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Coherence and one-relator products of locally
indicable groups

James Howie and Hamish Short

Abstract. We extend several results of Helfer, Wise, Louder and Wilton related to coherence in
one-relator groups to the more general setting of one-relator products of locally indicable groups.
The methods developed to do so also give rise to a new proof of a theorem of Brodskii.

1. Introduction

In a major recent breakthrough, Louder and Wilton [13] — and independently Wise [18] —
have shown that one-relator groups with torsion are coherent. In other words, every finitely
generated subgroup of such a group has a finite presentation. This gives a partial answer
to an old question of G. Baumslag [1].

A sizeable body of work over the past 40 years, starting with the papers of Brodskii
[2,3] and the authors [9, 16], has shown that much of one-relator group theory extends to
one-relator products of locally indicable groups. (Recall that a group is locally indicable
if each of its non-trivial finitely generated subgroups admits an epimorphism onto the
infinite cyclic group Z.) In that spirit, we prove in the current paper the natural analogue
of this coherence result, as follows.

Theorem A. Let G, A € A, be a collection of coherent, locally indicable groups, let
S € x,G), be a cyclically reduced word of length at least 2, and let n > 1 be an integer.

Then the one-relator product
*2.G 2

©= sy

is coherent.

Baumslag’s coherence question remains open in the case of torsion-free one-relator
groups. But the above mentioned theorem in the torsion case is built on earlier work of
Helfer and Wise [7] and of Louder and Wilton [12], most of which also applies to torsion-
free one-relator groups and yields partial results in support of the idea that they too are
coherent. We are also able to prove in the current article natural analogues of many of these
results in the setting of one-relator products. We describe these generalisations below.
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We are happy to acknowledge that in the construction of our proofs we have leant
heavily on the arguments of Helfer, Wise, Louder and Wilton in the articles cited above,
many of which can be readily transported into our framework. There are of course also
some additional difficulties in the more general setting, but we have been able to resolve
these.

A two-dimensional CW-complex Y is said to have non-positive immersions if, for
every compact, connected, non-contractible 2-complex Y’ admitting an immersion Y’ &>
Y, the Euler characteristic y(Y') is non-positive.

Motivated by Baumslag’s conjecture, Helfer and Wise [7] and independently Louder
and Wilton [12] show that torsion-free one-relator group presentations have the non-
positive immersions property, and use this fact in different applications. For example,
Louder and Wilton [12] show that non-trivial finitely generated subgroups of torsion-free
one-relator groups have finitely generated Schur multiplier — indeed the rank of the multi-
plier is strictly less than the rank of the abelianisation. As a consequence, one can rule out
many incoherent groups such as Thompson’s group F, the wreath product of Z with Z,
and the direct product of two non-abelian free groups, as subgroups of torsion-free one-
relator groups.

In the present article, we prove relative analogues of some of these results for one-
relator products of locally indicable groups. (The results also follow for staggered prod-
ucts of locally indicable groups, since these can be constructed as iterative one-relator
products.) Now it is easy to show that each component of a 2-complex with non-positive
immersions has locally indicable fundamental group (see [18, Theorem 1.3]), so the local
indicability criterion can be omitted from the statement of the result on non-positive
immersions (Theorem B below).

The following construction — the reverse of the simple reduction of [9] — occurs
throughout the paper, so it is convenient to give it a name. Following [7], we say that
a CW-complex Y is a simple enlargement of a CW-complex X if Y is obtained from X
by adjoining a 1-cell e and at most one 2-cell «, and in the latter case the attaching path R
for o

(1) is a closed combinatorial edge-path in X" U e and involves e;
(2) is not freely homotopic in X U e to a path that crosses e fewer times; and
(3) does not represent a proper power in 771 (X U e).

In practice, we will always assume that Y is connected. So X has either one or two
components —say X1, X5 in the latter case. Then 711 (X U e) is isomorphic to a free product
71(X) * Z or m1(X1) * m1(X2), while if ¥ \ X has a 2-cell & with attaching map in the
homotopy class of R € w1(X U e) then 71 (Y) is a one-relator product

T (X)*xZ or m1(X1) * 1(X2)
(R) {(R)

Theorem B. Let X be a 2-complex with non-positive immersions, and let Y be a simple
enlargement of X. Then Y has non-positive immersions.



Coherence and one-relator products of locally indicable groups 1087

Applying this to the case where X is one-dimensional, we recover the main result
of Helfer and Wise [7, Theorem 1.3] and of Louder and Wilton [12, Corollary 4] in the
following corollary.

Corollary 1.1. Every torsion-free one-relator group presentation has non-positive immer-
sions.

The proofs of Theorems A and B follow a similar pattern to those of Wise in [18], of
Helfer and Wise in [7], and Louder and Wilton in [13].

We also prove an analogue of the theorem of Louder and Wilton about the second Betti
number B, (K) of a finitely generated subgroup K of a torsion-free one-relator group.

Let us say that a group G has the second Betti number property if, for any non-trivial
finitely generated subgroup K of G, the second Betti number 8,(K) of K is strictly
less than the first Betti number 81(K). Louder and Wilton [12, Corollary 5] show that
torsion-free one-relator groups have the second Betti number property. Below we prove
an analogous result for one-relator products.

Theorem C. Let
_ (x2eaGy)

(R)
be a one-relator product of locally indicable groups, each with the second Betti number
property, where R € x, G, is cyclically reduced of length at least 2, and not a proper
power. Then G has the second Betti number property.

Indeed, we prove a slight generalisation of this theorem as follows.

Let F : N — N be a supra-linear function, (i.e., F(x + y) > F(x) + F(y) for x, y >0;
hence in particular F(0) = 0). Let G be a finitely presented locally indicable group. We
say that F is a second Betti bounding function for G if for any non-trivial finitely generated
subgroup K of G, we have that

B(K) := Ba(K) — B1(K) + Bo(K) < F(B1(K) — Bo(K)),

where B; (K) denotes the i-th Betti number of K. (As G is locally indicable, 81 (K) > 1
when K is finitely generated and non-trivial, so 81 (K) — Bo(K) belongs to the domain N
of F and the above inequality makes sense.)

Note that G has the second Betti number property if and only if the zero function is a
second Betti bounding function, and so Theorem C follows from the next theorem.

Theorem D. Let X be a 2-complex with one or two components, each having a locally
indicable fundamental group, and let Y be a simple enlargement of X. If F : N — N isa
second Betti bounding function for the fundamental groups of the components of X, then
F is a second Betti bounding function for w1 (Y).

Example. Let A be a limit group. Then A can be constructed from a collection of free
abelian groups of finite rank by a series of constructions which are either free products,
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free products with cyclic amalgamation, or HNN extensions with cyclic amalgamation.
These constructions are special cases of simple enlargements. There is a finite upper bound
r > 1 to the rank of abelian subgroups of A. The map n +— w
bound for Z", and hence also for A, by iterated applications of Theorem D.

In particular, if A is hyperbolic (or more generally if A has no abelian subgroup of
rank greater than 2), then the zero function is a second Betti bound for A, so A has the
second Betti number property.

is a second Betti

We also consider the existence or otherwise of certain incoherent subgroups and prove
that their non-existence is preserved under simple extensions.

Theorem E. Let
_ (*2eaG2)

{(R)
be a one-relator product of locally indicable groups. Let K < G be a subgroup of G
isomorphic to one of the following:

(1) the wreath product 7, wr Z.;
(2) Thompson’s group F;
(3) the direct product of two free groups of rank at least 2.

Then there exists a unique A € A and a unique right coset G, g of G, in G such that
K < G§.
A

Remarks. Part (3) of Theorem E is of particular interest. It complements a result of
Brodskii [2, Theorem 8] which gives strong restrictions on subgroups of G that decom-
pose as direct products with at least one non-free direct factor.

In the classical case of one-relator groups, Theorem E says that none of these incoher-
ent groups arise as subgroups of a one-relator group. This fact is an easy consequence of
the second Betti number property for one-relator groups [12, Corollary 5].

The proof of Theorem E makes use of the following result of Brodskii [2, Theorem 6].

Theorem F. Let Gy, A € A, be a collection of locally indicable groups, let R € %), G, be
a cyclically reduced word of length at least 2, and let
¥, G
G = 224
(R)
Ifg € Gand A, € A are such that the intersection in G of G and g~ G, g is not cyclic,
then u = A and g € G).

It turns out that our methods also yield a new proof of this important result. Since
[2] is not to our knowledge available online or in translation, we feel that is worthwhile
including our proof in this article as well.

The remainder of the paper is organised as follows. In Section 2, we recall some relev-
ant definitions and previous results, and note some consequences of them. In Section 3, we
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prove a technical result (Theorem 3.2) which underpins the proofs of our main theorems.
In Section 4, we prove Theorems B, C and D. In Section 5, we prove Theorem A and note
stronger versions of Theorems E and F which hold when the relator is a proper power. In
Section 6, we prove the first two parts of Theorem E. In Section 7, we prove Theorem F.
Finally, in Section 8, we prove the last part of Theorem E.

2. Some technical results we shall need

A fundamental result about one-relator products of locally indicable groups is the Frei-
heitssatz, due independently to the authors and S. Brodskii. We shall use this result fre-
quently — sometimes explicitly; often implicitly in identifying a free factor with its image
in a one-relator product.

Theorem 2.1 ([3,8,16]). Let A, B be locally indicable groups and R € A x B a cyclically
reduced word of length at least two. Then the natural map A — AxB o injective.

(@)
When proving Theorems F and E, we shall need the following decomposition of the
cohomology of a one-relator product.

Theorem 2.2 ([10, Theorem 3]). Let

G = Xren G

{(R™)

be a one-relator product of locally indicable groups G, where R is cyclically reduced of
length at least 2 and not a proper power in x) G and n > 1. Let C be the cyclic subgroup
of G generated by R, and let M be a 7.G-module. Then the restriction maps

H¥(G: M) — H*(C: M) x [ [ H*(G1: M)
A
are isomorphisms for k > 2 and an epimorphism for k = 2.

Combining Theorem 2.2 with Shapiro’s lemma (see for instance [4, II1.6.2, page 73])
we obtain the following corollary.

Corollary 2.3. Let G be as in Theorem 2.2 and let g € G. If u1, L2 are distinct elements
of A, orif ju1 = 2 and g € G, then the intersection G, N G4, in G has cohomological
dimension at most 1 (and hence is free).

Proof. Let K := Gy, N Gf’;z, let M be a Z K-module, and let k > 2 be an integer. By
Shapiro’s lemma we have

H¥(K: M) =~ H*(G:Homzx (ZG, M)).
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Thus by Theorem 2.2 we have an epimorphism

H*(K: M) — H*(C;Homzg (ZG. M)) x | | H*(G: Homzx (ZG. M)
A
=[[H K ncs:my <[] H* (kK nG§: M),
g A &

where g ranges across double-coset representatives for CgK, G, gK respectively. But for
the two terms on the right hand side of this equation corresponding to G, and Gj,, we
have K = K N G, and K = K N G},. Hence the diagonal map

H¥(K: M) - H*(K; M) x H*(K: M)
is also an epimorphism, and it follows that H¥ (K; M) = 0. ]

Corollary 2.4. Let G be as in Theorem 2.2 and let K < G be a free abelian subgroup of
G of rank r > 2. Then there exists a unique A € A and a unique right coset G g of G,
in G such that K < Gf.

Proof. 1t suffices to prove the case where r < co.
We use Theorem 2.2 and Shapiro’s lemma as in the proof of Corollary 2.3 (using Z
coefficients) giving

Z=H'(K:Z) = H (G:ZG/K) = H"((R): ZG/K) x | [ H"(G): ZG/K)
A
= [[H (R NK:Z)x [[H" (KN GS:Z).
g g.A

Since K has trivial intersection with any conjugate of the finite subgroup (R) of G,
it follows that there is precisely one conjugate Gi’ of precisely one free factor group G
such that H" (K;Z) = H" (K N G%;7Z). In particular, K N Gi’ has index 1 in K, that is
K < G§. n

Remark. The above result applies more generally (with the same proof) to the case where
K is the fundamental group of any closed, aspherical, orientable manifold of dimension
greater than 2.

A map between CW-complexes is said to be combinatorial if it maps the interior
of each cell homeomorphically onto the interior of a cell (of the same dimension). An
immersion of CW-complexes is a combinatorial map which is locally injective.

We make frequent use of the following useful fact (see for example [12, Lemma 4.1],
[8, Lemma 3.1] or [18, Lemma 2.2]).

Lemma 2.5. Let ¢ : W — Y be a combinatorial map of CW-complexes, with W compact.
Then ¢ factorises as f o ¢', where ¢’ : W — Y’ is surjective and my-surjective, and
f Y & Y is an immersion.
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Following Louder and Wilton [13], if ¥ = X U e U « is a simple enlargement of a
2-complex X, we define amap f : Y’ — Y of 2-complexes to be a branch map if it is
combinatorial on the complement of f~1(a); locally injective in the complement of the
preimage f~!(£) of a single point £ in the interior of «; and if each 2-cell o’ in f~1(a)
maps to « as a cyclic branched cover branched over £. We will refer to the degree n € Z
of this branched cover as the branch index of o’

The following is a natural example of a branch map to ¥ which forms a key tool in the
study of one-relator products in which the relator is a proper power. For a given positive
integer n, replace o by a 2-cell o, whose attaching path is the n-th power of that of «.
Let Y, denote the resulting complex, and define v, : Y, — Y to be the identity on the
complement of «y, and on «, the n-fold cyclic cover to «, branched over some point £.
Then v, : Y, —> Yis clearly a branch map. We call it the n-fold branched cover of Y .

In this paper, we will make use of van Kampen diagrams and also their duals, which
are known as pictures, which were introduced by Rourke in [ 14] and adapted to the relative
context by the second author [16]. A picture arises from a continuous map ¥ — X, where
¥ is a compact orientable surface and X a 2-complex, using transversality. It consists of
a finite collection of discs or (fat) vertices, whose interiors each map homeomorphically
onto the interior of a 2-cell of X, and a properly embedded 1-submanifold of the com-
plement of the interiors of the discs, each component of which is called an arc, carries a
transverse orientation and is labelled by a 1-cell of X. A small regular neighbourhood of
each arc is mapped to the corresponding 1-cell in the direction of the transverse orienta-
tion.

If Y = X Ue U« is a simple enlargement, then any picture over ¥ can be made into
a relative picture by removing all discs that do not map to «, and all arcs that do not map
toe.

For more details on pictures, and an example of their usefulness in group theory we
refer the reader to [6, 11].

3. The main technical result

Let X be a 2-complex such that every connected component of X has a locally indicable
fundamental group. Let Y := X U e U « be a simple enlargement of X, and let R denote
the closed combinatorial path in X U e along which « is attached.

From the definition of simple enlargement, the path R does not represent a proper
power in 71 (X U e). For each positive integer n, let ¥, : Y, — Y be the n-fold branched
cover of Y, as defined in Section 2. In particular, Y,=XUeU o, where «, has attaching
map R".

We subdivide e at its midpoint x, forming two half-edges, and choose x as the base-
point for Y. We orient these half-edges so that x is the initial point of each. The L points
where R meets x split it into L closed subpaths ry, ..., ry such that R = ryrp---rr.
Letgj :=ry---rj, j = 1,..., L denote the initial segments of R. Weinbaum’s theorem
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[9, Corollary 3.4] tells us that no proper closed cyclic subpath of R represents the identity
element of G := 7 (Y). In particular, if g;, g; are two of the initial segments of R, with
i # j,thengi_lgj =rigr---r; (fi < j)orgi_lgj =riy1---rpry---r; (if j <i)issuch
a cyclic subpath, so g; # g; in G. Thus the g; represent pairwise distinct elements of G.

It is known that G := 71 (Y) = 71 (Y, x) is locally indicable [9], and hence left order-
able [5]. Suppose that < is a left ordering on G. Then we say that a cyclic subword
V=g g, of R is minimal (with respect to <) if V' < U for any other cyclic subword
U= g[l gr of R.

Since a proper cyclic subword g;~ g, of R is non-trivial in G, it must be either positive
or negative (with respect to any given left ordering). Note that g;~ !¢, is positive if and only
if the complementary cyclic subword gj_1 gi = (g7 1g)7! is negative.

Lemma 3.1. Given any left ordering < on G, there is a unique cyclic conjugate of R of
the form U -V such that (with respect to <)

* V is the unique minimal cyclic subword of R;
* each proper initial segment of U -V is positive; and

* each proper terminal segment of U -V is negative.

Proof. The finitely many cyclic subwords of R are linearly ordered with respect to <, so
we may choose one —say V = g~ lg 7 —which is minimal in G with respect to <. We claim
that the indices i and j are unique with respect to this property and hence the minimal
cyclic subword V is unique, as required. To see this, let k € {1,..., L}. Then by choice
of i, j we have
gi'er =gl

Left multiplying this inequality by g; gives gr > g;. It follows that g; is the unique
minimal element of {gq,..., gL}, so the index j is unique, as claimed. Hence also if
k,£ € {l,..., L} are such that ge_lgk = gi_lgj, we have k = j and hence gy = g;, and
so also £ = i. The index i is therefore also unique.

Clearly R has a cyclic permutation of the form gj_le,- = U -V where U is also a
cyclic subword of R.

Any proper initial segment of U - V' has the form gj_1 gk in G forsome k € {1,..., L},
k # j.Recall that g; is the least of the words {g;} with respect to <, so we have g; < gk,
and left multiplying by g;' gives 1 < g7 gk, as claimed.

Any proper terminal segment of U - V' is equal in G to the inverse of a proper initial
segment, and so is negative, as claimed. [

Let us assume that R already has the form U - V' as given by Lemma 3.1. We refer to
the edge of do whose midpoint is the starting point of R as the associated 1-cell of «.

Now suppose that f : Y’ — Y is a branch map. In particular, f is an immersion on
the complement of the preimage of a single point in the interior of «. Suppose also that
a’ € f~!(a) is a 2-cell with branch index 7. Then there are n choices of attaching path
for o’ that are mapped by f to the path (U V)". Each of these paths starts at the midpoint
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of an edge in f~!(e). We refer to these edges as the low edges of ’. Similarly, there are
n choices of attaching path that are mapped to (V' U)"; each starts at the midpoint of an
edge called a high edge of o’.

For each cell @’ € f~!(a) we choose one of the low edges of o’ and call it the associ-
ated 1-cell of o’. The attaching path for o’ starting at the midpoint of the associated 1-cell
is called the distinguished attaching path for «’. Note that, since f is an immersion on
a neighbourhood of the 1-skeleton of Y’, no edge can be a low edge (resp. high edge)
of more than one 2-cell in f~!(«). In particular, distinct 2-cells in f~!(a) have distinct
associated 1-cells.

Definition. We say that an edge e in a combinatorial 2-complex Y is almost-collapsible
if there is a 2-cell o in ¥ with attaching map which is a k-th power S¥, and e appears
precisely once in S and does not appear in the attaching path of any 2-cell other than «.
We include the case k = 1 here, when we sometimes omit the word “almost”.

If some low (resp. high) edge e’ of a 2-cell &’ € f~!(a) is an almost-collapsible edge
then the resulting transformation Y’ — Y” := Y’ \ {¢/, &’} is called a low-edge almost-
collapse (resp. a high-edge almost-collapse).

Note that when k > 1, 71 (Y') = 71 (Y") % C, with C cyclic of order k.

Theorem 3.2. Let X be a 2-complex such that every connected component of X has
locally indicable fundamental group, and let Y be a simple enlargement of X. Suppose
that f :Y' — Y is a branch map, with Y' compact and connected, and let A .= Y’ \
f7UX). Let Z' be the subcomplex obtained from Y' by removing all the 2-cells in A and
their associated 1-cells. Suppose also that, for some component T of Z', fi(71(T)) = {1}
inG = w1 (Y). Then Y' can be transformed to T through a sequence of low-edge almost-
collapses.

Proof. IfY = X Uethen T = Z' = Y’ and there is nothing to prove. So for the rest of
the proof we consider only the case where Y = X Ue U a.

Let 7 denote the collection of subcomplexes of Y’ that transform to 7 through a
sequence of low-edge almost-collapses. Then 7' € 7 so 7 is non-empty. Clearly T is par-
tially ordered via inclusion. Since f~!(«) is finite, it follows that 7 must have a maximal
element T, say. The assertion of the theorem is that 7/ = Y’, so we argue by contradic-
tion, beginning from the assumption that 7/ ## Y’. Note also that 7, (T"’) is a free product
of 1 (T') together with a finite number of finite cyclic groups. Since fi (71 (7)) = {1} and
G is locally indicable, it follows that fi(71(T")) = {1} in G.

Consider the subset A" of A consisting of those 2-cells not in 7’ whose associated 1-
cells meet 7" in either one or both of their endpoints. Let E denote the set of half-edges of
associated 1-cells of 2-cells in A’ having an endpoint in 7". Note that the other endpoint of
such a half-edge belongs to f~!(x) which is disjoint from Z’. We orient each half-edge
in E from the endpoint in £ ~!(x) to the endpoint in 7", so that f respects orientation on
the half-edges in E.
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Suppose that ¢’ € E. Then ¢’ is a half-edge of an associated edge of a 2-cell o’ € A'.
Thus (with a suitable choice of orientation) the distinguished attaching path R’ for &’ has
an initial segment of the form e’ - P - (¢”)~!, where P is an edge-path in T’ and ¢” is a
half-edge of an edge € in f~!(e) which is not contained in 7’. Now ¢ is the associated
1-cell of a 2-cell in A’, since otherwise it is contained in Z’ and hence in 7’. Since e¢” has
an end-point in 7’ we have ¢” € E. Note that ¢” is uniquely determined by ¢’. We call ¢”
the successor of ¢’ and write ¢’ = o (e’). Thus 0 : E — E is a well-defined map.

Here are some remarks about this map o.

(1) We have o(e’) # e’. For suppose that Q := e’ - P - (¢/)~! is a subpath of the
attaching path R’ of a 2-cell o’ € (). Since R’ is cyclically reduced, it follows
that P is non-empty and Q is not the whole of R’. Moreover, fx(Q) is an initial
segment of RE" but is not a power of R, and so fx(Q) > 1in G, by Lemma 3.1.
However, P is a closed path in T and by hypothesis fi(71(T)) = {1} in 71 (Y).
Hence also f«(Q) = fx(e’- P - (¢’)™!) = 1in G. This gives a contradiction.

(2) Suppose that ¢’ € E, and that ¢’ and ¢” = o (e’) are not half-edges of the same
edge. Then the initial segment Q = e’ - P - (¢”)~! of R’ = 3o in the definition
is proper and non-empty. If £(Q) = R* for some k then 0 < k < n and so e” is
a half-edge of another low edge of «’. Since it is also the associated 1-cell of a
2-cell o” € f~!(a), and since it cannot be a low edge of two distinct 2-cells, we
must have ¢” = ¢’ and k = 0 mod 7, contrary to assumption. Hence f(Q) is not
a power of R. As in Remark (1) above we have f.(Q) > 1in G.

(3) Since E is finite, any chain of the form ey, e; = o(ey),e3 = o(ez),... in E
must contain a loop. Without loss of generality let us suppose that e,, = e; for
some n. If, for each pair ¢;, ¢; 1 in this sequence, e; and e;; are half-edges
of associated 1-cells of distinct cells of f~1(a), then by Remark (2) we have
paths Q; =e; - P; -ej_+11 where P; is an edge-path in 7" and f(Q;) is an initial
segment of (U V)*" — and so f+(Qj) > 1in G by Lemma 3.1. Hence fi(Q) > 1
where O = Q1 - Q2+ Qy—1. On the other hand fx(Q) = fx(e1 - P -ey') where
P =P -Py--- P,_yis aclosed path in T’ and fi«(71(T")) = {1} in G. Hence
f«(Q) = 1 in G. This contradiction shows that, if E is not empty, there must be
a2-cell o’ € A’ and a half-edge e’ of the associated 1-cell of «’, such that o (¢’) is
also a half-edge of the associated 1-cell of o.

(4) By assumption, 7’ # Y’ and so E is non-empty. By Remark (3) there exist &’ € A’
and ¢’ € E such that ¢’ and e” := o(¢’) are half-edges of the associated 1-cell
¢ of o’. By Remark (1) we cannot have o(e’) = ¢/, so ¢’ and e¢” are the two
distinct half-edges of e. In this case the attaching path R’ of o’ is a power of
QO=¢-P-(")!.So f.(Q) =1in G. Hence ¢ is an almost-collapsible face
of @/, and T’ U e U o is a subcomplex of Y’ which admits a low-edge almost-
collapse to 7”.

This gives us the desired contradiction to the maximality of 7’ in 7 and completes the
proof. ]
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In the torsion-free case, we have the following stronger version of Theorem 3.2, which
we will apply in Section 4 below.

Theorem 3.3. Let X be a 2-complex such that every connected component of X has
locally indicable fundamental group, and let Y be a simple enlargement of X. Suppose
that f :Y' 9 Y is an immersion, with Y' compact and connected, and let A := Y’ \
f~UX). Let Z' be the subcomplex obtained from Y' by removing all the 2-cells in A and
their associated 1-cells. Suppose also that, for some component T of Z', fi(71(T)) = {1}
in G. Then Y’ collapses to T through a sequence of low-edge collapses.

Proof. The map f is an immersion, hence a branch map with no branch points. By The-
orem 3.2, Y’/ can be transformed to T through a sequence of low-edge almost-collapses.
But since there are no branch points of f in Y, each low-edge almost-collapse is a genu-
ine collapse. The result follows. |

4. The torsion-free case and the Betti number property

In this section, we consider one-relator products of locally indicable groups in which the
relator is not a proper power. We prove Theorems B and D, and then show how Theorem C
follows from Theorem D. We end the section with a slightly strengthened version of the
Freiheitssatz (Theorem 2.1), and an application to complexes which immerse into simple
enlargements.

Proof of Theorem B. Case 1. Y = X U e where e is a 1-cell.

Let ' : Y’ & Y be an immersion with Y’ compact and connected, and suppose that
x(Y") > 0.Let X’ := f~1(X). Since X has the non-positive immersions property, each
component of X’ either is contractible or has non-positive Euler characteristic. In par-
ticular, each component of X’ has Euler characteristic at most 1. Since Y’ is connected
and constructed from X’ by attaching 1-cells, it follows that Y’ has Euler characteristic at
most 1, and hence by hypothesis, y(¥Y’) = 1. But y(¥Y’) = 1 implies that each compon-
ent of X’ has Euler characteristic 1 (and hence is contractible) and that these components
are connected in a tree-like manner by the edges in f~!(e) to form Y'. Hence Y is also
contractible, as claimed.

Case2. Y = X Ue U« where e is a 1-cell and « is a 2-cell.

Let f : Y’ & Y be an immersion with Y’ compact and connected, and suppose that
x(Y') > 0. Let Z’ be as in Theorem 3.3. Since Z' is obtained from Y’ by removing equal
numbers of 1- and 2-cells, we have y(Z’) = y(Y’) > 0, and hence there is a component
T of Z’ with y(T) > 0. But f(T) C X Ue and X U e has the non-positive immersions
property by Case 1 above, so T is contractible. By Theorem 3.3, Y’ collapses to T, so Y’
is also contractible, as claimed. [
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Proof of Theorem D. Let K be a finitely generated subgroup of 71 (Y'). Suppose that K
has first Betti number m and second Betti number 8,(K) > n :=m + F(m — 1). Suppose
that K can be generated by d elements (where of course d > m). We will show that K =1,
from which the assertion of the theorem follows.

We can construct an epimorphism K — K for some group K which has first Betti
number m and possesses a d -generator, (d — m)-relator presentation . Let F be the free
group on these d generators, and R the kernel of the epimorphism F —» K —» K. Then
we can choose relations rq, ..., r, € R N [F, F] which are linearly independent in

RN [F, F]

(R F] ~ Hy(K),

and add them to the presentation & to get a new presentation &’ of a group K’, also
admitting an epimorphism to K.

This epimorphism can be realised by a combinatorial map f : V — Y for some sub-
division V of #’. Lemma 2.5 gives a factorization of f as g o f, where g : Y/ 9> Y is
an immersion, and f_ : V — Y’ is a surjective combinatorial map which is also surjective
on 71, and hence also on H;. Hence Y’ is connected with first Betti number 81 (Y') < m.
On the other hand, since g«(m1(Y’)) = fi(r1(V)) = K has first Betti number m, we
also have 81(Y’) > m and hence 8,(Y’) = m. Now the map Z" =~ H,(V) — H»(K') —
H,(K) is injective and factors through H>(Y’). Hence Y’ has second Betti number > n.

Let Z’ be the subcomplex of Y’ defined in Theorem 3.3. Since 1 # K = fi (w1 (V)) =
g« (m1(Y")), it follows from Theorem 3.3 that g« (1 (7)) # 1 in 71 (Y) for each compon-
ent T of Z'.

For each component X; of X’ := g 1(X), embed X j (for example via a mapping
cylinder construction) into a classifying space Yj for the subgroup K; := g« (m1(X;))
of K, in such a way that the embedding map realises the given map g, on fundamental
groups. Let X denote the disjoint union of these 7 for all the components X; of X’.
Form Z and Y from Z’, Y’ respectively by adjoining X along X’. We can extend the
map g : Y/ — Y to a map from Y to a classifying space Y for m1(Y), in such a way
that the restriction to each X factors through the covering of Y corresponding to K. By
hypothesis, each non-trivial K; has the property that

B2(K;) — B1(K;) + 1 < F(B1(K;) — 1).

Since X_J is a classifying space for K, it follows that each non-contractible X_] satisfies

B2(X)) — B1(Xj) + 1 < F(B1(X;) — 1).
Without loss of generality, suppose that there are J non-contractible components X,

1<j<Jof X, and C contractible components X.,J+1<c¢<J+C.Then

J+C
B2(X) = B1(X) + Bo(X) = Y Bo(X)) — B (X)) + 1

J=1
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J
=C+)Y B(X)-pi(X) +1

Jj=1
J
<C+ Y FBi(X) - D).
j=1

As F is supra-linear, it follows that

J
B2(X) — B1(X) + fo(X) = C +F(Zﬂ1(X_j)—1). (1

Jj=1

Now Z is constructed from X by adding a finite number — say £ — of 1-cells. Then Y
is constructed from Z by adding equal numbers of 1- and 2-cells. It follows that

B2(Y) — B1(Y) + Bo(Y) = B2(Z) — B1(Z) + Bo(Z)
= B2(X) — f1(X) + Bo(X) — L. 2

Since Y is constructed from X by adding 1-cells and 2-cells, we have H3 (7, Y) =0,
and so Hy(X) — H,(Y) is injective, from the long exact homology sequence. In partic-
ular, 82(Y) > B2(X). _

From (2), recalling that Y is connected, we have

B1(Y) = 1= B2(Y) — B2(X) + B1(X) = Bo(X) + £ = B1(X) — Bo(X) + ¢
and as F is non-decreasing we obtain
F(B1(Y) = 1) = F(B1(X) — Bo(X) + ©).

We assumed that F is not a second Betti bound for ;(Y), so from (1) and (2) we
derive

F(B1(Y)—1) < B2(Y) = B1(Y) + Bo(Y)
= B2(X) — B1(X) + Bo(X) — €
7
<c-t+ F(Z(ﬁ@)— 1))

j=1
= (C -0+ F(B1(X) — Bo(X) 4+ C)
=(C—0) + F(B1(X) — Bo(X) + L+ (C — 0)).

But F is non-decreasing and
Br(Y) =1 = B1(X) = Bo(X) + £ = B1(X) = Bo(X) + £+ (C = 0)

if C — £ < 0, giving a contradiction.
It follows that C > £.
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Thus there is a component T of Z such that the number k7 of contractible components
of X contained in 7 is strictly greater than the number {7 of 1-cells of Z \ X contained
in T. But T is connected, and it follows that k7 = £ + 1, and that T is also contractible.
Hence T := T N Z' is a component of Z’ such that g, (71(T)) = {1} in 7;(Y). By
Theorem 3.3, Y’ collapses to T, so K = g«(w1(Y’)) = 1 in 71 (Y). This completes the
proof. |

Proof of Theorem C. We first reduce to the two-factor case as follows. Choose a partition
A = A(1) U A(2) such that R contains a letter from G for at least one A € A(1), and a let-
ter from G, for at least one & € A(2). Then G is a one-relator product of A := %37 (1)Gx
and B := *,,eA(2)G. Let F : N — N be the zero function: F(n) = 0V n. Then, as poin-
ted out in the introduction, a group H has the second Betti number property if and only if
F is a second Betti bounding function for H . In particular, F is a second Betti bounding
function for each G, — and hence also for A and B by the homological properties of free
products. By Theorem D it follows that F is also a second Betti bounding function for G,
and hence G has the second Betti number property, as required. ]

We end this section with a slightly strengthened version of the Freiheitssatz (The-
orem 2.1), and an application to complexes which immerse into simple enlargements.

Lemmad4.1. LetY := X Ue U« be a simple enlargement of a 2-complex X, where every
Sfundamental group of X is locally indicable. Let ¢ : A — Y be a reduced van Kampen
diagram which is either spherical or a disc diagram. If ¢~ (o) # @ then A is a disc
diagram, and there is a 2-cell o' mapping to a such that the low edge of o' lies on the
boundary of A.

Proof. Suppose not. Then there is a sequence of 2-cells a7, ..., a, € ¢~ !(a) such that
for each j the low edge e; of «; is also on the boundary of ;1 (indices modulo 7). By
Lemma 3.1 and the definition of low edge, either of the two paths P;1; in doj 4 from
the midpoint of e; to that of e; represents an element U; 11 = [¢(P;+1)] < linm(Y)
(with respect to a fixed left ordering of 1 (Y')). Hence their product
U=U,-U---U, <1
inm(Y).
But this contradicts the fact that U is represented by ¢ (P) where
P = P1 'Pz"-Pn

is a closed path in the simply-connected space A. ]

Corollary 4.2. Let Y be as in Lemma 4.1, and let f : Y' & Y be an immersion, with Y’
compact. Let Z' denote the subcomplex of Y' defined in Theorem 3.3, and let {Z };jej be
its components. Then

(1) the inclusion-induced map w1(Z;) — w1(Y’) is injective for each j € J; and

(2) ma(Y') is generated as a Z.w1(Y')-module by the images of wo(Z;) forall j € J.
J
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Proof. (1) Apply Lemma 4.1 to a reduced van Kampen diagram in the plane, with bound-
ary labelled by a path in Z; representing an element

w € Ker(m1(Z;) — 71 (Y")).

Since the low edges of 2-cells in £ ~!(«) are by definition excluded from Z’, the lemma
says that there are no 2-cells of f~!(a) in A. Hence ¢(A) C Y'\ f (). Since Y’ \
/™ He) is formed by adding 1-cells to Z’, the map 71(Z;) — 71 (Y \ f~(e)) is inject-
ive, and so the boundary label w of A is already trivial in 71 (Z;).

(2) Applying Lemma 4.1 to the case where A is a spherical diagram, we see that no 2-
cell of A maps to o under f o ¢. It follows that o (Y”) is generated as a Zmr; (Y')-module
by the image of 7> (Y’ \ f~!(@)). Since Y’ \ f~!() is formed by adding 1-cells to Z’,
we deduce that in fact 7 (Y’) is generated as a Z 1 (Y”)-module by the images of 72(Z;)
forall j € J. ]

5. The torsion case

In this section, we prove Theorem A, and also stronger versions of Theorems E and F in
the torsion case. The proof of Theorem A requires a number of preliminary results.

Theorem 5.1. Let f : Y’ — Y be as in Theorem 3.2, let p be a prime and let F be the
field of order p. Then the number of 2-cells of f~'(a) which are attached along p-th
powers is bounded above by the F-dimension of H{(Y', F).

Proof. As in Theorem 3.2, let Z’ be formed from Y’ by deleting all the 2-cells of £~ (o)
together with their associated 1-cells. Suppose first that some component 7' of Z’ has
zero first Betti number. Then fi(1(T)) = {1} in G since G is locally indicable. By
Theorem 3.2, there is a sequence of low-edge almost-collapses transforming Y’ to 7.
Necessarily this sequence of almost-collapses involves every 2-cell in f~!(a). Suppose
that /! (a) = {o}. &), ..., a)y} and that o} is attached along a ¢(j )-th power for each j
(where ¢(j) > 1). Suppose also that p|g(j) for j < J. Then 1 (Y") is the free product of
71(T) and the cyclic groups C(j) of order ¢(j) for j = 1,..., N.Hence H{(Y’, F) is
the direct sum of H(T, F) and H,;(C(j), F)for j = 1,..., N.Since plq(j) for j < J,
at least J of these direct factors are isomorphic to F, and the result follows in this case.
Hence we may assume that every component of Z’ has positive first Betti number.
Suppose that there are K components in Z’, and N 2-cells in f~!(«), of which J are
attached along p-th powers. Let Z” := Z’ U Y, Then Z” is obtained from Z’ by
adding N 1-cells, of which K — 1 are required to make Z” connected, and the remain-
ing N — K + 1 contribute to the first Betti number. So Z"” has first Betti number at least
K+ (N —-K+ 1) =N + 1. Hence also H,(Z"”, F) has F-dimension at least N + 1.
Finally, H,(Y’, F) is the quotient of H1(Z"”, F) by the subspace V spanned by the images
of the attaching paths for the 2-cells in f~!(«). Those attaching paths which are p-th
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powers have image 0 in Hy(Z”, F), so V has dimension at most N — J. Hence H,(Y’, F)
has dimension at least (N + 1) — (N — J) = J + 1, and the result follows. ]

We next consider immersions f : Y’ & 17” where n > 1. The 2-cell «, of )7” has
attaching map R", where R is not a proper power. It follows that each 2-cell o’ € f (o)
has an attaching map of the form S?, where S is not a proper power, f(S) = R?, and
pq =n.

Theorem 5.2. Let n > 1 and suppose that f : Y’ & )/’\n is an immersion, where Y' is
compact and connected, with first Betti number B. Suppose that none of the 2-cells in
f~Yap) is attached by an n-th power. If Y' has no almost-collapsible edges, then the
number of 2-cells in ' (at,) is bounded above by 58.

Proof. The composite ¥, o f : Y’ — Y is a branch map. Let Z” be the subcomplex of Y’
obtained by removing all the 2-cells in ! (a,) = (¥, o f)~(a), together with all their
low edges. Note that there are at least 2 distinct low edges for each 2-cell in f~!(a),
since its attaching map is not an n-th power.

Now let C be a component of Z” with first Betti number 0. (We call such a component
a treeoid.) Then (Y, o f)«(1(C)) is a finitely generated subgroup of G with first Betti
number 0, and hence trivial. If C = Y’ then f(Y') = f(C) C X U e, and there are no
2-cellsin f~!(a,). So we may assume that C # Y'. Since Y’ is connected, there must be
one or more low edges of 2-cells in f~!(a,) that meet C.

We claim that C is incident to at least 5 half-edges of low edges of 2-cells of f~!(a,).
Arguing as in the proof of Theorem 3.2, for each such half-edge ¢’ there is another half-
edge o(e’) and a cyclic subpath of the attaching path of some o’ € f~!(a,) of the form
Q:=¢'-P-o(e’)”! with P apathin C. Then f(Q) is an initial segment of the attaching
path R"® = (UV)" of ay, so by Lemma 3.1, f.(Q) > 1 in the left ordering of G, with
equality if and only if f(Q) is a power of R — necessarily R*! since P cannot contain a
low edge of «’.

Still arguing as in the proof of Theorem 3.2, any chain of half-edges ej, e5, ... of low
edges of cells in f~!(a,) that are incident at C with o'(e;) = e;41 must contain a loop,
and the only possibility for such a loop is a pair e, e, with e; = o(ez), e2 = o(ey), and
f(Q) = R*..

Now the path Q = e; - P - ¢5' must contain a high edge é of «'. Since é is not an
almost-collapsible edge of «’, there must be another subpath P’ in C of the attaching path
of a2-cell «” € f~!(a,) that passes through é. Note that P’ is a cyclic subword of R*!
(see Figure 1).

It is not possible for P’ to begin at the edge e, else there would be a loop formed
from an initial segment P| of P’ to the edge ¢ together with the initial segment P; of P
from e; to the edge é. Since f,(C) = 1, it follows that fx(P{) = fx(P1) =U = VL
By uniqueness of low and high edges, it then follows that ¢; and € are low and high
edges respectively of «”, and hence that «” = o’ and so P’ = P and the edge ¢ would be
almost-collapsible, a contradiction.



Coherence and one-relator products of locally indicable groups 1101

Figure 1. The high edge ¢ in the path P joining e; and e,

Essentially the same argument shows that P’ does not begin or end at either of the
edges e, e;.

It follows that C is incident to at least 4 distinct half-edges of low edges of 2-cells in
fYan), namely e; = o(e3), e2 = o(ey), e3 and ey4. Suppose that these are the only 4
half-edges of low edges of 2-cells in f~!(a,) incident at C. Then o(e4) € {ey. ez, e3}
and o (e3) € {ej, €2, e4}. There are essentially two cases.

Case 1. Suppose first that o'(e4) = ej. Then there is a path Q” := e4 - P” - e with P”
in C, such that £(Q") is an initial segment of the attaching path R*" of the 2-cell a,.

Recall that Q = e; - P -e;' and Q' :=e3- P'-e;! # Q, where P, P’ are paths in
C that pass through the high edge é. Let Q; denote the part of Q from e; to the midpoint
of ¢, and Q5 the part of Q' from the midpoint of é to e4 (see Figure 2).

Figure 2. Case 1 of a treeoid component of valence 4
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Figure 3. Case 2 of a treeoid component of valence 4

Then hy := (Y 0 )«(Q1) = U = V7, hy := (¥, o £)«(Q>) is a cyclic subword
of R*!, and 1" := (Y, o £)«(Q") is an initial segment of (U V)*!. By Lemma 3.1 h /1,
and A" are both positive, so 1h2h” > 1, contradicting the hypothesis that

(Wn o f)*(”l(C)) =1.

Similar arguments yield contradictions in the case where o (e4) = €3, and in the cases
where o (e3) € {e1,e2}.

Case 2. We are now reduced to the case where o (e3) = e4 and 0 (e4) = e3. As was the
case for O, e3 and ey4 are low edges of the same 2-cell, and there is a path in C joining
them labelled R*!. But the path P’ also joins these half-edges, and so the label on Q' is
R*! and the 2-cell concerned is o (see Figure 3).

Arguing as in the case of &, Q’ contains a high edge ¢’ of &”. Since ¢’ is not a col-
lapsible edge of ”, it is contained in the attaching path of a 2-cell of f~!(a;,) that meets
C but not e3 or e4. Thus e; or e, is a low edge of this other 2-cell, and so this other 2-cell
must be o’. Hence é is contained in Q’, while ¢’ is contained in Q. Let L denote the
subpath in Q from the midpoint of € to ey, L, the subpath of Q from e; to the midpoint
of ¢', L3 the subpath of Q' from the midpoint of ¢ t0 e3, and Ly the subpath of Q' from
e3 to the midpoint of €. Let hy, hy, h3, hy denote the images of Ly, Lo, L3, L4 respect-
ively in G under (Y, o f)«. Then hy = h3 = U l=V,s0 by Lemma 3.1, h; < hzl and
hs < h;'. Moreover, these inequalities are strict because & # ¢’ since these are high edges
of distinct 2-cells (as the edges are not almost-collapsible). Thus i := h'hy 1h3 hy! > 1,
contradicting the hypothesis that (¥, o f)«(C) = 1.

In all cases we have obtained a contradiction, and so C meets at least 5 half-edges of
low edges of 2-cells in f~!(a,), as claimed.

To complete the proof, suppose that Z” has My treeoid components and M; non-
treeoid components. And suppose that there are K 2-cells in f (o), and J low edges
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of these 2-cells. Then Y’ is obtained from the My + M; components of Z” by adding
J 1-cells and K 2-cells. The first Betti number of Z” is at least M7, since each non-
treeoid component makes a positive contribution by definition. Of the additional 1-cells,
My + My — 1 are required to connect the different components of Z”, so the first Betti
number of Z” U (Y')M) is at least J — My + 1. Finally, each 2-cell attached can reduce
the first Betti number by at most 1 so we have

B>J—My+1-K. 3)

The J low edges split into 2J half-edges, of which each treeoid component of Z”
meets at least 5, as we have seen. Hence 5M(y < 2J. Combining this with inequality (3)
and the fact that / > 2K, we have 58 > 5J —5K —5My > 3J —5K > K asrequired. m

Corollary 5.3. Lerg: Y' & ?,, be an immersion, where n > 1. Suppose that Y’ is com-
pact and connected, that no 2-cell in g~ (an) has an almost-collapsible edge, and that
71(Y") can be generated by k elements. Then the number of 2-cells in g~ () is at
most 11k.

Proof. Let f :=vY, 0g:Y’— Y.Then f is abranch map, and satisfies the conditions of
Theorem 3.2. Let p be a prime factor of n > 1 and let F be the field of order p. Then the
dimension over F of Hy(Y', F) = m,(Y'")?" ®z F is less than or equal to k, since 771 (Y")
can be generated by k elements. By Theorem 5.1, at most k of the 2-cells in £~ (c) are
attached along p-th powers — in particular along n-th powers.

Now let Y be the subcomplex of Y’ obtained by removing all 2-cells in f~!(«) that
are attached along n-th powers. Now Y’ has first Betti number at most k£ and is formed
from Y by attaching at most k 2-cells, so Y has first Betti number at most 2k. Moreover,
the restriction of f to Y” satisfies the hypotheses of Theorem 5.2, since Y” contains
no 2-cell of f~!(a) that is attached along an n-th power. So the number of 2-cells of
Y" N £~ (a) is at most 5 times the first Betti number of Y”. Hence the total number of
2-cells in f~!(a) is at most

5x(2xk)+k=11k. |

Proof of Theorem A

Following the proof of Theorem C, we reduce to the two-factor case, where |A| = 2. We
restate and prove it in that form.

Theorem 5.4 (= Theorem A). Let A, B be coherent locally indicable groups, and let

R = S" € A x B, where S is cyclically reduced of length at least 2 and n > 1. Then

I:= Z(‘;;; is coherent.

The proof follows Wise’s method in [18, Section 4], beginning with a lemma of Peter
Scott.
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Lemma 5.5 (Scott). Let H be a freely indecomposable group generated by n elements.
Assume that every subgroup of H generated by fewer than n elements is finitely present-
able. Then there exists a finitely presentable, freely indecomposable group K and an
epimorphism K — H that does not factor through a proper free product: if K — H' — H
then H' is freely indecomposable.

Remark. Scott [15, Lemma 2.2] proves this in the context of his inductive proof of coher-
ence of 3-manifold groups. The inductive assumption on subgroups of H is used in an
essential way in the proof of Lemma 5.5, so to avoid logical difficulties we shall be care-
ful to use it also in the context of an inductive proof of Theorem A. While preparing this
work for print, Louder and Wilton brought to our attention Swarup’s preprint [17] where
he gives a proof he attributes to Delzant of the general case of this result (without the
condition that lower rank subgroups be finitely presented).

Let H be a finitely generated subgroup of I". We want to show that H is finitely
presentable. We proceed by induction on the number of generators for H: clearly it is
true for subgroups with at most 1 generator. We can assume that H is generated by k
elements, and that every subgroup of G generated by strictly fewer than k elements is
finitely presentable. In particular, if H decomposes as a free product, then each free factor
(and hence also H) is finitely presentable, using Grushko’s theorem. So we may assume
that H is freely indecomposable.

First construct a 2-complex Y (resp Y) with fundamental group I' (resp. G :=
(A * B)/{(S)) as follows. Let X4, Xp be presentation 2-complexes for 4, B respect-
ively. Add a 1-cell e to X := X4 Ul Xp joining the base-points of the two components,
and then attach a 2-cell « along 6" (resp. o), where o is a path in X (1) U e representing
S € Ax B =m(X Ue). Thus Y is a simple enlargement of X, and Y — Y is the n-fold
branched cover of Y, as defined in Section 2.

Definition. Say that an edge in a 2-complex is fotally irreducible if it occurs in the bound-
ary of at least one 2-cell, and is not almost-collapsible, in particular not collapsible. This
means that either the edge occurs at least once each in the boundaries of two different
2-cells oy, @y, i.e., such that reading the boundaries daq, dap from the edge e with the
orientation induced by a choice of orientation for e, gives two different words, or the edge
occurs twice on the boundary of a single 2-cell a1, such that reading the boundary do;
starting from the different occurrences of the edge e with the orientation induced by a
choice of orientation for e, gives two different words.

Lemma 5.6. Let H be a k-generated freely indecomposable subgroup of G. There is a
finitely presented, k-generated group K, and a finite 2-complex Yy with 71 (Yy) = K,
where all edges of Yo are totally irreducible, Yo & Y, and the immersion induces an
epimorphism F : w1 (Yy) — H.

Proof. Let K and F : K — H be the finitely presented group and epimorphism provided
by Scott’s Lemma 5.5. Let W} be a finite 2-complex with 71 (Wp) = K, letqy : Yg — Y
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be the covering of Y with m1(Yy) = H, and subdivide the 1- and 2-cells so that the
map F : K — H is induced by a combinatorial map go : Wy — Yg. Now g is not in
general an immersion, but by Lemma 2.5 it can be factored as Wp — Y’ & Yy where
Wo — Y’ is surjective and 7rq-surjective, 1 (Y”’) is indecomposable, and fy : Y/ & Y
is an immersion.

Thus there exists at least one 71 -surjective immersion Y’ & Yg such that Y is com-
pact and connected with k-generated, freely indecomposable fundamental group. Among
all such, choose one fj : Yy & Yy with Yy minimal, in the sense of having fewest pos-
sible cells. (Note that this choice may entail a change of basepoint in Yz, thus effectively
replacing H by a conjugate.)

If Yy had a non-totally irreducible edge e, then either

(1) e does not lie in the boundary of any 2-cell and

(a) e separates, giving either a free decomposition of 1 (Yp), or a smaller sub-
complex carrying K;
(b) e does not separate, and there is a free Z factor;
(2) e is collapsible, and there is a smaller subcomplex carrying K;
(3) e is almost-collapsible and K has a finite cyclic factor.

Conclusion: every edge of Yy is totally irreducible. ]

Lemma 5.7. Let Y = X U e U« be a simple enlargement of a 2-complex X with locally
indicable fundamental groups, and Y its n-fold branched cover, for some n > 2. Let H be a
freely indecomposable, finitely generated subgroup of w1(Y ), and let Ygr be the connected
cover of Y with fundamental group H. Then there exists a sequence of mi-surjective
immersions
Yo 11 Y- Y B Y1 - B Yy 4)

such that

(a) eachY; is a finite connected 2-complex;

(b) every 1-cell of Y; is totally irreducible;

(c) each Y;j4q is the union of the image of Y; and of a reduced van Kampen diagram
J J
§; : D* — Y41 with 8;(0D?) in the image of Yo;
(d) each immersion Y; & Yg is also my-surjective; and

(e) each element of Ker(m1(Yo) — m1(Yg)) is mapped to the identity element of
m1(Y;) for some j.

Proof. Note first that, for any 2-complex Z and immersion f : Z & Yy, if e is a totally
irreducible edge of Z then its image f'(e) is totally irreducible in the image f(Z) C Yp.
Hence if f factors through a surjective map Z —» Z’, then the image of e in Z’ will be
totally irreducible in Z’. Note also that, if § : A — Yy is a reduced van Kampen diagram,
then any interior edge of A is totally irreducible in A. (Otherwise the two 2-cells incident
to the edge would cancel, contradicting the hypothesis that the diagram is reduced.)
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We shall create the complexes Y}, beginning with the complex Yy given by Lemma 5.6,
in such a way that each edge is the image either of an edge of Yy or of an interior edge
of a reduced van Kampen diagram. So the fact that their edges are all totally irreducible
follows from the above remarks.

Let fo : Yo & Yy be the immersion given by Lemma 5.6. Choose a sequence of
cyclically reduced closed paths wg, wy, ... in Yo(l) which together normally generate the
kernel of fo« : m1(Yo) — 71 (Y ), and a reduced van Kampen diagram ¢; : D; — Yg
for each w; = 1 over 4*2 (we have fixed presentations for A and B).

Form the adjunction space W; = Yy U dDy by identifying 89 = dD¢ with its image
in Yy, so that the maps fy, ¢p9 combine to give a map Wy — Yp.

Then apply Lemma 2.5 to factor this map as the composite of a surjective, 71 -surject-
ive map Wi — Y7 and an immersion f; : Y7 9 Ygy. By our initial remarks we see
that every edge of W; and of Y; is totally irreducible in Y;. Finally, note that wy €
Ker (1 (Yo) = m1(Y1)).

Now iterate this construction. Suppose inductively that we have defined Y;, and immer-
sions Yp & -+ & ¥;, such that every edge of each of Yy, ..., Y; is totally irreducible and
Wy, ..., wj—1 € Ker(mw;(Yy) = m1(Y;)). Then we can adjoin the diagram D; to Y; and
factor the resulting map to Yg through an immersion, giving a new 2-complex Y;; and
an immersion Y; & Y4 that factorises f; : ¥; 9 Yy through fi+1 : Yiy1 & Yy, and
w; € Ker(my(Yy) — m1(Yi+1)). Again, arguing as above, every edge in Y;4; is totally
irreducible in Y;41.

In this sequence of immersions, each f; : ¥; 9 Yp is my-surjective, since the -
surjective immersion fo factors through f;. Moreover, any element of Ker( fo,«) lies in
the normal closure of the w;, and hence is mapped to the identity element of 1 (Y;) for
some j, as required. ]

Definition. The R-subcomplex R(Y;) of Y; is the union of the image of Y, in Y; together
with the preimages of & under ¥; &> Y and all of their incident 0- and 1-cells. If § : A - Y
is a van Kampen diagram, then the R-subcomplex R(A) of A is the union of dA with the
preimages of & under § : A — Y and all of their incident 0- and 1-cells.

Lemma 5.8. The complexes R(Y}) are all connected.

Proof. This follows by induction, starting from the fact that Yy is connected.

The complex Y; 1 is the image of W;, which itself is formed from Y; by gluing
on the reduced van Kampen diagram D;. The fact that R(D;) is connected for a reduced
van Kampen diagram for w; is one of the essential properties established in the proof
of the Freiheitssatz (Theorem 2.1) for one-relator products of locally indicable groups in
[3,9,16], that the natural map A — % is an injection (and thus that for each i the word
w; labelling the boundary §; contains non-trivial words in A and in B). If R(D;) were not
connected, then there would be a subdiagram of D; containing some regions labelled R,
and whose boundary is a word in A or in B. But in a reduced diagram, any subdiagram

with boundary label in A or B cannot contain R-regions, so this is a contradiction.
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Thus R(Yj41) is the image of the union of two connected subcomplexes of Y; with
non-empty intersection. ]

Lemma 5.9. There is an infinite subsequence
Yo Yo) & -+ & Yo) & - B> Yy 5)
of (4) of Lemma 5.7 such that the restrictions
R(Y50)) ¥ R(Ys1)) & -+ B R(Y5(j)) & -+ (6)
are all cellular isomorphisms.

Proof. Let Z; = R(Y;); it is clear that the map Z; 9 Yy is still 7q-surjective (as the
initial map fq : Yo &> Yy factors as Yo & Z; & Yg).

By Corollary 5.3 (every edge in Y; is totally irreducible) applied to the composite
qH ° fi 1 Y;i & Yy — Y, the number of preimages of « in Y; is bounded above by 11k,
where k is the minimal number of generators of H. Since every 1-cell in Y; is incident at
a 2-cell, the number of preimages of e in Y; is also bounded (for example, by 11k£ where
¢ is the length of R as a path in Y (V).

But every cell in Z; is either in the image of the compact 2-complex Y, or is incident
to one of the boundedly many 2-cells that are preimages of «. Hence the Z; are bounded
in size, so some subsequence {Z,;)} of the Z; stabilises, in the sense that the sequence
Zs) & Zg2) & -+ consists of isomorphic 2-complexes. Now Wise [18, Lemma 4.2]
has shown that any immersion from a finite complex to itself must be an isomorphism.
(Otherwise some power of the immersion is a retraction onto a proper subcomplex, con-
trary to the definition of immersion; we are grateful to Lars Louder for explaining this to
us.) Hence in fact we may assume that Z;(;) & Zgs2) & --- consists of isomorphisms,
as claimed. ]

Last step of the proof of Theorem A. By Lemma 5.9 there is a subsequence (5) of (4) such
that all the maps R(Y5)) & R(Y5¢+1)) in (6) are cellular isomorphisms. Using this, we
set Z := R(Y;(1)) and identify each R(Y(;)) with Z via the inverse isomorphism.

Any element of the kernel of the map 71(Z) — 71 (Yy) = H becomes trivial in
some 71 (Y5 ()). But Z = R(Y(;)) is a subcomplex of Yy (;), so any such element can be
expressed as the boundary label of a van Kampen diagram A in Y4 ;). As in Lemma 5.8,
the R-subcomplex of A may be assumed to be connected, by Theorem 2.1. Thus its
complement consists of a finite number of open discs in A whose boundaries are paths
in Z and whose images under the map (¢g © fo1)) : Yo1) — Y lie in X4 or in Xp.
Since Z N (qg © fa(l))_l (X4 U Xp) is compact, and each of A, B is coherent, it follows
that Ker(sr;(Z) — H) is normally generated by a finite number of loops in Z N (g ©
Jo1)) "1 (X4 U Xp). For sufficiently large N, these loops are all nullhomotopic in Yo (),
and it follows that 71 (Y5(y)) — H is an isomorphism. Since Y (y) is compact, H is
finitely presentable, as claimed. ]
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We end this section by noting that stronger versions of some of our results — notably
Theorem F — hold in the torsion case. Translated into our set-up, a result in [6] says the
following.

Theorem 5.10 ([6, Theorem 3.3]). Let Y := X U e U « be a simple enlargement where
X is a 2-complex, all of whose fundamental groups are locally indicable. Let n > 1 be
an integer, and let f/\,, — Y be the n-fold cyclic branched cover defined at the start of this
section. Let P : ¥ — i’\n be a reduced picture on a compact orientable surface X that
contains V a-discs. Then the number of points where P meets 0% is at least

2V(n—1) + 2x(2).

Corollary 5.11. Let
*1eA G2

(R)

where G are locally indicable groups, R € %) G, is cyclically reduced of length at

G =

least 2, and n > 1 is an integer. Then

(1) if A, € A and g € G are such that the intersection G N Gﬁ in G is non-trivial,
then u = Aand g € Gy;

(2) any free abelian subgroup of G of rank greater than 1 is contained in a conjugate
of G, for some A € A;

(3) any subgroup of G that is isomorphic to a right angled Artin group based on a

connected graph with at least one edge is contained in a conjugate of G, for some
AeA.

Proof. As usual (see the proof of Theorem C) we work in the two-factor case (A *
B)/{R")), with A := *3c71)Ga, B := *)ea(2)Ga. Without loss of generality we can
assume that R is not a proper powerin A * B = x,G;,.

We then form a simple enlargement Y = X Ue U of X := X4 U Xp where X4, Xp
are connected 2-complexes; 71 (X4) = A and 71 (Xp) = B, e is a 1-cell joining the base-
points of X4 and Xp, and « is a 2-cell attached along a path representing R € A * B. The
result follows by applying Theorem 5.10 to pictures over )7,1 as follows.

(1) A conjugacy relation y = x% with x € G, and y € G, can be expressed using
a reduced picture P : ¥ — I?,L where X is an annulus and the components of ¥ map
to reduced paths in X which represent x, y respectively. In particular, these paths do not
involve e, and so no arc of # meets dX. Since y(X) = 0, it follows from Theorem 5.10
that J has no «-discs. So we can regard J as a picture over X U e, and the conjugacy
relation y = x& already holds in the free product 71 (X U e) = A x B = %, G). The result
follows from well-known properties of conjugacy in free products.

(2) A commutator relation xy = yx in G can be expressed using a reduced picture
P : ¥ — Y where X is the torus. Since x(¥) =0and 0¥ = @, Theorem 5.10 again tells
us that & has no a-discs. Thus & is a picture over X U e, and the commutator relation
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xy = yx already holds in 71 (X U e) = A * B = %, G,,. The result again follows from
well-known properties of commutation in free products.

(3) The final assertion follows easily from the first two. The subgroup corresponding
to any edge is contained in some G§, and the subgroup corresponding to any vertex can
be contained in at most one Gi’, so there is a unique A € A and a unique right coset G g
such that Gf contains the right angled Artin group in question. |

6. Wreath products and Thompson’s group as subgroups

In this section, we prove the first two parts of Theorem E.

Lemma 6.1. Let G be as in Theorem E, and let K := (H, x) < G, where H < Gf for
some A € Aand g € G. If H* N H is non-cyclic, then K < Gi’.

Proof. Wehave H* N H < G5* N G§, so x € G§ by Theorem F. n

Proof of Theorem E (1) and (2). Case 1. K = Z wrZ.
The commutator subgroup [K, K] of K is free abelian of infinite rank, with basis
{xn, n € Z},and K = [K, K] x (t) where tx, = x,41t for all n. Define

H = (x1,x3,x3) < K,

and note that K = (H, ) and H N H' = {x1, x») is non-cyclic. By Corollary 2.4 there
is a unique A € A and a unique coset G, g such that H < Gf. Applying Lemma 6.1 with
x =t gives the result.

Case 2. K is isomorphic to Thompson’s group F'.
There is a presentation of K of the form

K = (x1,X2,X3,... | XmXn = Xn+1Xm (m < n)).

Let y, := x;lxnﬂ. Then y,, commutes with x, and y, in K if m 4+ 1 < n. Taking
H = (Y, Yk+2, Vk+4) for any value of k, we see that H < Gf for a unique A € A and a
unique coset G, g. By Lemma 6.1 it follows that y, € Gf for every £ > k + 6 and every
0 < £ < k —2. Applying these facts for varying k gives y; € Gf for all j, and another
application of Lemma 6.1 then gives x; € Gf and hence K < Gf as required. ]

7. A new proof of Brodskii’s lemma

Proof of Theorem F. By Theorem 5.11 we may assume that G is torsion-free, that is that
the relator R is not a proper power in *, G . By Corollary 2.3 we know that the intersec-
tion G, N G, is free unless the conclusion of the theorem holds. So let us suppose that
there is a free subgroup K of rank 2 in G, N G&.
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Now put 4 := G, and B := #*,+,G,, so that G is a one-relator product of the two
locally indicable groups A, B. Then we model the situation geometrically as: ¥ = X U
e U o is a simple enlargement of X := X4 U Xp where X4 and Xp are connected 2-
complexes with locally indicable fundamental groups A, B respectively and e is a 1-cell
and « is a 2-cell attached along a path representing R € m1(X Ue) = A x B = x,G,.

Now K is a free subgroup of A of rank 2. Suppose that P is either a loop at the base-
point of X4 or a path from the base-point of X 4 to the base-point of X, such that P~' K P
is equal in 771 (Y) to a subgroup of A or of B respectively. Let V = S v S! be a 2-petal
rose with base-point *, and let ¢ : V x [0, 1] — Y be a map representing this conjugacy
set-up. That is, ¢(V x {0}) is a pair of curves in X4 that generate K, ¢(V x {1}) is a pair
of curves in X, and ¢ ({*} x [0, 1]) is the path P.

After subdividing cells in V' x [0, 1] to make ¢ be cellular, we can apply Lemma 2.5 to
factor ¢ as a surjective, 1-surjective map ¢’ : V x [0, 1] — Y’ followed by an immersion
f:Y' o> Y.Leta denote the 2-cell in Y \ X, let Z’ denote the subcomplex of Y obtained
by deleting every 2-cell in f~!(«) along with its low edge, and let X’ := f~1(X) C Z'.

Now as well as being 71 -surjective, ¢’ : V x [0, 1] — Y’ is also 71 -injective since the
composite ¢ = f o’ : V x[0,1] — Y is my-injective. Hence 71 (Y') = 71 (V x [0, 1])
is free of rank 2.

The inclusion V x {0} into V x [0, 1] is a homotopy equivalence, and ¢'(V x {0})
is contained in a component X of X’. Since V x {0} — Y’ is mq-surjective and factors
through Xj, the inclusion Xo — Y’ is also mr;-surjective. Thus Xg has first Betti num-
ber > 2. The same applies to the component X; of X’ that contains ¢'(V x {1}).

No component of Z’ has first Betti number 0. For otherwise Y’ collapses onto that
component, by Theorem 3.3, and has first Betti number 0, a contradiction. Since Y is
connected with first Betti number 2, and is formed from Z’ by attaching equal numbers of
1- and 2-cells, it follows that all but at most one of the components of Z’ have first Betti
number 1, and no component has first Betti number greater than 2.

Since Z’ is formed from X’ by attaching 1-cells, it follows in turn that at most one
component of X’ can have first Betti number greater than 1. Hence X; = Xj.

Further, P’ := ¢'({*} x [0, 1]) is a path in Y’ connecting two points of Xy, and P =
f(P"), so both ends of P lie in X4. Thus P is aloop in Y based at the base-point of X4.
Moreover, since Xy is connected and Xo — Y’ is mq-surjective, there is a path Py in Xo
with the same endpoints as P’, and aloop P” in Xy that is homotopic rel base-point in ¥’
to P’ Py . Thus the element of G represented by P is

g:=[PI=[f(P] =[f(P"- Po)] € m(X4) = A. u

8. Direct products of free groups as subgroups

Proof of Theorem E (3). Since F, x F5 is freely indecomposable, we may reduce to the
case where |A| = 2, as in the proof of Theorem C. As usual we model the situation using
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a simple enlargement Y = X Ue U of X := X4 LI Xp where X4 and Xp are connected
2-complexes with locally indicable fundamental groups A, B respectively.

Suppose that a, b, ¢, d € G generate K, a direct product of two free groups {a, b) and
(c, d) of rank 2. We shall show that K is contained in a conjugate of one of the factors A
or BinG.

Let V = S! v S be a 2-petal rose with base-point *. Thereisamap¢ : V xV — Y,
combinatorial after subdivision, with ¢«(r1(V x V)) = K < G. The restriction to any
one of the four subcomplexes of V x V isomorphic to S x S is a toral picture over Y
representing one of the four commutator equations ac = ca etc. We may assume without
loss of generality that each of the four pictures is reduced.

If R is a proper power, then by Theorem 5.10 none of the toral pictures contains a
vertex. In that case ¢ (V' x V) C X Ue, so the embedding ¢, : 1 (V x V) — w1 (Y) factors
through 71 (X Ue) = A % B. Since F, x F; is freely indecomposable, ¢ (71 (V x V))
must belong to a conjugate of A or B.

Hence we may assume that R is not a proper power. Using Lemma 2.5, we factor ¢
through an immersion f : Y’ &> Y such that V x V — Y’ is surjective and 7t -surjective.
In particular, 71 (Y’) = F, X F and f : Y’ — Y is my-injective, since ¢ is 1 -injective.
Thus Y is a connected 2-complex. Moreover, Hy(Y') = H{(F, x F>) = Z* and H,(Y")
surjects onto H,(Fy x Fy) = Z*,s0 x(Y’) > 0. Let Z' C Y’ be the subcomplex in The-
orem 3.3. Then Z’ is obtained from Y’ by the removal of equal numbers of 1- and 2-cells,
so y(Z') = y(Y') > 0, and some component 7 of Z' has positive Euler characteristic. By
Theorem 3.3 we may assume that fi(1(T)) # {1} in G, for otherwise Y’ collapses to T
implying that fi(71(Y)) = f«(m1(T)) = {1} in G, contrary to the hypothesis.

Now f(T) C X Ue. Since m1(X Ue) = A x B, the image K of 771 (T) in 71 (X Ue)
splits as a free product * K, where each K; is either cyclic or contained in a conjugate
of A or B. Suppose that some K; is contained in A%. But as the factor groups are locally
indicable, A embeds in G via the natural map by Theorem 2.1, and hence K is isomorphic
to a finitely generated subgroup of F, x F,. Moreover, it follows from Corollary 4.2 (1)
that f'|7 is mq-injective, and 1 (T') = K; is isomorphic to a finitely presented subgroup
of F>, x F, contained in A%.

Observe that a finitely generated subgroup L of F» x F5 either contains a copy of F;, x
F, or has Euler characteristic < 0 (and is Z, Z x Z or free or Z x free). This follows easily
by considering the restrictions to L of the coordinate projections p1, p2 : F» X Fy — F;.
If either is injective, then L is free. If p; has rank 1 kernel, then there is an exact sequence
1 —->Z — L — pi(L) — 1, which splits since p;(L) is free. So L =~ 7Z x free.

Finally, if Ker(p;) and Ker(p,) are both (free) of rank > 2, then L D Ker(p;) x
Ker(ps) D F> x F>.

The components of Z" with fundamental groups that are free products of free groups
and Z x free groups have non-positive Euler Characteristic. But we have seen that there
is at least one component with positive Euler characteristic, so some 71 (7)), and so A%
contains a subgroup of K isomorphic to F x F.
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Now any subgroup of K = (a, b) x (c, d) that is isomorphic to F, x F, has the form
L =L x L, where Ly, L, are subgroups of (a,b), (c,d) respectively. If L < A% then we
have F, =~ L, < A% N A%% and so a € A% by Brodskii’s Lemma, Theorem F. Similarly,
b,c,d € A% and so K < A8. Since A is a free product of some of the G, and K is freely
decomposable, it follows that K < Gf for some g, A, as claimed. n
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