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Growth of pseudo-Anosov conjugacy classes in
Teichmiiller space

Jiawei Han

Abstract. Athreya, Bufetov, Eskin and Mirzakhani (2012) have shown that the number of mapping
class group lattice points intersecting a closed ball of radius R in Teichmiiller space is asymptotic
to "R where  is the dimension of the Teichmiiller space. We show for any pseudo-Anosov map-

ping class f, there exists a power 1, such that the number of lattiche points of the f” conjugacy class

intersecting a closed ball of radius R is coarsely asymptotic to e 2R,

1. Introduction

One can study a group by understanding its “growth” in various ways. Consider G acting
on a metric space S by isometries, one can measure the number of orbit or lattice points
of G in a ball of radius R as R goes to infinity. For example, consider Z?3 acting on R3
in the standard way, the number of lattice points of Z> in a ball of radius R is roughly
the volume of this ball, see [8] for example. In this paper, we study mapping class groups
by understanding the lattice points of pseudo-Anosov conjugacy classes in Teichmiiller
space.

Let M be a compact, negatively curved Riemannian manifold and let M denote its uni-
versal cover. The fundamental group 771 (M) acts on M by isometries. Let Br(x) denote
the ball of radius R in M centered at x. G. A. Margulis studied the growth rate of any
orbit 1 (M) - y by intersecting with any metric balls B (x).

Theorem 1.1 (Margulis [10]). There is a function c: M x M — R™ so that for every
xX,yeM,

|71 (M) -y N Br(x)| ~ c(p(x), p(y))e"R

where h equals the dimension of the manifold, which is the topological entropy of the
geodesic flow on the unit tangent bundle of M.

The notation f(R) ~ g(R) means limp_, ﬁffg =L

Inspired by this result, Athreya, Bufetov, Eskin and Mirzakhani studied lattice point
asymptotics in Teichmiiller space. Let Sg , denote a closed surface of genus g with n
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punctures such that 3g —3 4+ n > 0, and we let Modg , and (Jg,,, d) denote the cor-
responding mapping class group and Teichmiiller space with Teichmiiller metric. Then
Modg , acts on g , by isometries. We use Modg, 7 to denote Modg o, T o for simplic-
ity. They showed the orbits of mapping class group have analogous asymptotics.

Theorem 1.2 (Athreya, Bufetov, Eskin, and Mirzakhani [2]). Forany X,Y € Tg, we have
[Mod, - ¥ N BR(X)| ~ e"R.

Note in their original paper, there is a factor of 7(X)7(¥) in front of ¢"R, 7 is called the
Hubbard—Masur function. Mirzakhani later showed that t is a constant function, see [3].
Moreover, again we let M be a compact negatively curved Riemannian manifold and
let M denote its universal cover, we recall the following result from Parkkonen and
Paulin [13] about the lattice point asymptotics for conjugacy classes of 71 (M).

Theorem 1.3 (Parkkonen, Paulin [13]). Let G be a nontrivial conjugacy class of w1(M),
forany x € M, we have

Rli%mOO%IMG - X N BR(X)| = ;

Inspired by this result, we wish to explore the lattice point asymptotics for conjugacy
classes of Modg . The Nielsen—Thurston classification [14] says every element in Mod,
is one of the three types: periodic, reducible, or pseudo-Anosov. When f € Mod, , is
a Dehn twist, a special kind of reducible element, we prove in [6] that the lattice point
growth for the conjugacy class of f is “coarsely” asymptotic to 3R In this paper, we
are interested in pseudo-Anosov elements. Let PA C Modg denote the subset of pseudo-
Anosov elements. Maher showed pseudo-Anosov elements are generic in the following
sense.

Theorem 1.4 (Maher [9]). Forany X,¥Y € T, we have

|PA-Y N BR(X)]
IMod, - ¥ N Br(X)]

The above Theorems 1.3, 1.4, motivate us to explore the lattice point asymptotics
for pseudo-Anosov conjugacy classes. For any mapping class ¢ € Mod, ,,, we use [¢p] =
{féf 1| f € Modg ,} to denote its conjugacy class. For simplicity of notation, we denote
Tr(X. Y. ¢) =lg]- ¥ N Br(X)I.

Let C > 0, we say f(R) = g(R) if for any 8C> 1, there exist%a M () such th%t
sc - J(R) =< g(R) forany R = M(5). Wesay f(R) < g(R)if f(R) X g(R) and g(R) X
f(R),thus f(R) ~ g(R)isthe same as f(R) ~ g(R). Accordingly, we simply write <, ~
when C = 1. The main results of this paper are the following.
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Theorem 1.5. Fix Sg ,, and & > 0, there exists a constant A > 0 such that given any -
thick pseudo-Anosov element ¢ with translation distance © > A and given any X, Y in
Tg.n, there exists a corresponding G(X, Y, ¢) such that

TR(X,Y.¢) TR AR

Corollary 1.6. Fix Sy ,, given any pseudo-Anosov element ¢ and given any X,Y in Tg 5.
There exists a power N depending on ¢ such that for any k > N, there is a corresponding
G(X,¥Y,¢,k) so that the following holds:
TR(X, Y, ¢k) CX2O0 AR,
In parallel with Theorem 1.3 above, we note the above Theorem 1.5 and Corollary 1.6
imply the following.

Corollary 1.7. Fix Sg ,, given any pseudo-Anosov element ¢ and given any X, ¥ in T4 p,
for all sufficiently large k we have

1 e h
Rll_I;IlOOEIHFR(x,y,(p )— 5

These results again indicate the similarity of Teichmiiller spaces and hyperbolic spaces
in terms of lattice point asymptotics.

2. Background

We refer the reader to [4] for the general background materials. Let Homeo;n denote
the group of all the orientation-preserving homeomorphisms of Sg , preserving the set
of punctures, and let Homeog’n denote the connected component of the identity. The
mapping class group of Sy , is defined to be the group of isotopy classes of orientation-
preserving homeomorphisms,

— + 0
Modg,» = Homeo, , /Homeo

en = Homeog’n /isotopy.

A hyperbolic structure X on Sg , is a pair (X, ¢) where ¢: Sg , — X is a homeo-
morphism and X is a hyperbolic surface. We say two hyperbolic structures X = (X, ¢),
Y = (Y, ¥) are isotopic if there is an isometry I: X — Y isotopic to ¥ o ¢~ !. The
Teichmiiller space T, is the set of hyperbolic structures on Sy ,, modulo isotopy. We let
X =(X,¢), Y = (Y, V) denote elements in T . Given any X, Y € Ty ,, the Teichmiiller
distance between them is defined to be

1
dr(X.9) =5 il log(Ky)
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where the infimum is over all quasi-conformal homeomorphisms f isotopic to ¢ o ¥ !
and K is the quasi-conformal dilatation of f". Equipped with the Teichmiiller metric, the
Teichmiiller space is a complete, unique geodesic metric space.

Given any X = (X, ¢) € T¢ , and given any isotopy class y of nontrivial simple closed
curves on S, ,, there exists a unique geodesic in the free homotopy class of ¢ (y) on X. We
define £x (¢ (y)) to be the length of this unique geodesic and define £ (y) = Lx (4 (y)).
A pants decomposition of the surface S, , is a collection of pairwise disjoint nontrivial
simple closed curves y1, ..., ¥3g—3+n O0 Sy 5, together they decompose the surface Sy ,
into 2g + n — 2 pairs of pants. Using pants decomposition and by introducing Fenchel—
Nielsen coordinates, Fricke [5] showed that 7, , is homeomorphic to RO8+2n—6

The mapping class group acts isometrically on 7, by changing the marking
(f. (X, ¢)) = (X.¢ o f~1). This action is properly discontinuous but not cocompact.
The quotient Mg, = T, ,/Modg , is called the moduli space, and it is a non-compact
orbifold parameterizing hyperbolic surfaces homeomorphic to Sg .

Given any ¢ > 0, the e-thick part of Teichmiiller space is defined to be

(j"é‘

en =X € Tgn | Lx () > ¢ for any simple closed curve & on Sg » }

and consequently the e-thick part of moduli space is Mg , = 7, ,,/Modg ». The Mumford
compactness criterion [12] says Mg ,, is compact for any & > 0.

Similar to hyperbolic isometries acting on hyperbolic space, each pseudo-Anosov ele-
ment ¢ € Mod, , acts on T, , by translating along its corresponding bi-infinite geodesic
axis, denoted as axis(¢) with translation distance denoted as 7(¢). Moreover, we say a
pseudo-Anosov element ¢ € Mody , is called e-thick if axis(¢) C T,

For any r > 0 and for every closed set W C Tg 5, denote N, (W) the r-neighborhood
of W. For every closed set C C T 5, the closest point projection map is defined as follows:

nc(x)={yeC |dkx,y)=d(x,C) = 12£ d(x,z)}.

As one of the early works exploring negative curvature in Teichmiiller space, the
result below from Minsky [11] says that e-thick geodesics in Teichmiiller space satisfy
the strongly contracting property.

Theorem 2.1 (Minsky [11]). There exists a constant A > 0 depending on ¢, x(Sg ) such
that if £ is an e-thick geodesic in T ,, the projection mg satisfies

diam(wg (X)) < A
forany X € Tg . Moreover, if X satisfies d(X, £) > A, then we have
diam(7g (Ma(x,L)-4(X))) < A.

For any two closed sets A, B C T, we let d(A, B) denote the minimal distance
between them. For £ a geodesic in Tg ,, we let d;f (C, W) = diam(e(C) U e (W)).
We can pick the constant A in Theorem 2.1 in a way so that the following holds.
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Corollary 2.2 (Arzhantseva, Cashen, and Tao [1]). Let &£ be an e-thick geodesic in Tg 5,
and let X, Y € T4 be such that d,fi (X,Y) > A, then

d(X,Y) = d(X,me(X)) + df(x, W +dne(Y), Y)— A
Moreover, if ¥ happens to be on the geodesic £, then e (Y) = {¥Y} and
d(X,Y) > d(X,we(X)) +de(X), Y) — A.

For any pseudo-Anosov element ¢ € Mody ;,, we denote m,yis(g) as 4. Since ¢ acts
by translation along its axis, it commutes with the projection map 7. That is, for any
X € Tg.n, we have g (¢ (X)) = ¢ (74 (X)).

By using Theorem 2.1 and Corollary 2.2, one can show if an e-thick pseudo-Anosov
element ¥ has sufficiently large translation length, then the distance it translates a point
“far” from the axis is roughly twice the distance from the point to the axis. See Figure 1
for an illustration.

axis(y)

Figure 1. Shaded areas are e-thin parts. Given an e-thick pseudo-Anosov element ¥ with 7(y) > 4,
the diameter of the projection of any balls like B to axis(y/) is bounded by A, see Theorem 2.1. The
geodesic from X to ¥ (X) fellow travels axis(y/), see Corollary 2.3.

Corollary 2.3. Let ¢ be an e-thick pseudo-Anosov element with translation distance
t(¢p) > A. Then for any X € Tg , and for any ¢ € [p], we have

2d(X, 7wy (X)) + 1(p) — A = d(X, ¥(X)) = 2d(X, 7y (X)) + () + 24.

Proof. Since translation distance is invariant under conjugation, () = 7(¢) > A for any
Y € [¢]. Thus we have

dY (X, ¥(X)) = diam(mry (X) U 7y (¢ (X)) = diam(7ry (X) U ¢ (1 (X))
where by Theorem 2.1

t(@) < diam(y (X) U ¥ (y (X)) < 1(¢) + 2 diam(y (X)) < 7() + 24.
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Take any X € Ty ,, by the triangle inequality, we have

d(X, (X)) = d(X, 70y (X)) + d (X, ¥ (X)) + d(¥ (X), 7y (¥ (X))
<2d(X,my (X)) + 1(p) + 24.

Meanwhile we can apply the previous Corollary 2.2 and get

d(X,Y(X)) = d(X, 71y (X)) + dY (X, ¥ (X)) + d(W (X), 7y (¥ (X)) — 4
> 2d(X, my (X)) + 1(¢) — A.

The result follows. [

3. Proof of the main theorem

By Theorem 1.2, for any X € Tg ,, we have
IMod, , - X N B (X)] ~ e
For any r > 0, define the set
2,(X) ={f €Modg,n | d(X, fX) =1}

and denote N the maximal order of point stabilizer subgroups in Mody ,,. Such maximum
exists as shown by Kerckhoff in [7]. It follows that

Modg s - X N B (X)] < 2,(X)] < N - [Modg., - X N B, ()]
and therefore
" QX)X N e
Moreover, given any ¢ € Modg ,, we have
T (X, X, ¢) < |[¢] N2 (X)] < N-Tr(X, X, ).

Rearranging the inequality above, we have

5 [910 2,00 = 1,06, %.9) < |91 0 2.0 m

We first prove a simplified version of the main theorem.

Theorem 3.1. For any Sg , and ¢ > 0, there exists a constant A > 0 such that, given
any e-thick pseudo-Anosov element ¢ with translation distance T > A and given any X, €
axis(¢), there exists a corresponding constant G(X, ¢) > 0 such that

TR(X, X, ¢) “X7 3R,
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Proof. Given ¢, X satisfying the assumptions. For any R, define

R+ A-
PE =y e 1811 d(Xmy (X)) < =,

R—-2A4—
PR ={V €911 (X, my (X)) = =),

Denote 2, (X) as Q(r) for simplicity, by Corollary 2.3 we have
PR C gl NQ(R) C Pg. )

We now work towards obtaining an upper bound for |P§L |. For any ¥ € P;, there
exists an f € Modg , such that ¥ = f¢f 1. Since X € axis(¢), f(X) therefore lies on
the axis(). In particular, this means there exists a k € Z such that

d(y* o f(X). 7y (X)) < 3

and therefore
R+ A

d(y* o £(X), X) <d(W* o f(X), 7y (X)) + d(X, 7y (X)) <

See Figure 2 for an example.

We claim one can define an injective map from P I'{ — Q(RTM) by sending v to ¥ £
Indeed, if there is any another n € PI'{, n#Y,n= h¢h~! for some h € Modg ,,, then
h(X) € axis(n) and there exists an m € Z such that

R+ A4

d(" o h(X). 7y (X)) < 3 and d(" 0 h(X). X) <

We claim in this case ¥¥ f # 7™ h. Indeed, suppose they are equal, then

v o= yRyy* = gk fof TR = iR = oy = 0.

axis(¢)

Figure 2. Each x; denotes 1//i o f(x) and the distance between any two adjacent x; is t. The
injective map maps X to x3 since x3 is the closest point to 7y, (X) in {x; };cz.
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However, this contradicts ¢ # 7. This means for R large, we can inject P 1‘{ into Q(%),
so that

|P;|§ ‘Q<R—I—A))_ hA  hR

<e2 .e2. 4
3 e e 4)

To obtain the lower bound for | P |, we define A g = {axis(y) | ¥ € Pg}. This gives
us a surjective map F': Py — sARg, ¥ > axis(y). By the definitions of s g and Py, each
© € AR has the form © = axis(y) forsome ¥ = f¢f ! € Py, and this f can be chosen

so that f € SZ(R_ZZA) by applying (3) to Py instead. Thus each ® € g can be written

as axis(f¢f 1) for some f € SZ(REZA). For any L < szT‘H, we define
R—-24-—
Ak = {0 € Ar | d(X. 70 (X)) > —>——— L}

so that AILQ C Apg.Foreach ® € Ag, we denote

R —-24
2

H(®) ={f ) |axis(f¢f ™) = O},

which is a subset of Q(%).
By Corollary 2.2, for any ® € AL, there are at most w + 2 many f € H(®)
satisfying axis( f¢f ~1) = © since

R—-24A—-1 R—-24—1
d(X, 76(X)) e( — L= ]

In the example of Figure 3, there are six such f for this ®. This means

> H@O©). )

L
EAR

T
AL > .
R|_2(L+A+r) .

Figure 3. © is of type (a) and Y is of type (c). The lengths of ® and Y intersecting B r—24-: can
2
be approximated by Corollary 2.2, which is shown as the dotted geodesic segments.
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For any element f € Q(%), let us denote ©f = axis(f¢/ '), then each f is
exactly one of the following types.

(a) ©p never enters B R2d-x_ (X).

(b) O enters BHZ[HfL(X) and d(X, f(X)) < R—22A—1: L

(c) Op enters BR—ZA—I_L(X) and d(X, (X)) > RLA_’ — L.
The union of type (a) elements is | |g AL H (®), and the union of type (b) elements is
(w L) C SZ(R =24 _1). By Corollary 2.2, we notice there are at most 2(L+A)
many type (c) elements that can share the same axis, and the number of axes going through
B%_L (X) is bounded by |Q(¥ — L)|. In the example of Figure 3, there are six f
satisfying type (c) conditions sharing the axis Y. Notice there are two f that realize
T = ©f but not satisfy the type (c) assumption. Since type (a), (b), (c) elements com-
pose Q(R_2T“H), we have

AU (14 2 oA )

> 1HE©) = |9

OeAk
Moreover, we let L be a constant satisfying el > 2.5 . N 1+ M), then

> IH@®)| = e

L
OeAy

BR-24-1) (1 n 2(L + A)) N MBS h
T

(6)

(SIS

R 1

2(L+A4)
:e%R.e_hA. L_M > e [
e B 2ehGHA

hE ohL

Thus, to construct the lower bound for | Py |, we let L be a constant satisfying el >
2-e"3 N1+ M). Applying formulas (5), (6) from above, for R large we have

PRl = |ARg| = |AR] > ———— H® 7
PRI = ARl = AR = 5 %&|(n ™
R T 1

2(L + A+ 1)ehd 2ehGHA)”

Finally, combining formulas (1) (2), (7) we have

SIS

e

bR

|[¢]- X N Br(X)| = — |[¢] NQR)| = = - |Pgl = GL(X,$)-e2"

where
T 1

OIN(L + A+ r)ehd  2ohGFA)
And combining formulas (1), (2), (4) we have

GL(X.9) =

kR

|[6]- X N Br(X)| < [[9] N QUR)| < [PF] = Gu(X.¢)-e2F

where
hA

Gu(X,$) = Ne's .
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A 1
Recall f(R) < g(R) is the same as f(R) < Ag(R). Thus we have

G (X,9) Gy (X,0)
2R X N BR(X)| X €5k,

This means by setting
G(X.¢) = max{G; ' (X.$).Gy(X.9)}.

we obtain the desired result. ]
Now we are ready to prove the general case.

Proof of Theorem 1.5. Take any X,¥Y € T », let X’ be a point in 774 (X) and let D be the
maximum between diam(X U (X)) and diam(;rg(X) U ¥). Since the mapping class
group is acting by isometries, we have

[9]- ¥ N BR(X)| = [[¢]- X' N Br—p(X)| = |[[#] - X' N Br2p(X')].

[¢]-Y N Br(X)| < |[¢]- X' N Brap(X)| < |[$] - X' N Br2p(X')).
By applying these inequalities and by applying Theorem 3.1 to ¢ and X’, without loss of
generality, we get the desired result by setting G(X, ¥, ¢) = G(X', p) - e"P. |

Proof of Corollary 1.6. Given ¢, we pick & so that axis(¢) is in ‘T; - Since (%) =
k - T(¢) for any pseudo-Anosov element ¢, there exists a N(¢) such that 7(¢%) > A for
any k > N(¢). We now can apply Theorem 1.5, and the corresponding error constant G
depends on X, ¥, ¢, k. [

Proof of Corollary 1.77. Assuming the conditions, we can apply Corollary 1.6. This means
for any k > N and for any § > 1, there exists a M(8) such that

1
8G(X,Y,9,k)
for any R > M(§). Let ¢ > 0, one can pick § > 0 and pick M(g) > M(§) so that

5G(X. Y, k) < 3R,

e?R < TR(X,Y,65) <8G(X, Y, ¢,k)-e2R

h 1
—e3R ~

T 8G(X,Y,9,k)’
for any R > M(e). This implies for any & > 0, we have

e

e(l—a)%R < FR(x,y,¢k) §€(1+8)%R,
h . h
(1 _S)ER <InTr(X,Y.¢") <= (1 +e)5R,
h 1 h
l—g)= < —InT By <qa -
( 8)2_ R R(X, Y, 9%) < ( +8)2,
whenever R > M(¢). That is,
1 h
lim —InT ky ==,
Jim_—1n R(X, Y, ¢%) >

This finishes the proof. ]
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