.A
0 Ìr G /! K�.B

0 Ìr G / is an isomorphism,
and in the same way

˝JH .z=H /W K�.A Ìr H /! K�.B Ìr H /

is an isomorphism if and only if fH ;�WK�.A
0 Ìr H /!K�.B

0 Ìr H / is an isomorphism.
Then the corollary is the consequence of Theorem 5.1 applied to f WA0 ! B 0.

Using the same argument as in the proof of [15, Proposition A.5.1], we also have the
following consequence of Lemma 5.3.

Corollary 5.5. Let G be a second countable and locally compact groupoid provided with
a Haar system, let A, B and D be G -algebras with A and B separable and let z be an
element in KKG

� .A; B/. Let us assume that there exists a subset D of relatively clopen
groupoids of G , closed under taking relatively clopen subgroupoids and such that

(i) G has finite decomposition complexity with respect to D .

(ii) for any subgroupoid H , the morphism

˝JH .�D.z/=H /W K�..A˝D/ Ìr H /! K�..B ˝D/ Ìr H /

is an isomorphism.

Then˝JG .�D.z//WK�..A˝D/ Ìr G /! K�..A˝ B/ Ìr G / is an isomorphism.

6. Application to the Baum–Connes conjecture

In this section, we show that for groupoids that admit a  -element in the sense of [28], the
Baum–Connes conjecture is closed under coarse decomposability.

6.1. The Baum–Connes conjecture for groupoids

Let us recall the statement of the Baum–Connes conjecture for groupoids. Let G be a
locally compact groupoid provided with a Haar system, let A be a G -algebra and let A Ìr
G be the reduced crossed product of A by G (with respect to the given Haar system). Then
the Baum–Connes conjecture for the pair .A;G / is the claim that the assembly map

�A;G W K
top
� .G ; A/! K�.A Ìr G /

is an isomorphism, the left-hand side being the topological K-theory for the groupoid G

with coefficients in A, defined as the inductive limit

lim
X
KKG

� .C0.X/; A/;

where X runs through G -compact subsets of the universal example for proper actions
of G (see [28, Section 5.1] for a complete description of the Baum–Connes conjecture in
the setting of groupoids). Although the conjecture holds for a large class of pairs .A;G /,
(e.g., if G is an amenable groupoid [27]), counterexamples have been given by Higson,
Lafforgue and Skandalis in [12].
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6.2. The case of groupoids admitting a -element

The concept of  -element was introduced by Kasparov in [13] in order to prove the
Novikov conjecture for discrete subgroups of almost connected groups. He showed that
for an almost connected group G acting on a C �-algebra A strongly continuously by
automorphisms, the image of the Baum–Connes assembly map is the range of  acting
on K�.A Ìr G/ as an idempotent. The notion of  -element was extended to groupoid by
Tu in [28, Proposition 5.20 and Remark 5.21], where he developed an abstract setting for
such an element.

Definition 6.1. A second countable locally compact groupoid G admits a  -element if
there exist an element  in KKG

� .C0.X/; C0.X//, a proper G -space Z, a G Ë Z-alge-
bra A, an element � in KKG

� .C0.X/; A/ and an element D in KKG
� .C0.X/; A/ such that

•  D �˝A D;

• p�Z D 1 inKG ËZ
� .C0.Z/;C0.Z// for every proper G -space Z, where pZ WG ËZ!

G is the forgetful map.

Such an element, if it exists, is unique and is called a  -element. As in the case of the
 -element of Kasparov, a  -element is an idempotent of KKG

� .C0.X/; C0.X// and acts
as an idempotent on K�.A Ìr G /. This idempotent is given by right Kasparov product
by JG .�A.//, where �A./ 2 KKG

� .A; A/ is obtained by tensorization over C.X/ by A.
Moreover, it is related to the Baum–Connes conjecture in the following way (see [28,
Proposition 5.23]):

Proposition 6.2. Let G be a second countable locally compact groupoid provided with a
Haar system admitting a  -element and let A be a G -algebra. Then the following asser-
tions are equivalent:

(i) �A;G WK
top
� .G ; A/! K�.A Ìr G / is an isomorphism;

(ii) JG .�A.// acts as the identity by right Kasparov product on K�.A Ìr G /.

Remark 6.3. Since JG .�A.// is an idempotent, it acts as the identity by right Kasparov
product on K�.A Ìr G / if and only if it acts as an isomorphism.

The restriction of a  -element to a relatively clopen subgroupoid is a  -element.

Lemma 6.4. Let G be a second countable and locally compact groupoid and let H be
a relatively clopen subgroupoid of G . If G admits a  -element, then the restriction of 
to H is a  -element for H .

Proof. Let us denote respectively by X and Y the space of units of G and H . Let Z be
a proper G -space, let A be a G ÌZ-algebra, let � be an element in KKG

� .C0.X/; A/ and
let D be an element in KKG

� .A; C0.X// as in Definition 6.1. According to Remark 2.7
and Corollary 2.5, the proper action of G on Z restricts to a proper action of H on ZY .
Let A=ZY be the restriction of A to ZY . According to the second point of Example 3.4,
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A=ZY is an H Ì ZY -algebra. Let =H in KKH
� .C0.Y /; C0.Y //, �=H in KKH

� .C0.Y /;

A=ZY / andD=H inKKH
� .A=ZY ;C0.Y // be respectively the restriction of  , � andD to H

(i.e., induced by functoriality in the groupoids by the inclusion H ,!G ). According to [18,
Proposition 7.2 (b)], the restriction respects Kasparov products and hence we deduce that
=H D �=H ˝A=ZY

D=H . Let us check the second point of the definition of a  -element.
Let Z0 be a proper H -space, let Z00 D G �H Z0 be the proper induced G -space (see
Section 2.3) and let us recall that pZ00 W G Ë Z00 ! G stands for the forgetful map. We
have by definition of a  -element that p�Z00 D 1 in KZ

00ÌG
� .C0.Z

00/; C0.Z
00//. We have

an obvious inclusion of groupoids

H ÌZ0 ,! G ÌZ00; .; z/ 7! .; ŒupZ0 .z/; z�/

which pulls back p�Z00 to p�Z0=H (using [18, Proposition 7.2 (a)]) and hence p�Z0=H D 1
in KHÌZ0

� .C0.Z
0/; C0.Z

0//. We conclude that =H is a  -element for H .

Remark 6.5. As a consequence and using induced algebras [2, Section 3], we can prove
that if G is a second countable and locally compact groupoid which admits a  -element
and satisfies the Baum–Connes conjecture with coefficients, then any relatively clopen
subgroupoid of G satisfies the Baum–Connes conjecture with coefficients.

An action groupoid of a groupoid with a  -element has a  -element.

Lemma 6.6. Let G be a second countable and locally compact groupoid and let Y be
a second countable and locally compact (left) G -space. If G admits a  -element, then the
action groupoid G Ë Y admits a  -element.

Proof. Let us denote by X the space of units of G and let qY W Y ! X be the anchor
map for the G -action on Y . Let Z be a proper G -space, let A be a G Ë Z-algebra, let
� be an element in KKG

� .C0.X/; A/ and let D be an element in KKG
� .A; C0.X// as in

Definition 6.1. Let pY W G Ì Y ! G be the forgetful map with respect to the G -action
on Y . According to the fourth point of Remark 2.6, we see that Z �X Y is a proper
G Ì Y -space with anchor map qZ�XY WZ �X Y ! Y given by the projection on the second
factor. Consider then the elements Y D p�Y  in KKG ËY

� .C0.Y /; C0.Y //, �Y D p�Y � in
KKG ËY

� .C0.Y /;q
�
YA/ andDY D p�YD inKKGËY

� .q�YA;C0.Y //. Using the second point
of Example 3.4, we see that q�YA D A˝C0.X/ C0.Y / is a .G Ë Y / Ë .Z �X Y /-algebra
and since p�Y preserves Kasparov products (see [18, Proposition 7.2 (b)]), we have

Y D �Y ˝q�YA DY :

Let us check now the second condition of Definition 6.1. Let Z0 be a proper G Ë Y -space.
According to the first and to the third point of Remark 2.6, we see that Z0 is a proper
G -space equipped with a G -map Z0 ! Y . Let

pZ0 W .G Ë Y / ËZ0 ! G Ë Y
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be the forgetful map with respect to the G Ë Y -action on Z0. Then we have

p�Z0Y D p
�
Z0.p

�
Y / D .pY ı pZ0/

�:

But under the identification between .G Ë Y / Ë Z0 and G Ë Z0 of the second point of
Remark 2.6, then

pY ı pZ0 W .G Ë Y / ËZ0 ! G

corresponds to the forgetful map G ËZ0 ! G with respect to the proper G -action on Z0.
From this we deduce that p�Z0Y D 1 in KK.G ËY /ËZ0

� .C0.Z
0/; C0.Z

0// and hence Y is
a  -element for G Ë Y .

Example 6.7. The following examples of second countable and locally compact groupsG
are known to have a  -element:

(i) if G acts properly on a simply connected manifold with non-positive sectional
curvature [13];

(ii) if G is (a closed subgroup of) an almost connected group [13];

(iii) if G is a group acting properly on an Euclidean buildings [14];

(iv) if G is a countable discrete group that coarsely embeds into a Hilbert space
(see [7, Theorem 9.2] and [29]).

For any action of such a group G on a second countable locally compact space X , the
action groupoid G ËX has a  -element.

6.3. The Baum–Connes conjecture and coarse decomposability

Theorem 6.8. Let G be a second countable and locally compact groupoid provided with
a Haar system which moreover admits a  -element in sense of [28, Proposition 5.20]
and let A be a G -algebra. Assume that there exists a subset D of relatively clopen sub-
groupoids of G , closed under taking relatively clopen subgroupoids such that

(i) every groupoid in D satisfies the Baum–Connes conjecture with coefficients in A;

(ii) G has finite decomposition complexity with respect to D .

Then G satisfies the Baum–Connes conjecture with coefficients in A.

Proof. According to Proposition 6.2 and Remark 6.3, this amounts to prove that the action
of JG .�A.// by right Kasparov product on K�.A Ìr G / is an isomorphism. If A is sep-
arable, this is the consequence of Corollary 5.4 applied to �A./ and of Lemma 6.4, by
noticing that �A./=H D �A.=H / for any relatively clopen subgroupoids H in D . If A is
not separable, this is a consequence of Corollary 5.5.

We end this subsection with an application to the Baum–Connes conjecture with coef-
ficients.
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Corollary 6.9. Let G be a second countable and locally compact groupoid provided with
a Haar system and which moreover admits a  -element in sense of [28, Proposition 5.20].
Assume that there exists a subset D of relatively clopen subgroupoids of G such that

(i) every groupoid in D satisfies the Baum–Connes conjecture with coefficients;

(ii) G has finite decomposition complexity with respect to D .

Then G satisfies the Baum–Connes conjecture with coefficients.

Proof. Let D 0 be the set of all relatively clopen subgroupoids of elements of D . Accord-
ing to Remark 6.5, any groupoid H in D 0 satisfies the Baum–Connes conjecture with
coefficients. Since G has finite D-complexity, it has finite D 0-complexity. Then the result
is a consequence of Theorem 6.8.

6.4. Perspectives and open questions

We end this paper with a discussion about the range of applicability of Theorem 6.8. Even
if we are asking more questions than giving answers, the idea is to inspire further works
on the quest of new examples of groupoids satisfying the Baum–Connes conjecture. As
we have seen in Section 2.6, groupoid amenability is closed under coarse decomposition
and hence if we start with a family D of amenable subgroupoids (which satisfies the
Baum–Connes conjecture with coefficients by [27]), then Theorem 6.8 does not bring any
new example of groupoid satisfying the Baum–Connes conjecture. The situation might be
different for groupoid which have the Haagerup property. This property was introduced
in [27, Section 3] in terms of affine and proper action on a continuous field of real and
affine Hilbert spaces. We shall use an equivalent definition using functions conditionally
of negative type (see [24, Proposition 2.13]).

Definition 6.10. Let G be a locally compact groupoid with space of units X . A function
‰WG ! R is conditionally of negative type if

(i) ‰.u.x// D 0 for every x in X ;

(ii) ‰./ D ‰.�1/ for any  in G ;

(iii) for any positive integer n, any x inX , any 1; : : : ; n in G x and any real numbers
�1; : : : ; �n such that �1 C � � � C �n D 0,X

16i;j6n

�i�j‰.
�1
i j / 6 0:

We are now in position to give the definition of the Haagerup property for groupoids
in terms of functions conditionally of negative type.

Definition 6.11. A locally compact groupoid G has the Haagerup property if G admits
a conditionally of negative type function ‰W G ! R which is locally proper, i.e., for any
compact subset K of G , the restriction of ‰ to GKK is proper.
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According to [27, Proposition 3.8 and Théorème 0.1], any locally compact and second
countable groupoid with the Haagerup property satisfies the Baum–Connes conjecture
with coefficients. In consequence, under the assumptions of Corollary 6.9, if G has finite
decomposition complexity with respect to a family D of relatively clopen subgroupoids
which have the Haagerup property, then G satisfies the Baum–Connes conjecture with
coefficients.

Question 6.12. Can we obtain, using the coarse decomposition, groupoids which do not
have the Haagerup property and provide in this way new examples of groupoids satisfying
the Baum–Connes conjecture with coefficients?

Another source of inspiration to provide genuinely new examples of groupoids sat-
isfying the Baum–Connes conjecture is the work of Lafforgue on hyperbolic groups and
groupoids [15, 16].

Let D be a family of relatively clopen subgroupoids of a second countable and locally
compact groupoid G . Assume that every groupoid in H is a relatively clopen subgroupoid
of a finitely generated group action groupoid � Ë X , where � is a Gromov hyperbolic
group acting on a second countable and locally compact space X . According to [16,
Théorème 0.4], to [4, Corollary 0.2] and to Remark 6.5, any groupoid in D satisfies
the Baum–Connes conjecture with coefficients. Hence, under the assumptions of Corol-
lary 6.9, if G has finite decomposition complexity with respect to D , then G satisfies the
Baum–Connes conjecture with coefficients.

According to [15, Corollaire 4.0.2], we have a similar result for the Baum–Connes
conjecture with commutative coefficients if D is a family of relatively clopen subgrou-
poids of Poincaré groupoids of foliations with compact base space and which admit
a longitudinal Riemannian metric of negative sectional curvature.
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