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Totally non-congruence Veech groups

Jan-Christoph Schlage-Puchta and Gabriela Weitze-Schmithüsen

Abstract. Veech groups are discrete subgroups of SL.2;R/ which play an important role in the
theory of translation surfaces. For a special class of translation surfaces called origamis or square-
tiled surfaces, their Veech groups are subgroups of finite index of SL.2;Z/. We show that each
stratum of the space of translation surfaces contains infinitely many origamis whose Veech group is
a totally non-congruence group, i.e., it surjects to SL.2;Z=nZ/ for any n.

1. Introduction

Within the last thirty years, the study of translation surfaces has become an active field in
mathematics. Their moduli spaces come equipped with a natural action of SL.2;R/. It is
one of the principal goals in this field to understand the orbits of this action. This study
culminated in the famous breakthrough result of Eskin, Mirzakhani and Mohammadi,
namely the so-called magic wand theorem (cf. [3,4]). The Veech group �.X;�/ associated
to a translation surface .X; �/ plays a crucial role in this topic. �.X; �/ is the stabiliser
of .X; �/ under the action of SL.2;R/. It turns out to be a discrete subgroup of SL.2;R/
and it carries a lot of information about the dynamical flow on the translation surface
and about the Teichmüller flow defined by .X; �/. Origamis or square-tiled surfaces are
a particularly important class of translation surfaces. These surfaces are tessellated by
finitely many Euclidean unit squares. Their Veech groups are especially easy to handle.
They are subgroups of finite index of SL.2;Z/ and can be calculated explicitly from the
combinatorial data which define the origami. Furthermore, the set of origamis is dense in
the moduli space of translation surfaces. The action of SL.2;R/ on the set of translation
surfaces is restricted to an action of SL.2;Z/ on origamis.

It is still an open question whether all subgroups of SL.2;Z/ of finite index occur as
Veech groups of origamis. A major result in this direction was achieved in [2] where it
is proved that all subgroups of finite index (satisfying a slight condition) of the principal
congruence group �.2/ occur as Veech groups, where �.2/ is the group of matrices which
are congruent to the identity matrix modulo 2. As a result in some sense in the opposite
direction, it is shown in [18] that all congruence groups (cf. below) of prime level, except
five, occur as Veech groups.
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It is particularly interesting to study Veech groups of origamis that lie in the same
fixed stratum, i.e., we fix the genus and the cone angles of the singularities (see below).
In [9, 17], the authors succeeded to give a complete classification of the SL.2;Z/-orbits
of origamis in the stratum H2.2/ of translation surfaces of genus 2 with one singularity of
angle 6� . In this case, the set of origamis with d squares decomposes, depending on d ,
into one or two orbits. There are only a few further classification results for certain subloci
of strata (cf. [12–14]). For general strata, the classification problem is open. However,
there exists a conjecture for a precise description of the orbits in each stratum by Delecroix
and Lelièvre based on computer experiments.

A congruence subgroup � of SL.2; Z/ is a subgroup of SL.2; Z/ which is fully
determined by its image in SL.2;Z=nZ/ for some n 2 N, i.e., it is the preimage of its
image in SL.2;Z=nZ/ under the canonical projection SL.2;Z/! SL.2;Z=nZ/. It turns
out that such groups are rare among all finite index subgroups of SL.2;Z/. Turning to
Veech groups of origamis: there are several families of origamis whose Veech groups
could be explicitly determined as congruence groups in [5,6,19]. In [20] first examples of
Veech groups that are non-congruence groups were detected. Hubert and Lelièvre proved
in [8] that for all but one of the origamis of genus 2 with one singularity their Veech group
is a non-congruence group.

For an arbitrary subgroup � of SL.2;Z/ of finite index, we may measure how much in-
formation we lose if we consider all its images in the finite quotient groups SL.2;Z=nZ/.
In particular, all information is lost if for all n the image is the full group SL.2;Z=nZ/.
In this case, we call � a totally non-congruence group. In [23] a criterion is given which
detects totally non-congruence groups (cf. [23, Theorem 2]). It was further shown that
in the stratum H2.2/ all Veech groups of origamis are totally non-congruence groups
or almost totally non-congruence groups (cf. [23, Theorem 3]). Finally, it was shown
that for each stratum HkC1.2k/ of translation surfaces with only one singularity of cone
angle .k C 1/2� there are infinitely many origamis whose Veech group is a totally non-
congruence group (cf. [23, Theorem 4]).

In this article, we generalise this statement to all strata. For this we first improve the
criterion for totally non-congruence groups from [23, Theorem 2] and get the following
very handy conditions which assure that a group � is a totally non-congruence group.

Theorem 1.1. Let � be a finite index subgroup of SL.2;Z/. Denote e1 D
�
1
0

�
and T D�

1 1
0 1

�
. Suppose that for each prime p, there exist matrices A1; A2 2 SL.2;Z/ with the

following properties:

(A) 8j 2 NWA1e1 ¤ j � A2e1 modulo p.

(B) There exist m1; m2 2 N with

A1T
m1A�11 and A2T

m2A�12 are contained in �;

such that p divides neither m1 nor m2.

Then � is a totally non-congruence group.
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We then describe a method to construct one-cylinder origamis in each stratum for
which we have a good control over the cylinder decompositions in horizontal and vertical
direction and in the diagonal direction given by the vector v D

�
1
1

�
. Choosing special

elements of this family, we finally prove the following theorem.

Theorem 1.2. Every stratum contains an infinite family of origamis whose Veech groups
are totally non-congruence groups.

2. Preliminaries

In this section, we give a concise introduction to translation surfaces, origamis and Veech
groups suited to the purpose of this article. You can find more elaborate introductions to
this topic for example in [1,10,15,18,22]. For the proof of the facts that we state here, we
refer to these references.

Translation surfaces, origamis and strata. A (finite) translation surface is a surface X
with an atlas � to R2 such that all transition maps of the atlas � are translations. The trans-
lation surface inherits a natural metric from the Euclidean metric in R2. Furthermore,
we have a well-defined notion of directions since they are invariant under translations.
Thus we may speak, for example, of horizontal and vertical geodesics, or more general
of geodesics in direction v 2 R2. Moreover, using local charts, we can assign to each
geodesic segment a vector in the plane R2 which is its development vector. Let xX be
the metric completion of X . The points in xXnX are called the singularities of X . In this
article, we consider the classical situation of finite translation surfaces, i.e., translation
surfaces .X; �/ such that the metric completion is compact, the set of singularities is dis-
crete and all singularities are cone points of finite cone angle k2� (k 2 N). A geodesic
segment between two (possibly equal) singularities which does not contain any further
singularity is called a saddle connection. Further important geometric data of the trans-
lation surface .X; �/ are its set of closed geodesics and its set of maximal cylinders in a
given direction v 2R2. Here a maximal cylinder is a maximal connected set of homotopic
simple closed geodesics. For genus g � 2, every closed geodesic lies in a unique maximal
cylinder in the direction v of the geodesic which is bounded by saddle connections, since
we may move the geodesic transversely to v until we hit singularities.

Finite translation surfaces are naturally divided into strata by their type of singularit-
ies. More precisely, a finite translation surface .X; �/ is said to be of type .˛1; : : : ; ˛n/,
if xX has n singularities of cone angles .˛1 C 1/ � 2�; : : : ; .˛n C 1/ � 2� . The usage of ˛i
instead of ˛i C 1 is related to the fact that a finite translation surface can equivalently be
defined as a closed Riemann surface X together with a holomorphic differential !. The
charts of the atlas are then obtained by integrating with respect to !, the singularities are
the zeroes of ! and ˛i is the order of the zero. We then define the stratum Hg.˛1; : : : ; ˛n/

as the set of all equivalence classes of translation surfaces of type .˛1; : : : ; ˛n/ of genus g.
Two translation surfaces .X1; �1/ and .X2; �2/ are equivalent if there exists a transla-
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tion f WX1 ! X2, i.e., a homeomorphism which is a translation on each chart. We will
usually write .X; �/ 2 Hg.˛1; : : : ; ˛r / for the equivalence class defined by .X; �/. The
set Hg.˛1; : : : ; ˛n/ is endowed with a topology itself. More precisely, there is a natural
way to define local coordinates as manifold on a covering of it (cf. [24, Section 6.3]). Fur-
thermore, Hg.˛1; : : : ; ˛n/ is endowed with a natural action of SL.2;R/ as follows. For
a translation surface .X; �/ and a matrix A 2 SL.2;R/, we define A � .X; �/ D .X; �A/
to be the translation surface obtained from .X; �/ by composing each chart of � with the
linear map z 7! A � z. It is one of the main objectives in the field to understand the orbits
of this action.

There is yet another way how to define finite translation surfaces: Take finitely many
polygons in the plane such that their edges come in pairs of edges of the same length and
same direction. Glue for each pair its two edges by a translation. In this way, we obtain
a closed surface xX . The points which come from the vertices of the polygons may be cone
points. Removing them defines a translation surface X . If all the polygons which form the
translation surface are copies of the Euclidean unit square, the translation surface is called
an origami or a square-tiled surface (cf. Figure 1).
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Figure 1. Gluing edges with same labels defines an origami of genus 3. This origami comes from [7].

Veech groups and the action of SL.2 ; R/. Let .X; �/ be a finite translation surface of
genus g in some stratum Hg.˛1; : : : ; ˛n/. The Veech group �.X; �/ is the stabiliser of
.X; �/ for the action of SL.2;R/ on Hg.˛1; : : : ; ˛n/. It can equivalently be defined in
the following way. Consider the group Aff.X;�/ of all affine homeomorphisms of X , i.e.,
homeomorphisms which are with respect to charts of the form z 7! A � z C b with A 2
SL.2;R/ and b 2R2. It turns out that since all transition maps are translations the matrixA
is independent of the chosen charts. We obtain a group homomorphism DWAff.X; �/!
SL.2;R/ which maps the affine homeomorphism f to the matrix A, i.e., to its derivative.
The Veech group is the image of D, hence it consists of all matrices A which occur as
derivative of some affine homeomorphism of the surface. It was already shown by Veech
himself that �.X; �/ is a discrete subgroup of SL.2;R/ (cf. [21, Proposition 2.7] or [22,
Proposition 3.3] for a very nice presentation). Furthermore, two translation surfaces in the
same SL.2;R/-orbit have conjugated Veech groups.
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Let us consider the example of the torus R2=Z2 endowed with the translation struc-
ture of its universal covering R2. Observe that the affine homeomorphisms lift to affine
homeomorphisms of R2 which preserve the lattice Z2 up to a translation. And all such
maps descend to the torus. Therefore, the Veech group is in this case SL.2;Z/.

Special properties of origamis. We will use three equivalent ways to describe origamis,
as explained in the following. The equivalences are described in more detail in [20, Sec-
tion 1]. Recall that we obtain an origami by gluing copies of the Euclidean unit square
along their edges which leads to a closed surface xX tiled by squares. Hence, an origami
made from d unit squares is fully determined by a pair of permutations .�a;�b/ as follows.
We label the squares with ¹1; : : : ; dº, then �a.i/ and �b.i/ denote the right and the upper
neighbour of the square labelled by i 2 ¹1; : : : ; dº. The fact that the surface is connected is
equivalent to the fact that the subgroup of Sd generated by the two permutations �a and �b
acts transitively on the set ¹1; : : : ; dº. If we choose another labelling of the squares, this
leads to a simultaneous conjugation of the pair of permutations .�a; �b/. Altogether, we
obtain an equivalence between the set of origamis up to translations and the set of pairs
.�a; �b/ in S2

d
up to simultaneous conjugation. There is yet another equivalent description

of origamis which we will use. Observe that the surface xX comes with a covering p to
the square-torus T obtained by gluing parallel edges of the unit square. Namely, we map
each square on xX to the one square forming T and this map is well defined with respect
to the gluings. The map p is an unramified covering for all points which are not vertices.
Hence if1 2 T is the one point obtained from the four vertices of the unit square, then
pW xX ! T is ramified at most over1.

For an origami .X;�/, the Veech group is always a finite index subgroup of SL.2;Z/.
Here we should point to a subtlety in the definition of origami. Recall that we obtain
the origami by gluing copies of the Euclidean unit square along their edges. More pre-
cisely, this gives us the metric completion xX of the translation surface. The singularities
of the translation surface stem from the vertices of the squares. However, not every ver-
tex has to be a singularity. Now there are two different natural ways how two define the
translation surfaces X . We might either remove only the singularities of xX or we might
remove all points which come from a vertex. In the second case, the Veech group is
indeed a subgroup of SL.2;Z/ of finite index, in the first case it is commensurable to
SL.2;Z/. However, it turns out that for reduced origamis one obtains equal Veech groups
for the translation surface with only singularities removed and for the surface with all
vertex points removed (cf. [11, Remark 2.9]). Following [16, Section 1.2], we call an ori-
gami reduced if the set of development vectors of all saddle connections generate Z2.
This is a very mild restriction since any origami O is affine equivalent to a reduced ori-
gami O 0, i.e., there is some matrix A 2 GL.2;R/ such that O 0 � A � O and thus their
Veech groups are conjugated in GL.2;R/. Here the action of GL.2;R/ on translation sur-
faces is defined just in the same way as the action of SL.2;R/. In this article, we will
restrict to reduced origamis and thus all Veech groups are subgroups of SL.2;Z/ of finite
index.
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Figure 2. A torus T with the standard system of generators of the fundamental group.

Suppose that an origami is now given by the pair of permutations .�a; �b/. We obtain
the stratum in which the associated translation surface lives in the following way: Let
pW xX ! T be the corresponding ramified cover of the torus. Let us choose a loop around
the vertex of T , namely xyx�1y�1, where x and y are the closed curves on T shown in
Figure 2.

The connected components of the preimage of this curve are loops around the singu-
larities. Hence the number of the connected components is the number of singularities.
Furthermore, if the multiplicity of a component is k, then the corresponding singularity
is of angle 2k� . Hence the commutator Œ��1

b
; ��1a � determines the type of singularities

that we obtain. More precisely, each cycle of length k in the commutator corresponds to
a singularity of cone angle k � 2� .

In the proof of our results, the following two facts are crucial which are described in
more detail, e.g., in [23, Sections 2.2 and 2.3]:

(1) The action of SL.2;R/ on translation surfaces restricts to an action of SL.2;Z/
on origamis. The action can be explicitly given as described in the following. The
two generators

S D

�
0 �1

1 0

�
and T D

�
1 1

0 1

�
act on an origami given as a pair of permutations .�a; �b/ in the following way:

S W .�a; �b/ 7! .��1b ; �a/ and T W .�a; �b/ 7! .�a; �b�
�1
a /:

(2) Suppose that the translation surface .X; �/ defined by a primitive origami O
decomposes in the horizontal direction into k cylinders of height 1 and length
m1; : : : ; mk and let m be a multiple of m1; : : : ; mk . Then Tm is in the Veech
group �.O/. Similarly, if .X; �/ decomposes in the vertical direction into l cyl-
inders of length m01; : : : ; m

0
l

and m0 is a multiple of m01; : : : ; m
0
l
, then �.X; �/

contains T 0m
0

. Here

T 0 D

�
1 0

1 1

�
:

If O is given by the pair of permutations .�a; �b/, then the numbers m1; : : : ; mk
are precisely the cycle lengths of �a and m01; : : : ; m

0
l

are the cycle lengths of �b .
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3. A criterion for being a totally non-congruence group

We denote

T D

�
1 1

0 1

�
; T 0 D

�
1 0

1 1

�
and S D

�
0 �1

1 0

�
: (3.1)

Furthermore, pnW SL.2;Z/ ! SL.2;Z=nZ/ is the canonical projection. We denote the
images of the matrices T , T 0 and S in SL.2; Z=nZ/ also by T , T 0 and S . Finally,
we denote by I the 2 � 2-identity matrix over the respective ring.

We start with a small but very useful calculation.

Lemma 3.1. Let A;B 2 GL.2;Z=nZ/ with A �
�
1
0

�
D B �

�
1
0

�
. Then we have that

ATA�1 D BT det.B/= det.A/B�1:

Observe for the statement in Lemma 3.1 that T a with a 2 Z=nZ gives a well-defined
matrix in GL.2;Z=nZ/ and we have for any A 2 GL.2;Z=nZ/ that

AT aA�1 D .ATA�1/a:

Proof of Lemma 3.1. Suppose first that A
�
1
0

�
D B

�
1
0

�
D
�
1
0

�
. Hence we can write

A D

�
1 x

0 det.A/

�
and B D

�
1 y

0 det.B/

�
with x; y 2 Z=nZ. A short calculation gives

ATA�1 D

�
1 det.A/�1

0 1

�
and BTB�1 D

�
1 det.B/�1

0 1

�
:

Thus the claim holds in this case. In the general situation, we consider the two matrices
A�1B and I satisfying A�1B

�
1
0

�
D I

�
1
0

�
D
�
1
0

�
and obtain from the preceding considera-

tion
T D .A�1B/T det.A�1B/.B�1A/ D A�1BT det.B/= det.A/B�1A;

which implies the claim.

We now deduct from Lemma 3.1 a criterion whether two conjugates of T generate the
full group SL.2;Z=prZ/.

Lemma 3.2. Let p be prime and r 2 N. Let � be a subgroup of SL.2;Z=prZ/. Suppose
that � contains A1TA�11 and A2TA�12 with A1; A2 2 SL.2;Z=prZ/ such that

8m 2 N; mA1e1 ¤ A2e1 mod p; where e1 D
�
1

0

�
2 .Z=prZ/2:

Then � D SL.2;Z=prZ/.
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Proof. By conjugation, we may assume that A1 D I is the identity matrix. Consider the
vector

�
a
c

�
DA2 � e1. By assumption, c is not divisible by p, hence c is in the multiplicative

group .Z=prZ/�. Consider the following matrix B 2GL.2;Z=prZ/ and its inverse B�1:

B D

�
1 a

0 c

�
and B�1 D c�1 �

�
c �a

0 1

�
:

It follows directly from the definition of B that

B�1e1 D e1 and B�1A2e1 D e2 D Se1; where e2 D
�
0

1

�
:

Hence we obtain from Lemma 3.1,

.B�1TB/det.B�1/
D T and .B�1A2TA

�1
2 B/

det.B�1/
D STS�1 D T 0�1: (3.2)

It follows that

SL.2;Z=prZ/ D hT; T 0i � B�1�B � SL.2;Z=prZ/:

Hence we have B�1�B D SL.2;Z=prZ/ and thus � D SL.2;Z=prZ/. Here it is crucial
that SL.2;Z=prZ/ is a normal subgroup in GL.2;Z=prZ/.

Lemma 3.2 is the main ingredient that we need to prove Theorem 1.1, which provides
us with a criterion for whether a group is a totally non-congruence group.

Theorem 1.1. Let � be a finite index subgroup of SL.2;Z/. Denote e1D
�
1
0

�
. Suppose that

for each prime p, there exist matrices A1; A2 2 SL.2;Z/ with the following properties:

(A) 8j 2 NWA1e1 ¤ j � A2e1 modulo p.

(B) There exist m1; m2 2 N with

A1T
m1A�11 and A2T

m2A�12 are contained in �;

such that p divides neither m1 nor m2.

Then � is a totally non-congruence group.

Proof. We have to show that prn.�/ D SL.2;Z=nZ/ for all n 2 N.
Let n D p

r1
1 � � � p

rk
k

be the prime factorisation of n. We thus have by the Chinese
remainder theorem

SL.2;Z=nZ/ D SL.2;Z=p1r1Z/ � � � � � SL.2;Z=pkrkZ/:

We show that 8i 2 ¹1; : : : ; kº,

prn.�/ � ¹I º � � � � � ¹I º � SL.2;Z=pi riZ/ � ¹I º � � � � � ¹I º: (3.3)
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For pDpi , we decompose nDpr � n2 with gcd.p;n2/D 1. Choosem1,m2 such that they
satisfy assumptions (A) and (B) with respect to p. In particular, m1 and m2 are coprime
to p. By Bézout’s identity, we find a; b 2 Z with 1 D a � pr C b �m1m2n2.

We then have for K D bm1m2n2 that

� 3 A1T
KA�11 D A1

�
1 bm1m2n2
0 1

�
A�11 :

Furthermore, we have

A1T
KA�11 � A1 �

�
1 1

0 1

�
A�11 D A1TA

�1
1 mod pr ;

A1T
KA�11 � I mod n2:

Hence the group prn.�/ contains

prn.A1T
KA�11 / D .A1TA

�1
1 ; I / 2 SL.2;Z=prZ/ � SL.2;Z=n2Z/

D SL.2;Z=nZ/:

Similarly, we obtain that

prn.�/ 3 prn.A2T
KA�12 / D .A2TA

�1
2 ; I / 2 SL.2;Z=prZ/ � SL.2;Z=n2Z/

D SL.2;Z=nZ/:

It follows from Lemma 3.2 that

prn.�/ � SL.2;Z=prZ/ � ¹I º:

This implies the claim.

Theorem 1.1 is a generalisation of [23, Theorem 2] which we restate adapted to our
context in Corollary 3.3.

Corollary 3.3 ([23, Theorem 2]). Let � be a finite index subgroup of SL.2;Z/. Suppose
there exist matrices C1; C2 2 SL.2;Z/ and m1; m01; m2; m

0
2 2 N with

� 3 C1T
m1C�11 ; C1T

0m01C�11 and � 3 C2T
m2C�12 ; C2T

0m02C�12

such that gcd.m1m01; m2m
0
2/ D 1. Then � is a totally non-congruence group.

Proof. We show that the assumptions of Theorem 1.1 are fulfilled. Let p be prime. If p
does not divide m1m01, then we may choose A1 D C1, A2 D C1S . Denote e1 D

�
1
0

�
and

e2D
�
0
1

�
. Since e1¤ j � e2 mod p for all j 2N, we have thatA1e1¤ j �A2e1D j �A1e2

mod p. Thus in this case the assumptions are satisfied. If p divides m1m01, then it does
not divide m2m02 and we can use the same arguments with C2 instead of C1.
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4. Nice one-cylinder origamis

In this section, we give explicit examples for one-cylinder origamis in each stratum. The
following examples will provide building blocks for them.

Example 4.1. In the following, we construct special one-cylinder origamis in H .˛/ with
˛ even and in H .˛1; ˛2/ with ˛1, ˛2 odd.

(i) A family of origamis in H .˛/. Let ˛ D 2k be an even number. Define the origami
O.˛/ with N D 3k C 1 D 3

2
˛ C 1 squares by the following permutations (cf. Figure 3):

�a.˛/ D .1; : : : ; N /;

�b.˛/ D .1; 2; 3/ ı .4; 5; 6/ ı � � � ı .3.k � 1/C 1; 3.k � 1/C 2; 3.k � 1/C 3/:

c1

a1

x 1

a1

b1

2

b1

c1

3

c2

a2

4

a2

b2

5

b2

c2

6

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

ck

ak

3k � 2

ak

bk

3k � 1

bk

ck

3k

d

x

d

3kC 1

� � � � � � � � � �

� � � � � � � � � �

Figure 3. The origami O.˛/ from Example 4.1 in H .˛/.

Observe that we obtain the commutator

Œ��1b ; ��1a � D .3; 6; 9; : : : ; 3.k � 1/; 3k; 3k � 1; 3k � 4; 3k � 7; : : : ; 8; 5; 2;N /:

In particular, the commutator consists of one cycle of length 2k C 1. Hence the origami
has one singularity with cone angle .2k C 1/ � 2� D .˛ C 1/ � 2� and thus lies in H .˛/.

We now define for arbitrary l � 1 the one-cylinder origami O.˛I l/ in H .˛/ as a de-
formation of O.˛/ in the following way (cf. Figure 4).
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3kC l
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� � � � � � � � � �

Figure 4. The origami O.˛I l/ from Example 4.1 in H .˛/.

The origami O.˛I l/ has N 0 D N C l � 1 D 3
2
˛ C l squares and is defined by the

permutations

�a.˛I l/ D .1; : : : ; N
0/;

�b.˛I l/ D �b.˛/ D .1; 2; 3/ ı .4; 5; 6/ ı � � �

ı .3.k � 1/C 1; 3.k � 1/C 2; 3.k � 1/C 3/:

Observe that O.˛I l/ has again one singularity and lies in H .˛/.

(ii) A family of origamis in H .˛1; ˛2/ (cf. Figure 5). Let

˛1 D 2k1 C 1; ˛2 D 2k2 C 1
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be odd numbers. Define O.˛1; ˛2/ with N D 3.k1 C k2/C 6 D 3
2
.˛1 C ˛2/C 3 squares

by the following permutations:

�a.˛1; ˛2/ D .1; : : : ; N /; �b.˛1; ˛2/ D �1 ı �2 ı �3;

where

�1 D .1; 2; 3/ ı .4; 5; 6/ ı � � � ı .3k1 � 2; 3k1 � 1; 3k1/;

�2 D .3k1 C 1; 3k1 C 5; 3k1 C 2; 3k1 C 3; 3k1 C 4/;

�3 D .3k1 C 6; 3k1 C 7; 3k1 C 8/ ı .3k1 C 9; 3k1 C 10; 3k1 C 11/ ı � � �

ı .3.k1 C k2/C 3; 3.k1 C k2/C 4; 3.k1 C k2/C 5/:

In this case, we obtain the commutator

Œ��1b ; ��1a � D .3; 6; 9; : : : ; 3k1; 3k1 C 3; 3k1 � 1; 3k1 � 4; 3k1 � 7; : : : ; 5; 2;N /

ı .3k1 C 1; 3k1 C 5; 3k1 C 8; 3k1 C 11; : : : ; N � 1;

N � 2;N � 5;N � 8; : : : ; 3k1 C 5C 2/:

In particular, it consists of two cycles of length

2k1 C 2 D ˛1 C 1 and 2k2 C 2 D ˛2 C 1:

Hence O.˛1; ˛2/ lies in H .˛1; ˛2/. Similarly to (i), we define for l � 1 the origami
O.˛1; ˛2I l/ in H .˛1; ˛2/ with N 0 D 3.k1 C k2/C 5C l D 3

2
.˛1 C ˛2/C 2C l squares

by the two permutations (cf. Figure 5)

�a.˛1; ˛2I l/ D .1; : : : ; N
0/; �b.˛1; ˛2I l/ D �b.˛1; ˛2/:

We may now construct one-cylinder origamis in a general stratum H .˛1; : : : ; ˛k/ by
cutting and pasting the origamis from Example 4.1 as described in the following. We
assume that the numbers ˛1; : : : ; ˛k are ordered such that the first part consists of even
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� � �

z

� � �
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Figure 5. The origami O.˛1; ˛2I l/ from Example 4.1.



J.-C. Schlage-Puchta and G. Weitze-Schmithüsen 1126

numbers and the second part of odd numbers. Recall that ˛1C 1; : : : ; ˛k C 1 are the cycle
lengths of the commutator Œ��1

b
; ��1a �. Since the commutator is an even permutation, the

number of odd ˛i is even.

Lemma 4.2. Let ˛1; : : : ; p̨ be even, p̨C1; : : : ; p̨C2q be odd numbers. Let further l be
a natural number. We obtain a one-cylinder origami O in H .˛1; : : : ; p̨C2q/ with

L D
3

2
.˛1 C � � � C p̨C2q/C p C 3q C l � 1

squares as follows (cf. Figure 6). If q ¤ 0, we take the origamis

O.˛1/; : : : ; O. p̨/; O. p̨C1; p̨C2/; : : : ; O. p̨C2q�3; p̨C2q�2/

and
O. p̨C2q�1; p̨C2qI l/

defined in Example 4.1. We cut them along the left vertical edge of their first square which
is equal to the right vertical edge of their last square. We then glue them in the stated
order along these slits. If q D 0, we take the origamis O.˛1/; : : : ;O. p̨�1/;O. p̨I l/ and
do the same procedure.

This means the origamiO is defined by the two permutations .�a;�b/ given as follows:
If q ¤ 0, we have

�a D .1; : : : ; L/;

�b D y�b.˛1/ ı � � � ı y�b. p̨/ ı y�. p̨C1; p̨C2/ ı � � � ı y�. p̨C2q�3; p̨C2q�2/

ı y�. p̨C2q�1; p̨C2qI l/:

(4.1)

Here y�b.˛i /, y�b.˛i ; ˛iC1/ and y�. p̨C2q�1; p̨C2qI l/ are conjugates of permutations
�b.˛i /, �b.˛i ; ˛iC1/ and �. p̨C2q�1; p̨C2qI l/, respectively, which shift the labels of
O.˛i /, O.˛i ; ˛iC1/ and O. p̨C2q�1; p̨C2qI l/ by the sum of the lengths of the origa-
mis before them. More precisely, we define these permutations in the following way. Let
si D

3
2
˛i C 1 if i � p and si D 3

2
˛i C

3
2

if p C 1 � i � p C 2q � 1. Then O.˛i / is of
length si for i � p and O.˛i ; ˛iC1/ is of length si C siC1 for p C 1 � i � p C 2q � 3.
Define Si D

Pi�1
jD1 sj . Let furthermore sh.a/WN ! N be the map n 7! nC a. Then

y�b.˛i / D sh.Si / ı �b.˛i / ı sh.Si /�1;

y�b.˛i ; ˛iC1/ D sh.Si / ı �b.˛i ; ˛iC1/ ı sh.Si /�1;

y�b. p̨C2q�1; p̨C2qI l/ D sh.SpC2q�1/ ı �b. p̨C2q�1; p̨C2qI l/ ı sh.SpC2q�1/�1:

If q D 0, we similarly have

�a D .1; : : : ; L/ and �b D y�b.˛1/ ı � � � ı y�b. p̨�1/ ı y�b. p̨I l/

with y�b.˛1/; : : : ; y�b. p̨�1/ and y�b. p̨I l/ defined as conjugates of �b.˛1/; : : : ; �b. p̨�1/
and �b. p̨I l/ with the suitable shifts similarly to case q ¤ 0.
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Figure 6. The origami in H .2; 4; 1; 3/ with l D 2 obtained from the construction in Lemma 4.2.

Figure 6 shows the origami in H .2; 4; 1; 3/ obtained by this construction with l D 2.

Proof. Assume first that q ¤ 0. You can directly check from the definition of O and
Example 4.1 that each building block O.˛i / contributes one singularity of order ˛i to the
surface. Furthermore, eachO.˛i ;˛iC1/ contributes two singularities of order ˛i and ˛iC1.
O. p̨C2q�1; p̨C2qI l/ also contributes two singularities of order p̨C2q�1 and p̨C2q .
Finally, the numbers of squares of the origamis O.˛1/; : : : ;O. p̨C2q�1; p̨C2qI l/ add up
to the number L of squares of the constructed origami O . Thus we obtain

L D
3

2
˛1 C 1C � � � C

3

2
p̨ C 1C

3

2
. p̨C1 C p̨C2/

C 3C � � � C
3

2
. p̨C2q�1 C p̨C2q/C 3C l � 1

D
3

2
.˛1 C � � � C p̨C2q/C p C 3q C l � 1:

The proof works similarly if q D 0.

In the following, we consider cylinder decompositions in different directions of the
origamis constructed in Lemma 4.2. Based on this, we obtain parabolic elements in the
Veech groups of these origamis.

Lemma 4.3. Let � be the Veech group of the origami O D O.l/ with L D 3
2
.˛1 C

� � � C p̨C2q/ C p C 3q C l � 1 squares constructed in Lemma 4.2. Then � contains
the parabolic matrices T L, T 015 and T 002.L�4q/ with T and T 0 defined in (3.1) and
T 00 D T 0T T 0�1.

Proof. It follows from its definition that O consists of one horizontal cylinder which has
length L and height 1. Thus the Veech group contains the matrix T L. Furthermore, since
all cycles of �b are of length 1, 3 or 5, we have that O decomposes into vertical cylinders
of height 1 and length 1, 3 or 5. Hence T 015 is contained in � . Finally, the origami T 0�1 �O
is given by the two permutations .�b�a; �b/ (cf. [23, Section 2.2]). We will show below
that �b�a consists of one cycle of length L � 4q and further cycles of length 2. Hence
T 0�1 �O composes into horizontal cylinders of length L � 4q and of length 2. Therefore,
T 2.L�4q/ 2 �.T 0�1O/ D T 0�1�T 0 and thus T 0T 2.L�4q/T 0�1 D T 002.L�4q/ 2 � . This
finishes the claim.
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Let us now show that the permutation �b�a is of the desired form. We assume that
q ¤ 0. The case q D 0 works in the same way. Recall that O consists of the origamis
O.˛1/; : : : ; O. p̨/, O. p̨C1; p̨C2/; : : : ; O. p̨C2q�3; p̨C2q�2/, O. p̨C2q�1; p̨C2qI l/

which are glued in a row along slits. We label the squares of O from left to right by
1; : : : ; L 2 Z=LZ. Let us consider how the permutation �b�a acts on the labels of the
squares.

Recall the definition of Si and si in Lemma 4.2. The origamis O.˛i / are then of
length si and the origamisO.˛i ; ˛iC1/ are of length si C siC1. Let us consider the squares
belonging to the origami O.˛i / (i 2 ¹1; : : : ; pº). The first square of the origami O.˛i / is
labelled by Si C 1 and the last one is labelled by Si C si . Observe (cf. Figure 3) that the
permutation �b�a acts in the following way:

Si 7! Si C 2 7! Si C 1 7! Si C 3 7! Si C 5 7! Si C 4 7! Si C 6 7! � � �

7! Si C si � 2 7! Si C si � 3 7! Si C si � 1 7! Si C si D SiC1:

In particular, all squares of the origamis O.˛1/; : : : ; O. p̨/, i.e., all squares labelled by
1; 2; : : : ; SpC1, lie in the same orbit.

Let us now consider the origamis O.˛i ; ˛iC1/ (i � p odd, 1 � i � 2q � 3). The first
square of O.˛i ; ˛iC1/ is labelled by Si C 1, and the last one by Si C si C siC1. Observe
that �b�a acts in the following way (cf. Figure 5).

Denote ki D ˛i�1
2

and kiC1 D
˛iC1�1
2

, then

Si 7! Si C 2 7! Si C 1 7! Si C 3 7! Si C 5 7! Si C 4 7! Si C 6 7! � � �

7! Si C 3ki � 1 7! Si C 3ki � 2 7! Si C 3ki 7! Si C 3ki C 5

7! Si C 3ki C 7 7! Si C 3ki C 6 7! Si C 3ki C 8 7! � � �

7! Si C 3.ki C kiC1/C 4 7! Si C 3.ki C kiC1/C 3 7! Si C 3.ki C kiC1/C 5

7! Si C 3.ki C kiC1/C 6:

The remaining squares of O.˛i ; ˛iC1/ which do not belong to this orbit are Si C
3ki C 1, Si C 3ki C 2, Si C 3ki C 3 and Si C 3ki C 4. They form two cycles .Si C
3ki C 1; Si C 3ki C 3/ and .Si C 3ki C 2; Si C 3ki C 4/ of length two.

Similarly, the permutation �b�a acts on the squares of O. p̨C2q�1; p̨C2qI l/ as de-
scribed in the following. Denote i D p C 2q � 1, then

Si 7! Si C 2 7! Si C 1 7! Si C 3 7! Si C 5 7! Si C 4 7! Si C 6 7! � � �

7! Si C 3ki � 1 7! Si C 3ki � 2 7! Si C 3ki 7! Si C 3ki C 5

7! Si C 3ki C 7 7! Si C 3ki C 6 7! Si C 3ki C 8 7! � � �

7! Si C 3.ki C kiC1/C 4 7! Si C 3.ki C kiC1/C 3 7! Si C 3.ki C kiC1/C 5

7! Si C 3.ki C kiC1/C 6 7! � � � 7! Si C 3.ki C kiC1/C 5C l

and by two cycles .Si C 3ki C 1; Si C 3ki C 3/ and .Si C 3ki C 2; Si C 3ki C 4/.
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Altogether, we obtain for the permutation �b�a one long cycle containing all squares
except the squares Si C 3ki C 1, Si C 3ki C 2, Si C 3ki C 3 and Si C 3ki C 4with i � p
odd and p C 1 � i � p C 2q. This cycle has length L � 4q. Furthermore, we obtain 2q
cycles of length 2. Hence �b�a has the form which we claimed.

We are now able to obtain explicit origamis in each stratum whose Veech groups are
totally non-congruence groups.

Proposition 4.4. Let ˛1; : : : ; p̨ be even, p̨C1; : : : ; p̨C2q be odd numbers. Recall that
in Lemma 4.2 we constructed an origami O in H .˛1; : : : ; p̨C2q/ with L squares, where

L D
3

2
.˛1 C � � � C p̨C2q/C p C 3q C l � 1:

Choose l 2 N such that

(i) gcd.L; 30q/ D 1,

(ii) 3 and 5 do not divide L � 4q.

Then the Veech group � D �.O/ of O is a totally non-congruence group.

Proof. We know from Lemma 4.3 that the matrices T L, T 015 and T 002.L�4q/ with T 00 D
T 0T T 0�1 D

�
0 1
�1 2

�
are contained in � . We apply Theorem 1.1. Observe firstly that each

pair .A1; A2/ of two matrices in ¹T; T 0; T 00º satisfies property (A) in Theorem 1.1 for any
prime p. We distinguish now three cases. Suppose as first case that p is neither a divisor
of L nor of 15. Then we choose A1 D T , A2 D T 0,m1 D L andm2 D 15. By the assump-
tion on p, we have that p does neither divide m1 nor m2. As second case, we consider
that p dividesL. Then we chooseA1D T 0,A2D T 00,m1D 15 andm2D 2.L� 4q/. Now,
p does not divide m1 by (i). Furthermore, it follows from (i) that p does not divide 4q.
Thus since it is a divisor of L, it does not divide m2 D L � 4q. In the remaining case,
namely p D 3 or p D 5, we choose A1 D T , A2 D T 00, m1 D L and m2 D 2.L � 4q/.
In this case, p does neither divide m1 (by (i)) nor m2 (by (ii)). Hence, in all three cases,
we obtain that also property (B) in Theorem 1.1 holds. This finishes the proof.

In particular, Proposition 4.4 defines in each stratum an infinite family of origamis.

Theorem 1.2. Every stratum contains an infinite family of origamis whose Veech groups
are totally non-congruence groups.

Proof. The theorem directly follows from Proposition 4.4. Namely, we can choose l for
example such that L is a prime with L > 4q which satisfies the following conditions:

L �

´
4q C 1 mod 3 if 3 does not divide 4q C 1;

4q C 2 mod 3 otherwise;

L �

´
4q C 1 mod 5 if 5 does not divide 4q C 1;

4q C 2 mod 5 otherwise:
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By Dirichlet’s theorem on arithmetic progressions, there are infinitely many primes which
satisfy these conditions.
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