Growth of pseudo-Anosov conjugacy classes in Teichmüller space

Jiawei Han

Abstract. Athreya, Bufetov, Eskin and Mirzakhani (2012) have shown that the number of mapping class group lattice points intersecting a closed ball of radius R in Teichmüller space is asymptotic to e^{hR} , where h is the dimension of the Teichmüller space. We show for any pseudo-Anosov mapping class f, there exists a power n, such that the number of lattice points of the f^n conjugacy class intersecting a closed ball of radius R is coarsely asymptotic to $e^{\frac{h}{2}R}$.

1. Introduction

One can study a group by understanding its "growth" in various ways. Consider G acting on a metric space S by isometries, one can measure the number of orbit or lattice points of G in a ball of radius R as R goes to infinity. For example, consider \mathbb{Z}^3 acting on \mathbb{R}^3 in the standard way, the number of lattice points of \mathbb{Z}^3 in a ball of radius R is roughly the volume of this ball, see [8] for example. In this paper, we study mapping class groups by understanding the lattice points of pseudo-Anosov conjugacy classes in Teichmüller space.

Let M be a compact, negatively curved Riemannian manifold and let \widetilde{M} denote its universal cover. The fundamental group $\pi_1(M)$ acts on \widetilde{M} by isometries. Let $B_R(x)$ denote the ball of radius R in \widetilde{M} centered at x. G. A. Margulis studied the growth rate of any orbit $\pi_1(M) \cdot y$ by intersecting with any metric balls $B_r(x)$.

Theorem 1.1 (Margulis [10]). There is a function $c: M \times M \to \mathbb{R}^+$ so that for every $x, y \in \widetilde{M}$,

$$|\pi_1(M) \cdot y \cap B_R(x)| \sim c(p(x), p(y))e^{hR}$$

where h equals the dimension of the manifold, which is the topological entropy of the geodesic flow on the unit tangent bundle of M.

The notation $f(R) \sim g(R)$ means $\lim_{R\to\infty} \frac{f(R)}{g(R)} = 1$.

Inspired by this result, Athreya, Bufetov, Eskin and Mirzakhani studied lattice point asymptotics in Teichmüller space. Let $S_{g,n}$ denote a closed surface of genus g with n

Keywords. Teichmüller theory, mapping class groups.

²⁰²⁰ Mathematics Subject Classification. 30F60.

punctures such that 3g - 3 + n > 0, and we let $\operatorname{Mod}_{g,n}$ and $(\mathcal{T}_{g,n}, d)$ denote the corresponding mapping class group and Teichmüller space with Teichmüller metric. Then $\operatorname{Mod}_{g,n}$ acts on $\mathcal{T}_{g,n}$ by isometries. We use Mod_g , \mathcal{T}_g to denote $\operatorname{Mod}_{g,0}$, $\mathcal{T}_{g,0}$ for simplicity. They showed the orbits of mapping class group have analogous asymptotics.

Theorem 1.2 (Athreya, Bufetov, Eskin, and Mirzakhani [2]). For any $\mathcal{X}, \mathcal{Y} \in \mathcal{T}_g$, we have

$$|\mathrm{Mod}_{\sigma}\cdot\mathcal{Y}\cap B_R(\mathcal{X})|\sim e^{hR}.$$

Note in their original paper, there is a factor of $\tau(\mathfrak{X})\tau(\mathcal{Y})$ in front of e^{hR} , τ is called the Hubbard–Masur function. Mirzakhani later showed that τ is a constant function, see [3]. Moreover, again we let M be a compact negatively curved Riemannian manifold and let \widetilde{M} denote its universal cover, we recall the following result from Parkkonen and Paulin [13] about the lattice point asymptotics for conjugacy classes of $\pi_1(M)$.

Theorem 1.3 (Parkkonen, Paulin [13]). Let G be a nontrivial conjugacy class of $\pi_1(M)$, for any $x \in \widetilde{M}$, we have

$$\lim_{R\to\infty}\frac{1}{R}\ln|G\cdot\mathcal{X}\cap B_R(\mathcal{X})|=\frac{h}{2}.$$

Inspired by this result, we wish to explore the lattice point asymptotics for conjugacy classes of $\operatorname{Mod}_{g,n}$. The Nielsen–Thurston classification [14] says every element in Mod_g is one of the three types: periodic, reducible, or pseudo-Anosov. When $f \in \operatorname{Mod}_{g,n}$ is a Dehn twist, a special kind of reducible element, we prove in [6] that the lattice point growth for the conjugacy class of f is "coarsely" asymptotic to $e^{\frac{h}{2}R}$. In this paper, we are interested in pseudo-Anosov elements. Let $PA \subset \operatorname{Mod}_g$ denote the subset of pseudo-Anosov elements. Maher showed pseudo-Anosov elements are generic in the following sense.

Theorem 1.4 (Maher [9]). For any $\mathcal{X}, \mathcal{Y} \in \mathcal{T}_g$, we have

$$\frac{|PA \cdot \mathcal{Y} \cap B_R(\mathcal{X})|}{|\mathsf{Mod}_g \cdot \mathcal{Y} \cap B_R(\mathcal{X})|} \sim 1.$$

The above Theorems 1.3, 1.4, motivate us to explore the lattice point asymptotics for pseudo-Anosov conjugacy classes. For any mapping class $\phi \in \operatorname{Mod}_{g,n}$, we use $[\phi] = \{f\phi f^{-1} \mid f \in \operatorname{Mod}_{g,n}\}$ to denote its conjugacy class. For simplicity of notation, we denote $\Gamma_R(\mathcal{X}, \mathcal{Y}, \phi) = |[\phi] \cdot \mathcal{Y} \cap B_R(\mathcal{X})|$.

 $\Gamma_R(\mathcal{X}, \mathcal{Y}, \phi) = |[\phi] \cdot \mathcal{Y} \cap B_R(\mathcal{X})|.$ Let C > 0, we say $f(R) \leq g(R)$ if for any $\delta > 1$, there exists a $M(\delta)$ such that $\frac{1}{\delta C} \cdot f(R) \leq g(R)$ for any $R \geq M(\delta)$. We say $f(R) \stackrel{C}{\sim} g(R)$ if $f(R) \stackrel{C}{\leq} g(R)$ and $g(R) \stackrel{C}{\leq} f(R)$, thus $f(R) \stackrel{1}{\sim} g(R)$ is the same as $f(R) \sim g(R)$. Accordingly, we simply write \leq , \sim when C = 1. The main results of this paper are the following. **Theorem 1.5.** Fix $S_{g,n}$ and $\varepsilon > 0$, there exists a constant A > 0 such that given any ε -thick pseudo-Anosov element ϕ with translation distance $\tau \geq A$ and given any \mathcal{X}, \mathcal{Y} in $\mathcal{T}_{g,n}$, there exists a corresponding $G(\mathcal{X}, \mathcal{Y}, \phi)$ such that

$$\Gamma_R(\mathcal{X}, \mathcal{Y}, \phi) \overset{G(\mathcal{X}, \mathcal{Y}, \phi)}{\sim} e^{\frac{h}{2}R}.$$

Corollary 1.6. Fix $S_{g,n}$, given any pseudo-Anosov element ϕ and given any X, Y in $T_{g,n}$. There exists a power N depending on ϕ such that for any $k \geq N$, there is a corresponding $G(X, Y, \phi, k)$ so that the following holds:

$$\Gamma_R(\mathcal{X}, \mathcal{Y}, \phi^k) \overset{G(\mathcal{X}, \mathcal{Y}, \phi, k)}{\sim} e^{\frac{h}{2}R}$$

In parallel with Theorem 1.3 above, we note the above Theorem 1.5 and Corollary 1.6 imply the following.

Corollary 1.7. Fix $S_{g,n}$, given any pseudo-Anosov element ϕ and given any \mathcal{X} , \mathcal{Y} in $\mathcal{T}_{g,n}$, for all sufficiently large k we have

$$\lim_{R\to\infty}\frac{1}{R}\ln\Gamma_R(\mathcal{X},\mathcal{Y},\phi^k)=\frac{h}{2}.$$

These results again indicate the similarity of Teichmüller spaces and hyperbolic spaces in terms of lattice point asymptotics.

2. Background

We refer the reader to [4] for the general background materials. Let $\operatorname{Homeo}_{g,n}^+$ denote the group of all the orientation-preserving homeomorphisms of $S_{g,n}$ preserving the set of punctures, and let $\operatorname{Homeo}_{g,n}^0$ denote the connected component of the identity. The mapping class group of $S_{g,n}$ is defined to be the group of isotopy classes of orientation-preserving homeomorphisms,

$$\operatorname{Mod}_{g,n} = \operatorname{Homeo}_{g,n}^+/\operatorname{Homeo}_{g,n}^0 = \operatorname{Homeo}_{g,n}^+/\operatorname{isotopy}.$$

A hyperbolic structure \mathcal{X} on $S_{g,n}$ is a pair (X,ϕ) where $\phi\colon S_{g,n}\to X$ is a homeomorphism and X is a hyperbolic surface. We say two hyperbolic structures $\mathcal{X}=(X,\phi)$, $\mathcal{Y}=(Y,\psi)$ are isotopic if there is an isometry $I\colon X\to Y$ isotopic to $\psi\circ\phi^{-1}$. The Teichmüller space $\mathcal{T}_{g,n}$ is the set of hyperbolic structures on $S_{g,n}$ modulo isotopy. We let $\mathcal{X}=(X,\phi), \mathcal{Y}=(Y,\psi)$ denote elements in $\mathcal{T}_{g,n}$. Given any $\mathcal{X},\mathcal{Y}\in\mathcal{T}_{g,n}$, the Teichmüller distance between them is defined to be

$$d_{\mathcal{T}}(\mathcal{X}, \mathcal{Y}) = \frac{1}{2} \inf_{f \sim \phi \circ \psi^{-1}} \log(K_f)$$

where the infimum is over all quasi-conformal homeomorphisms f isotopic to $\phi \circ \psi^{-1}$ and K_f is the quasi-conformal dilatation of f. Equipped with the Teichmüller metric, the Teichmüller space is a complete, unique geodesic metric space.

Given any $\mathcal{X}=(X,\phi)\in\mathcal{T}_{g,n}$ and given any isotopy class γ of nontrivial simple closed curves on $S_{g,n}$, there exists a unique geodesic in the free homotopy class of $\phi(\gamma)$ on X. We define $\ell_X(\phi(\gamma))$ to be the length of this unique geodesic and define $\ell_X(\gamma)=\ell_X(\phi(\gamma))$. A pants decomposition of the surface $S_{g,n}$ is a collection of pairwise disjoint nontrivial simple closed curves $\gamma_1,\ldots,\gamma_{3g-3+n}$ on $S_{g,n}$, together they decompose the surface $S_{g,n}$ into 2g+n-2 pairs of pants. Using pants decomposition and by introducing Fenchel–Nielsen coordinates, Fricke [5] showed that $\mathcal{T}_{g,n}$ is homeomorphic to $\mathbb{R}^{6g+2n-6}$.

The mapping class group acts isometrically on $\mathcal{T}_{g,n}$ by changing the marking $(f, (X, \phi)) \mapsto (X, \phi \circ f^{-1})$. This action is properly discontinuous but not cocompact. The quotient $\mathcal{M}_{g,n} = \mathcal{T}_{g,n}/\text{Mod}_{g,n}$ is called the moduli space, and it is a non-compact orbifold parameterizing hyperbolic surfaces homeomorphic to $S_{g,n}$.

Given any $\varepsilon > 0$, the ε -thick part of Teichmüller space is defined to be

$$\mathcal{T}_{g,n}^{\varepsilon} = \{ \mathcal{X} \in \mathcal{T}_{g,n} \mid \ell_{\mathcal{X}}(\alpha) \geq \varepsilon \text{ for any simple closed curve } \alpha \text{ on } S_{g,n} \}$$

and consequently the ε -thick part of moduli space is $\mathcal{M}_{g,n}^{\varepsilon} = \mathcal{T}_{g,n}^{\varepsilon}/\mathrm{Mod}_{g,n}$. The Mumford compactness criterion [12] says $\mathcal{M}_{g,n}^{\varepsilon}$ is compact for any $\varepsilon > 0$.

Similar to hyperbolic isometries acting on hyperbolic space, each pseudo-Anosov element $\phi \in \operatorname{Mod}_{g,n}$ acts on $\mathcal{T}_{g,n}$ by translating along its corresponding bi-infinite geodesic axis, denoted as $\operatorname{axis}(\phi)$ with translation distance denoted as $\tau(\phi)$. Moreover, we say a pseudo-Anosov element $\phi \in \operatorname{Mod}_{g,n}$ is called ε -thick if $\operatorname{axis}(\phi) \subset \mathcal{T}_{g,n}^{\varepsilon}$.

For any r > 0 and for every closed set $W \subset \mathcal{T}_{g,n}$, denote $\mathcal{N}_r(W)$ the r-neighborhood of W. For every closed set $C \subset \mathcal{T}_{g,n}$, the closest point projection map is defined as follows:

$$\pi_C(x) = \{ y \in C \mid d(x, y) = d(x, C) = \inf_{z \in C} d(x, z) \}.$$

As one of the early works exploring negative curvature in Teichmüller space, the result below from Minsky [11] says that ε -thick geodesics in Teichmüller space satisfy the strongly contracting property.

Theorem 2.1 (Minsky [11]). There exists a constant A > 0 depending on ε , $\chi(S_{g,n})$ such that if \mathcal{L} is an ε -thick geodesic in $\mathcal{T}_{g,n}$, the projection $\pi_{\mathcal{L}}$ satisfies

$$\operatorname{diam}(\pi_{\mathcal{L}}(\mathcal{X})) \leq A$$

for any $X \in \mathcal{T}_{g,n}$. Moreover, if X satisfies $d(X, \mathcal{L}) > A$, then we have

$$\operatorname{diam}(\pi_{\mathcal{L}}(\mathcal{N}_{d(\mathcal{X},L)-A}(\mathcal{X}))) \leq A.$$

For any two closed sets $A, B \subset \mathcal{T}_{g,n}$ we let d(A, B) denote the minimal distance between them. For \mathcal{L} a geodesic in $\mathcal{T}_{g,n}$, we let $d_{\pi}^{\mathcal{L}}(C, W) = \operatorname{diam}(\pi_{\mathcal{L}}(C) \cup \pi_{\mathcal{L}}(W))$. We can pick the constant A in Theorem 2.1 in a way so that the following holds.

Corollary 2.2 (Arzhantseva, Cashen, and Tao [1]). Let \mathcal{L} be an ε -thick geodesic in $\mathcal{T}_{g,n}$ and let $\mathcal{X}, \mathcal{Y} \in \mathcal{T}_{g,n}$ be such that $d_{\pi}^{\mathcal{L}}(\mathcal{X}, \mathcal{Y}) > A$, then

$$d(\mathcal{X}, \mathcal{Y}) \ge d(\mathcal{X}, \pi_{\mathcal{Z}}(\mathcal{X})) + d_{\pi}^{\mathcal{Z}}(\mathcal{X}, \mathcal{Y}) + d(\pi_{\mathcal{Z}}(\mathcal{Y}), \mathcal{Y}) - A.$$

Moreover, if Y happens to be on the geodesic L, then $\pi_{\mathcal{L}}(\mathcal{Y}) = \{\mathcal{Y}\}\$ and

$$d(\mathcal{X}, \mathcal{Y}) \ge d(\mathcal{X}, \pi_{\mathcal{Z}}(\mathcal{X})) + d(\pi_{\mathcal{Z}}(\mathcal{X}), \mathcal{Y}) - A.$$

For any pseudo-Anosov element $\phi \in \operatorname{Mod}_{g,n}$, we denote $\pi_{\operatorname{axis}(\phi)}$ as π_{ϕ} . Since ϕ acts by translation along its axis, it commutes with the projection map π_{ϕ} . That is, for any $\mathcal{X} \in \mathcal{T}_{g,n}$, we have $\pi_{\phi}(\phi(\mathcal{X})) = \phi(\pi_{\phi}(\mathcal{X}))$.

By using Theorem 2.1 and Corollary 2.2, one can show if an ε -thick pseudo-Anosov element ψ has sufficiently large translation length, then the distance it translates a point "far" from the axis is roughly twice the distance from the point to the axis. See Figure 1 for an illustration.

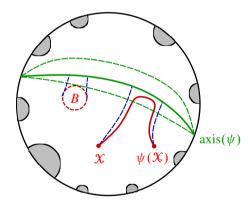


Figure 1. Shaded areas are ε -thin parts. Given an ε -thick pseudo-Anosov element ψ with $\tau(\psi) > A$, the diameter of the projection of any balls like B to axis(ψ) is bounded by A, see Theorem 2.1. The geodesic from \mathcal{X} to $\psi(\mathcal{X})$ fellow travels axis(ψ), see Corollary 2.3.

Corollary 2.3. Let ϕ be an ε -thick pseudo-Anosov element with translation distance $\tau(\phi) > A$. Then for any $\mathfrak{X} \in \mathcal{T}_{g,n}$ and for any $\psi \in [\phi]$, we have

$$2d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) + \tau(\phi) - A \le d(\mathcal{X}, \psi(\mathcal{X})) \le 2d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) + \tau(\phi) + 2A.$$

Proof. Since translation distance is invariant under conjugation, $\tau(\psi) = \tau(\phi) > A$ for any $\psi \in [\phi]$. Thus we have

$$d_{\pi}^{\psi}(\mathcal{X}, \psi(\mathcal{X})) = \operatorname{diam}(\pi_{\psi}(\mathcal{X}) \cup \pi_{\psi}(\psi(\mathcal{X}))) = \operatorname{diam}(\pi_{\psi}(\mathcal{X}) \cup \psi(\pi_{\psi}(\mathcal{X})))$$

where by Theorem 2.1

$$\tau(\phi) \leq \operatorname{diam}(\pi_{\psi}(\mathcal{X}) \cup \psi(\pi_{\psi}(\mathcal{X}))) \leq \tau(\phi) + 2\operatorname{diam}(\pi_{\psi}(\mathcal{X})) \leq \tau(\phi) + 2A.$$

Take any $X \in \mathcal{T}_{g,n}$, by the triangle inequality, we have

$$d(\mathcal{X}, \psi(\mathcal{X})) \leq d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) + d_{\pi}^{\psi}(\mathcal{X}, \psi(\mathcal{X})) + d(\psi(\mathcal{X}), \pi_{\psi}(\psi(\mathcal{X})))$$

$$\leq 2d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) + \tau(\phi) + 2A.$$

Meanwhile we can apply the previous Corollary 2.2 and get

$$d(\mathcal{X}, \psi(\mathcal{X})) \ge d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) + d_{\pi}^{\psi}(\mathcal{X}, \psi(\mathcal{X})) + d(\psi(\mathcal{X}), \pi_{\psi}(\psi(\mathcal{X}))) - A$$

$$\ge 2d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) + \tau(\phi) - A.$$

The result follows.

3. Proof of the main theorem

By Theorem 1.2, for any $\mathcal{X} \in \mathcal{T}_{g,n}$, we have

$$|\mathrm{Mod}_{g,n}\cdot\mathcal{X}\cap B_r(\mathcal{X})|\sim e^{hr}.$$

For any r > 0, define the set

$$\Omega_r(\mathcal{X}) = \{ f \in \text{Mod}_{g,n} \mid d(\mathcal{X}, f\mathcal{X}) \le r \}$$

and denote N the maximal order of point stabilizer subgroups in $\operatorname{Mod}_{g,n}$. Such maximum exists as shown by Kerckhoff in [7]. It follows that

$$|\mathrm{Mod}_{g,n}\cdot\mathcal{X}\cap B_r(\mathcal{X})|\leq |\Omega_r(\mathcal{X})|\leq N\cdot |\mathrm{Mod}_{g,n}\cdot\mathcal{X}\cap B_r(\mathcal{X})|$$

and therefore

$$e^{hr} \leq |\Omega_r(\mathcal{X})| \leq N \cdot e^{hr}$$
.

Moreover, given any $\phi \in \text{Mod}_{g,n}$, we have

$$\Gamma_r(\mathcal{X}, \mathcal{X}, \phi) \leq |[\phi] \cap \Omega_r(\mathcal{X})| \leq N \cdot \Gamma_r(\mathcal{X}, \mathcal{X}, \phi).$$

Rearranging the inequality above, we have

$$\frac{1}{N} \cdot \left| [\phi] \cap \Omega_r(\mathcal{X}) \right| \le \Gamma_r(\mathcal{X}, \mathcal{X}, \phi) \le \left| [\phi] \cap \Omega_r(\mathcal{X}) \right|. \tag{1}$$

We first prove a simplified version of the main theorem.

Theorem 3.1. For any $S_{g,n}$ and $\varepsilon > 0$, there exists a constant A > 0 such that, given any ε -thick pseudo-Anosov element ϕ with translation distance $\tau \geq A$ and given any $\mathfrak{X} \in \operatorname{axis}(\phi)$, there exists a corresponding constant $G(\mathfrak{X}, \phi) > 0$ such that

$$\Gamma_R(\mathcal{X}, \mathcal{X}, \phi) \overset{G(\mathcal{X}, \phi)}{\sim} e^{\frac{h}{2}R}$$

Proof. Given ϕ , \mathcal{X} satisfying the assumptions. For any R, define

$$\begin{split} P_R^+ &= \Big\{ \psi \in [\phi] \mid d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) \leq \frac{R + A - \tau}{2} \Big\}, \\ P_R^- &= \Big\{ \psi \in [\phi] \mid d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) \leq \frac{R - 2A - \tau}{2} \Big\}. \end{split}$$

Denote $\Omega_r(X)$ as $\Omega(r)$ for simplicity, by Corollary 2.3 we have

$$P_R^- \subset [\phi] \cap \Omega(R) \subset P_R^+. \tag{2}$$

We now work towards obtaining an upper bound for $|P_R^+|$. For any $\psi \in P_R^+$, there exists an $f \in \operatorname{Mod}_{g,n}$ such that $\psi = f\phi f^{-1}$. Since $\mathfrak{X} \in \operatorname{axis}(\phi)$, $f(\mathfrak{X})$ therefore lies on the $\operatorname{axis}(\psi)$. In particular, this means there exists a $k \in \mathbb{Z}$ such that

$$d(\psi^k \circ f(\mathcal{X}), \pi_{\psi}(\mathcal{X})) \le \frac{\tau}{2} \tag{3}$$

and therefore

$$d(\psi^k \circ f(\mathcal{X}), \mathcal{X}) \le d(\psi^k \circ f(\mathcal{X}), \pi_{\psi}(\mathcal{X})) + d(\mathcal{X}, \pi_{\psi}(\mathcal{X})) \le \frac{R+A}{2}.$$

See Figure 2 for an example.

We claim one can define an injective map from $P_R^+ \to \Omega(\frac{R+A}{2})$ by sending ψ to $\psi^k f$. Indeed, if there is any another $\eta \in P_R^+$, $\eta \neq \psi$, $\eta = h\phi h^{-1}$ for some $h \in \operatorname{Mod}_{g,n}$, then $h(\mathcal{X}) \in \operatorname{axis}(\eta)$ and there exists an $m \in \mathbb{Z}$ such that

$$d(\eta^m \circ h(\mathcal{X}), \pi_{\eta}(\mathcal{X})) \leq \frac{\tau}{2}$$
 and $d(\eta^m \circ h(\mathcal{X}), \mathcal{X}) \leq \frac{R+A}{2}$.

We claim in this case $\psi^k f \neq \eta^m h$. Indeed, suppose they are equal, then

$$\psi = \psi^k \psi \psi^{-k} = \psi^k f \phi f^{-1} \psi^{-k} = \eta^m h \phi h^{-1} \eta^{-m} = \eta^m \eta \eta^{-m} = \eta.$$

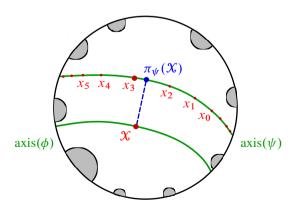


Figure 2. Each x_i denotes $\psi^i \circ f(x)$ and the distance between any two adjacent x_i is τ . The injective map maps \mathcal{X} to x_3 since x_3 is the closest point to $\pi_{\psi}(\mathcal{X})$ in $\{x_i\}_{i\in\mathbb{Z}}$.

However, this contradicts $\psi \neq \eta$. This means for R large, we can inject P_R^+ into $\Omega(\frac{R+A}{2})$, so that

$$|P_R^+| \le \left| \Omega\left(\frac{R+A}{2}\right) \right| \le e^{\frac{hA}{2}} \cdot e^{\frac{hR}{2}}. \tag{4}$$

To obtain the lower bound for $|P_R^-|$, we define $\mathcal{A}_R = \{ \operatorname{axis}(\psi) \mid \psi \in P_R^- \}$. This gives us a surjective map $F \colon P_R^- \to \mathcal{A}_R$, $\psi \mapsto \operatorname{axis}(\psi)$. By the definitions of \mathcal{A}_R and P_R^- , each $\Theta \in \mathcal{A}_R$ has the form $\Theta = \operatorname{axis}(\psi)$ for some $\psi = f\phi f^{-1} \in P_R^-$, and this f can be chosen so that $f \in \Omega(\frac{R-2A}{2})$ by applying (3) to P_R^- instead. Thus each $\Theta \in \mathcal{A}_R$ can be written as $\operatorname{axis}(f\phi f^{-1})$ for some $f \in \Omega(\frac{R-2A}{2})$. For any $L < \frac{R-2A-\tau}{2}$, we define

$$\mathcal{A}_{R}^{L} = \{ \Theta \in \mathcal{A}_{R} \mid d(\mathcal{X}, \pi_{\Theta}(\mathcal{X})) > \frac{R - 2A - \tau}{2} - L \}$$

so that $\mathcal{A}_{R}^{L} \subset \mathcal{A}_{R}$. For each $\Theta \in \mathcal{A}_{R}$, we denote

$$H(\Theta) = \{ f \in \Omega(\frac{R - 2A}{2}) \mid \operatorname{axis}(f\phi f^{-1}) = \Theta \},$$

which is a subset of $\Omega(\frac{R-2A}{2})$.

By Corollary 2.2, for any $\Theta \in \mathcal{A}_R^L$, there are at most $\frac{2(L+A)}{\tau} + 2$ many $f \in H(\Theta)$ satisfying axis $(f\phi f^{-1}) = \Theta$ since

$$d(\mathcal{X}, \pi_{\Theta}(\mathcal{X})) \in \Big(\frac{R-2A-\tau}{2} - L, \frac{R-2A-\tau}{2}\Big].$$

In the example of Figure 3, there are six such f for this Θ . This means

$$|\mathcal{A}_{R}^{L}| \ge \frac{\tau}{2(L+A+\tau)} \cdot \sum_{\Theta \in \mathcal{A}_{R}^{L}} |H(\Theta)|. \tag{5}$$

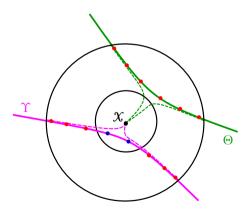


Figure 3. Θ is of type (a) and Υ is of type (c). The lengths of Θ and Υ intersecting $B_{\frac{R-2A-\tau}{2}}$ can be approximated by Corollary 2.2, which is shown as the dotted geodesic segments.

For any element $f \in \Omega(\frac{R-2A-\tau}{2})$, let us denote $\Theta_f = axis(f\phi f^{-1})$, then each f is exactly one of the following types.

- (a) Θ_f never enters $B_{\frac{R-2A-\tau}{2}-L}(X)$.
- (b) Θ_f enters $B_{\frac{R-2A-\tau}{2}-L}(\mathcal{X})$ and $d(\mathcal{X}, f(\mathcal{X})) \leq \frac{R-2A-\tau}{2} L$.
- (c) Θ_f enters $B_{\frac{R-2A-\tau}{2}-L}(\mathcal{X})$ and $d(\mathcal{X}, f(\mathcal{X})) > \frac{R-2A-\tau}{2} L$.

The union of type (a) elements is $\bigsqcup_{\Theta \in \mathcal{A}_R^L} H(\Theta)$, and the union of type (b) elements is $\Omega(\frac{R-2A-\tau}{2}-L) \subset \Omega(\frac{R-2A}{2}-L)$. By Corollary 2.2, we notice there are at most $\frac{2(L+A)}{\tau}$ many type (c) elements that can share the same axis, and the number of axes going through $B_{\frac{R-2A-\tau}{2}-L}(\mathcal{X})$ is bounded by $|\Omega(\frac{R-2A}{2}-L)|$. In the example of Figure 3, there are six f satisfying type (c) conditions sharing the axis Υ . Notice there are two f that realize $\Upsilon = \Theta_f$ but not satisfy the type (c) assumption. Since type (a), (b), (c) elements compose $\Omega(\frac{R-2A-\tau}{2})$, we have

$$\sum_{\Theta \in \mathcal{A}_R^L} |H(\Theta)| \geq \Big| \Omega\Big(\frac{R - 2A - \tau}{2}\Big) \Big| - \Big(1 + \frac{2(L + A)}{\tau}\Big) \cdot \Big| \Omega\Big(\frac{R - 2A}{2} - L\Big) \Big|.$$

Moreover, we let L be a constant satisfying $e^{hL} > 2 \cdot e^{h\frac{\tau}{2}} \cdot N(1 + \frac{2(L+A)}{\tau})$, then

$$\sum_{\Theta \in \mathcal{A}_{D}^{L}} |H(\Theta)| \ge e^{\frac{h(R-2A-\tau)}{2}} - \left(1 + \frac{2(L+A)}{\tau}\right) \cdot N \cdot e^{\frac{h(R-2A)}{2} - hL} \tag{6}$$

$$= e^{\frac{h}{2}R} \cdot e^{-hA} \cdot \left(\frac{1}{e^{h\frac{\tau}{2}}} - \frac{N \cdot \left(1 + \frac{2(L+A)}{\tau}\right)}{e^{hL}} \right) \ge e^{\frac{h}{2}R} \cdot \frac{1}{2e^{h(\frac{\tau}{2} + A)}}.$$

Thus, to construct the lower bound for $|P_R^-|$, we let L be a constant satisfying $e^{hL} > 2 \cdot e^{h\frac{\tau}{2}} \cdot N(1 + \frac{2(L+A)}{\tau})$. Applying formulas (5), (6) from above, for R large we have

$$|P_R^-| \ge |\mathcal{A}_R| \ge |\mathcal{A}_R^L| \ge \frac{\tau}{2(L+A+\tau)} \cdot \sum_{\Theta \in \mathcal{A}_R^L} |H(\Theta)|$$

$$\ge e^{\frac{h}{2}R} \cdot \frac{\tau}{2(L+A+\tau)e^{hA}} \cdot \frac{1}{2e^{h(\frac{\tau}{2}+A)}}.$$

$$(7)$$

Finally, combining formulas (1), (2), (7) we have

$$\left| [\phi] \cdot \mathcal{X} \cap B_R(\mathcal{X}) \right| \ge \frac{1}{N} \cdot \left| [\phi] \cap \Omega(R) \right| \ge \frac{1}{N} \cdot |P_R^-| \ge G_L(\mathcal{X}, \phi) \cdot e^{\frac{h}{2}R}$$

where

$$G_L(\mathcal{X}, \phi) = \frac{\tau}{2N(L+A+\tau)e^{hA}} \cdot \frac{1}{2e^{h(\frac{\tau}{2}+A)}}.$$

And combining formulas (1), (2), (4) we have

$$|[\phi] \cdot \mathcal{X} \cap B_R(\mathcal{X})| \le |[\phi] \cap \Omega(R)| \le |P_R^+| \le G_U(\mathcal{X}, \phi) \cdot e^{\frac{h}{2}R}$$

where

$$G_U(\mathcal{X},\phi) = Ne^{\frac{hA}{2}}.$$

Recall $f(R) \stackrel{A}{\leq} g(R)$ is the same as $f(R) \stackrel{1}{\leq} Ag(R)$. Thus we have

$$e^{\frac{h}{2}R} \stackrel{G_L^{-1}(\mathcal{X},\phi)}{\leq} \left| [\phi] \cdot \mathcal{X} \cap B_R(\mathcal{X}) \right| \stackrel{G_U(\mathcal{X},\phi)}{\leq} e^{\frac{h}{2}R}.$$

This means by setting

$$G(\mathcal{X},\phi) = \max\{G_L^{-1}(\mathcal{X},\phi), G_U(\mathcal{X},\phi)\},\$$

we obtain the desired result.

Now we are ready to prove the general case.

Proof of Theorem 1.5. Take any $\mathcal{X}, \mathcal{Y} \in \mathcal{T}_{g,n}$, let \mathcal{X}' be a point in $\pi_{\phi}(\mathcal{X})$ and let D be the maximum between diam $(X \cup \pi_{\phi}(X))$ and diam $(\pi_{\phi}(X) \cup Y)$. Since the mapping class group is acting by isometries, we have

$$\begin{aligned} \left| [\phi] \cdot \mathcal{Y} \cap B_R(\mathcal{X}) \right| &\geq \left| [\phi] \cdot \mathcal{X}' \cap B_{R-D}(\mathcal{X}) \right| \geq \left| [\phi] \cdot \mathcal{X}' \cap B_{R-2D}(\mathcal{X}') \right|, \\ \left| [\phi] \cdot \mathcal{Y} \cap B_R(\mathcal{X}) \right| &\leq \left| [\phi] \cdot \mathcal{X}' \cap B_{R+D}(\mathcal{X}) \right| \leq \left| [\phi] \cdot \mathcal{X}' \cap B_{R+2D}(\mathcal{X}') \right|. \end{aligned}$$

By applying these inequalities and by applying Theorem 3.1 to ϕ and \mathcal{X}' , without loss of generality, we get the desired result by setting $G(X, Y, \phi) = G(X', \phi) \cdot e^{hD}$.

Proof of Corollary 1.6. Given ϕ , we pick ε so that $axis(\phi)$ is in $\mathcal{T}_{g,k}^{\varepsilon}$. Since $\tau(\phi^k)$ $k \cdot \tau(\phi)$ for any pseudo-Anosov element ϕ , there exists a $N(\phi)$ such that $\tau(\phi^k) \geq A$ for any $k \geq N(\phi)$. We now can apply Theorem 1.5, and the corresponding error constant G depends on $\mathcal{X}, \mathcal{Y}, \phi, k$.

Proof of Corollary 1.7. Assuming the conditions, we can apply Corollary 1.6. This means for any $k \ge N$ and for any $\delta > 1$, there exists a $M(\delta)$ such that

$$\frac{1}{\delta G(\mathcal{X},\mathcal{Y},\phi,k)} \cdot e^{\frac{h}{2}R} \leq \Gamma_R(\mathcal{X},\mathcal{Y},\phi^k) \leq \delta G(\mathcal{X},\mathcal{Y},\phi,k) \cdot e^{\frac{h}{2}R}$$

for any $R \ge M(\delta)$. Let $\varepsilon > 0$, one can pick $\delta > 0$ and pick $M(\varepsilon) \ge M(\delta)$ so that

$$\delta G(\mathcal{X}, \mathcal{Y}, \phi, k) \le e^{\varepsilon \frac{h}{2}R},$$

$$e^{-\varepsilon \frac{h}{2}R} \le \frac{1}{\delta G(\mathcal{X}, \mathcal{Y}, \phi, k)},$$

for any $R \ge M(\varepsilon)$. This implies for any $\varepsilon > 0$, we have

$$\begin{split} e^{(1-\varepsilon)\frac{h}{2}R} &\leq \Gamma_R(\mathcal{X}, \mathcal{Y}, \phi^k) \leq e^{(1+\varepsilon)\frac{h}{2}R}, \\ (1-\varepsilon)\frac{h}{2}R &\leq \ln\Gamma_R(\mathcal{X}, \mathcal{Y}, \phi^k) \leq (1+\varepsilon)\frac{h}{2}R, \\ (1-\varepsilon)\frac{h}{2} &\leq \frac{1}{R}\ln\Gamma_R(\mathcal{X}, \mathcal{Y}, \phi^k) \leq (1+\varepsilon)\frac{h}{2}, \end{split}$$

whenever $R > M(\varepsilon)$. That is,

$$\lim_{R\to\infty}\frac{1}{R}\ln\Gamma_R(\mathcal{X},\mathcal{Y},\phi^k)=\frac{h}{2}.$$

This finishes the proof.

Acknowledgments. I would like to thank my advisor, Spencer Dowdall, for suggesting this project, and for his guidance and consistent support throughout.

Funding. The author was partially supported by NSF grant DMS-2102018.

References

- [1] G. N. Arzhantseva, C. H. Cashen, and J. Tao, Growth tight actions. *Pacific J. Math.* 278 (2015), no. 1, 1–49 Zbl 1382.20046 MR 3404665
- [2] J. Athreya, A. Bufetov, A. Eskin, and M. Mirzakhani, Lattice point asymptotics and volume growth on Teichmüller space. *Duke Math. J.* 161 (2012), no. 6, 1055–1111 Zbl 1246.37009 MR 2913101
- [3] D. Dumas, Skinning maps are finite-to-one. Acta Math. 215 (2015), no. 1, 55–126Zbl 1334.57020 MR 3413977
- [4] B. Farb and D. Margalit, A primer on mapping class groups. Princeton Math. Ser. 49, Princeton University Press, Princeton, NJ, 2012 Zbl 1245.57002 MR 2850125
- [5] R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen. Bibliotheca Mathematica Teubneriana, Bände 3 4, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttgart, 1965 MR 0183872
- [6] J. Han, Growth rate of Dehn twist lattice points in Teichmüller space. 2021, arXiv:2105.08624, to appear in J. Topol. Anal.
- [7] S. P. Kerckhoff, The Nielsen realization problem. Ann. of Math. (2) 117 (1983), no. 2, 235–265
 Zbl 0528.57008 MR 690845
- [8] P. D. Lax and R. S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Functional Analysis 46 (1982), no. 3, 280–350 Zbl 0497.30036 MR 661875
- [9] J. Maher, Asymptotics for pseudo-Anosov elements in Teichmüller lattices. Geom. Funct. Anal. 20 (2010), no. 2, 527–544 Zbl 1201.37064 MR 2671285
- [10] G. A. Margulis, On some aspects of the theory of Anosov systems. Springer Monogr. Math., Springer, Berlin, 2004 Zbl 1140.37010 MR 2035655
- [11] Y. N. Minsky, Quasi-projections in Teichmüller space. J. Reine Angew. Math. 473 (1996), 121–136 Zbl 0848.30031 MR 1390685
- [12] D. Mumford, A remark on Mahler's compactness theorem. Proc. Amer. Math. Soc. 28 (1971), 289–294 Zbl 0215.23202 MR 276410
- [13] J. Parkkonen and F. Paulin, On the hyperbolic orbital counting problem in conjugacy classes. *Math. Z.* 279 (2015), no. 3-4, 1175–1196 Zbl 1348.37043 MR 3318265
- [14] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431 Zbl 0674.57008 MR 956596

Received 4 June 2021; revised 8 July 2022.

Iiawei Han

Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA; jiawei.han@vanderbilt.edu