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The automorphism group of Rauzy diagrams

Corentin Boissy

Abstract. We give a description of the automorphism group of a Rauzy diagram as a subgroup of
the symmetric group. This is based on an example that appears in some personal notes of Yoccoz
that are to be published in the project “Yoccoz archives”.

1. Introduction

Rauzy induction was introduced in [14] as a tool to study interval exchange maps. It is
a renormalisation process that associates to an interval exchange map another one obtained
as a first return map on a well-chosen subinterval. After the major work of Veech [15], the
Rauzy induction became a powerful tool to study the Teichmüller geodesic flow.

A slightly different tool was used by Kerckhoff [10], Bufetov [6], and Marmi, Moussa
and Yoccoz [12]. It is obtained after labelling the intervals, and keeping track of them
during the renormalisation process. This small change was a significant improvement,
and was used more recently to prove other important results on the Teichmüller geodesic
flow, for instance, the simplicity of the Lyapunov exponents (Avila and Viana [2]), or the
exponential decay of correlations (Avila, Gouezel and Yoccoz [1]). See also [9].

This labelling induces a nontrivial automorphism group on the Rauzy diagram D that
corresponds to relabellings preserving D . The computation of the cardinal of Aut.D/was
done by the author in [4] by considering a geometric interpretation in terms of a moduli
space of labelled translation surfaces. However, the precise description of the elements of
Aut.D/ as permutation elements was not done. In some personal notes (annotated by the
author) that are to be published in the project “Yoccoz archives” [17], Yoccoz gives an
extensive description of many “small” Rauzy classes, including the one corresponding to
the stratum H .1; 1; 1; 1/ (see [17, Section 20]). In particular, we can find for such Rauzy
class a nice description of the automorphism group. Based on this example, we propose
a similar description for the automorphism group of any Rauzy class.

Structure of the paper

The paper is organised as follows:

• In Section 2, we review the general definitions and tools that are needed.
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• In Section 3, we first present a geometrical interpretation of Yoccoz’s example, then
generalise it to describe the automorphism group for any nonhyperelliptic Rauzy dia-
gram (Theorem 3.2) and finally study the particular case of hyperelliptic Rauzy dia-
grams (Theorem 3.5).

2. Background

2.1. Combinatorial definition

Definition 2.1. Let A be a finite alphabet that consists of d elements. A labelled per-
mutation is a pair � D .�t ; �b/ of one-to-one maps from A to ¹1; : : : ; dº. We usually
represent � by

� D

�
��1t .1/ ��1t .2/ : : : ��1t .d/

��1
b
.1/ ��1

b
.2/ : : : ��1

b
.d/

�
:

A renumbering of a labelled permutation is the composition of .�t ; �b/ by a one-
to-one map f from A to A. It corresponds to changing the labels without changing the
underlying permutation �t ı ��1b .

A labelled permutation is irreducible if for any k 2 ¹1; : : : ; d � 1º, ��1t ¹1; : : : ; kº ¤
��1
b
¹1; : : : ; kº.
We define the following maps on the set of irreducible permutations, called the com-

binatorial Rauzy moves:

(1) Rt : let k D �b.�
�1
t .d// with k � d � 1. Then Rt .�t ; �b/ D .� 0t ; �

0
b
/, where

�t D �
0
t and

� 0�1b .j / D

8̂̂<̂
:̂
��1
b
.j / if j � k;

��1
b
.d/ if j D k C 1;

��1
b
.j � 1/ otherwise.

(2) Rb: let k D �t .�
�1
b
.d// with k � d � 1. Then Rb.�t ; �b/ D .� 0t ; �

0
b
/, where

�b D �
0
b

and

� 0�1t .j / D

8̂̂<̂
:̂
��1t .j / if j � k;

��1t .d/ if j D k C 1;

��1t .j � 1/ otherwise.

Definition 2.2. A Rauzy class is a minimal set of labelled permutations invariant by the
combinatorial Rauzy moves.

A Rauzy diagram is a graph whose vertices are the elements of a Rauzy class and
whose edges are the combinatorial Rauzy moves.

An automorphism of a Rauzy diagram D with vertices R is a graph automorphism
of D that sends a “t” edge (resp. a “b” edge) to a “t” edge (resp. a “b” edge).
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Proposition 2.3. Let D be a Rauzy diagram and let F WR ! R be an automorphism.
Then, F is a relabelling, i.e., there exists a unique one-to-one map f WA! A such that
for all � 2 R, F.�/ D � ı f . In particular, the automorphism group of D is identified
with a subgroup of the permutation group S.A/.

Proof. Note that iterating the map Rt starting from an element � 2R gives a loop in D .
We call it a t -loop and call similarly a b-loop the loop obtained by iterating the map Rb .
By [14], there exists an element in R of the form

�0 D

�
a : : : b

b : : : a

�
:

It corresponds to vertices in D whose associated t -loop and b-loop are of maximal size
d � 1. Now for k 2 ¹1; : : : ; d � 1º, we denote by lk the length of the b-loop starting
from Rk

t .�/. The map k 7! lk defines the underlying permutation �0t ı .�
0
b
/�1. Indeed,

we have for all k 2 ¹0; : : : ; d � 1º that .�0
b
/�1.d � k/ D .�0t /

�1.d � lk/.
Note that, by the definition of F , the map k 7! lk is the same when starting from �0

or from F.�0/. In particular, the underlying permutation of F.�0/ is the same as the
one of �0 and therefore F.�0/ D �0 ı f for some S.A/. Since we have R˛.� ı f / D

R˛.�/ ı f for all � and ˛ 2 ¹t; bº, we obtain that F.�/ D � ı f for all � in the Rauzy
class.

2.2. Links to translation surfaces

A translation surface is a (real, compact, connected) genus g surface X with a translation
atlas, i.e., a triple .X;U; †/ such that † is a finite subset of X (whose elements are
called singularities) and U D ¹.Ui ; zi /º is an atlas of X n † whose transition maps are
translations of C ' R2. We will require that for each s 2 †, there is a neighbourhood
of s isometric to a Euclidean cone whose total angle is a multiple of 2� . One can show
that the holomorphic structure on X n † extends to X and that the holomorphic 1-form
! D dzi extends to a holomorphic 1-form on X where † corresponds to the zeroes of !
and maybe some marked points. We usually call ! an Abelian differential. A zero of !
of order k corresponds to a singularity of angle .k C 1/2� . By a slight abuse of notation,
we authorise the order of a zero to be 0. In this case, it corresponds to a regular marked
point.

For g � 1, we define the moduli space of Abelian differentials Hg as the moduli
space of pairs .X;!/, where X is a genus g (compact, connected) Riemann surface and !
nonzero holomorphic 1-form defined onX . The term moduli space means that we identify
the points .X; !/ and .X 0; !0/ if there exists an analytic isomorphism f WX ! X 0 such
that f �!0 D !.

One can also see a translation surface obtained as a polygon (or a finite union of
polygons) whose sides come by pairs, and for each pair, the corresponding segments are
parallel and of the same length. These parallel sides are glued together by translation and
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we assume that this identification preserves the natural orientation of the polygons. In this
context, two translation surfaces are identified in the moduli space of Abelian differentials
if and only if the corresponding polygons can be obtained from each other by cutting and
pasting and preserving the identifications.

The moduli space of Abelian differentials is stratified by the combinatorics of the zer-
oes; we usually denote by H .k

n1
1 ; : : : ; k

nr
r / the stratum of Hg consisting of (classes of)

pairs .X; !/ such that ! has exactly ni zeroes of order ki for each i . It is well known
that this space is (Hausdorff) complex analytic (see for instance [13, 15, 16]). Note that
in Section 3, we will use a slight variation of this notation: we denote a stratum by
H .k; k

˛1
1 ; : : : ; k

˛r
r /, where k 2 N and for i ¤ j , ki ¤ kj , but k may be in ¹k1; : : : ; krº

(in this case, there are ni C 1 zeroes of order k for i that satisfies k D ki and nj zeroes of
order kj for all j ¤ i ).

Suppose that we have an element � 2 R and a continuous datum � 2 Cd , satisfying
the “suspension data condition” (see, for instance, [4, 12] for details). There is a nat-
ural construction, the Veech construction (or zippered rectangle construction), that gives
a translation surface S.�; �/. See Figure 1. Different choices of parameter � give surfaces
in the same connected component of a stratum in the moduli space of Abelian differentials
since the set of suspension data is a connected subset of Cd (in fact, convex).

I˙1

IA

IB�C1
��1

�A �B

��1

�B
�A

�C1

Figure 1. A framing of a surface issued from the Veech construction with alphabet A D

¹C1;�1; A; Bº.

The Veech construction with the associate Rauzy–Veech induction defines three nat-
ural invariants of a Rauzy class:

(1) The set of the degrees of the conical singularities of S.�; �/ counted with multi-
plicities, i.e., the stratum to which belongs to S.�;�/.

(2) When such a stratum is nonconnected, the corresponding connected component.

(3) The degree of the singularity attached on the left in the construction (denoted as
the special singularity).

It is proven in [3] that if two labelled permutations have the same above invariant, then up
to a relabelling, they are in the same Rauzy class.
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In order to have a complete characterization of Rauzy classes, one needs a refinement
of the invariant .1/ by adding a combinatorial datum on the singularities.

Definition 2.4. Let P be a singularity of a translation surface S . A (positive) horizontal
separatrix is an equivalence class of horizontal geodesics 
 W �0; aŒ! S starting from P

such that 
 0 D 1, where two such geodesics are equivalent if they coincide on a subinterval
of the form �0; "Œ. A negative separatrix is defined analogously with 
 0 D�1. In this paper,
separatrices will be implicitly assumed to be positive except mentioned otherwise.

By [4], the letters in the alphabet induce a marking on the set of positive horizontal
separatrices of each singularity, where each horizontal separatrix is marked by a letter and
the one corresponding to the interval in the Veech construction is marked twice (by ��1t .1/

and ��1
b
.1/). For ˛ 2 A, we denote by I˛ the separatrix marked by ˛.

Since all horizontal separatrices are marked in this way, we can define a permuta-
tion T of A by T .��1

b
.1// D ��1t .1/, and otherwise IT.˛/ is the separatrix obtained by

rotating I˛ by 2� counterclockwise. The map T can be written explicitly in terms of � by
the following formula:

T .˛/ D

8̂̂<̂
:̂
��1t .1/ if ˛ D ��1

b
.1/;

��1
b
.�t .�

�1
b
.d//C 1/ if ˛ D ��1

b
.�t .d/C 1/;

��1t .�t .�
�1
b
.�b.˛/ � 1//C 1/ otherwise.

The orbits of T are in one-to-one correspondence with the singularities of the surface:
each orbit of length k C 1 that does not contain ��1t .1/ corresponds to a singularity of
degree k, while the orbit containing ��1t .1/ is of length kC 2, where k is the degree of the
singularity attached to the left. In particular, this express the invariants .1/ and .3/ above
in terms of � (a combinatorial description of the invariant (2) can be found in [7, 8]).

We consider the corresponding moduli space H lab of labelled translation surfaces (i.e.,
translation surfaces with such markings), we see that different choices of parameters �
define surfaces in the same connected component of H lab. In [4], it is proven that two
labelled permutations are in the same Rauzy class if and only if:

(1) The letters on the top left and bottom left are the same (they will be denoted
by˙1 as in [17]).

(2) The canonical cyclic order on the set of labels obtained by rotating clockwise
around a singularity must be the same (for one, hence any choice of surfaces
constructed from the labelled permutations), i.e., the map T .

(3) The resulting labelled translation surfaces are in the same connected component
of H lab.

Furthermore, once the map T and the underlying connected component of the (nonla-
belled) translation surface are fixed, we have (see [4, Theorems 1.1 and 1.3]):

(1) If there are odd degree singularities, then there are exactly two such Rauzy classes.

(2) Otherwise, there is only one such Rauzy class.
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One important tool of the above statement is the following proposition.

Proposition 2.5. Let S be a translation surface, and �1, �2 be two markings of the
horizontal separatrices, i.e., surjective maps from A to the set of horizontal positive sep-
aratrices of S and such that �i .˛/ D �i .ˇ/ if and only if ˛; ˇ 2 ¹˙1º. We assume that
there is an odd degree singularity P such that

• For the separatrices adjacent to P , we obtain the marking �2 by rotating by 2� the
marking �1.

• All the other marked horizontal separatrices are unchanged.

Then .S; �1/ and .S; �2/ are in different connected components of H lab.

This statement is mainly a key argument in [4, proof of Proposition 4.2]. We can also
find a similar statement (in a slightly more general context) in [5]. We propose a sketch of
this proof since it is a key argument for later in this paper.

Sketch of the proof. We construct a topological invariant on H lab similar to the well-
known parity of the spin structure for translation surfaces that appears in [11].

There is an even number of odd degree singularities, and we choose once for all an
ordered pairing of the set of odd degree singularities, i.e., we denote by .P�1 ; P

C
1 /; : : : ;

.P�s ; P
C
s / these singularities. We choose once for all for each P˙j a particular letter ˛˙j

that corresponds to a separatrix attached to P˙j .
For a smooth closed curve 
 in S that does not pass through any singularity, define

ind.
/ to be the index of the Gauss map defined by its derivative 
 0. Choose a collection
of smooth simple closed curves .˛i ; ˇi /i2¹1;:::;gº representing a symplectic basis for the
homology of S . For a simple curve 
 joining P�j to PCj , we define ind.
/ to be the index
(mod 2) of the Gauss map defined by a simple smooth path z
 , whose image is in a small
neighbourhood of the image of 
 , and such that

• z
 is tangent in its starting point to the horizontal separatrix �.˛�j / of P�j ,

• z
 is tangent in its ending point to the horizontal separatrix �.˛Cj / of PCj rotated by � .

Note that since PCj , P�j are both of odd degree, their corresponding conical angles are an
even multiple of 2� and hence ind.
/ does not depend on the choice of z
 .

Now, for a fixed choice of .˛i ; ˇi /i , let 
1; : : : ; 
s be a collection of simple curves,
with no pairwise intersections, such that 
j joins P�j to PCj and each 
j does not intersect
the .˛i ; ˇi /i . Then, we define

Sp.˛; ˇ; 
/ D
gX
iD1

.ind.˛i /C 1/.ind.ˇi /C 1/C
X
j

ind.
j / mod 2:

It is proven in [5] that Sp.˛;ˇ; 
/ does not depend on the choices of the curves ˛, ˇ, 

(but depends on the marking and on the pairing), hence is an invariant of connected com-
ponents of H lab and by construction this invariant takes two different values for .S; �1/
and .S; �2/.
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2.3. A surgery on translation surfaces

We describe the surgery called “breaking up a singularity”, introduced by Kontsevich and
Zorich in [11].

We start from a zero singularity P of degree k1 C k2. The neighbourhood V" D
¹x2X;d.x; P / � "º of this conical singularity is obtained by considering 2.k1C k2/C 2
Euclidean half disks of radius " and gluing each half side of them to another one in a cyclic
order. We can break the zero of order k1C k2 into a pair of singularities of order k1, k2 by
changing continuously the way they are glued to each other as in Figure 2. Note that in this
surgery, the metric is not modified outside V". In particular, the boundary @V" is isometric
to (a connected covering of) an Euclidean circle. Note that in this construction, we can
“rotate” the two singularities by an angle � by cutting the surface along @V", rotating V"
by an angle � and regluing it.

"

"

"

"

"

"

"� ı

"� ı

"� ı

"� ı

"C ı

"C ı

6� 4� C 4�

@V"

Figure 2. Local surgery that break a zero of degree k1 C k2 into two zeroes of degree k1 and k2,
respectively.

3. Structure of automorphism groups of Rauzy diagrams

3.1. Yoccoz’s example

Before stating the general result in the next section, we start with a geometrical interpret-
ation of Yoccoz’s example (see [17, Section 20.1]). It can be viewed as a simple case of
the general statement. We consider the alphabet A D ¹˙1; 0; a1; a2; b1; b2; c1; c2º and
the following element:

� D

�
�1 b2 a2 b1 a1 c1 0 c2 1

1 b1 a2 b2 a1 c2 0 c1 �1

�
:

The Veech construction with labels creates a translation surface in the stratum H.1;1;1;1/.
Each singularity has angle 4� , hence gives two labelled separatrices where

• The doubly labelled separatrix is ˙1, and the other separatrix of the corresponding
singularity is labelled “0”.

• The other three pairs of marked separatrices are labelled by ¹a1; a2º, ¹b1; b2º and
¹c1; c2º.
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As described in [17], the subgroup G 0 of S.A/ preserving these pairings has order
23 � 3Š D 48. The automorphism group of the Rauzy diagram G has order 48

2
D 24 and

is a subgroup of G 0. Hence we want to construct a morphism � from G 0 to ¹˙1º such that
G D ker.�/.

There is a natural map from G 0 onto S.a; b; c/ whose kernel N is identified with
¹�1; 1º3. For � 2 S.a; b; c/, we define �.�/ 2 G 0, with a slight abuse of notation, by
�.�/.˛i /D �.˛/i , for ˛ 2 ¹a; b; cº. Hence the extension 1! N ! G 0!S.a; b; c/! 1

is a split extension. Therefore, the group G 0 has a natural semidirect product structure
G 0 D N ÌH � ¹˙1º3 Ì S.a; b; c/ with H D �.S.a; b; c//.

Claim 3.1. Under the above identification, G is the kernel of the map f W .."a; "b; "c/; �/!
"a"b"c sgn.�/, where sgn is the signature.

To prove the claim, we observe that

• f ."; �/ D f1."/f2.�/ with a morphism f1 from ¹˙1º3 to ¹˙1º, and a morphism f2
from S.a; b; c/ to ¹˙1º, hence either identity or the signature.

• The elements ..�1; 1; 1/; Id/, ..1;�1; 1/; Id/ and ..1; 1;�1/; Id/ are not in G . Indeed,
for instance .�1; 1; 1/ corresponds to interchanging the labels a1 and a2 and fixing all
the others. In terms of marked surfaces, it corresponds to rotating by 2� the horizontal
separatrices of the “a” singularity and fixing all the other ones. This is not possible
from Proposition 2.5. Hence f1."a; "b; "c/ D "a"b"c .

It remains to prove that f2 ¤ Id. In this particular example, this can be done by exhibiting
a particular path in the Rauzy diagram: we start from � and apply the moves R4

b
ıR3

t ı

R4
b
ıR3

t and we obtain the element

� 0 D

�
�1 a2 b1 a1 b2 c1 0 c2 1

1 a1 b1 a2 b2 c2 0 c1 �1

�
:

We see that � 0 is also obtained from � by a relabelling and it gives the element ..�1; 1; 1/;
.a b// 2 G . Hence f2..a b// D �1.

This combinatorial approach is not easily generalisable for any Rauzy class. In Lem-
ma 3.4, we use a geometric construction to get an element g D .."a; "b; 1/; .a b// 2 G

(hence with "a"bf2..a b//D 1) such that g2 D ..�1;�1; 1/; Id/¤ 1G . But a computation
gives g2 D .."a"b; "a"b; 1/; Id/. This implies f2..a b// D �1, hence f2 D sgn.

3.2. Nonhyperelliptic case

Let D be a nonhyperelliptic Rauzy diagram whose associate stratum is H.k;kn11 ; : : : ;k
nr
r /,

and we assume that the degree of the special (left) singularity is k. From [4] the order of
the group Aut.D/ is

"

rY
iD1

ni Š.ki C 1/
ni ;
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where "D 1 if all ki are even and 1
2

otherwise. We have defined in Section 2.2 a one-to-one
map T WA! A.

We consider the orbits in A for the action of T . Denote by special orbit the one
containing ˙1 and by regular orbits the other ones. For i 2 ¹1; : : : ; rº, there are ni
regular orbits of length ki C 1. We denote ‚i the set of regular orbits of length ki C 1,
‚i D ¹‚i;j ; j 2 ¹1; : : : ; niºº, and we chose for each .i; j / an element ˛i;j 2 ‚i;j .

Note that the special orbit corresponds to the special singularity (of order k) described
in Section 2.2 and the regular orbits correspond to the other singularities, hence ‚i cor-
responds to the (nonspecial) singularities of degree ki .

An element � 2 Aut.D/ � S.A/ satisfies

� ı T D T ı �: (3.1)

In particular, � induces a permutation on the set of (regular) orbits of the same size and it
fixes all the elements of the special orbit.

This property defines a subgroup G 0 of S.A/ of order
Qr
iD1 ni Š.ki C 1/

ni . If all sin-
gularities are of even order, then G 0 D Aut.D/ and there is nothing to do. If there are
singularities of odd order, then G D Aut.D/ is a subgroup of order 2 of G 0. We will define
a nontrivial homomorphism � for which G is the kernel.

First, we observe that G 0 '
Qr
iD1 G 0i , where G 0i are elements of G 0 whose supports

are in Supp.‚i / D j̀ ‚i;j . Note that Supp.‚i / corresponds to the set of labels that
correspond to a horizontal separatrix attached to a nonspecial singularity of degree ki .

For each i 2 ¹1; : : : ; rº, there is a natural map from G 0i onto the group S.¹1; : : : ; niº/,
whose kernelNi is identified with U ni

kiC1
, where Up denotes the group of complex p-roots

of unity. For � 2S.¹1; : : : ; niº/, we define �i .�/ 2 G 0i by �i .�/.˛i;j /D ˛i;�.j /, and extend
on Supp.‚i / by using equation (3.1). Hence the extension

1! Ni ! G 0i ! S.¹1; : : : ; niº/! 1

is a split extension. Therefore, the group G 0i has a natural semidirect product structure
G 0i D Ni ÌHi � U nikiC1 Ì S.¹1; : : : ; niº/ with Hi D �.S.¹1; : : : ; niº//.

The group G is a subgroup of index 2 of G 0. Hence, it is the kernel of a homomorphism
�W G 0 ! ¹˙1º that we write, with a slight abuse of notation, as

Q
i �i , where �i W G 0i !

¹˙1º is a homomorphism.

Theorem 3.2. Let D be a nonhyperelliptic Rauzy diagram and let G be its automorphism
group. We denote the corresponding stratum by H .k; k

n1
1 ; : : : ; k

nr
r / with ki ¤ kj if i ¤ j ,

where the degree of the special (left) singularity is k. Then under the above notations and
identifications, we have G D ker.�/ with

�W G 0 '
Y
i

G 0i ! ¹˙1º;

.g1; : : : ; gr / 7!
Y
i

�i .gi /;

where �i satisfies the following:
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• If ki is even, then �i D 1.

• Otherwise, let 2pi D ki C 1, then

�i ..�1; : : : ; �ni /; �i / D .�1 : : : �ni /
pi sgn.�i /;

where sgnWS.¹1; : : : ; niº/! ¹˙1º is the signature.

Remark 3.3. When ni D 1, the group S.¹1; : : : ; niº/ is the trivial group and sgn is the
trivial map.

Proof. We notice that the homomorphism �i from U
ni
kiC1

Ì S.¹1; : : : ; niº/ to ¹˙1º is of
the form �i ..�1; : : : ; �ni /; �i /D fi;1.�1/ � � �fi;ni .�ni /hi .�i /. If ki is even, then necessarily
the fi;k are trivial, and if ki is odd, the fi;k are either trivial or satisfy fi;k.�/ D �

kiC1

2 .
The homomorphism hi is either trivial or the signature.

If ki is even, it remains to prove hi is trivial. When ni D 1, the group S.¹1; : : : ; niº/

is trivial and hence hi is trivial. If ni > 1, then from Lemma 3.4, there is an element in
G \ Gi of the form ..�1; �2; 1; : : : ; 1/; .1 2// and therefore hi ..1 2// D 1, hence hi is the
trivial map.

If ki is odd, we first prove that the homomorphisms fi;k are nontrivial. Let � D
exp. 2i�

2pi
/. The element ..1; : : : ; 1; �; 1; : : : ; 1/; Id/ is not in G since it corresponds to

rotating the separatrices adjacent to an odd degree singularity by 2� , and preserving
all the other separatrices and this is not possible by Proposition 2.5. Hence, we have
�i ..1; : : : ; 1; �; 1; : : : ; 1/; Id/ D �1 D fi;k.�/ D �pi . Hence

�i ..�1; : : : ; �ni /; Id/ D .�1 : : : �ni /
pi :

Now we prove that hi is the signature. As above, the case ni D 1 is trivial. If ni > 1,
let gi be the element given by Lemma 3.4. A simple computation gives

g2i D ..�1�2; �1�2; 1; : : : ; 1/; Id/;

hence
g
2pi
i D ..�

pi
1 �

pi
2 ; �

pi
1 �

pi
2 ; 1; : : : ; 1/; Id/ ¤ 1:

But �i .gi / D .�1�2/pihi ..1 2//, hence hi ..1 2// D �1.

Lemma 3.4. For each i such that ni > 1, there exists an element gi 2 G \ Gi of the form
..�1; �2; 1; : : : ; 1/; .1 2// such that g2i is of order ki C 1.

Proof. We have defined in Section 2.2 the moduli space of translation surfaces with
labelled separatrices H lab. We also define the moduli space H sing of translation surfaces
with marked singularities, i.e., we give a name to each singularity (see [4] for a precise
definition). There are canonical coverings H lab ! H sing and H sing ! H . For any con-
nected component C of H , the preimage in H sing is connected (once a proper condition
on the label is fixed).
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We start from a labelled permutation � and choose a suspension datum � to obtain an
element S in H lab.k;k

n1
1 ; : : : ;k

nr
r /. We denote by “1” and “2” the singularities correspond-

ing to the interchanged orbits (for the map T ) in the transposition .1 2/ 2 S.¹1; : : : ; niº/.
We describe a path in H lab.k; k

n1
1 ; : : : ; k

nr
r / that will induce the required element gi .

Denote by C the underlying connected component of the (usual) moduli space of Abelian
differentials.

From [11], there exists a surface S0 2 C obtained after breaking up a singularity of
order 2ki into a pair of singularities of order ki . Considering S , S0 as elements in H sing,
we can assume that the pairs of singularities in S0 after the breaking up procedure are “1”
and “2”, and there exists a path 
 joining S to S0. With the notations of Section 2.3,
we cut the surface along @V", rotate the disk by an angle � , and we get a family of sur-
faces .S� /. Since S�.2kiC1/ D S0 in H , by composing with 
�1, we obtain a closed path
in C . Considering the lift of this path in H lab, we see that

• The two singularities “1” and “2” have been interchanged.

• All the other singularities, and the corresponding labels on horizontal separatrices are
fixed, since the surgery (cutting on a circle, rotating, pasting) does not change the
metric outside a neighbourhood of the two singularities.

Hence the resulting element gi in Aut.D/ is in G 0i and of the form ..�1; �2; 1; : : : ; 1/; .1 2//.
Now we look at g2i . It corresponds to the following path: consider 
 , then the path .S� /,

for � 2 Œ0; : : : ; 2�.2ki C 1/�, then 
�1. Keeping track of the marked horizontal sep-
aratrices, we see at the end that the marked horizontal separatrices for “1”, “2” have
changed by an angle �2�.2ki C 1/ mod 2�.ki C 1/, hence 2� . So we have

g2i D ..�; �; 1; : : : ; 1/; Id/

with � D exp. 2i�
kiC1

/. Hence g2i is of order ki C 1.

3.3. Hyperelliptic case

A hyperelliptic component of the strata of the moduli space of Abelian differentials is
a component that consists only of hyperelliptic translation surfaces. From [11], these
are components of the strata (without marked points) H .2g � 2/ and H .g � 1; g � 1/

(for g � 2).
In terms of Rauzy diagrams, a hyperelliptic connected component without marked

points corresponds to the Rauzy diagram generated by the element

� D

�
1 2 : : : n

n n � 1 : : : 1

�
:

The stratum is H .n � 2/ if n is even and H .n�3
2
; n�3
2
/ if n is odd.

In this case, the Rauzy group is trivial.
We can however obtain nontrivial groups if we have marked points. A Rauzy diagram

is said to be hyperelliptic if the corresponding connected component of the moduli space



C. Boissy 1144

of Abelian differential consists only of hyperelliptic surfaces (i.e., we obtain one of the
above hyperelliptic connected components after removing marked points).

We have the following statement.

Theorem 3.5. Let D be a hyperelliptic Rauzy diagram and let G be its automorphism
group.

(1) If the corresponding stratum is H .2g � 2; 0n/ or H .g � 1; g � 1; 0n/ and the
special singularity is of nonzero degree, then

G ' S.¹1; : : : ; nº/

and an element of G corresponds to a permutation of the marked points.

(2) If the corresponding stratum is H .2g � 2; 0n/ and the special singularity is of
zero degree, then

G ' U2g�1 �S.¹1; : : : ; n � 1º/;

where the elements of the form .1; p/ correspond to permutations of the marked
points, while the element .�; Id/ with � D exp. 2i�

2g�1
/ corresponds to the map T

restricted to its orbit of length 2g � 1 (equivalently, rotating by 2� the sep-
aratrices adjacent to the singularity of degree 2g � 2).

(3) If the corresponding stratum is H .g � 1; g � 1; 0n/ and the special singularity is
of zero degree, then

G ' U2g �S.¹1; : : : ; n � 1º/:

The elements of the form .1; p/ correspond to permutations of the marked points,
while the element � 2 S.A/ corresponding to .�; Id/ with � D exp.2i�

2g
/ is defined

in the following way: Consider a surface S in H lab constructed from any permuta-
tion of the Rauzy diagram, choose a pair .a0; b0/ 2 A2 such that

• the corresponding separatrices Ia0 , Ib0 of S are attached to the two singular-
ities of order g � 1, respectively,

• the angle between {.Ia0/ and Ib0 is � , where { is the hyperelliptic involution
(note that { interchanges the two singularities of order g � 1, hence the angle
between {.Ia0/ and Ib0 is well defined).

For i 2 ¹1; : : : ; g � 1º, we denote ai D T i .a0/ and bi D T i .b0/. Then � WA!A

satisfies �.ai /D bi , �.bi /D aiC1 and �.c/D c if c … ¹a0; : : : ;ag�1;b0; : : : ;bg�1º.

Proof. As in the previous sections, we consider the orbits of the map T . Nonspecial sin-
gularities of degree k � 0 correspond to orbits of length k C 1. An element � 2 Aut.D/

satisfies � ı T D T ı � and fixes pointwise the elements of the special orbit. This defines
a subgroup G 0 of S.A/ and G D Aut.D/ is a subgroup of G 0. Note that, as before, for an
element � in the Rauzy class and an element � 2 G 0, we have � 2 Aut.D/ if and only
if � and � ı � define elements in the same connected component of H lab.
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We first consider the case H .2g � 2; 0n/. If the special singularity is of degree 2g � 2,
the nonspecial T orbits are singletons and G 0 'S.¹1; : : : ; nº/, and any element of G 0 is in
Aut.D/ since the corresponding surfaces are in the same connected component of H lab.
If the degree of the special singularity is zero, then G 0 ' U2g�1 � S.¹1; : : : ; n � 1º/.
Elements in G 0 of the form .1;p/ correspond to permutations of the marked points and are
in Aut.D/. The element of the form .�; Id/ corresponds to rotating by 2� the separatrices
adjacent to the singularity of degree 2g � 2 and preserving all the other separatrices. It is
obtained by continuously rotating (clockwise) the surface (and keeping the separatrices
horizontal). After rotating by 2� the nonmarked translation surface is the same as before,
and the separatrices attached to marked points have not changed (since there is only one
horizontal separatrix attached to a marked point), while the separatrices attached to the
singularity of degree 2g � 2 have rotated by 2� (counterclockwise).

Now we consider the case H .g � 1; g � 1; 0n/ with the special singularity of degree
g� 1. The group G 0 is isomorphic toUg �S.¹1; : : : ;nº/. This time, we prove that Aut.D/

corresponds to elements of the form .1; p/ for p 2 S.¹1; : : : ; nº/ and is therefore a sub-
group of G 0 of order g. Clearly, these elements are in Aut.D/ by the same argument
as in the previous paragraph. We check that they are the only elements. Consider a sur-
face S in H lab constructed from a permutation � in the Rauzy class. Denote by P , Q
the singularities of degree g � 1 with P being the special one. Consider a separatrix Ia
attached to Q, marked by the label a 2 A. The image of P by the hyperelliptic involu-
tion { is Q, hence the image by { of the separatrix I1 is a negative horizontal separatrix
attached to Q. Hence, the angle between Ia and {.I1/ is constant in a connected com-
ponent of H lab. Therefore, any element of Aut.D/ must fix a, and therefore it must fix
pointwise the associated T -orbit.

The last case is H .g � 1; g � 1; 0n/ with the special singularity of degree 0. The
group G 0 is isomorphic to G0 � Sn�1, where elements of the form .1; p/ correspond to
permutations of the marked points and are in Aut.D/. The group G0 corresponds to ele-
ments of G 0 that fix pointwise the marked points. It is isomorphic to U 2g Ì S2 (see the
previous section) hence is of cardinal 2g2. We show that elements of the form .s; 1/ in
Aut.D/ correspond to a cyclic subgroup of G0 of order 2g. Denote by P , Q the singular-
ities of degree g � 1 such that Ia0 is attached to P and Ib0 is attached to Q. Denote by
a1; : : : ; ag�1 the labels of the other marked horizontal separatrices attached to P (taken
counterclockwise, in particular we have ai D T i .a0/), and similarly b1; : : : ; bg�1 for the
labels of the horizontal separatrices attached to Q. As in the proof of Lemma 3.4, there
is a continuous path in H lab that interchanges P and Q and does not change any other
singularity. Then, by continuously rotating the surface, we finally obtain a path joining
the initial surface S0 2 H lab to a surface S1 such that the underlying surface without
marking is the same and the separatrix Ia0 of S0 has been replaced by the separatrix Ib0
in S1. Since the angle between {.Ia0/ and Ib0 is constant in a connected component
of H lab, it is still � , and therefore the angle between {.Ib0/ and Ia0 is also � , since {
is an isometric involution. Hence, the separatrix Ibg of S0 has been replaced by Ia0
in S1. Therefore, we obtain the map � 2 Aut.A/ defined by �.ai / D bi , �.bi / D aiC1
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and �.c/D c if c … ¹a0; : : : ; bgº. The element � is of order 2g and we obtain the required
element.

The practical difficulty of the description of � in case 3 is that for a given � in the
Rauzy diagram, it is not algorithmically clear, to our knowledge, how to find the pair
.a0; b0/. We give a particular case where it is easy.

Proposition 3.6. Let � be in the hyperelliptic Rauzy class corresponding to the stratum
H .g � 1; g � 1; 0n/ with the special singularity of degree 0. We assume that

• There is k 2 ¹1; : : : ; d � 1º such that the corresponding left and right singularities in
the Veech construction of a0 D ��1t .k/ are the two singularities of degree g � 1.

• The permutation � 0 obtained by removing a0 is irreducible.

Then, denoting b0 D ��1t .k C 1/, the pair .a0; b0/ satisfies the hypothesis of case 3 of
Theorem 3.5.

Proof. We start from a suspension datum �0 for the permutation � 0, and we deduce a sus-
pension datum � for � by setting �a0 D " and �˛ D �0˛ otherwise. Then for enough small ",
the surface corresponding to .�; �/ admits a unique (horizontal) smallest saddle connec-
tion of length ". Since the hyperelliptic involution { is an isometry it preserves 
 , and
since { interchanges the two singularities of degree g � 1, it changes the orientation of 
 .
Therefore, we obtain the angle � between {.Ia0/ and Ib0 as required.
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