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Systolic complexes and group presentations

Mireille Soergel

Abstract. We give conditions on a presentation of a group, which imply that its Cayley complex is
simplicial, and the flag complex of the Cayley complex is systolic. We then apply this to Garside
groups and Artin groups. We give a classification of the Garside groups whose presentation using
the simple elements as generators satisfy our conditions. We then also give a dual presentation for
Artin groups and identify in which cases the flag complex of the Cayley complex is systolic.

1. Introduction

In order to better understand a group, one approach is to understand whether it acts prop-
erly discontinuously and cocompactly by isometries on a non-positively curved space. For
Riemannian manifolds, one could consider the sectional curvature of the manifold. More
generally, for geodesic metric spaces, we see if they satisfy the CAT(0) inequality. For
simplicial complexes Januszkiewicz and Świa̧tkowski introduced in [14], the notion of
systolic complexes as a combinatorial form of non-positive curvature. Their 1-skeletons
had been studied earlier by Chepoi under the name bridged graphs [4]. A flag simplicial
complex is systolic if it is simply connected and all of its vertex links are 6-large, i.e., all
cycles of length 4 or 5 have diagonals. From our perspective, the main consequences for
a group G acting properly discontinuously and cocompactly on a systolic complex are the
following:

(1) The group G is biautomatic. In [17], this was shown in the case of free group
actions. For the more general case of geometric actions, this was proven by Janusz-
kiewicz and Świa̧tkowski in their original paper on systolicity [14]. This especially
implies solvability of the word problem and of the conjugacy problem and a quad-
ratic Dehn function.

(2) Every finitely presented subgroup of G is systolic. In an unpublished manuscript,
Wise has shown this for finitely presented subgroups of torsion-free subgroups.
For all systolic groups, this has been shown in [12, 18].

(3) Virtually solvable subgroups of G are either virtually cyclic or virtually Z2. This
is mentioned in [13]. Elsner showed that if a non-cyclic free abelian group acts
properly discontinuously by simplicial automorphisms on a systolic complex, it is
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isomorphic to Z2 [8]. Bestvina showed that virtually solvable subgroups of spher-
ical Artin groups are abelian [1]. Gersten and Short showed a result for polycyclic
subgroups of biautomatic groups [11].

(4) The centralizer of an infinite-order element of G is commensurable with Fn � Z
or Z [5, 9].

As a group naturally acts on its Cayley graph, this leads to the following questions: How
do we construct a flag simplicial complex from the Cayley graph? Can we give conditions
on the presentation which ensure that this space is systolic? The goal of this paper is to
give a partial answer to these questions. Systolicity is already known for large type Artin
groups [13] and right angled Artin groups with bipartite defining graph [10]. Triangular
Coxeter groups (except .2; 4; 4/, .2; 4; 5/, .2; 5; 5/) are also systolic, this was shown
in [16]. This is also clear for finite Coxeter groups as they act geometrically on a point.
In this paper we will focus our applications on Garside groups and Artin groups. We
will first give some background on systolic complexes and set some conditions on a group
presentation that lead to a simplicial Cayley complex with free group action. We introduce
the notion of a restricted triangular presentation. We say that a presentation hS j Ri of
some group G is a restricted triangular presentation if S \ S�1 D ;, R D ¹a � b � c�1 j

a; b; c 2 S; abc�1 D e in Gº and for a; b; c 2 S , abc 2 S ) ab; bc 2 S . In this case, the
Cayley complex is simplicial. We then establish when the flag complex of such a Cayley
complex is systolic. To do so we study the cycles of length four and five. This leads to the
following theorem.

Theorem 1 (Theorem 3.5). Consider a group G endowed with a finite generating set S ,
where G has a finite restricted triangular presentation with respect to S . Then the com-
plex Flag.G; S/ is a simply connected simplicial complex. It is systolic if and only if the
generating set S satisfies the following conditions:

(1) If there exist u; w; a; b; c; d 2 S , u ¤ w, a ¤ d , with ua D wb 2 S and ud D
wc 2 S , then there exists k 2 S such that w D uk or ua D udk or u D wk or
ud D uak.

(2) If there exist v;x;a;b;c;d 2 S , v¤ x, a¤ b, with bvD cx 2 S and avD dx 2 S ,
then there exists k 2 S such that v D kx or av D kbv or x D kv or bv D kav.

(3) If there exist u; v; x; b; c 2 S , v ¤ x, with ux 2 S , uv 2 S and vb D xc 2 S , then
there exists k 2 S such that k D uvb or v D xk or x D vk.

(4) If there exist v; w; x; a; d 2 S , v ¤ x, with vw 2 S , xw 2 S and dx D av 2 S ,
then there exists k 2 S such that k D avw or x D kv or v D kx.

(5) If there exist u;v;w;x 2 S , v¤ x, u¤w, withwv 2 S ,wx 2 S , uv 2 S , ux 2 S ,
then there exists k 2 S such that w D ku or x D vk or u D kw or v D xk.

Moreover, this implies that G is a systolic group.

We say that a presentation satisfying the conditions of Theorem 1 is a systolic present-
ation. We present some examples which show that these conditions are all necessary.
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There are two main applications of Theorem 1. The first concerns Garside groups.
They were introduced by Dehornoy and Paris in [7] as a generalization of spherical Artin
groups. The Garside structure on a group naturally gives a presentation leading to a sim-
plicial Cayley graph, we call this the Garside presentation of a Garside group. We can
classify the Garside groups whose Garside presentation satisfy Theorem 3.5. Consider the
following definitions. Let x1; : : : ; xn be n letters and letm be a positive integer. We define

prod.x1; : : : ; xpIm/ D x1x2 : : : xpx1x2 : : :„ ƒ‚ …
m

and prod.x1; : : : ; xpI 0/ D e. Consider the group

Gn;m D hx1; : : : ; xn j prod.x1; : : : ; xnIm/ D prod.x2; : : : ; xn; x1Im/ D � � �

D prod.xn; x1; : : : ; xn�1Im/i:

Let�n;m D prod.x1; : : : ; xnIm/ 2Gn;m. We can then make the following statement about
systolic Garside groups.

Theorem 2 (Theorem 4.6). LetG be a Garside group of finite type. ThenG has a systolic
Garside presentation if and only if G Š .�p

iD1Gni ;mi
/=.�ni ;mi

D �nj ;mj
for all i; j / for

some positive integers p; n1; : : : ; np and m1; : : : ; mp .

The second application concerns Artin groups. To state the next result we require
a few definitions. An orientation on a simple graph � is an assignment o.e/ for each edge
e 2 E.�/ where o.e/ is a set of one or two endpoints of e. An edge with both endpoints
assigned is bioriented. The startpoint i.e/ is an assignment of one or two startpoints of e,
which is consistent with the choice of o.e/. If o.e/ consists of one point, i.e/ consists of
one point such that eD .i.e/;o.e//, if o.e/ consists of two points then so does i.e/. We say
that a cycle 
 is directed if for each v 2 
 there is exactly one edge e 2 
 with v 2 o.e/.
A cycle is undirected if it is not directed. We say that a 4-cycle 
 D .a1; a2; a3; a4/ is
misdirected if a2 2 o.a1; a2/, a2 2 o.a2; a3/, a4 2 o.a3; a4/ and a4 2 o.a4; a1/, i.e.,

a1 a4

a3a2

Consider the notation

Œxyx : : : �k D xyx : : :„ ƒ‚ …
k

and Œ: : : xyx�k D : : : xyx„ ƒ‚ …
k

for some k 2 N. Given a finite labeled simple graph � , the Artin group associated to � is
given by

A� D hsv; v 2 V j Œsvswsv : : : �me D Œswsvsw : : : �me

for all edges e D .v; w/ with label mei:
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We can now present the following result.

Theorem 3 (Theorem 4.16). Let � be a simple graph, with edges labeled by numbers
� 2 and with an orientation o such that an edge is bioriented if and only if it has label 2.
Assume that every 3-cycle is directed and no 4-cycle is misdirected. Let A be the Artin
group associated to � . Then the dual presentation of the Artin group A� induced by this
orientation is systolic.

2. Preliminaries

We start with some background on simplicial and systolic complexes. Let X be a simpli-
cial complex. Assume it is finite-dimensional and locally finite. We denote its k-skeleton
byX .k/. ThenX .0/ is the set of vertices ofX . The subcomplex spanned byA�X .0/ is the
largest subcomplex of X which has A as its set of vertices. The complex X is flag if every
set of pairwise adjacent vertices spans a simplex. A flag complex is uniquely determined
by its 1-skeleton. For a simplex � 2 X we can define its link in X ,

Lk.�;X/ D ¹� 2 X j � \ � D ; and � [ � 2 Xº:

A cycle in X is the image of a simplicial map f W S1 ! X from a triangulation of the
1-sphere to X . If f is injective, the cycle is embedded. Let 
 be an embedded cycle
in X . The length of 
 , j
 j, is the number of edges of 
 . We say that 
 is a j
 j-cycle.
A diagonal of 
 is an edge that connects two nonconsecutive vertices of 
 . An embedded
cycle is diagonal free if there are no edges between nonconsecutive vertices. We say that
two vertices v and w are adjacent if there exists an edge between v and w, we then write
v � w. A simplicial complex is 6-large if every embedded cycle 
 with 4 � j
 j < 6 has
a diagonal. A simplicial complex is systolic if it is connected, simply connected and if
Lk.v; X/ is flag and 6-large for all vertices v 2 X . A group is systolic if it acts properly
discontinuously and cocompactly on a systolic complex. To know when a Cayley complex
is systolic we first need to determine when it is simplicial.

Let G be a group and S � G a finite set of generators. Suppose additionally that
S \ S�1 D ;, this especially implies e … S and s2 ¤ e for all s 2 S . Let �.G; S/ be the
Cayley graph of G relative to S . Its vertices and edges are V.�.G; S// D ¹vŒg� j g 2 Gº
andE.�.G;S//D ¹eŒg; s� j g 2G; s 2 Sº where the edge eŒg; s� goes from vŒg� to vŒgs�.
We also write eŒg; s� D .vŒg�; vŒgs�/. As S \ S�1 D ;, the graph �.G; S/ is simplicial.
So we can define Flag.G; S/ as the flag complex of �.G; S/. As Flag.G; S/ is the flag
complex of �.G;S/, the groupG naturally acts properly discontinuously and cocompactly
by isometries on Flag.G; S/.

Proposition 2.1. Let G be a group and S � G a finite generating set. Suppose the action
of G on Flag.G; S/ is free. Suppose additionally that S \ S�1 D ;. Then Flag.G; S/
is a simply connected simplicial complex and �1.Flag.G; S/=G/ D G if and only if G
admits the presentation G D hS j Ri, where R D ¹a � b � c j a; b; c 2 S with abc D e
in Gº [ ¹a � b � c�1 j a; b; c 2 S with abc�1 D e in Gº.



Systolic complexes and group presentations 903

Proof. To see when Flag.G; S/ is simply connected, it is enough to take a look at its 2-
skeleton. There is a 2-simplex in Flag.G; S/ for every set of 3 pairwise adjacent vertices.
As in �.G; S/ edges are labeled by elements in S and vertices correspond to elements
of G, so are edges and vertices in Flag.G; S/. Hence we can interpret the existence of
a 2-simplex in terms of relations on the generators. At each vertex vŒg� in Flag.G; S/ and
for every triple a; b; c 2 S with a � b � c D e or a � b � c�1 D e in G there is a 2-simplex
with vertices vŒg�, vŒga�, vŒgab� and edges eŒg; a�, eŒga; b�, eŒgab; c� or eŒg; a�, eŒga; b�,
eŒg; c�. On the other hand, each 2-simplex has vertices and edges which correspond to
such a triple of generators. This implies that

�1.Flag.G; S/=G/ D hS j a � b � c D e or a � b � c�1
D e for all a; b; c

for which one of these equalities holds in Gi:

Finally, Flag.G; S/ is simply connected if and only if it is the universal cover of the
quotient, so if and only if �1.Flag.G; S/=G/ D G.

We call a presentation satisfying the conditions of Proposition 2.1 a triangular present-
ation.

Proposition 2.2. Assume a group G has a triangular presentation hS j Ri. Assume addi-
tionally R D ¹a � b � c�1 j a; b; c 2 S with abc�1 D e in Gº. Then the action of G on
Flag.G; S/ is free.

Proof. Let g 2G and x 2 Flag.G;S/ such that g � xD x. Let V be the set of vertices of the
smallest simplex containing x. As the action ofG is simplicial, g � V D V . The restriction
of possible relations in R imposes an orientation on triangles in the graph, which in turn
implies that in the subcomplex spanned by V there exists a unique vertex v0 2 V with
only incoming edges, i.e., there exists v0 2 V such that for all w 2 V n ¹v0º, there exists
k 2 S such that v0 D wk. Since S \ S�1 D ;, the action of G on �.G; S/ preserves
the orientation of the edges and is free on the vertices. So g � x D x implies g � v0 D v0,
hence g D e.

3. Systolic Cayley complexes

Consider a group G with a finite triangular presentation G D hS j Ri. Then we know
that Flag.G; S/ is a simply connected simplicial complex. We now want to know when
Flag.G; S/ is systolic. We already know that Flag.G; S/ is simply connected. As it is
flag, all the links of vertices are flag. So we need to check whether Lk.v; Flag.G; S//
is 6-large for all vertices of Flag.G; S/. As the action of G on Flag.G; S/ is transitive
and by isometries on the vertices, we only need to check if Lk.e; Flag.G; S// is 6-large.
For simpler notation, we set L D Lk.e; Flag.G; S//. Then the vertices of L are V.L/ D
¹vŒs� j s 2 S [ S�1º. As we differentiate between elements in S and elements in S�1,
we will call vertices vŒs� with s 2 S positive and vertices vŒs� with s 2 S�1 negative.
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Edges between these vertices are labeled by elements in S and E.L/ D ¹eŒg; a� j g 2
S [ S�1 and a 2 S n ¹g�1º and ga 2 S [ S�1º, where eŒg; a� is the edge going from
vŒg� to vŒga�. We write v � w for two adjacent vertices v and w and e D .v; w/ for the
edge e between v and w. If there is an edge from v to w, we might also use the notation
v ! w. To simplify the notation, we will also denote the vertex vŒs� with s and say the
vertex s 2 S is positive, s 2 S�1 is negative.

We put some additional conditions on S and R:

(1) For all a; b; c 2 S if abc 2 S , then ab 2 S and bc 2 S .

(2) R D ¹a � b � c�1 j a; b; c 2 S; abc�1 D e in Gº, so we do not have relations of the
form a � b � c in R.

We call a triangular presentation satisfying these additional conditions a restricted triangu-
lar presentation. These conditions are mostly technical. They limit the possible diagonal
free cycles in L and by Proposition 2.2 ensure that the action of G on Flag.G; S/ is free.
We do not know how to decide whether L is 6-large without them. So what can we say
about diagonal free cycles in L of length 4 or 5 under these conditions?

Remark 3.1. The additional condition on R implies that there are no edges from vertices
in S to vertices in S�1, so from positive to negative vertices. The additional conditions
on S imply that every cycle 
 in L which contains one of the following configurations of
adjacent vertices has a diagonal. So if a; b; c 2 S with

(a) a; b; c 2 V.
/ and a! b ! c, then a! c;

(b) a�1; b�1; c�1 2 V.
/ and a�1 ! b�1 ! c�1, then a�1 ! c�1;

(c) a�1; b; c 2 V.
/ and a�1 ! b  c, then a�1 ! c;

(d) a�1; b�1; c 2 V.
/ and a�1  b�1 ! c, then a�1 ! c.

So all of these configurations of vertices cannot occur in diagonal free cycles. This
leads us to the following statement about potential cycles of length 4 or 5.

Lemma 3.2. Every cycle of length 5 in L contains a diagonal.

Proof. Let 
 be a cycle of length 5 in L. As 5 is odd, if 
 has 5 positive or 5 negative
vertices, it has a diagonal (situation (a) or (b) always occurs).

Assume 
 contains one negative and four positive vertices. As there are only edges
from negative to positive vertices, the direction of two of the edges in 
 is already determ-
ined. Every possible direction of the three other edges leads to one of the situations above
(avoiding situation (c) necessarily leads to situation (a)). The same argument holds if 

has one positive and four negative vertices.

Assume 
 has two negative and 3 positive vertices. As each negative vertex is adjacent
to at least one positive vertex, the direction of at least two edges of 
 is already determined.
Every possible direction of the three other edges leads to one of the situations above (if the
two negative vertices are adjacent, we have situation (d), otherwise situation (c)). The
same argument holds if 
 has two positive and three negative vertices.
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Lemma 3.3. Let u; v; w; x; a; b; c; d 2 S . The only cycles of length 4 in L that do not
contain one of the situations mentioned in Remark 3.1 are

.1/ .2/ .3/ .4/ .5/

u
d

x

w

ca

v
b

u�1

d
x�1

w�1

ca
v�1

b

u�1

d
x

c

w

a

v
b

u�1

d
x�1

c

w

a
v�1

b

u�1

d
x

w�1

ca

v
b

Proof. Let 
 be a cycle of length 4. Assume 
 has 4 positive vertices. In order not to be
in situation Remark 3.1 (a), each vertex has either two incoming or two outgoing edges.
This corresponds to the first cycle. The same argument holds if 
 has 4 negative vertices.
Then we have the second cycle.

Assume 
 has 1 negative and 3 positive vertices. Then the negative vertex is adjacent
to two positive vertices and hence the direction of two edges is already determined. As we
do not allow the configuration Remark 3.1 (c), the only possible cycle is the third cycle.
The same argument holds for 1 positive and 3 negative vertices, which gives the fourth
cycle.

Assume 
 has 2 positive and 2 negative vertices. Then if the two negative vertices are
adjacent, we are necessarily in situation Remark 3.1 (d). So the negative vertices are not
adjacent. Hence they are both adjacent to the two positive vertices and the direction of
these edges is determined. This gives the fifth cycle.

So to see if L is 6-large, we need to concentrate on the cycles of length 4 presented in
Lemma 3.3. When do they exist? Under which conditions do they have a diagonal? The
next lemma aims to answer those questions.

Lemma 3.4. The link L is 6-large if and only if the following additional conditions on S
are satisfied:

(1) If there exist u; w; a; b; c; d 2 S , u ¤ w, a ¤ d , with ua D wb 2 S and ud D
wc 2 S , then there exists k 2 S such that w D uk or ua D udk or u D wk or
ud D uak.

(2) If there exist v;x;a;b;c;d 2 S , v¤ x, a¤ b, with bvD cx 2 S and avD dx 2 S ,
then there exists k 2 S such that v D kx or av D kbv or x D kv or bv D kav.

(3) If there exist u; v; x; b; c 2 S , v ¤ x, with ux 2 S , uv 2 S and vb D xc 2 S , then
there exists k 2 S such that k D uvb or v D xk or x D vk.

(4) If there exist v; w; x; a; d 2 S , v ¤ x, with vw 2 S , xw 2 S and dx D av 2 S ,
then there exists k 2 S such that k D avw or x D kv or v D kx.

(5) If there exist u; v; w; x 2 S , v ¤ x, u ¤ w, with wv 2 S , wx 2 S , uv 2 S and
ux 2 S , then there exists k 2 S such thatwD ku or xD vk or uD kw or vD xk.

Note that u; v; w; x 2 S correspond to vertices in 4-cycles in L and a; b; c; d 2 S
correspond to edges. Also note that these conditions are all necessary as one can see in
Lemma 3.6.
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Proof. We know by Lemma 3.2 that there are no diagonal free cycles of length 5 in L.
By Lemma 3.3, we know that there are only five problematic cycles of length 4. We show
here under which conditions on S such cycles exist and which conditions are necessary
for the existence of a diagonal. If those five 4-cycles have a diagonal, all cycles of length 4
have a diagonal. So all cycles of length < 6 have a diagonal, implying L is 6-large. The
existence of the 4-cycle relies on two elements: we need 4 distinct vertices u, v, w, x and
we need the appropriate edges a, b, c, d between these vertices.

(1) In the first cycle of length 4: the existence of the cycle is equivalent to the follow-
ing statement about elements of S : there exist a; b; c; d;u; v;w;x 2 S , u, v,w, x pairwise
distinct such that

v D ua D wb and x D ud D wc;

where u; v; w; x 2 S are the labels on the vertices and a, b, c, d are the labels on the
edges. There is a diagonal if v � x or u � w which is equivalent to

9 k 2 S W w D uk; u D wk; v D xk or x D vk;

where k 2 S is the label on the diagonal. This corresponds to condition (1).
(2) In the second cycle of length 4: the existence of the cycle is equivalent to the

following statement about elements of S : there exist a; b; c; d; u; v; w; x 2 S , u�1, v�1,
w�1, x�1 pairwise distinct such that

v�1
D u�1a D w�1b and x�1

D w�1c D u�1d;

where a; b; c; d 2 S are the labels on the edges. There is a diagonal if v�1 � x�1 or
u�1 � w�1 which is equivalent to

9 k 2 S W w�1
D u�1k; u�1

D w�1k; v�1
D x�1k or x�1

D v�1k;

where k 2 S is the label on the diagonal. This corresponds to condition (2).
(3) In the third cycle of length 4: the existence of the cycle is equivalent to the fol-

lowing statement about elements of S : there exist a; b; c; d; u; v; w; x 2 S , u�1, v, w, x
pairwise distinct such that

v D u�1a; x D u�1d; w D vb and w D xc;

where a; b; c; d 2 S are the labels on the edges. There is a diagonal if v � x or u�1 � w

which is equivalent to

9 k 2 S W uw D k; v D xk or x D vk;

where k 2 S is the label on the diagonal. As u�1 is a negative vertex and w is a positive
one, there is only one possible direction for the diagonal from u�1 to w. This corresponds
to condition (3).
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(4) In the fourth cycle of length 4: the existence of the cycle is equivalent to the
following statement about elements of S : there exist a; b; c; d; u; v; w; x 2 S , u�1, v�1,
w, x�1 pairwise distinct such that

v�1
D u�1a; w D v�1b D x�1c and x�1

D u�1d;

where a; b; c; d 2 S are the labels on the edges. There is a diagonal if v�1 � x�1 or
u�1 � w which is equivalent to

9 k 2 S W uw D k; v�1
D x�1k or x�1

D v�1k;

where k 2 S is the label on the diagonal. As u�1 is a negative vertex and w is a positive
one, there is only one possible direction for the diagonal from u�1 to w. This corresponds
to condition (4).

(5) In the fifth cycle of length 4: the existence of the cycle is equivalent to the follow-
ing statement about elements of S : there exist a; b; c; d; u; v; w; x 2 S , u�1, v, w�1, x
pairwise distinct such that

v D u�1a D w�1b and x D u�1d D w�1c;

where a;b; c;d 2 S are the labels on the edges. There is a diagonal if v � x or u�1 �w�1

which is equivalent to

9 k 2 S W w�1
D u�1k; u�1

D w�1k; v D xk or x D vk;

where k 2 S is the label on the diagonal. This corresponds to condition (5).

We can now get back to the original question: when is Flag.G; S/ systolic?

Theorem 3.5. Consider a group G with generating set S , where G has a finite restric-
ted triangular presentation with respect to S . Then the complex Flag.G; S/ is a simply
connected simplicial complex. It is systolic if and only if the generating set S satisfies the
following conditions:

(1) If there exist u; w; a; b; c; d 2 S , u ¤ w, a ¤ d , with ua D wb 2 S and ud D
wc 2 S , then there exists k 2 S such that w D uk or ua D udk or u D wk or
ud D uak.

(2) If there exist v;x;a;b;c;d 2 S , v¤ x, a¤ b, with bvD cx 2 S and avD dx 2 S ,
then there exists k 2 S such that v D kx or av D kbv or x D kv or bv D kav.

(3) If there exist u; v; x; b; c 2 S , v ¤ x, with ux 2 S , uv 2 S and vb D xc 2 S , then
there exists k 2 S such that k D uvb or v D xk or x D vk.

(4) If there exist v; w; x; a; d 2 S , v ¤ x, with vw 2 S , xw 2 S and dx D av 2 S ,
then there exists k 2 S such that k D avw or x D kv or v D kx.

(5) If there exist u; v; w; x 2 S , v ¤ x, u ¤ w, with wv 2 S , wx 2 S , uv 2 S and
ux 2 S , then there exists k 2 S such thatwD ku or xD vk or uD kw or vD xk.

Moreover, this implies that G is a systolic group.
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Proof. It follows from Proposition 2.1 and the definition of a restricted triangular present-
ation that �.G;S/ is a connected simplicial graph and Flag.G;S/ is a well-defined simply
connected flag complex. The complex Flag.G;S/ is systolic if and only if the link of every
vertex is flag and 6-large. As Flag.G;S/ is a flag complex, the link of a vertex is flag. The
action of G on the vertices of �.G; S/ D Flag.G; S/.1/ is transitive and by isometries.
So Flag.G; S/ is systolic if and only if the link L D Lk.e; Flag.G; S// is 6-large. This is
equivalent to the conditions given by Lemma 3.4. Since G acts properly discontinuously
and cocompactly on Flag.G; S/, the group G is systolic if Flag.G; S/ is systolic.

We call a presentation satisfying the conditions of Theorem 3.5, a systolic present-
ation. We say a group is Cayley systolic if it admits a systolic presentation. By Propos-
ition 2.2, a Cayley systolic group G with systolic presentation hS j Ri acts freely on
Flag.G;S/. One can also note that free products of Cayley systolic groups are also Cayley
systolic. More generally, we do not know under which conditions amalgamated products
of Cayley systolic groups are systolic or Cayley systolic.

Lemma 3.6. Consider the set S D ¹a; b; c; d; u; v; w; xº and the sets

R1 D ¹uav
�1; wbv�1; udx�1; wcx�1

º;

R2 D ¹bvw
�1; cxw�1; avu�1; dxu�1

º;

R3 D ¹vbw
�1; xcw�1; uxd�1; uva�1

º;

R4 D ¹dxu
�1; avu�1; vwb�1; xwc�1

º;

R5 D ¹vua
�1; vwb�1; xwc�1; xud�1

º:

For all i 2 ¹1; 2; 3; 4; 5º, the presentation hS j Ri i is a restricted triangular presentation.
Additionally, the presentation hS j Ri i satisfies all the conditions of Theorem 3.5 except
condition i.

Proof. We show this for hS j R3i. The other cases can be checked in the same way. First
note that

a D uv; b D v�1w; c D x�1w; d D ux:

So the group C3 D hS j R3i is in fact F.u; v;w; x/, the free group on the generators u, v,
w and x. So the word problem in C3 is solvable. We do the following calculations using
SAGEMATH. We check for all triples .˛; ˇ; 
/ 2 S3 that

˛ˇ
 ¤ 1; ˛ˇ
 … S and ˛ˇ
�1
D e, ˛ � ˇ � 
�1

2 R3:

Note that ˛ˇ
 … S implies S \ S�1 D ;. So the presentation hS j R3i is a restricted
triangular presentation. Now we need to check the different conditions of Theorem 3.5.
Using SAGEMATH, we see that there are no elements su; sv; sw ; sx ; sa; sb; sc ; sd 2 S
satisfying the hypothesis of one of conditions (1), (2), (4) and (5) but the tuples

.su; sv; sx ; sb; sc/ D .u; v; x; b; c/ and .su; sv; sx ; sb; sc/ D .u; x; v; c; b/
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satisfy svsb D sxsc 2 S , susx 2 S and susv 2 S . We check that condition (3) fails in at
least one of those cases, so we check that for all s 2 S we have s ¤ susvsb and sv ¤ sxs
for at least one of those tuples.

Example 3.7. The conditions in Theorem 3.5 are all necessary as shown in Lemma 3.6.
One can note that the given presentations are not systolic but the underlying groups are,
since free groups are known to be systolic and even Cayley systolic with respect to the
standard generating system. Also note that the presentation

F2 � F2 D ha; b; c; d;�1; �2; �3; �4 j �1 D ab D ba; �2 D bc D cb;

�3 D cd D dc; �4 D da D ad i

satisfies conditions (1)–(4) but not condition (5) (as one can see when considering u D a,
v D b, w D c and x D d ). Again, F2 � F2 is known to be systolic, using a construction
by Elsner and Przytycki [10]. We do not know whether it is Cayley systolic.

Remark 3.8. We can also interpret the conditions in Lemma 3.4 as conditions using
orders on S . We first introduce left and right orders on S [ e by defining for a;b 2S [ ¹eº:

(a) a �L b if there exists c 2 S [ ¹eº such that ac D b.
(b) a �R b if there exists c 2 S [ ¹eº such that ca D b.

These are indeed orders on S [ ¹eº: as e 2 S [ ¹eº they are reflexive, as there are no
inverses in S they are antisymmetric and by the additional condition on S they are trans-
itive. An edge v ! w in L is equivalent to

(1) v �L w if v;w 2 S ;
(2) w�1 �R v

�1 if v;w 2 S�1;
(3) v�1w 2 S if w 2 S and v 2 S�1.

Then the conditions on the existence of diagonals in given 4-cycles could be reformulated
in the following way:

(1) If there exist u; v;w;x 2 S pairwise distinct with u �L v and w �L v and u �L x

and w �L x, then u �L w or x �L v or w �L u or v �L x.
(2) If there exist u;v;w;x 2 S pairwise distinct with v �R u and x �R u and v �R w

and x �R w, then u �R w or v �R x or w �R u or v �R x.
(3) If there exist u; v;w;x 2 S pairwise distinct with uv 2 S and ux 2 S and v �L w

and x �L w, then uw 2 S or v �L x or x �L v.
(4) If there exist u;v;w;x 2 S pairwise distinct with vw 2 S and xw 2 S andx �R u

and v �R u, then uw 2 S or v �R x or x �R v.
(5) If there exist u; v;w;x 2 S pairwise distinct with uv 2 S and ux 2 S and wv 2 S

and wx 2 S , then v �L x or w �R u or x �L v or u �R w.

Here the conditions are only given in terms of elements of S associated to the vertices of
the 4-cycles.
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4. Applications

4.1. Garside groups

A group G is said to be a Garside group with Garside structure .G; P; �/ if it admits
a submonoid P with P \P�1 D ¹eº, called the monoid of positive elements and a special
element � 2 P called Garside element such that the following properties are satisfied:

(1) The partial order �L defined by a �L b , a�1b 2 P is a lattice order, i.e., for
every a; b 2 G there exists a unique lowest common multiple a _L b and a unique
greatest common divisor a ^L b with respect to �L, i.e., for all a; b 2 G there
exists a unique .a _L b/ such that a �L .a _L b/, b �L .a _L b/ and for all
c 2 G a �L c and b �L c imply .a _L b/ �L c. Similarly, for all a; b 2 G there
exists a unique .a ^L b/ such that .a ^L b/�L a, .a ^L b/�L b and for all c 2G
c �L a and c �L b imply c �L .a ^L b/.

(2) The set Œe; �� D ¹a 2 G j e �L a �L �º, called the set of simple elements, gen-
erates P .

(3) Conjugation by � preserves P , i.e., ��1P� D P .

(4) For all x 2 P n ¹eº one has

kxk D sup¹k 2 N j 9 a1; : : : ; ak 2 P n ¹eº such that x D a1 � � � akº <1:

A Garside structure .G; P;�/ is said to be of finite type if the set of simple elements
Œe;�� is finite. A group G is said to be a Garside group of finite type if it admits a Garside
structure of finite type. Elements x 2 P n ¹eº with kxk D 1 are called atoms. The set of
atoms also generates P .

Remark 4.1. The monoid P also induces a partial order �R which is invariant under
right multiplication. We define a �R b, ba�1 2 P . It follows from the properties of G
that �R is also a lattice order, that P is the set of elements a such that e �R a and that
the simple elements are the elements a such that e �R a �R �. We denote by a _R b the
lowest common multiple and by a ^R b the greatest common divisor with respect to �R.
An element g 2 P is balanced if ¹a 2 G j e �L a �L gº D ¹a 2 G j e �R a �R gº. As
¹a 2 G j e �L a �L �º D ¹a 2 G j e �R a �R �º, the element � is balanced.

Example 4.2. Spherical Artin groups are Garside groups, in particular, braid groups are
Garside. Torus knot groups hx;y j xp D yqiwith p;q > 1 are Garside groups with Garside
element � D xp D yq and monoid of positive elements hx; y j xp D yqiC. The funda-
mental group of the complement of n lines through the origin in C2

hx1; : : : ; xn j x1x2 : : : xn D x2 : : : xnx1 D � � � D xnx1 : : : xn�1i

is also a Garside group with Garside element � D x1x2 : : : xn and monoid of positive
elements hx1; : : : ; xn j x1x2 : : : xn D x2 : : : xnx1 D � � � D xnx1 : : : xn�1i

C.
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Lemma 4.3. Let G be a Garside group with Garside structure .G; P;�/ and set of non-
trivial simple elements S . Then G D hS j s � t D st for all s; t 2 S such that st 2 Si is
a restricted triangular presentation of G.

Proof. This presentation is a direct consequence of [7, Theorem 6.1]. It is a restricted
triangular presentation as all relations are of the form a � b D c for some a; b; c 2 S and S
is the set of simple elements of a Garside group.

We call this presentation the Garside presentation of G associated with the Garside
structure .G; P;�/. We can now state one of our main results.

Theorem 4.4. Let G be a Garside group of finite type with Garside structure .G; P;�/
and non-trivial simple elements S . Then Flag.G; S/ is systolic if and only if for all a; b 2
S , a ^L b 2 ¹e; a; bº and a ^R b 2 ¹e; a; bº. In particular, if Flag.G; S/ is systolic, then
so is G.

Proof. By Lemma 4.3, the Garside presentation of G with generating set S is a restricted
triangular presentation. By Proposition 2.1, Flag.G; S/ is well-defined. By Theorem 3.5,
Flag.G; S/ is systolic if and only if conditions (1)–(5) are satisfied.

Assume that for all a; b 2 S , a ^L b; a ^R b 2 ¹e; a; bº. Then

(1) If there exist u; w; a; b; c; d 2 S , u ¤ w, a ¤ b with ua D wb 2 S and ud D
wc 2 S , then u �L ua and u �L ud so ua ^L ud ¤ e, so either ua ^L ud D ua or
ua ^L ud D ud , say ua ^L ud D ud so ua D udk for some k 2 S .

(2) If there exist v;x;a;b; c;d 2 S , v¤ x, a¤ b with bvD cx 2 S and avD dx 2 S ,
then v �R bv and v �R av then av ^R bv ¤ e, so either av ^R bv D av or av ^R bv D

bv, say av ^R bv D bv so av D kbv for some k 2 S .

(3) If there exist u; v; x; b; c 2 S , v ¤ x with ux 2 S , uv 2 S and vb D xc 2 S , then
u �L ux and u �L uv so uv ^L ux ¤ e, so either uv ^L ux D uv or uv ^L ux D ux,
say uv ^L ux D ux so uv D uxk for some k 2 S and then v D xk.

(4) If there exist v;w;x;a;d 2 S , v¤ x with vw 2 S , xw 2 S and dxD av 2 S , then
w �R vw and w �R xw so vw ^R xw ¤ e, so either vw ^R xw D vw or vw ^R xw D

xw, say xw ^R vw D vw so xw D kvw for some k 2 S and then x D kv.

(5) If there exist u; v; w; x 2 S , v ¤ x, u ¤ w with wv 2 S , wx 2 S , uv 2 S and
ux 2 S , then u �L uv and u �L ux so uv ^L ux ¤ e, so either uv ^L ux D uv or
uv ^L ux D ux, say uv ^L ux D uv so uv D uxk for some k 2 S and then v D xk.

So if for all a; b 2 S , a ^R b; a ^L b 2 ¹e; a; bº, conditions (1)–(5) of Theorem 3.5
are satisfied and so Flag.G; S/ is systolic, which directly implies that G is systolic.

We now show the other implication. First assume there exist a; b 2 S , a ¤ b, with
a ^L b D c for some c 2 S n ¹a; bº, i.e., c ¤ e; a; b. Then there exist ka; kb; ra; rb 2 S

with a D cka, b D ckb and � D kara D kbrb . Then c; ka; kb; ra; rb 2 S and ka ¤ kb ,
cka D a 2 S , ckb D b 2 S and � D kara D kbrb 2 S . But ckara D c� … S and there
is no k 2 S with ka D kbk since c D a ^L b ¤ b, similarly there is no k 2 S with
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kb D kak since c D a ^L b ¤ a. So condition (3) of Theorem 3.5 fails. So Flag.G; S/
is not systolic. Finally, assume there exist a; b 2 S , a ¤ b, with a ^R b D c for some
c 2 S n ¹a; bº, i.e., c ¤ e; a; b. Then there exist ka; kb; ra; rb 2 S with a D kac, b D kbc

and�D raka D rbkb . Then c; ka; kb; ra; rb 2 S and ka ¤ kb , kac D a 2 S , kbc D b 2 S

and�D raka D rbkb 2 S . But rakac D �c … S and there is no k 2 S with ka D kkb or
kb D kka since cD a^R b¤ a;b. So condition (4) of Theorem 3.5 fails. Then Flag.G;S/
is not systolic. So if there exist a; b 2 S with a ^L b … ¹e; a; bº or a ^R b … ¹e; a; bº, the
complex Flag.G; S/ is not systolic.

Example 4.5. Let x1; : : : ; xn be n letters and let m be a positive integer. We define

prod.x1; : : : ; xpIm/ D x1x2 : : : xpx1x2 : : :„ ƒ‚ …
m

and prod.x1; : : : ; xpI 0/ D e. Consider the group

Gn;m D hx1; : : : ; xn j prod.x1; : : : ; xnIm/ D prod.x2; : : : ; xn; x1Im/ D � � �

D prod.xn; x1; : : : ; xn�1Im/i:

By [7, Proposition 5.2], this is a Garside group with Garside element

�n;m D prod.x1; : : : ; xnIm/;

and monoid of positive elements

Pn;m D hx1; : : : ; xn j prod.x1; : : : ; xnIm/ D prod.x2; : : : ; xn; x1Im/ D � � �

D prod.xn; x1; : : : ; xn�1Im/i
C:

When considering all indices modulo n, we can write the set of simple non-trivial elements
as

S D ¹prod.xi ; : : : ; xiCnI k/ j 1 � k � m and 1 � i � nº:

In particular, for nD 1, we haveG1;m D hx1iwith Garside element xm
1 and the simple

elements are S D ¹xi
1 j 0 � i � mº. Note that if m D n D 1, we have x1 D �1;1 and

S D ¹x1º. Also if n > 1, we can assume m > 1.
More generally, for some positive integers p, n1; : : : ; np , m1; : : : ; mp , the product

G D .�
p
iD1Gni ;mi

/=.�ni ;mi
D �nj ;mj

for all i; j /

is a Garside group with Garside element � D �n1;m1 D � � � D �np ;mp . We would like to
remark that if p > 1 and ni D mi D 1 for some i , say i D p, we have

.�
p
iD1Gni ;mi

/=.�ni ;mi
D �nj ;mj

for all i; j /

Š .�
p�1
iD1Gni ;mi

/=.�ni ;mi
D �nj ;mj

for all i; j /:

So we can assume that if p > 1, we have mi � 2 for all i 2 ¹1; : : : ; pº. The next theorem
shows that these are the only Garside groups with systolic Garside presentation.
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Theorem 4.6. Let G be a Garside group of finite type. Then G has a systolic Garside
presentation if and only if G Š .�

p
iD1Gni ;mi

/=.�ni ;mi
D �nj ;mj

for all i; j / for some
positive integers p; n1; : : : ; np and m1; : : : ; mp .

Proof. We start by showing that if G D .�p
iD1Gni ;mi

/=.�ni ;mi
D �nj ;mj

for all i; j / for
some positive integers p; n1; : : : ; np; m1; : : : ; mp , the group G has a systolic Garside
presentation. Let S be the set of non-trivial simple elements. We start with the case p D 1.
If n D m D 1, we have S D ¹x1º, so the Garside presentation is systolic. Otherwise,
GDGn;m for some positive integers n andm� 2, and the Garside element is�D�n;mD

prod.x1; : : : ; xnIm/. For simpler notation, we always consider the index i modulo n. The
set of simple elements is

S D ¹prod.xi ; : : : ; xiCnI k/ j 1 � i � n and 1 � k � mº:

Then for 0 � k � l � m, we have

prod.xi ; : : : ; xiCnI k/ ^L prod.xj ; : : : ; xjCnI l/

D

´
e if i ¤ j and l < m;

prod.xi ; : : : ; xiCnI k/ if i D j or l D m:

Similarly, for 0 � k � l � m, we have

prod.xi ; : : : ; xiCnI k/ ^R prod.xj ; : : : ; xjCnI l/

D

´
e if i C k 6� j C l and l < m;

prod.xi ; : : : ; xiCnI k/ if i C k � j C l or l D m:

So by Theorem 4.4, the Garside presentation of Gn;m is systolic.
Now consider the case p > 1. Then the element � D �n1;m1 D � � � D �np ;mp is

the Garside element of G. Let yS be the set of simple elements of G and ySi the set of
simple elements of Gni ;mi

for i D 1; : : : ; p. Then yS D
Fp

iD1.
ySi n ¹�ni ;mi

; eº/ t ¹�; eº

is a partition of the set of simple elements. For every i; j 2 ¹1; : : : ; pº, ySi satisfies
s ^L t; s ^R t 2 ¹e; s; tº for all s; t 2 ySi , and we have s ^R t D s ^L t D e if s 2 ySi n ¹�º,
t 2 Sj n ¹�º, i ¤ j . So for all s; t 2 yS , we have s ^R t; s ^L t 2 ¹s; t; eº. Hence by
Theorem 4.4, G has a systolic Garside presentation.

Now assume G is a Garside group with systolic Garside presentation. Let � be the
Garside element, P the monoid of positive words, yS the set of simple elements and A the
set of atoms of P . So by Theorem 4.4, we have for all s; t 2 S , s ^L t; s ^R t 2 ¹e; s; tº.
First note that if� 2A, we have yS D ¹e;�º,AD ¹�º,G DZ and P DN. Hence we can
write G as .�p

iD1Gni ;mi
/=.�ni ;mi

D �nj ;mj
for all i; j / with p D 1 and n1 D m1 D 1.

So we can now assume that � … A.
We start with showing that for all a 2 A there exists a unique �.a/ 2 A such that

a�.a/ 2 yS . As � … A, such a �.a/ 2 A exists. Assume it is not unique, so let a1; a2 2 A

with aa1; aa2 2 yS . Since aa1 ^L aa2 2 ¹e; aa1; aa2º and a, a1, a2 are atoms, aa1 D aa2
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and hence a1 D a2. Similarly, for all a 2 A there exists a unique �.a/ 2 A such that
�.a/a 2 yS . In particular, for all a 2 A, �.�.a// D a D �.�.a//. So the map �WA! A

is bijective with inverse map �WA! A. As A is finite, the map � is a permutation of A.
So the orbits of � form a partition of A and � can be written as a product of cycles of
disjoint support,

� D .a1;1; a1;2; : : : ; a1;n1/.a2;1; : : : ; a2;n2/ � � � .ap;1; : : : ; ap;np /:

Then for any 1 � i � p there existsmi � 2 such that�D prod.ai;1; : : : ; ai;ni
Imi /. Since

� is balanced, we have

prod.ai;1; : : : ; ai;ni
Imi / D prod.ai;2; ai;3; : : : ; ai;ni

; ai;1Imi / D � � �

D prod.ai;ni
; ai;1; : : : ; ai;ni�1Imi /:

The set Ai D ¹ai;1; : : : ; ai;ni
º corresponds to the atoms of Gni ;mi

. Hence

G Š .�
p
iD1Gni ;mi

/=.�ni ;mi
D �nj ;mj

for all i; j /:

Corollary 4.7. (1) The group

Gn;n D hx1; : : : ; xn j x1x2 : : : xn D x2x3 : : : xnx1 D � � � D xnx1 : : : xn�1i;

which is the fundamental group of the complement of n lines through the origin
in C2, has a systolic Garside presentation with respect to the Garside structure
given in Example 4.2.

(2) Consider n positive integers p1; : : : ; pn, pi � 2. The group

G D hx1; : : : ; xn j x
p1

1 D x
p2

2 D � � � D x
pn
n i

has a systolic Garside presentation with respect to the Garside element � D xp1

1 .
In particular, torus knot groups hx; y j xp D yqi have a systolic Garside present-
ation with respect to the Garside structure given in Example 4.2.

Remark 4.8. In [7, Example 5], a generalization of the groups Gn;m is mentioned. Let
p; n;m 2 N, 2 � m, 2 � p � n. It claims that

Kn;p;m D hx1; x2; : : : ; xn j prod.x1; : : : ; xpIm/

D prod.x2; : : : ; xpC1Im/ D � � � D prod.xn�pC1; : : : ; xnIm/

D prod.xn�pC2; : : : ; xn; x1Im/ D � � � D prod.xn; x1; : : : ; xp�1Im/i

is a Garside group by [7, Proposition 5.2]. But this is a wrong application of [7, Proposi-
tion 5.2], as one can see by considering for example the case n D 5, p D 3 and m D 4 or
more generally m D p C 1. So the question of whether Kn;p;m is a Garside group when
p ¤ n remains open.
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Remark 4.9. For k � 2, the group Gk D ha; b j b
k D abai is Garside with Garside

element�D bkC1 D abab D baba. The elements bk and bab are both simple elements,
but bk ^L bab D b … ¹e; b

k ; babº. So it does not satisfy the conditions of Theorem 4.4.
Yet it is systolic as it is isomorphic to the group hx; b j x2 D bkC1i. This leads to the
following question: Do all systolic Garside groups have a Garside structure with respect
to which they have a systolic Garside presentation?

Remark 4.10 (Restrictions on systolicity in Garside groups). Consider a Garside group
of finite type G with Garside structure .G; P;�/. Then �k is in the center of G for some
positive integer k. Let S be the set of simple elements. Suppose there is some balanced
element ı 2 S n ¹�; eº. Let T D ¹a 2 G j 1 �L a �L ıº D ¹a 2 G j 1 �R a �R ıº. Let
a 2 T be an atom and suppose ı … hai. Then ıl is in the center of the subgroup of G
generated by T for some positive integer l . If hT i ¤ G, we have ha; ıl ; �ki Š Z3. This
implies in particular that G is not systolic.

Remark 4.11. The cohomological dimension of Garside groups is known to be bound-
ed [3, 6]. For n 2 N, we know that cd.Gn;n/ D 2 as Gn;n is the direct product of Z with
a free group of rank n � 1. For n; m 2 N, we expect that cd.Gn;m/ D 2. Moreover, for
p; q 2 N the torus knot groups Tp;q D hx; y j x

p D yqi also satisfies cd.Tp;q/ D 2. So
we do not expect these groups to produce knew examples of groups with higher cohomo-
logical dimension.

4.2. Artin groups

Recall the notation

Œxyx : : : �k D xyx : : :„ ƒ‚ …
k

and Œ: : : xyx�k D : : : xyx„ ƒ‚ …
k

for some k 2 N. Given a finite labeled simple graph � , the Artin group associated to � is
given by

A� D hsv; v 2 V j Œsvswsv : : : �me D Œswsvsw : : : �me

for all edges e D .v; w/ with label mei:

For n 2 N�2, the dihedral Artin group DAn is the Artin group defined by the graph
a
n
b . So DAn D ha; b j Œaba : : : �n D Œbab : : : �ni.

The Artin monoid associated to � is given by

AC� D hsv; v 2 V j Œsvswsv : : : �me D Œswsvsw : : : �me

for all edges e D .v; w/ with label mei
C:

By [15, Theorem 1.1], the canonical homomorphism �WAC� ,! A� is an injection.
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Corollary 4.12. The dihedral Artin group DAn is Cayley systolic for all n 2 N�2.

Proof. The dihedral Artin groupDAn corresponds to the Garside groupG2;n with Garside
element � D Œaba : : : �n. So by Theorem 4.6, it is Cayley systolic.

Recall the following definitions: An orientation on a simple graph � is an assign-
ment o.e/ for each edge e 2 E.�/, where o.e/ is a set of one or two endpoints of e.
An edge with both endpoints assigned is bioriented. The startpoint i.e/ is an assignment
of one or two startpoints of e, which is consistent with the choice of o.e/. If o.e/ consists
of one point, i.e/ consists of one point such that e D .i.e/; o.e//, if o.e/ consists of two
points then so does i.e/. We say that a cycle 
 is directed if for each v 2 
 there is exactly
one edge e 2 
 with v 2 o.e/. A cycle is undirected if it is not directed. We say that a 4-
cycle 
 D .a1; a2; a3; a4/ is misdirected if a2 2 o.a1; a2/, a2 2 o.a2; a3/, a4 2 o.a3; a4/

and a4 2 o.a4; a1/, i.e.,

a1 a4

a3a2

Lemma 4.13. Let � be a labeled simple graph with an orientation o such that an edge
is bioriented if and only if it has label 2. Assume that every 3-cycle in � is directed. Let
V.�/ D ¹v1; : : : ; vnº. Consider the set

S D ¹x1; x2; : : : ; xnº [ ¹�e; t
e
1 ; t

e
2 ; : : : ; t

e
me�2 j e 2 E.�/ with label meº:

For each e 2 E.�/ with label me � 3 and with i.e/ D vi and o.e/ D vj , we consider the
set

Re D ¹xixj�
�1
e ; xj t

e
1�
�1
e ; te1 t

e
2�
�1
e ; te2 t

e
3�
�1
e ; : : : ; teme�3t

e
me�2�

�1
e ; teme�2xi�

�1
e º:

For each e 2 E.�/ with label me D 2 and with o.e/ D i.e/ D ¹vi ; vj º, we consider the
set Re D ¹xixj�

�1
e ; xjxi�

�1
e º. Let R D

S
e2E.�/ Re . Then the presentation hS j Ri is

a restricted triangular presentation of A� . We call this the dual presentation of A� with
orientation o.

Proof. The standard presentation of A� is

A� D hx1; : : : ; xn j Œxixjxi : : : �me D Œxjxixj : : : �me

for all edges e D .vi ; vj / with label mei:

We first see that the dual presentation is indeed a presentation of A� . Let e 2 E.�/ with
me D 2, i.e/D o.e/D ¹vi ; vj º. Then the standard presentation states xixj D xjxi . In the
dual presentation, the relations Re imply �e D xixj and �e D xjxi , and hence xixj D

xjxi . Let e 2 E.�/ with me � 3, i.e/ D vi and o.e/ D vj . For k 2 ¹1; : : : ; me � 2º, the
relations Re imply on one hand

tek D .Œ: : : xjxixj �k/
�1Œ: : : xjxixj �kC1
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and on the other hand

tek D Œxixjxi : : : �me�k.Œxixjxi : : : �me�k�1/
�1:

This implies the relation

Œxixjxi : : : �me D Œxjxixj : : : �me :

Conversely, Œxixjxi : : : �me D Œxjxixj : : : �me implies

xixj D Œxjxixj : : : �me .Œxixjxi : : : �me�2/
�1
D xj t

e
1 :

For k 2 ¹1; : : : ; me � 3º, we have

tek t
e
kC1 D .Œ: : : xjxixj �k/

�1Œ: : : xjxixj �kC1.Œ: : : xjxixj �kC1/
�1Œ: : : xjxixj �kC2

D .Œ: : : xjxixj �k/
�1Œ: : : xjxixj �kC2 D xixj :

Finally, when k D me � 2, we have

teme�2xi D .Œ: : : xjxixj �me�2/
�1Œ: : : xjxixj �me�1xi

D .Œ: : : xjxixj �me�2/
�1Œ: : : xixjxi �me

D .Œ: : : xjxixj �me�2/
�1Œ: : : xjxixj �me D xixj :

Let a; b; c 2 S . To see that the dual presentation is a restricted triangular presentation
we check that abc ¤ e, abc … S and abc�1 D e ) abc�1 2 R. Note that abc … S
implies S \ S�1 D ;. We consider the following map �W S ! Z defined by �.�e/ D 2

and �.tei / D 1 for all e 2 E.�/, i 2 ¹1; : : : ; me � 2º and �.xi / D 1 for i 2 ¹1; : : : ; nº.
As �.a/ C �.b/ � �.c/ D 0 for all abc�1 2 R, the map extends to a homomorphism
�WA� ! Z. For any a; b; c 2 S , we have �.a/C �.b/ � 2 and �.abc/ D �.a/C �.b/C
�.c/� 3, so it follows that ab¤ e, abc¤ e and abc … S . Also for any a;b;c 2 S such that
abc�1 D e, we have �.abc�1/D 0, which implies �.c/D �.a/C �.b/, so we necessarily
have c D �e for some e 2 E.�/ and a; b 2 S n ¹�e; e 2 E.�/º. Thus, fix e 2 E.�/ and
c D �e D xixj . Let S0 D S n ¹�e; e 2 E.�/º. We need to verify for all .a; b/ 2 S0 � S0

that if abc�1 D e, we have abc�1 2 R.
Our proof relies on the following property of AC� : Let ˛ D xi1xi2 : : : xil and ˇ D

xj1xj2 : : : xjk
be two words on x1; : : : ; xn. They represent the same element in AC� if and

only if we can transform ˛ into ˇ using a finite number of transformations of the form
u � Œxpxqxp : : : �mf

� u0 D u � Œxqxpxq : : : �mf
� u0 for some f D .vp; vq/ 2 E.�/. If ˛ does

not contain a subword of this form, no transformation is possible and the expression is
unique.

Let a D xk and b D xl for some k; l 2 ¹1; : : : ; nº. Then ab D c implies xkxl D xixj

in A� , hence the equality also holds in AC� . If me � 3, this necessarily implies k D i and
l D j . If me D 2, this implies either k D i and l D j or k D j and l D i . In all of these
cases the corresponding relation is in R.
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Let a D xk and b D tf
l

with k 2 ¹1; : : : ; nº, f D .vp; vq/ 2 E.�/, mf � 3 and 1 �
l �mf � 2. Set l 0 Dmf � l � 1, so 1 � l 0 �mf � 2. Then ab D c implies xkt

f

l
D xixj

so xk Œxpxqxp : : : �mf �l .Œxpxqxp : : : �mf �l�1/
�1 D xixj and hence xk Œxpxqxp : : : �l 0C1 D

xixj Œxpxqxp : : : �l 0 in AC� . As all 3-cycles are directed, xi , xj , and xk cannot commute
with both xp and xq . So the last letter on the left-hand side and on the right-hand side
is different and is either xp or xq . The only way to change this last letter is to apply the
relation Œxpxqxp : : : �mf

D Œxqxpxq : : : �mf
. Hence we need k D q and l 0 D mf � 2, so

l D 1. This implies the equality xpxq D xixj , so p D i and j D q. Hence f D e, aD xj ,
b D te1 and the corresponding relation is in R.

Let a D tf
l

and b D xk with k 2 ¹1; : : : ; nº, f D .vp; vq/ 2 E.�/, mf � 3 and 1 �
l �mf � 2. Then ab D c implies tf

l
xk D xixj so .Œ: : : xqxpxq�l /

�1Œ: : : xqxpxq�lC1xk D

xixj so Œ: : :xqxpxq�lC1xk D Œ: : :xqxpxq�lxixj inAC� . As all 3-cycles are directed, xi , xj ,
and xk cannot commute with both xp and xq . The first letter on the left-hand side and on
the right-hand side is different and is either xp or xq . The only way to change this first
letter is to use the relation Œxpxqxp : : : �mf

D Œxqxpxq : : : �mf
. So we need k D p and

l D mf � 2. This implies xpxq D xixj , hence i D p and j D q. So f D e, a D teme�2

and b D xi and the corresponding relation is in R.
Finally, let a D tf

k
and b D tg

l
with f D .vp; vq/, g D .vr ; vs/ 2 E.�/,mf ;mg � 3,

1 � k � mf � 2 and 1 � l � mg � 2. Set l 0 D mg � l � 1. Then ab D c implies tf
k
t
g

l
D

xixj so

Œ: : : xqxpxq�kC1Œxrxsxr : : : �l 0C1 D Œ: : : xqxpxq�kxixj Œxrxsxr : : : �l 0

in AC� . As all 3-cycles are directed, xr and xi cannot commute with both xp and xq .
Similarly, xq and xj cannot commute with both xr and xs . So the first letter on the left-
and on the right-hand side is different and is either xp or xq . Similarly, the last letter on the
left- and on the right-hand side is different and is either xr or xs . So we need to apply the
relations Œxpxqxp : : : �mf

D Œxqxpxq : : : �mf
and Œxrxsxr : : : �mg D Œxsxrxs : : : �mg . This

requires r D p and s D q and mf � k C l
0 C 2. If k C l 0 C 2 > mf , we can apply the

relation Œxpxqxp : : : �mf
D Œxqxpxq : : : �mf

on a piece of the left-hand side of length mf .
But since k C l 0 C 2 < 2mf , this only allows us to change either the first or the last letter
but not both. So we necessarily have k C l 0 C 2 D mf , so k D mf � l

0 � 2 D l � 1.
Applying the relation leads to xixj D xpxq and i D p and j D q. So f D g D e, a D te

k

and b D te
kC1

for some k 2 ¹1; : : : ; me � 3º and the corresponding relation is in R.
Indeed, we have abc ¤ 1, abc … S and abc�1 D e) abc�1 2 R for a; b; c 2 S so

this is a restricted triangular presentation.

Remark 4.14. Let � be a simple graph, with edges labeled by numbers � 2 and with an
orientation o such that an edge is bioriented if and only if it has label 2. Then it follows
from the proof of Lemma 4.13 that the dual presentation ofA� with orientation o is always
a presentation of A� but it is not always a restricted triangular presentation. For example,
if � is a 3-cycle with one edge labeled by 2 and the two others labeled by m; n � 3, the
presentation is not a restricted triangular presentation.



Systolic complexes and group presentations 919

Remark 4.15. In Corollary 4.12, we used the Garside structure onDAn induced byG2;n.
Lemma 4.13 implies that DAn Š Gn;2, this presentation corresponds to another Garside
structure. So in particular, G2;n Š Gn;2 as groups but with different Garside structures.

Theorem 4.16. Let � be a simple graph, with edges labeled by numbers � 2 and with an
orientation o such that an edge is bioriented if and only if it has label 2. Assume that every
3-cycle is directed and no 4-cycle is misdirected. LetA be the Artin group associated to � .
Then A is Cayley systolic.

Proof. We prove using Theorem 3.5 that Flag.A� ; S/ with respect to the dual presenta-
tion with orientation o is systolic. Note that with respect to the partial order defined in
Remark 3.8 and by careful inspection of the relations in R, we have that

• If a; b 2 S with ab 2 S , then ab D �e for some e 2 E.�/.
• For s 2 S , e 2 E.�/, we have s �L �e , s �R �e .
• If s�L �e and s�L �f for some s 2S , e;f 2E.�/, e¤ f , then s 2 ¹x1;x2; : : : ;xnº.
• If s; t �L �e and s; t �L �f for some s; t 2 S , s ¤ t , then e D f .
• If xi �L �e , then vi 2 o.e/ [ i.e/.
• If �e D xixj , then i.e/ [ o.e/ D ¹vi ; vj º.

We check the different conditions of Theorem 3.5:
(1) Assume there exist u; w; a; b; c; d 2 S , u ¤ w, a ¤ d with ua D wb 2 S and

ud D wc 2 S . Then ua D wb D �e and ud D wc D �f for some e; f 2 E.�/. As
u ¤ w, we have e D f . But then a D d which is a contradiction.

(2) Assume there exist v; x; a; b; c; d 2 S , v ¤ x, a ¤ b with bv D cx 2 S and
av D dx 2 S . Then bv D cx D�e and av D dx D�f for some e; f 2 E.�/. As v ¤ x,
we have e D f . And so a D b which is a contradiction.

(3) Assume there exist u; v; x; b; c 2 S , v ¤ x with ux; uv; vb; xc 2 S and vb D xc.
Then uv D �e , ux D �f and vb D xc D �g for some e; f; g 2 E.�/.

� If e D f , we have x D v which is a contradiction.
� If e D g and e ¤ f , then u; x 2 ¹x1; : : : ; xnº. But then o.e/ [ i.e/ D ¹u; xº D
o.f / [ i.f /. So e D f , which is a contradiction.

� If e¤ g, f ¤ g, e¤ f , then u;v;x 2 ¹x1; : : : ; xnº and u 2 i.e/, u 2 i.f /, v 2 o.e/,
x 2 o.f /, and ¹x; vº D i.g/ [ o.g/. But this corresponds to an undirected triangle
in the defining graph � .

(4) Assume there exist v;w;x;a, b 2 S , v¤ x, with vw;xw;dx;av 2 S and dxD av.
Then vw D �e , xw D �f and dx D av D �g for some e; f; g 2 E.�/.

� If e D g and e ¤ f , then w; x 2 ¹x1; : : : ; xnº. But then o.e/ [ i.e/ D ¹w; xº D
o.f / [ i.f /. So e D f , which is a contradiction.

� If e ¤ g, f ¤ g, e ¤ f , then v;w; x 2 ¹x1; : : : ; xnº and w 2 o.e/, w 2 o.f / and
v 2 i.e/, x 2 i.f / and o.g/[ i.g/ D ¹v; xº. But this corresponds to an undirected
triangle in the defining graph � .
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(5) Assume there exist u; v;w; x 2 S , v ¤ x; u ¤ w with wv;wx; uv; ux 2 S . Then
wv D �e , wx D �f , uv D �g and ux D �h for some e; f; g; h 2 E.�/. Then v ¤ x
implies e¤ f and g¤ h, and u¤w implies e¤ g and f ¤ h. So u;v;w;x 2 ¹x1; : : : ;xnº

and v 2 o.e/\ o.g/, x 2 o.f /\ o.h/,w 2 i.e/\ i.f / and u 2 i.g/\ i.h/. Furthermore,
i.e/[ o.e/D¹w;vºwhich implies v¤w, and i.h/[ o.h/D¹u;xºwhich implies u ¤ x.
So the 4-cycle .u; v; w; x/ is misdirected.

This is a contradiction to the orientation assumption on � .

Remark 4.17. The Artin groups in Theorem 4.16 are all of almost large type. In [13],
Huang and Osajda showed that Artin groups of almost large type are systolic. This in
particular already implies that the Artin groups considered in Theorem 4.16 are systolic.
But the complex given here is of independent interest as it is two-dimensional. One can
note that for any Artin group A� satisfying the conditions of Theorem 4.16, we have
cd.A�/ D 2. For a general Artin group A� its cohomological dimension is conjectured to
be cd.A�/ D max¹jX j j X � S; AX is sphericalº.

Remark 4.18. It was brought to the attention of the author that the Cayley graph of A.�/
with respect to the dual presentation was known to be CAT(0) by [2]. Since it is a two-
dimensional simplicial complex, this already implies that it is systolic.
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