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Tree approximation in quasi-trees

Alice Kerr

Abstract. In this paper, we investigate the geometric properties of quasi-trees and prove some equi-
valent criteria. We give a general construction of a tree that approximates the ends of a geodesic
space, and use this to prove that every quasi-tree is .1; C /-quasi-isometric to a simplicial tree.
As a consequence, we show that Gromov’s tree approximation lemma for hyperbolic spaces (1987)
can be improved in the case of quasi-trees to give a uniform approximation for any set of points,
independent of cardinality. From this we show that having uniform tree approximation for finite
subsets is equivalent to being able to uniformly approximate the entire space by a tree. As another
consequence, we note that the boundary of a quasi-tree is isometric to the boundary of its approx-
imating tree under a certain choice of visual metric, and that this gives a natural extension of the
standard metric on the boundary of a tree.

1. Introduction

A quasi-tree is a geodesic metric space that is quasi-isometric to a simplicial tree. Quasi-
trees are hyperbolic spaces, however the existence of such a quasi-isometry means that
they retain many more of the strong geometric properties that trees enjoy. For this reason,
they can often act as a natural generalisation of trees, especially in the cases where the
space simply being hyperbolic would be too weak of an assumption.

Quasi-trees are an object of interest not just because of their tree-like properties, but
because of the group actions that they admit. Importantly, there are large classes of groups
which have interesting actions on quasi-trees, but do not have any similar actions on trees.
Many such examples were provided by Bestvina, Bromberg, and Fujiwara [3], including
mapping class groups. It was additionally shown by Kim and Koberda that right-angled
Artin groups admit natural acylindrical actions on quasi-trees, where the quasi-trees in
question are constructed from the defining graph of the group [16, 17]. Balasubramanya
later proved that, in fact, every acylindrically hyperbolic group admits an acylindrical
action on some quasi-tree [1]. This gives a strong motivation for proving new properties
for quasi-trees, as they may allow us to obtain new results for these large classes of groups.

When attempting to find new properties of quasi-trees, we have two obvious options:
generalise a result that is true for trees, or improve a result that has already been shown for
hyperbolic spaces. The original aim for this paper was to do the latter for a result known as
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Gromov’s tree approximation lemma (see Figure 1), which essentially says that any finite
set of points in a hyperbolic space can be approximated by a finite subset of a tree, with
the error dependent on the number of points we are trying to approximate.

Proposition 1.1 (Gromov’s tree approximation lemma [11, pp. 155–157]). Let X be a ı-
hyperbolic geodesic metric space. Let x0; z1; : : : ; zn 2X , and let Y be a union of geodesic
segments

Sn
iD1Œx0; zi �. Then there exist an R-tree T and a map f W .Y; d/! .T; d 0/ such

that

(1) For all 1 6 i 6 n, the restriction of f to the geodesic segment Œx0; zi � is an iso-
metry.

(2) For all x; y 2 Y , we have that d.x; y/ � 2ı.log2.n/ C 1/ 6 d 0.f .x/; f .y// 6
d.x; y/.

x0

Figure 1. Tree approximation in a hyperbolic space.

This result was used by Delzant and Steenbock [9] to generalise a theorem they proved
about groups acting acylindrically on trees, from which they were able to obtain a theorem
about groups acting acylindrically on hyperbolic spaces. The result for hyperbolic spaces
was not as strong as their result for trees, which was a consequence of the logarithmic
error that Gromov’s tree approximation lemma introduced.

For general hyperbolic spaces, we would not expect to be able to improve the order
of this error, however it is natural to ask whether we may be able to do better when we
restrict ourselves to trying to approximate subsets of quasi-trees. In particular, we may ask
if the approximation could be made to be uniform, in the sense that the error would no
longer depend on the number of points being approximated.

It turns out that we can in fact prove a much stronger result than this, as we can show
that the entire quasi-tree can be approximated by a tree with uniform error.

Proposition 1.2 (Corollary 4.3). For every quasi-tree X , there exist an R-tree T and
a constant C > 0 such that X is .1; C /-quasi-isometric to T .

One immediate implication of this, and the fact that R-trees are .1;C /-quasi-isometric
to simplicial trees (see Proposition 4.4), is that quasi-trees are exactly the geodesic spaces
that are .1; C /-quasi-isometric to simplicial trees. This is the central result of this paper.
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Theorem 1.3 (Theorem 4.6). A geodesic metric space X is a quasi-tree if and only if it is
.1; C /-quasi-isometric to a simplicial tree for some C > 0.

A key step in proving these results is that we are able to obtain another equivalent
definition of a quasi-tree, which can be compared to the definition of hyperbolic spaces
using the Gromov product (see Definition 2.3).

Proposition 1.4 (Proposition 4.1). A geodesic metric space .X; d/ is a quasi-tree if and
only if there exists A > 0 such that any x0; x1; : : : ; xn 2 X satisfy

.x1; xn/x0 > min
16i6n�1

.xi ; xiC1/x0 � A:

One application of Theorem 1.3 is to quasi-actions on trees. It is known that a group
has a cobounded quasi-action on a simplicial tree if and only if it has a quasi-conjugate
isometric action on a quasi-tree [20]. Theorem 1.3 allows us to show that this implies the
existence of a quasi-conjugate .1; C /-quasi-action on some simplicial tree.

Proposition 1.5 (Proposition 4.18). If a finitely generated group admits a cobounded
.L; C /-quasi-action on a simplicial tree for some L > 1, C > 0, then it admits a quasi-
conjugate .1; C 0/-quasi-action on a simplicial tree for some C 0 > 0.

We are also able to obtain results similar to Theorem 1.3 for countable and locally
finite simplicial trees.

Proposition 1.6 (Corollary 4.24). We have the following:

(1) A geodesic metric space is .L; C /-quasi-isometric to a countable simplicial tree
for some L > 1, C > 0 if and only if it is .1; C 0/-quasi-isometric to a countable
simplicial tree for some C 0 > 0.

(2) A geodesic metric space is .L; C /-quasi-isometric to a locally finite simplicial
tree for some L > 1, C > 0 if and only if it is .1; C 0/-quasi-isometric to a locally
finite simplicial tree for some C 0 > 0.

This allows us to get analogues to Proposition 1.5 in the case of quasi-actions on
countable or locally finite trees.

Corollary 1.7 (Corollary 4.25). We have the following:

(1) If a finitely generated group admits a cobounded .L;C /-quasi-action on a count-
able simplicial tree for some L > 1, C > 0, then it admits a quasi-conjugate
.1; C 0/-quasi-action on a countable simplicial tree for some C 0 > 0.

(2) If a finitely generated group admits a cobounded .L;C /-quasi-action on a locally
finite simplicial tree for some L > 1, C > 0, then it admits a quasi-conjugate
.1; C 0/-quasi-action on a locally finite simplicial tree for some C 0 > 0.

Returning to our original motivation, we can see that the tree and quasi-isometry
in Proposition 1.2 are constructed as an extension of the method used to prove Gromov’s
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tree approximation lemma, and so they satisfy the same conditions. Restricting this quasi-
isometry to subsets gives us our desired improvement of Gromov’s result in the case of
quasi-trees.

Proposition 1.8 (Proposition 5.1). Let .X;d/ be a quasi-tree. Let x0 2X , and letZ �X .
Let Y be a union of geodesic segments

S
z2Z Œx0; z�. Then there exist an R-tree T , a map

f W .Y; d/! .T; d�/, and a constant C > 0 such that

(1) For all z 2 Z, the restriction of f to the geodesic segment Œx0; z� is an isometry.

(2) For all x; y 2 Y , we have that d.x; y/ � C 6 d�.f .x/; f .y// 6 d.x; y/.

It is shown in [15] that this improvement can be applied to Delzant and Steenbock’s
work [9] to produce a new result regarding product set growth in groups acting acylindric-
ally on quasi-trees, with a particular application to right-angled Artin groups.

We note here that Proposition 1.8 applies to subsets of any cardinality, rather than
just finite subsets. On the other hand, it turns out that simply having uniform tree approx-
imation for finite subsets is enough to ensure that the space in question is a quasi-tree,
so quasi-trees are exactly the geodesic spaces for which uniform tree approximation is
possible. In fact, even having uniform tree approximation for finite subsets is a stronger
requirement than is necessary, as we still get a quasi-tree even if we relax the requirements
on our tree approximation to allow for a multiplicative error.

Proposition 1.9 (Proposition 5.4). Let .X; d/ be a geodesic metric space. The following
are equivalent:

(1) X is a quasi-tree.

(2) There exists C > 0 such that for every finite subset Z of X , there exist an R-tree
.T; d�/ and a .1; C /-quasi-isometric embedding f W .Z; d/! .T; d�/.

(3) There existL> 1 and C > 0 such that for every finite subsetZ ofX , there exist an
R-tree .T; d�/ and an .L; C /-quasi-isometric embedding f W .Z; d/! .T; d�/.

The remainder of the paper will mainly be concerned with the construction of the tree
used in Proposition 1.2, and the ways in which its geometry relates to the original space.
This tree can be constructed for any geodesic space, and can be thought of as collapsing
the space along spheres around a basepoint, where two points will collapse together if they
can be joined by a path that stays outside the central ball.

This construction can alternatively be visualised as collapsing the spaces along its
ends, and we can show that the space of ends of any proper geodesic space will indeed
be homeomorphic to the space of ends of the constructed tree (see Proposition 6.20). For
this reason, we will often refer to such a tree as the end-approximating tree. As a con-
sequence of Proposition 6.20, we can also show that the space of ends of any proper
geodesic space will in fact be homeomorphic to the space of ends of a locally finite sim-
plicial tree (see Proposition 6.21).
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The boundary of the end-approximating tree can be compared to the boundary of the
original space. For a hyperbolic space X , there exists a family of metrics on the bound-
ary @X known as visual metrics, and given a tree T , and a choice of parameter, the visual
metrics with that parameter on @T are all bi-Lipschitz equivalent to a visual metric that
can be written down explicitly in a standard way. It is known that a .1; C /-quasi-isometry
between two hyperbolic geodesic spaces induces a bi-Lipschitz map between their bound-
aries [4], and more specifically it is possible to choose a visual metric such that this map
is an isometry. Proposition 1.2 can therefore be used to show the following.

Corollary 1.10 (Corollary 6.35). Let X be a quasi-tree. There exist an R-tree T and
a visual metric on @X such that @X endowed with this metric is isometric to @T endowed
with its standard visual metric, given a choice of a basepoint and a visual parameter.

In particular, the visual metric that we choose on @X can be defined directly from
the geometry of X , and in the case where X is an R-tree it will be the standard visual
metric on the boundary. This means that this metric can be viewed as an extension of the
standard visual metric for the boundary of an R-tree, with respect to a choice of basepoint
and parameter.

Structure of the paper. In Section 2, we recall some basic facts about quasi-trees and
hyperbolic geometry. In Section 3, we give the construction of our end-approximating
tree for a geodesic metric space. In Section 4, we prove that the end-approximating tree for
a quasi-tree is .1; C /-quasi-isometric to the original space, and then use this to show that
quasi-trees are precisely those spaces that are .1; C /-quasi-isometric to some simplicial
tree. We additionally consider the particular cases where the simplicial tree in question
is countable, or locally finite. In Section 5, we prove the uniform version of Gromov’s
tree approximation lemma for quasi-trees. We also consider an alternative version of tree
approximation, and show that this turns out not to be uniform for quasi-trees. In Section 6,
we give an alternative description of the end-approximating tree, and use it to discuss the
relationship between the ends of the tree and the ends of the space it is constructed from.
In the case where this original space is a quasi-tree, we compare its boundary with the
boundary of the tree.

2. Preliminaries

We first recall some basic definitions and lemmas. Those familiar with trees and quasi-
trees may wish to go straight to Section 3, and use this section as a reference only.

Notation 2.1. Let .X;d/ be a metric space. Let x0 2X and r > 0. We will useB.x0; r/ to
denote the closed ball of radius r around x0, and S.x0; r/ to denote the sphere of radius r
around x0.
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Definition 2.2. Let .X; d/ be a metric space. Let x0; x; y 2 X . The Gromov product of x
and y at x0 is

.x; y/x0 D
1

2
.d.x0; x/C d.x0; y/ � d.x; y//:

Clearly, .x; y/x0 D .y; x/x0 , .x0; x/x0 D 0, and .x; x/x0 D d.x0; x/. By the triangle
inequality, .x; y/x0 > 0.

Definition 2.3. Let .X; d/ be a metric space. Suppose there exists ı > 0 such that for
every x0; x; y; z 2 X , we have that

.x; z/x0 > min¹.x; y/x0 ; .y; z/x0º � ı:

Then we say that X is ı-hyperbolic. We say that X is hyperbolic if it is ı-hyperbolic for
some ı > 0.

The logarithm in the lower bound of Gromov’s tree approximation lemma (Proposi-
tion 1.1) comes from the following statement, which can be proved by induction directly
from the above definition.

Lemma 2.4 ([11, p. 155]). A metric spaceX is ı-hyperbolic in the sense of Definition 2.3
if and only if any x0; x1; : : : ; xn 2 X with n 6 2k C 1 satisfy

.x1; xn/x0 > min
16i6n�1

.xi ; xiC1/x0 � kı:

In geodesic metric spaces, there is a commonly used equivalent definition that is more
intuitive.

Notation 2.5. For x, y in a geodesic metric space, we will use Œx; y� to represent any
geodesic from x to y.

Definition 2.6. Let .X; d/ be a geodesic metric space. We say that X is ı-hyperbolic for
some ı> 0 if for every x;y;z 2X , any choice of geodesic triangle Œx;y�[ Œy;z�[ Œz;x� is
ı-slim, meaning that if p 2 Œx;y�, then there exists q 2 Œy; z�[ Œz;x� such that d.p;q/6 ı.

Remark 2.7. The ı in each definition is not generally the same. The exception is when
a geodesic metric space is 0-hyperbolic, as in this case it will be 0-hyperbolic under both
definitions.

Convention 2.8. We will be mainly working in geodesic metric spaces, so we will take
the second definition as standard when we say ı-hyperbolic, unless otherwise specified.

In a geodesic hyperbolic space, the Gromov product of x and y at x0 is approximately
the distance between x0 and Œx; y�, as shown in the following standard lemmas.

Lemma 2.9. Let .X; d/ be a ı-hyperbolic geodesic metric space, and let x0; x; y 2 X .
Then there exists z 2 Œx; y� such that d.x0; z/ � 2ı 6 .x; y/x0 .
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Lemma 2.10. Let .X; d/ be a geodesic metric space, and let x0; x; y 2 X . Then

.x; y/x0 6 d.x0; Œx; y�/:

Definition 2.11. A metric space .X; d/ is an R-tree if for every x; y 2 X , there exists
a unique topological embedding ˛W Œ0; r� ! X , and this embedding is a geodesic, so
d.x; y/ D r .

The following equivalent characterisation is standard, see, for example, [2].

Lemma 2.12. A metric space is an R-tree if and only if it is 0-hyperbolic and geodesic.

Remark 2.13. One nice consequence of these definitions is that in an R-tree the Gromov
product .x; y/x0 gives us exactly the distance between x0 and the unique geodesic Œx; y�.
This is also the exact distance for which Œx0; x� and Œx0; y� coincide.

Definition 2.14. A simplicial tree is a 1-dimensional simplicial complex that is an R-tree
under the path metric induced by considering each edge to be isometric to Œ0; 1�.

Definition 2.15. Let .X;dX / and .Y;dY / be metric spaces. A map f WX!Y is an .L;C /-
quasi-isometry if there exist constants L > 1, C > 0 such that

(1) For every x1; x2 2 X , we have that

1

L
dX .x1; x2/ � C 6 dY .f .x1/; f .x2// 6 LdX .x1; x2/C C:

(2) For every y 2 Y , there exists x 2 X such that dY .f .x/; y/ 6 C .

These two properties can be described as being coarsely bi-Lipschitz and coarsely surject-
ive, respectively. If only the first property is satisfied, then the map is an .L; C /-quasi-
isometric embedding.

Remark 2.16. A .1;C /-quasi-isometry is sometimes known as a rough isometry, amongst
other terms.

Definition 2.17. Let X and Y be metric spaces. We say that X is .L; C /-quasi-isometric
to Y for some constantsL> 1, C > 0 if there exists an .L;C /-quasi-isometry f WX ! Y .
When the constants L and C are not specified, we will refer to f simply as a quasi-
isometry, and say that X and Y are quasi-isometric.

Remark 2.18. If there exists an .L;C /-quasi-isometry f WX!Y for someL> 1,C > 0,
then there exists an .L0;C 0/-quasi-isometry gWY !X for some L0 > 1, C 0 > 0. In partic-
ular, if there exists a .1; C /-quasi-isometry f WX ! Y for some C > 0, then there exists
a .1; 3C /-quasi-isometry gW Y ! X . When L and C are not given explicitly, we will
therefore assume that they are large enough to hold in both directions.

Another fact which we will use about quasi-isometries is the following well-known
lemma.
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Lemma 2.19. Let X , Y , and Z be metric spaces. Suppose there exist a .1; C /-quasi-
isometry f WX ! Y and a .1; C 0/-quasi-isometry gW Y ! Z for some C; C 0 > 0. Then
g ı f is a .1; C C 2C 0/-quasi-isometry.

Definition 2.20. A quasi-tree is a geodesic metric space that is quasi-isometric to a sim-
plicial tree.

Any quasi-tree will automatically be ı-hyperbolic for some ı > 0, as hyperbolicity is
a quasi-isometry invariant. A highly useful alternative characterisation of quasi-trees was
given by Manning.

Theorem 2.21 (Manning’s bottleneck criterion [19]). A geodesic metric space .X; d/ is
a quasi-tree if and only if there exists � > 0 (the bottleneck constant) such that for every
geodesic Œx; y� in X with midpoint m, every path between x and y intersects the closed
ball B.m;�/.

It is well known that this characterisation can be easily extended to the equivalent
statement that every point on a geodesic in a quasi-tree has this property, not just the
midpoint (see, for example, [3]).

Corollary 2.22. A geodesic metric space .X; d/ is a quasi-tree if and only if there exists
� > 0 such that for every geodesic Œx; y� inX , and every z 2 Œx; y�, every path between x
and y intersects the closed ball B.z;�/.

Remark 2.23. It follows from Corollary 2.22 that a quasi-tree with bottleneck constant
� > 0 is �-hyperbolic.

3. End-approximating tree for a geodesic metric space

In this section, we will give a construction of an R-tree from a general geodesic metric
space, in such a way that some of the original structure is retained. The idea is based
on Gromov’s proof of the tree approximation lemma in [11]. A similar explanation of
such a construction can be found in [8], however, we state the results here with greater
generality.

Definition 3.1. Let .X; d/ be a metric space. For x; y 2 X , we will use the notation Sx;y
to mean the set of all finite sequences in X between x and y, so

Sx;y D ¹.x1; : : : ; xn/W x1; : : : ; xn 2 X; x1 D x; xn D y; n 2 Nº:

Fix x0 2 X . We define .x; y/0x0 to be

.x; y/0x0 D sup
Sx;y

min
16i6n�1

.xi ; xiC1/x0 :

We finally define d 0 on X as

d 0.x; y/ D d.x0; x/C d.x0; y/ � 2.x; y/
0
x0
:
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We begin with a couple of preliminary lemmas.

Lemma 3.2. Let .X;d/ be a metric space, and let x0; x;y 2X . Then .x;y/0x0 6 d.x0; x/.

Proof. For x; y 2 X , we can see that the triangle inequality for d implies that .x; y/x0 6
d.x0; x/. Hence for any sequence .x1; : : : ; xn/ in Sx;y , we have that

min
16i6n�1

.xi ; xiC1/x0 6 .x1; x2/x0 D .x; x2/x0 6 d.x0; x/;

so .x; y/0x0 6 d.x0; x/.

Lemma 3.3. Let .X; d/ be a metric space, and let x0; x; y 2 X . Then we have that
.x; z/0x0 > min¹.x; y/0x0 ; .y; z/

0
x0
º.

Proof. This follows by concatenating sequences.

We can use these lemmas to prove the following.

Lemma 3.4. The function d 0WX � X ! R>0 is a pseudometric on X with the property
that d 0 6 d .

Proof. Fix x0 2 X . We first need to check that d 0 actually maps to R>0. Let x; y 2 X .
Lemma 3.2 tells us that .x;y/0x0 6 d.x0; x/, and similarly that .x;y/0x0 6 d.x0; y/. Hence
we have that d 0.x; y/ > 0. The fact that d 0.x; y/ <1 is clear.

We now want to show that d 0.x; x/ D 0 for any x 2 X . Note that .x; y/ is a valid
sequence in Sx;y for any x; y 2 X , so .x; y/0x0 > .x; y/x0 , and therefore d 0.x; y/ 6
d.x; y/. Hence

0 6 d 0.x; x/ 6 d.x; x/ D 0:

It is clear from the symmetry of the Gromov product for d that .x; y/0x0 D .y; x/
0
x0

for any x; y 2 X , and hence clear that d 0.x; y/ D d 0.y; x/.
Finally, let x; y; z 2 X . We can see that

d 0.x; z/ 6 d 0.x; y/C d 0.y; z/, �2.x; z/0x0 6 2d.x0; y/ � 2..x; y/
0
x0
C .y; z/0x0/

, 0 6 d.x0; y/C .x; z/
0
x0
� .x; y/0x0 � .y; z/

0
x0
:

Lemma 3.3 tells us that

.x; z/0x0 > min¹.x; y/0x0 ; .y; z/
0
x0
º;

so suppose without loss of generality that .x; z/0x0 > .x;y/0x0 . Then as d.x0; y/> .y; z/0x0 ,
we have shown that d 0 satisfies the triangle inequality. Therefore, d 0 is a pseudometric
on X .

It is not hard to see that this is not a metric in general, as we could have x ¤ y but
d 0.x; y/ D 0. One example would be when X D Rn for some n > 2, and x and y lie on
the same sphere around x0 (see Lemma 6.1).



A. Kerr 1202

Definition 3.5. Let .X; d/ be a metric space, and fix x0 2 X . We define .TX ; d�/ to be
the metric space induced as a quotient of the pseudometric space .X; d 0/.

Specifically, we consider the equivalence relation �, where x � y if and only if
d 0.x; y/ D 0. We let TX D X=�, and d�.Œx�; Œy�/ D d 0.x; y/. We let .Œx�; Œy�/�

Œx0�
be

the Gromov product under the metric d�.

Remark 3.6. We will consider the choice of basepoint to be fixed. Although the induced
space may vary depending on this choice, it will not affect any of the properties that we
consider here.

Lemma 3.7. Let .X; d/ be a metric space. The metric space .TX ; d�/ is 0-hyperbolic.

Proof. We first note that for any x 2 X , we have that 0 6 .x0; x/
0
x0

6 d.x0; x0/ D 0

by Lemma 3.2, so in particular d 0.x0;x/D d.x0;x/. We can now see that for any x;y 2X ,
we have that

.x; y/0x0 D
1

2
.d.x0; x/C d.x0; y/ � d

0.x; y//

D
1

2
.d 0.x0; x/C d

0.x0; y/ � d
0.x; y//

D
1

2
.d�.Œx0�; Œx�/C d

�.Œx0�; Œy�/ � d
�.Œx�; Œy�//

D .Œx�; Œy�/�Œx0�;

the Gromov product for the metric d�. For any x; y; z 2 X , we know from Lemma 3.3
that

.x; z/0x0 > min¹.x; y/0x0 ; .y; z/
0
x0
º;

and therefore
.Œx�; Œz�/�Œx0� > min¹.Œx�; Œy�/�Œx0�; .Œy�; Œz�/

�
Œx0�
º;

so TX is 0-hyperbolic.

To get our desired R-tree, we will need the additional assumption that the space X is
geodesic.

Proposition 3.8. Let .X; d/ be a geodesic metric space. The metric space .TX ; d�/ is an
R-tree.

Proof. We know that TX is 0-hyperbolic by Lemma 3.7. It therefore only remains to show
that TX is geodesic.

Let f WX ! TX be the quotient map f .x/ D Œx�. As d�.Œx�; Œy�/ 6 d.x; y/, it is
obvious that f is continuous, and moreover we can see that it is an isometry on any
geodesic ray starting from x0. Let y 2 X , and let x 2 Œx0; y�. We can note that

.x; y/x0 6 .x; y/0x0 6 d.x0; x/ D .x; y/x0 ;
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so .x; y/x0 D .x; y/
0
x0

. Therefore,

d.x; y/ D d 0.x; y/ D d�.Œx�; Œy�/:

In particular, the image of Œx; y� will be a geodesic between Œx� and Œy� in TX .
Now let Œx�; Œy� 2 TX be arbitrary. We want to construct a path in TX between Œx�

and Œy� that has length d�.Œx�; Œy�/. Consider representatives x and y of these equivalence
classes in X . We consider geodesics Œx0; x� and Œx0; y� in X , and pick the unique points
x0 2 Œx0; x� and y0 2 Œx0; y� such that

d.x0; x
0/ D d.x0; y

0/ D .x; y/0x0 :

This means that

d.x; x0/C d.y0; y/ D d.x0; x/C d.x0; y/ � 2.x; y/
0
x0
D d 0.x; y/;

so d�.Œx�; Œx0�/C d�.Œy0�; Œy�/D d�.Œx�; Œy�/. Hence if we can show that Œx0�D Œy0�, then
we can simply take the union of the geodesics ŒŒx�; Œx0�� and ŒŒy0�; Œy�� to find a geodesic
between Œx� and Œy�.

We have that

d.x0; x
0/ D d.x0; y

0/ D .Œx�; Œy�/�Œx0� D .x; y/
0
x0
D sup
Sx;y

min
16i6n�1

.xi ; xiC1/x0 :

Recall that this supremum is over all finite sequences in X beginning with x and ending
with y. Given that

.x; x0/x0 D d.x0; x
0/ D d.x0; y

0/ D .y; y0/x0 ;

in this case, we would get the same result if we took the supremum over all finite sequences
beginning with x, x0, x and ending with y, y0, y. This in turn is equivalent to taking the
supremum over all finite sequences beginning with x0, x and ending with y, y0, which
is no larger than taking the supremum over all sequences beginning with x0 and ending
with y0, which is Sx0;y0 . Therefore,

d.x0; x
0/ D d.x0; y

0/ 6 .x0; y0/0x0 6 d.x0; x
0/ D d.x0; y

0/;

so we have equality, and, in particular, d 0.x0;y0/D 0, so Œx0�D Œy0�. Hence TX is a geodesic
0-hyperbolic space, therefore it is an R-tree.

Informally, we construct TX from a geodesic metric space X by collapsing X along
the spheres S.x0; r/, where two points in S.x0; r/ collapse to the same point in TX if and
only if for every " > 0 there exists a path 
 between them inX such that d.x0; 
/ > r � ".
Alternatively, we can view TX as the space that we get if we collapse X along its ends.

This idea will be formalised in Section 6. It is not necessary for the proofs in Section 4
or in Section 5, however it may be a useful image to keep in mind, and it also motivates
the language we use to describe TX .
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H2 TH2

Œx0�

Figure 2. End-approximating tree of the hyperbolic plane.

x0

X TX

Œx0�

Figure 3. Approximating tree of a quasi-tree.

Definition 3.9. Let .X; d/ be a geodesic metric space. We call .TX ; d�/ the end-approxi-
mating tree of .X; d/, and f WX ! TX defined by f .x/ D Œx� the end-approximating
map.

Remark 3.10. Lemma 3.4 tells us that the end-approximating map is non-expanding.

We will often use slightly different terminology for the end-approximating tree of
a quasi-tree.

Convention 3.11. When .X; d/ is a quasi-tree, we will occasionally simply refer to
.TX ; d

�/ as an approximating tree. This terminology is justified in Section 4.1.

4. Quasi-isometries with trees

For a general geodesic metric spaceX , the end-approximating tree TX may bear very little
resemblance to X . For example, if X D Hn or Rn for some n > 2 then TX is isometric
to Œ0;1/ (see Figure 2 and Corollary 6.2). On the other hand, when X is a quasi-tree, we
might expect TX to look much more like the original space (see Figure 3). This makes
sense intuitively, as in a quasi-tree we would expect there to be a limit on how far points
can collapse together along spheres. We will show that in this case the end-approximating
map f WX ! TX is in fact a .1; C /-quasi-isometry, and then use this to find a .1; C 0/-
quasi-isometry from X to a simplicial tree.
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4.1. R-trees

In this subsection, we will prove that if X is a quasi-tree, then there exists some C > 0

such that the end-approximating map f WX ! TX is .1; C /-quasi-isometry. To achieve
this, we must first prove a uniform version of Lemma 2.4 for quasi-trees, for which we
will need Manning’s bottleneck criterion.

Proposition 4.1. A geodesic metric space .X; d/ is a quasi-tree if and only if there exists
A > 0 such that any x0; x1; : : : ; xn 2 X satisfy

.x1; xn/x0 > min
16i6n�1

.xi ; xiC1/x0 � A:

Proof. Suppose that X is a ı-hyperbolic quasi-tree with bottleneck constant � > 0. Let
x0; x1; : : : ; xn 2 X be arbitrary, and consider a geodesic Œx1; xn�. By Lemma 2.9, there
exists z 2 Œx1; xn� such that d.x0; z/ � 2ı 6 .x1; xn/x0 .

Consider the path Œx1; x2� [ � � � [ Œxn�1; xn�. By Corollary 2.22, the extended version
of Manning’s bottleneck criterion, for some 1 6 i 6 n� 1 there exists z0 2 Œxi ; xiC1� such
that z0 2 B.z;�/, and .xi ; xiC1/x0 6 d.x0; z

0/ by Lemma 2.10. We can put this together
to get that

.xi ; xiC1/x0 6 d.x0; z
0/ 6 d.x0; z/C d.z; z

0/ 6 .x1; xn/x0 C�C 2ı:

Hence .x; y/x0 > min16i6n�1.xi ; xiC1/x0 � .�C 2ı/. This concludes the proof of one
direction.

Now suppose that .X; d/ is a geodesic metric space, and that there exists A > 0 such
that any x0; x1; : : : ; xn 2 X satisfy .x1; xn/x0 > min16i6n�1.xi ; xiC1/x0 � A. We want
to show that X satisfies Manning’s bottleneck criterion.

Let x; y 2 X , with Œx; y� a geodesic between them with midpoint m, and let 
 be any
path from x to y. Choose x D x1; : : : ; xn D y such that xi 2 
 for all 1 6 i 6 n and
d.xi ; xiC1/ 6 2A for all 1 6 i 6 n � 1.

Note that .x1; xn/m D .x; y/m D 0. We therefore have that

min
16i6n�1

.xi ; xiC1/m � A 6 .x1; xn/m) min
16i6n�1

.xi ; xiC1/m 6 A

so for some 1 6 i 6 n � 1, we have that

.xi ; xiC1/m 6 A)
1

2
.d.m; xi /C d.m; xiC1/ � d.xi ; xiC1// 6 A

) d.m; xi /C d.m; xiC1/ 6 4A:

Hence there exists 1 6 i 6 n such that d.m; xi / 6 2A. As xi 2 
 , we have that there
exists z 2 
 such that d.m; z/ 6 2A. By Manning’s bottleneck criterion, X is therefore
a quasi-tree.

We can now combine this with the construction of the end-approximating tree to show
that for every quasi-tree the end-approximating map is a .1; C /-quasi-isometry.
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Proposition 4.2. Let .X;d/ be a quasi-tree with bottleneck constant�> 0 and hyperbol-
icity constant ı > 0. Then the end-approximating map f WX ! TX is a .1; 2.�C 2ı//-
quasi-isometry.

Proof. We first note that the end-approximating map is surjective, and hence is coarsely
surjective. Now recall that for Œx�; Œy� 2 TX , the distance between them is

d�.Œx�; Œy�/ D d 0.x; y/ D d.x0; x/C d.x0; y/ � 2.x; y/
0
x0
;

where
.x; y/0x0 D sup

Sx;y

min
16i6n�1

.xi ; xiC1/x0 :

We know that .x; y/x0 6 .x; y/0x0 . By Proposition 4.1, we also obtain that

.x; y/0x0 6 .x; y/x0 C�C 2ı:

Putting these inequalities together and substituting them into the definition of d 0.x; y/
gives us that

d.x; y/ � 2.�C 2ı/ 6 d 0.x; y/ 6 d.x; y/;

and so
d.x; y/ � 2.�C 2ı/ 6 d�.Œx�; Œy�/ 6 d.x; y/:

Hence the function f is a .1; 2.�C 2ı//-quasi-isometry from X to TX .

Corollary 4.3. For every quasi-treeX , there exist an R-tree T and a constant C > 0 such
that X is .1; C /-quasi-isometric to T .

4.2. Simplicial trees

We note here that TX will certainly not be a simplicial tree in general. This can be seen
when X is an R-tree, since then TX D X , so if X is not simplicial then TX will not be
either (see Remark 6.7). Even in the relatively natural case that our quasi-treeX is a graph
and the basepoint x0 2 X is a vertex, the R-tree TX may fail to be simplicial with edge
lengths 1. However, it is not hard to see that we can substitute our R-tree for a simplicial
tree with only an additive error in the quasi-isometry. The simplicial tree we construct
here comes from a technique Manning uses in the proof of the bottleneck criterion [19].

Let T be an R-tree. We begin our construction by picking a basepoint x0 2 T , and
letting T0 D ¹x0º. We then let �0 D .V0; E0/ be a graph with V0 D ¹vx0º and E0 D ;.

Given �k�1, we construct a new graph �k by adding the next layer of vertices. Let
Tk D S.x0; k/, and then let Uk D ¹vx W x 2 Tkº. We let the vertex set of �k be Vk D
Vk�1 [Uk , and the edge set beEk DEk�1 [ ¹¹vx ; vyºWvx 2 Uk�1; vy 2 Uk ; x 2 Œx0; y�º.

If �k�1 is a simplicial tree, then so is �k . This is due to the fact that T is an R-tree,
so for every y 2 Tk , there is a unique x 2 Tk�1 such that x 2 Œx0; y�, and this rules out
the existence of any cycles. We now let � D .V;E/, where V D

S
k Vk and E D

S
k Ek .
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Figure 4. Constructing a simplicial tree from an R-tree.

The graph � is also a simplicial tree, as any cycle in � would have to exist in some
subgraph �k .

We define a map  W T ! � as follows. For every x 2 T , let x0 2 T be the unique
point such that x0 2 Œx0; x� and dT .x0; x0/ D bdT .x0; x/c. We then set  .x/ D vx0 . This
construction is illustrated in Figure 4.

Proposition 4.4. Every R-tree is .1; 2/-quasi-isometric to a simplicial tree.

Proof. Let T be an R-tree, and let � be the simplicial tree constructed above. We will
show that the map  WT ! � is a .1; 2/-quasi-isometry.

We will first show that  is coarsely surjective. Let w 2 � . Then there exists a vertex
v 2 � such that d�.w; v/ 6 1. By the definition of � , there exists some x 2 T such that
vx D v. We therefore have that  .x/ D v, so we are done.

We will now show that  is coarsely bi-Lipschitz. Let x; y 2 T . Suppose first that
x 2 Œx0; y�. Then  .x/ 2 Œvx0 ;  .y/�, so d�. .x/; .y// D bdT .x0; y/c � bdT .x0; x/c.
As dT .x; y/ D dT .x0; y/ � dT .x0; x/, this means that

dT .x; y/ � 1 6 d�. .x/;  .y// 6 dT .x; y/C 1:

Now suppose x; y 2 T are any two points. Let z 2 Œx0; x� \ Œx0; y� be the unique
point such that dT .x0; z/D dT .x0; Œx; y�/. Recall that z0 2 T is the unique point such that
z0 2 Œx0; z� and dT .x0; z0/ D bdT .x0; z/c, so Œx0; x� \ Œx0; y� \ S.x0; dT .x0; z0/C 1/ is
empty. This means that vz0 2 Œ .x/;  .y/�, and so

d�. .x/;  .y// D d�. .x/;  .z//C d�. .z/;  .y// D dT .x; z
0/C dT .z

0; y/:

Since

dT .x; y/ � 2 D dT .x; z/C dT .z; y/ � 2 6 dT .x; z
0/C dT .z

0; y/

6 dT .x; z/C dT .z; y/C 2 D dT .x; y/C 2;

we can conclude that  is a (1,2)-quasi-isometry from the R-tree T to the simplicial
tree � .

We noted in Section 2 that this means there is a (1,6)-quasi-isometry from � to T ,
although it is in fact possible to improve this to show that � is (1,2)-quasi-isometric to T .
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This can be proved via the map 'W�! T , defined such that each edge ¹vx ; vyº is mapped
isometrically to the geodesic Œx; y� in T . We provide a proof of this below, as ' will be
used in the proof of Proposition 4.19.

Proposition 4.5. For every R-tree T , there exists a simplicial tree that is .1; 2/-quasi-
isometric to T .

Proof. Let � and ' be as above. We will show that ' is a .1; 2/-quasi-isometry.
We will first show that ' is coarsely surjective. Let x 2 T , and let k D bd.x0; x/c.

Then there exists some y 2 Tk such that dT .x; y/ < 1, so as y is the image of vy under ',
we therefore have that ' is coarsely surjective.

We will now show that ' is coarsely bi-Lipschitz. Note that it is immediate from the
definition of � and ' that for any x 2 � , the geodesic Œvx0 ; x� is mapped isometrically
by ' onto the geodesic Œx0; '.x/� in T .

Let x; y 2 � be points that are not necessarily vertices, and consider the geodesic
Œx; y�. If Œx; y�\ V D ;, then Œx; y� is contained in an edge of � , and therefore is mapped
isometrically onto T by '. Otherwise, we can write Œx; y� as

Œx; y� D Œx; v1� [ Œv1; v2� [ � � � [ Œvn�1; vn� [ Œvn; y�;

where every vi 2 V \ Œx; y�, and each subsegment has length greater than 0 but no greater
than 1, so each Œvi ; viC1� is an edge in � .

Suppose that d�.vx0 ; Œx; y�/ D d�.vx0 ; x/, so x is the nearest point to vx0 . Then as �
is a tree, we have that Œx; y� � Œvx0 ; y�, so ' is an isometry on Œx; y�. If d�.vx0 ; Œx; y�/ D
d�.vx0 ; y/, then, by the same reasoning, ' is again an isometry on Œx; y�.

If on the other hand d�.vx0 ; Œx; y�/ D d�.vx0 ; vi /, then although Œx; vi � and Œvi ; y�
are mapped isometrically onto Œ'.x/; '.vi /� and Œ'.vi /; '.y/�, we many have that the
geodesics Œ'.vi�1/; '.vi /� and Œ'.vi /; '.viC1/� intersect at points other than '.vi /. Note
that '.vi�1/¤ '.viC1/ as otherwise we would have vi�1 D viC1, which would contradict
our description of the geodesic Œx; y�. This means that we can write Œ'.x/; '.y/� as

Œ'.x/; '.y/� D Œ'.x/; '.vi�1/� [ Œ'.vi�1/; '.viC1/� [ Œ'.viC1/; '.y/�:

Given we know that Œx; y� D Œx; vi�1� [ Œvi�1; viC1� [ ŒviC1; y�, along with the fact that
d�.x;vi�1/D dT .'.x/;'.vi�1// and d�.viC1; y/D dT .'.viC1/;'.y//, it therefore only
remains to compare dT .'.vi�1/; '.viC1// with d�.vi�1; viC1/.

We can note that dT .'.vi�1/; '.viC1// > 0, and also that

dT .'.vi�1/; '.viC1// 6 dT .'.vi�1/; '.vi //C dT .'.vi /; '.viC1// D 2:

As d�.vi�1; viC1/ D 2, it immediately follows that

d�.x; y/ � 2 6 dT .'.x/; '.y// 6 d�.x; y/:

Therefore, ' is a .1; 2/-quasi-isometry from the simplicial tree � to the R-tree T .
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We now combine Propositions 4.2 and 4.4 to get the main result of this section.

Theorem 4.6. A geodesic metric space X is a quasi-tree if and only if it is .1; C /-quasi-
isometric to a simplicial tree for some C > 0.

Proof. If a geodesic metric space X is .1; C /-quasi-isometric to a simplicial tree, then it
is a quasi-tree by definition. Now let X be a quasi-tree. By Proposition 4.2, X is .1; C /-
quasi-isometric to the R-tree TX for a constant C D 2.�C 2ı/, where X is ı-hyperbolic
with bottleneck constant �. By Proposition 4.4, TX is .1; 2/-quasi-isometric to some sim-
plicial tree � , so X is .1; C C 4/-quasi-isometric to � by Lemma 2.19.

Remark 4.7. By Proposition 4.4, we could equally define quasi-trees as being the geo-
desic metric spaces that are .1; C /-quasi-isometric to R-trees.

We can restate the above theorem in the following way.

Corollary 4.8. A geodesic metric space is .L; C /-quasi-isometric to a simplicial tree for
some L > 1, C > 0 if and only if it is .1;C 0/-quasi-isometric to a simplicial tree for some
C 0 > 0.

Remark 4.9. Note that these will not usually be the same simplicial tree. This is easily
illustrated by the fact that there are simplicial trees that are .L; C /-quasi-isometric for
some L > 1, C > 0, but not .1; C 0/-quasi-isometric for any C 0 > 0.

Remark 4.10. As with Remark 4.7, we can easily apply Proposition 4.4 to substitute
either or both of the simplicial trees in Corollary 4.8 for an R-tree.

The statement of Corollary 4.8 was already known for quasi-isometries between graphs
and R by a result of Manning.

Lemma 4.11 ([20]). A graph is .L; C /-quasi-isometric to R for some L > 1, C > 0 if
and only if it is .1; C 0/-quasi-isometric to R for some C 0 > 0.

One consequence of Theorem 4.6 is that it allows us to get rid of the requirement in
Manning’s result that the space in question is a graph.

Corollary 4.12. A geodesic metric space is .L;C /-quasi-isometric to R for some L > 1,
C > 0 if and only if it is .1; C 0/-quasi-isometric to R for some C 0 > 0.

Proof. If a geodesic metric space X is .L;C /-quasi-isometric to R, then it is a quasi-tree,
so by Theorem 4.6, X is .1; C 0/-quasi-isometric to a simplicial tree. This simplicial tree
is quasi-isometric to R, so by Lemma 4.11, it is .1; C 00/-quasi-isometric to R. Therefore,
X is .1; C 0 C 2C 00/-quasi-isometric to R by Lemma 2.19.

4.3. Quasi-actions

We note here that the improvement from Theorem 4.6 can also be applied to groups that
quasi-act on simplicial trees.
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Definition 4.13. Let .X;d/ be a metric space, and letG be a group. A mapAWG �X!X

is an .L; C /-quasi-action of G on X if there exist constants L > 1, C > 0 such that

(1) For every g 2 G, we have that the map A.g;�/WX ! X is an .L; C /-quasi-
isometry.

(2) For every g; h 2 G and x 2 X , we have that d.A.g;A.h; x//; A.gh; x// 6 C .

A quasi-action is cobounded if there exists a constant C 0 > 0 such that for every x; y 2 X
there exists some g 2 G such that d.A.g; x/; y/ 6 C 0.

A group having a cobounded quasi-action on a simplicial tree is a trivial property, as
we could consider the isometric action of any group on the tree which consists of a single
vertex. To obtain a non-trivial statement, we therefore need a way of comparing quasi-
actions.

Definition 4.14. Let .X; dX / and .Y; dY / be metric spaces, and let AX WG �X ! X and
AY WG � Y ! Y be quasi-actions. A map f WX ! Y is coarsely equivariant with respect
to these quasi-actions if there exists C > 0 such that for every x 2 X and g 2 G, we have
that

dY .f .AX .g; x//; AY .g; f .x/// 6 C:

If f is also a quasi-isometry, then we call f a quasi-conjugacy. If there exists a quasi-
conjugacy with respect to a pair of quasi-actions, then we say those quasi-actions are
quasi-conjugate.

The following standard results tell us that quasi-actions being quasi-conjugate is an
equivalence relation.

Lemma 4.15. Let .X;dX / and .Y;dY / be metric spaces, letAX WG �X!X andAY WG �
Y ! Y be quasi-actions, and let f WX ! Y be a quasi-conjugacy with respect to these
quasi-actions. Then the quasi-inverse given by Remark 2.18 is also a quasi-conjugacy
with respect to these quasi-actions.

Lemma 4.16. Let .X; dX /, .Y; dY /, and .Z; dZ/ be metric spaces, and let AX WG �
X ! X , AY WG � Y ! Y , and AZ WG � Z ! Z be quasi-actions. Let f WX ! Y be
a quasi-conjugacy with respect to AX and AY , and let hW Y ! Z be a quasi-conjugacy
with respect to AY and AZ . Then h ı f WX ! Z is a quasi-conjugacy with respect to AX
and AZ .

It is a result of Manning that every finitely generated group that has a cobounded quasi-
action on a simplicial tree also admits a quasi-conjugate isometric action on a quasi-tree.

Proposition 4.17 ([20]). Let G be a finitely generated group that has a cobounded quasi-
action on a simplicial tree � . There exists a (possibly infinite) generating set S forG such
that the Cayley graph Cay.G; S/ is quasi-isometric to � , and the isometric action of G
on Cay.G; S/ is quasi-conjugate to the quasi-action of G on � .

We therefore obtain the following.
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Proposition 4.18. If a finitely generated group admits a cobounded .L; C /-quasi-action
on a simplicial tree for someL> 1, C > 0, then it admits a quasi-conjugate .1;C 0/-quasi-
action on a simplicial tree for some C 0 > 0.

Proof. Suppose that G is a finitely generated group which has a cobounded quasi-action
on a simplicial tree. Then by Proposition 4.17, there exists a generating set S of G such
that Cay.G; S/ is a quasi-tree. By Theorem 4.6, we have that Cay.G; S/ is .1; C 0/-quasi-
isometric to some simplicial tree � . We want to show that the isometric action of G on
Cay.G;S/ induces a .1;5C 0/-quasi-action on � . Let d be the metric on Cay.G;S/, and d�
be the metric on � .

Let 'WCay.G; S/! � be a .1; C 0/-quasi-isometry, and let  W� ! Cay.G; S/ be the
.1; 3C 0/-quasi-isometry given by Remark 2.18. For every g 2 G, we have that the map
' ı g ı  W� ! � is a .1; 5C 0/-quasi-isometry by Lemma 2.19.

For x 2 � , let A.g; x/ D ' ı g ı  .x/. For every g; h 2 G and x 2 X , we have that

d�.A.g;A.h; x//; A.gh; x// D d�.' ı g ı  ı ' ı h ı  .x/; ' ı g ı h ı  .x//

6 d. ı ' ı h ı  .x/; h ı  .x//C C 0:

By the definition of  from Remark 2.18, we have that d�.'. .y//; y/ 6 C 0 for every
y 2 � , so

d.' ı  ı ' ı h ı  .x/; ' ı h ı  .x// 6 C 0;

and therefore
d. ı ' ı h ı  .x/; h ı  .x// 6 2C 0:

We conclude that
d�.A.g;A.h; x//; A.gh; x// 6 3C 0;

and so this is a .1; 5C 0/-quasi-action.
We now want to check that this quasi-action is quasi-conjugate to the isometric action

of G on Cay.G; S/. We already have that 'WCay.G; S/! � is a quasi-isometry, and we
can also see that

d�.' ı g.x/; A.g; '.x/// D d�.' ı g.x/; ' ı g ı  ı '.x// 6 d.x;  ı '.x//C C 0

6 d�.'.x/; ' ı  ı '.x//C 2C
0 6 3C 0:

Hence this is a quasi-conjugacy. Proposition 4.17 tells us that the isometric action ofG on
Cay.G;S/ is quasi-conjugate to the .L;C /-quasi-action on the original simplicial tree, so
by Lemma 4.16, we have that these are both quasi-conjugate to the .1; 5C 0/-quasi-action
of G on � .

As these actions are quasi-conjugate, it is well known that several properties of the ori-
ginal quasi-action will be inherited by the .1; C 0/-quasi-action. For instance, the .1; C 0/-
quasi-action will also be cobounded. There is also a notion of individual group elements
quasi-acting elliptically or loxodromically [20], which is also preserved under quasi-
conjugacy.
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4.4. Countable and locally finite trees

We note that the definition of a simplicial tree allows a vertex to have uncountably many
neighbours. We here give one criterion for when an R-tree is .1; C /-quasi-isometric to
a countable or locally finite simplicial tree, which will allow us to obtain analogues
of Corollary 4.8 for countable and locally finite simplicial trees. We will also prove that
every proper quasi-tree is .1; C /-quasi-isometric to a locally finite simplicial tree, which
will be used at the end of Section 6.2.

Proposition 4.19. Given an R-tree T , we have the following:

(1) If for some r > 1, there exists R > 0 such that for every x 2 T , the space T n
B.x; r/ has countably many connected components of diameter at least R, then
T is .1; C /-quasi-isometric to a countable simplicial tree.

(2) If for some r > 1, there exists R > 0 such that for every x 2 T , the space T n
B.x; r/ has finitely many connected components of diameter at least R, then T is
.1; C /-quasi-isometric to a locally finite simplicial tree.

Proof. We prove only the first part, as the proof of the second part is analogous. Suppose
that T is an R-tree for which for some r > 1 there exists R > 0 such that for every x 2 T
the space T n B.x; r/ has countably many connected components of diameter at least R.
By Proposition 4.5, we know that there exists a simplicial tree � with a .1; 2/-quasi-
isometry 'W � ! T . Here we take � and ' to be exactly the simplicial tree and quasi-
isometry that we constructed in that proposition. Let � 0 be obtained from � by iteratively
removing all leaves n D dr CRC 4e times. We then have that � 0 is a simplicial tree that
is .1;2n/-quasi-isometric to � , and so is .1;2nC 4/-quasi-isometric to T by Lemma 2.19.
We want to show that � 0 is countable.

Let v 2 � 0 be a vertex. It suffices to show that its set of neighbours S.v; 1/ in � 0 is
countable. Letw 2 S.v;1/, thenw is also a neighbour of v in � , and moreover there exists
zw 2 � such that d�.v; zw/ D n and w 2 Œv; zw �.

Recall that � is constructed with respect to a basepoint x0 2 T , with vx0 being the
corresponding vertex in � such that '.vx0/ D x0. There is at most one yw 2 S.v; 1/ such
that yw 2 Œvx0 ; v� in � , so S.v; 1/ is countable if and only if S.v; 1/ n ¹ ywº is countable.

Note that if w;w0 2 S.v; 1/ n ¹ ywº and w ¤ w0, then zw ¤ zw 0 as � does not contain
any cycles. We can also see that d�.zw ; zw 0/ D 2n, so dT .'.zw/; '.zw 0// > 2n � 2. As
v 2 Œvx0 ; zw �, by the construction of ' in Proposition 4.5, we get that dT .'.v/;'.zw//D n.
Similarly, dT .'.v/; '.zw 0// D n. We therefore get that

.'.zw/; '.zw 0//'.v/ 6
1

2
.2n � .2n � 2// D 1;

so '.zw/ and '.zw 0/ lie in different connected components of T n B.'.v/; 1/. As n > r

and r > 1, we also have that '.zw/ and '.zw 0/must lie in different connected components
of T n B.'.v/; r/. Note that each such connected component must have diameter at least
dT .'.v/; '.zw// � 1 > n � 3 > R.
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By our initial assumption, there are at most countably many such connected compon-
ents, so there are at most countably many '.zw/. Asw ¤w0 implies that '.zw/¤ '.zw 0/,
there are at most countably many w 2 S.v; 1/ n ¹ ywº, and so at most countably many
w 2 S.v; 1/. Hence � 0 is a countable simplicial tree, which is .1; 2nC 4/-quasi-isomet-
ric to T .

Remark 4.20. This is not true if we let r D 0. As an example, consider the comb spaceX
formed by taking copies Xn of Œ0;1/ indexed by n 2 Z>0, then attaching them to Œ0; 1�
by identifying 0 inX0 with 0 in Œ0; 1�, and 0 inXn with 1

n
in Œ0; 1� for n 2N. This is an R-

tree, and for any x 2 X , we can see that X n ¹xº has at most three connected components,
however by Proposition 4.21 below, we can see that X is not .L; C /-quasi-isometric to
any locally finite simplicial tree.

Proposition 4.21. Given an R-tree T , we have the following:

(1) If T is .L;C /-quasi-isometric to a countable simplicial tree, then for every r > 0,
there exists R > 0 such that for every x 2 T , the space T nB.x; r/ has countably
many connected components of diameter at least R.

(2) If T is .L; C /-quasi-isometric to a locally finite simplicial tree, then for every
r > 0, there exists R > 0 such that for every x 2 T , the space T n B.x; r/ has
finitely many connected components of diameter at least R.

Proof. We again prove only the first part, as the proof of the second part is analogous.
Let T be an R-tree, and suppose there exists a countable simplicial tree � with a .1; C /-
quasi-isometry 'W� ! T . Suppose also that there exists some r > 0 such that for every
R > 0, there exists x 2 T such that T n B.x; r/ has uncountably many connected com-
ponents of diameter at least R.

Given r > 0, we let R D 3LC 5C , and pick such an x 2 T . By coarse surjectivity,
we know that there exist v0 2 � such that dT .'.v0/; x/ 6 C , and a vertex v 2 � such that
d�.v; v

0/ 6 1. Hence dT .'.v/; '.v0// 6 LC C , so dT .'.v/; x/ 6 LC 2C .
Let CR be the set of connected components of T nB.x; r/ of diameter greater than R,

and for each C 2 CR pick xC 2 C such that r C 1
2
R 6 dT .x; xC / 6 r CR, which must

always exist as T is an R-tree. Let vC 2 � be a vertex such that dT .'.vC /;xC /6LC 2C ,
then dT .'.v/;'.vC //6 r CRC 2.LC 2C /. Hence d�.v;vC /6L.RC r C 2LC 5C /.

Note that for C ¤ C 0, we have that

dT .xC ; xC 0/ > R) dT .'.vC /; '.vC 0// > R � 2.LC 2C /

) d�.vC ; vC 0/ >
1

L
.R � 2L � 5C / > 0:

This means that vC ¤ vC 0 , so there are uncountably many such vC ’s. Recall that when
mDL.RC r C 2LC 5C /, we have that d�.v; vC /6m for every C 2 CR, so this means
that there are uncountably many vertices in B.v;m/. This contradicts � being countable.
Hence if T is .1; C /-quasi-isometric to a countable simplicial tree, we have that for every
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r > 0, there exists R > 0 such that for every x 2 T , the space T n B.x; r/ has countably
many connected components of diameter at least R.

We therefore obtain some equivalent criteria for when an R-tree is quasi-isometric to
a countable or locally finite simplicial tree, including a partial analogue to Corollary 4.8.

Corollary 4.22. Given an R-tree T , the following are equivalent:

(1) T is .L;C /-quasi-isometric to a countable simplicial tree for some L> 1, C > 0.

(2) T is .1; C 0/-quasi-isometric to a countable simplicial tree for some C 0 > 0.

(3) For some r > 1, there existsR> 0 such that for every x 2 T , the space T nB.x; r/
has countably many connected components of diameter at least R.

(4) For every r > 0, there existsR> 0 such that for every x 2 T , the space T nB.x;r/
has countably many connected components of diameter at least R.

Corollary 4.23. Given an R-tree T , the following are equivalent:

(1) T is .L; C /-quasi-isometric to a locally finite simplicial tree for some L > 1,
C > 0.

(2) T is .1; C 0/-quasi-isometric to a locally finite simplicial tree for some C 0 > 0.

(3) For some r > 1, there existsR> 0 such that for every x 2 T , the space T nB.x; r/
has finitely many connected components of diameter at least R.

(4) For every r > 0, there existsR> 0 such that for every x 2 T , the space T nB.x;r/
has finitely many connected components of diameter at least R.

We can then extend the first equivalences to geodesic metric spaces to get a full ana-
logue of Corollary 4.8.

Corollary 4.24. We have the following:

(1) A geodesic metric space is .L; C /-quasi-isometric to a countable simplicial tree
for some L > 1, C > 0 if and only if it is .1; C 0/-quasi-isometric to a countable
simplicial tree for some C 0 > 0.

(2) A geodesic metric space is .L; C /-quasi-isometric to a locally finite simplicial
tree for some L > 1, C > 0 if and only if it is .1; C 0/-quasi-isometric to a locally
finite simplicial tree for some C 0 > 0.

Proof. Let X be a geodesic metric space that is quasi-isometric to a countable simplicial
tree. We then have thatX is a quasi-tree, so there existsC 0> 0 such thatX is .1;C 0/-quasi-
isometric to TX . This means that TX is an R-tree that is quasi-isometric to a countable
simplicial tree, so by Corollary 4.22, there exists C 00 > 0 such that TX is .1; C 00/-quasi-
isometric to a countable simplicial tree. We conclude that X is .1; C 0 C 2C 00/-quasi-
isometric to a countable simplicial tree by Lemma 2.19. The reverse direction is obvious,
and the second part follows using the same method.
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This allows us to get analogues to Proposition 4.18 in the case of quasi-actions on
countable or locally finite simplicial trees, using the same reasoning as in the proof of Pro-
position 4.18.

Corollary 4.25. We have the following:

(1) If a finitely generated group admits a cobounded .L;C /-quasi-action on a count-
able simplicial tree for some L > 1, C > 0, then it admits a quasi-conjugate
.1; C 0/-quasi-action on a countable simplicial tree for some C 0 > 0.

(2) If a finitely generated group admits a cobounded .L;C /-quasi-action on a locally
finite simplicial tree for some L > 1, C > 0, then it admits a quasi-conjugate
.1; C 0/-quasi-action on a locally finite simplicial tree for some C 0 > 0.

We conclude this section by noting that if our quasi-tree is a proper space, then we can
use Proposition 4.19 to obtain a .1;C /-quasi-isometry with a locally finite simplicial tree.

Corollary 4.26. Every proper quasi-tree is .1; C /-quasi-isometric to a locally finite sim-
plicial tree.

Proof. We first show that every proper R-tree has this property. Let T be an R-tree,
and suppose it is not .1; C /-quasi-isometric to a locally finite simplicial tree. By Pro-
position 4.19, we can find x 2 T such that T n B.x; 1/ has infinitely many connected
components of diameter greater than 2. Let C be the set of these connected components.

For every C 2 C , we can pick xC 2 C such that d.x; xC / D 2. Note that, as T is an
R-tree, for every C;C 0 2 C such that C ¤ C 0, we have that d.xC ; xC 0/ > 2. We therefore
have an infinite collection of points in B.x; 2/, no subsequence of which can converge.
Hence B.x; 2/ is not compact, which implies that T is not proper.

Let X be a proper quasi-tree, then TX is proper as the quotient map is continuous.
As X is .1; C /-quasi-isometric to TX , and TX is .1; C 0/-quasi-isometric to a locally finite
simplicial tree, the conclusion follows.

5. Uniform and non-uniform tree approximation

We are now able to get a uniform version of Gromov’s tree approximation in the case of
quasi-trees, as an easy consequence of the results in Sections 3 and 4. In fact, we have an
even stronger result, as our uniform approximation applies to any subset of our quasi-tree,
as opposed to the finite subsets that were considered for general hyperbolic spaces.

Proposition 5.1. Let .X; d/ be a ı-hyperbolic quasi-tree with bottleneck constant� > 0.
Let x0 2 X , and let Z � X . Let Y be a union of geodesic segments

S
z2Z Œx0; z�. Then

there exist an R-tree T and a map f W .Y; d/! .T; d�/ such that

(1) For all z 2 Z, the restriction of f to the geodesic segment Œx0; z� is an isometry.

(2) For all x;y 2 Y , we have that d.x;y/� 2.�C 2ı/6 d�.f .x/; f .y//6 d.x;y/.
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Proof. Let us consider the end-approximating tree TX , and the end-approximating map
f WX! TX . We now consider the restriction f jY WY ! TX . The fact that f is an isometry
on every geodesic segment Œx0; z�was noted in the first part of the proof of Proposition 3.8,
so it is also true for f jY .

For the second part, we simply apply Proposition 4.2. It was noted in the proof that,
given X is a quasi-tree, we have d.x; y/ � 2.�C 2ı/ 6 d�.Œx�; Œy�/ 6 d.x; y/ for every
x; y 2 X . Hence this is also true for f jY when applied to any x; y 2 Y .

The converse to this is obviously true, as by taking our set Z to be the whole of X we
would get a quasi-isometric embedding from X to an R-tree, giving us that X is a quasi-
tree by the following standard result.

Definition 5.2. A subtree T of a metric spaceX is a subspace ofX that is an R-tree under
the shortest path metric dT .

Lemma 5.3. Let X be a geodesic metric space. If X quasi-isometrically embeds into an
R-tree T , then X is quasi-isometric to a subtree of T .

Proof. Let f WX ! T be an .L; C /-quasi-isometric embedding, where T is an R-tree.
AssumeC >0. Let x0 2X , and T 0 be the union of geodesic segments

S
z2X Œf .x0/;f .z/�.

The space T 0 is a path-connected subset of an R-tree, so is itself an R-tree. We want to
show that f WX ! T 0 is a quasi-isometry.

As f WX ! T 0 is an .L; C /-quasi-isometric embedding, we only need to check that
for every y 2 T 0, there exists x 2 X such that d 0.f .x/; y/ 6 C . Suppose this is not the
case, so for some y 2 T 0, we have that B.y;C / \ f .X/ D ;. By the definition of T 0, we
can find z 2 X such that y 2 Œf .x0/; f .z/�.

As B.y;C / \ f .X/ D ;, we have that f .Œx0; z�/ is disconnected in T 0, where f .x0/
and f .z/ are in different connected components. We can group the connected components
of f .Œx0; z�/ together depending on which component of T 0 n ¹yº they lie in.

For every " > 0, we can therefore find z1; z2 2 Œx0; z��X such that d.z1; z2/6 ", and
f .z1/, f .z2/ lie in different connected components of f .Œx0; z�/, with y 2 Œf .z1/;f .z2/�.
This tells us that 2C 6 d 0.f .z1/; f .z2// 6 Ld.z1; z2/C C 6 L"C C , which is a con-
tradiction for " < C

L
. Hence f WX ! T 0 is a quasi-isometry.

Although it is sufficient by the above, the converse of Proposition 5.1 is actually a far
stronger assumption than we need to prove that X is a quasi-tree. As it turns out, it is
possible to show that a global quasi-isometry exists when we only assume uniform approx-
imation for finite subsets. In particular, this means that having uniform tree approximation
for finite subsets is equivalent to having uniform tree approximation for all subsets, so
quasi-trees are exactly the geodesic spaces for which uniform tree approximation is pos-
sible.

In fact, to show that our space is a quasi-tree, we can even loosen our idea of uniform
tree approximation for finite subsets to allow for a multiplicative error as well. This means
that having this less strict version of tree approximation for all finite subsets is equivalent
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to having the stronger version for all finite subsets. This third equivalence was suggested
by the referee of this paper.

Proposition 5.4. Let .X; d/ be a geodesic metric space. The following are equivalent:

(1) X is a quasi-tree.

(2) There exists C > 0 such that for every finite subset Z of X , there exist an R-tree
.T; d�/ and a .1; C /-quasi-isometric embedding f W .Z; d/! .T; d�/.

(3) There existL> 1 and C > 0 such that for every finite subsetZ ofX , there exist an
R-tree .T; d�/ and an .L; C /-quasi-isometric embedding f W .Z; d/! .T; d�/.

Proof. The first statement implies the second statement by Proposition 5.1. The second
statement clearly implies the third. It remains to show that the third statement implies
that X is a quasi-tree.

Now suppose that such constantsL> 1 andC > 0 exist. LetADmax¹1;C º, soA > 0,
and note that any .L; C /-quasi-isometric embedding is also an .L; A/-quasi-isometric
embedding. We want to show that X satisfies the bottleneck criterion. Let x; y 2 X , let
Œx; y� be a geodesic between them, and letm 2 Œx; y� be the midpoint. Let ¹a0; : : : ; akº �
Œx;y� be such that a0 D x, ak D y, and d.ai ; aiC1/6 A

L
. Let 
 be a path between x and y,

and let ¹z0; : : : ; znº � 
 be such that z0 D x, zn D y, and d.zi ; ziC1/ 6 A
L

.
We let Y D ¹m; a0; : : : ; ak ; z1; : : : ; zn�1º, and so by our assumption, there exist an

R-tree T and a map f W .Y; d/! .T; d�/ such that 1
L
d.a; b/ � A 6 d�.f .a/; f .b// 6

Ld.a; b/C A for every a; b 2 Y .
Consider Œf .x/; f .y/�. As T is an R-tree, there exists m0 2 Œf .x/; f .y/� such that

d�.f .x/; f .m// D d�.f .x/;m0/C d�.m0; f .m//;

d�.f .m/; f .y// D d�.f .m/;m0/C d�.m0; f .y//:

In other words, m0 is the closest point in Œf .x/; f .y/� to f .m/.
Now consider the path which is formed by the concatenation Œf .a0/; f .a1/� � � � � �

Œf .ak�1/; f .ak/�. This is a path from f .x/ to f .y/ in T , so m0 2 Œf .ai /; f .aiC1/� for
some i . Recall that d.ai ; aiC1/ 6 A

L
, so d�.f .ai /; f .aiC1// 6 2A. Let j 2 ¹1; : : : ; nº

be the least element such that f .aj / 2 B.m0; 2A/, and let l 2 ¹1; : : : ; nº be the largest
element such that f .al / 2 B.m0; 2A/. The preceding statements imply that these exist,
and that j ¤ l .

We note that f .aj / lies in the same connected component of T n ¹m0º as f .x/, as
either aj D x or f .aj�1/ lies in the same connected component of T nB.m0; 2A/ as f .x/.
By the same reasoning, f .al / lies in the same connected component of T n ¹m0º as f .y/,
so m0 separates f .aj / and f .al / in T , and therefore m0 2 Œf .aj /; f .al /�.

We also want to show that m 2 Œaj ; al �. Note that m 2 Œai ; aiC1� for some i , and both
d�.f .ai /; f .m// 6 2A and d�.f .aiC1/; f .m// 6 2A. Either f .m/ D m0, or f .m/ lies
in a different connected component of T n ¹m0º to f .x/ and to f .y/. Either way, this
implies that i > j and i C 1 6 l , so m 2 Œaj ; al �.
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We therefore have that

d�.f .aj /; f .al //C 2d
�.m0; f .m// D d�.f .aj /; f .m//C d

�.f .m/; f .al //

6 Ld.aj ; m/C Ld.m; al /C 2A

D Ld.aj ; al /C 2A

6 L2d�.f .aj /; f .al //C L
2AC 2A:

This means that

d�.m0; f .m// 6
1

2
..L2 � 1/d�.f .aj /; f .al //C L

2AC 2A/

6
1

2
.4.L2 � 1/AC L2AC 2A/ D 3L2A � A:

Consider the path formed by the concatenation Œf .z0/;f .z1/�� � � � � Œf .zn�1/;f .zn/�.
This is a path from f .x/ to f .y/ in T , so as before m0 2 Œf .zi /; f .ziC1/� for some i .
Note that d�.f .zi /; f .ziC1// 6 Ld.zi ; ziC1/ C A 6 2A, so for some i , we have that
d�.f .zi /;m

0/ 6 A.
We conclude that

d.m; zi / 6 Ld�.f .m/; f .zi //C A

6 L.d�.f .m/;m0/C d�.m0; f .zi ///C A 6 3L3AC A;

so X satisfies the bottleneck criterion, and therefore is a quasi-tree.

Gromov also proved an alternative version of tree approximation in hyperbolic spaces,
in which the approximating tree is a subspace of the hyperbolic space.

Proposition 5.5 ([11, pp. 157–158], [5]). Suppose X is a ı-hyperbolic geodesic metric
space. There exists a function hWN ! Œ0;1/ such that if Y � X is a finite set of points
with jY j D n, then there exists a subtree T � X such that Y � T and for every x; y 2 T ,
we have that dT .x; y/ 6 d.x; y/C ıh.n/.

It is clear from the definition of dT that d.x; y/ 6 dT .x; y/. In this version of tree
approximation, the R-tree T is constructed in the obvious way: let Y D ¹y1; : : : ; ynº, set
T1 D Œy1; y2�, then set T2 D Œy3; t �[ T1, where t is a closest point in T1 to y3, and so on.
This process will terminate at T D Tn�1.

It is natural to ask if there is a uniform version of this type of tree approximation in
the case of quasi-trees.

Question 5.6. Let X be a quasi-tree. Does there exist a constant C > 0, depending only
on X , such that for any set of finite points Y � X , we can construct an R-tree T � X
such that Y � T , and for every x; y 2 T , we have that dT .x; y/ 6 d.x; y/C C?

It is immediately obvious that taking the same approach as in the proof of Proposi-
tion 5.5 will not work, as the following example shows.
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Example 5.7. Consider the space X D Œ0; 1� � R with the Euclidean metric. It is clear
that X is a quasi-tree. Let n 2 N be odd, and let Y D ¹.0; 0/; .1; 1/; .0; 2/; : : : ; .0; n � 1/;
.1;n/º. If a tree T is constructed using this ordering of the points, we get d..0;0/; .1;n//D
p
1C n2 and dT ..0; 0/; .1; n// D n

p
2, so

lim
n!1

d..0; 0/; .1; n//

dT ..0; 0/; .1; n//
D

1
p
2
:

In particular, we cannot have that dT ..0; 0/; .1; n// 6 d..0; 0/; .1; n// C C for all odd
n 2 N, whatever the choice of the constant C .

Although the naive approach does not work, in the above example the answer to this
question is actually yes, which we can easily see by letting T D .¹1

2
º �R/[

Sn
iD1.Œ0;1��

¹yiº/, and letting C D 1. We can however show that there are quasi-trees in which the
answer to the above question will always be no, whichever way the subtree is constructed.
The idea in the following example is that, over a large scale, it is not possible to keep the
paths in a subtree tight to geodesics in all directions.

Example 5.8. Take the infinite 4-regular tree with a base vertex x0 and edges of length 1.
For all n 2 Z>0, replace the vertices in S.x0; n/ with copies of the rectangle Œ0; 2� �
Œ0; 2nC1�. Attach the edges to these vertex rectangles at the midpoint of the sides, with
one of the short sides oriented towards Œ0; 2�2 (see Figure 5 for an illustration). We will
call this space X , and note that it is a quasi-tree under the piecewise Euclidean metric by
Manning’s bottleneck criterion.

y

x CC1

z

a

Figure 5. A counterexample to uniform subtree approximation.

Let C > 0 be arbitrary. Let n 2N be such that 2nC1 > 2C C 3, and let Yn be the set of
midpoints of the edges in X that correspond to the edges in B.x0; n/ in the 4-regular tree.
Suppose that T is a subspace of X such that Yn � T , T is a tree under the shortest path
metric dT , and dT .x; y/ 6 d.x; y/C C for every x; y 2 T . Consider a rectangle in X of
size Œ0; 2� � Œ0; 2mC1�, where 2C C 2 < 2mC1 < 2nC1.
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Let x;y 2 Yn be the midpoints of the edges attached to the long sides of this rectangle,
and let a2Yn be the midpoint of the edge attached to the short side of this rectangle nearest
to the central square. We will show that at least one of dT .a; x/ or dT .a; y/ must have
large error in comparison to d.a; x/ or d.a; y/, respectively.

We first note that there must be a unique shortest path in T that connects x to y, and
it must have length at most d.x; y/C C D 3C C by our assumption on T . Therefore,
this path must stay in the subrectangle Œ0; 2� � Œ2m � .C C 1/; 2m C C C 1�, as otherwise
dT .x; y/ > 1C 2.C C 1/ D 3C 2C > d.x; y/C C .

As 2m > C C 1, this subrectangle is a proper subset of the original rectangle, and, in
particular, does not contain the attaching point of the edge containing a. As T is a tree,
this means that outside this subrectangle the shortest path in T between a and x must be
identical to the shortest path in T between a and y. Let z be the point at which this path
intersects Œ0; 2� � ¹2m � .C C 1/º, and suppose without loss of generality that d.x; z/ >
d.y; z/.

We now want to use this to compare dT .a; x/ to d.a; x/. We first note that

d.a; z/C d.z; x/ 6 dT .a; z/C dT .z; x/ D dT .a; x/:

For z0 2 Œ0; 2�� ¹2m � .C C 1/º satisfying d.x;z0/> d.y; z0/, the sum d.a; z0/C d.z0; x/

will be minimal when z0 D .1; 2m � .C C 1//, which is the central point of that side of
the subrectangle. We therefore get that

dT .a; x/ > d.a; z/C d.z; x/ > 2m � .C C 1/C
1

2
C

p
1C .C C 1/2 C

1

2
;

while d.a; x/ D 1C
p
1C .2m/2, so

dT .a; x/ � d.a; x/ >
p
1C .C C 1/2 � .C C 1/C 2m �

p
1C .2m/2:

Note that
2m �

p
1C .2m/2 ! 0 as m!1;

so taking "D
p
1C.CC1/2�.CC1/

2
, we know that there exists someM 2N such that 2M >

C C 1, and such that for all choices of m, where n > m > M , we have that dT .a; x/ >
d.a; x/C ". This is true for any approximating tree T � X of Yn, and in fact M can be
chosen uniformly as it is not dependent on n.

We now want to use this to show that, if we choose large enough n, no subtree ofX can
approximate Yn with error no greater than C . Suppose otherwise, so suppose there exists
a constant C > 0 such that for any set of finite points Y � X , there exists an R-tree T
that is embedded in X such that Y � T , and such that for every x; y 2 T , we have that
dT .x; y/ 6 d.x; y/C C . Let n 2 N be such that ".n �M � 1/ > C , and consider Yn,
with T the associated subtree of X .

Let x1 be the midpoint of an edge adjacent to the central square Œ0; 2�2. For xi , where
16 i 6 n� 2, we choose xiC1 2 Yn such that xi and xiC1 are midpoints of edges attached



Tree approximation in quasi-trees 1221

to the same rectangle, xiC1 is strictly further from the central square than xi , and xiC1 is
the midpoint of an edge attached to one of the long sides of the shared rectangle. We can
think of this as moving outwards in the quasi-tree X , turning “left” or “right” each time
we enter a rectangle. This gives us two possible options for xiC1, we take the option that
maximises dT .xi ; xiC1/.

This means that for i >M , we have dT .xi ; xiC1/> d.xi ; xiC1/C ", and we note that
for all other i , we still have dT .xi ; xiC1/ > d.xi ; xiC1/. By our construction of X , any
path between x1 and xn�1 must pass through every xi , so we can see that dT .x1; xn�1/D
dT .x1; x2/ C � � � C dT .xn�2; xn�1/. It is also clear from our construction of X that
d.x1; xn�1/ D d.x1; x2/C � � � C d.xn�2; xn�1/, so

dT .x1; xn�1/ > d.x1; xn�1/C ".n �M � 1/ > d.x1; xn�1/C C:

This is a contradiction, so no such constant C > 0 exists for the quasi-tree X .

Although the answer to Question 5.6 is no in general, we can still ask the following
question.

Question 5.9. Does there exist a characterisation of those quasi-trees for which the an-
swer to Question 5.6 is yes?

6. Geometry of the end-approximating tree

We will now return to the end-approximating tree TX . In Section 3, we showed that if X
is a geodesic metric space, then TX is an R-tree, and in Section 4, we showed that if X
is a quasi-tree, then TX is .1; C /-quasi-isometric to X . In this section, we will give more
detail on how the geometry of X relates to the geometry of TX . In particular, we will
show that when X is proper their space of ends are homeomorphic, and that when X is
a quasi-tree, their boundaries can be thought of as being isometric.

6.1. Path components

Here we will formalise the idea that TX is constructed by collapsing X along the spheres
S.x0; r/, which was mentioned at the end of Section 3. In doing so, we will look at the
correspondence between the path components of X nB.x0; r/ and TX nB.Œx0�; r/, which
will be relevant in Sections 6.2 and 6.3.

For this section, we will assume a fixed basepoint x0 2X . We begin with the following
easy lemma.

Lemma 6.1. Let .X;d/ be a metric space, and let x;y 2X . Suppose that for every " > 0,
there exists a path 
 W Œ0; 1�! X from x to y such that

d.x0; 
.t// > min¹d.x0; x/; d.x0; y/º � "

for all t 2 Œ0; 1�. Then d�.Œx�; Œy�/ D jd.x0; x/ � d.x0; y/j.
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Proof. Recall that d�.Œx�; Œy�/ D d 0.x; y/ D d.x0; x/C d.x0; y/ � 2.x; y/0x0 , so if we
can show that .x;y/0x0 Dmin¹d.x0; x/; d.x0; y/º, then we will be done. We already know
that .x; y/0x0 6 min¹d.x0; x/; d.x0; y/º, so we just need the opposite inequality.

Let " > 0, and let 
 W Œ0; 1� ! X be a path from x to y such that d.x0; 
.t// >
min¹d.x0; x/; d.x0; y/º � " for all t 2 Œ0; 1�. Let � > 0, and choose a sequence 0 D
t1 < t2 < � � � < tn D 1 such that d.
.ti /; 
.tiC1// 6 � for every 1 6 i 6 n � 1. Then

.
.ti /; 
.tiC1//x0 D
1

2
.d.x0; 
.ti //C d.x0; 
.tiC1// � d.
.ti /; 
.tiC1///

>
1

2
.2min¹d.x0; x/; d.x0; y/º � 2" � �/

D min¹d.x0; x/; d.x0; y/º � " �
�

2
:

It follows that .x; y/0x0 > min¹d.x0; x/; d.x0; y/º � " � �
2

, so as " > 0 and � > 0 are
arbitrary, we can conclude that .x; y/0x0 > min¹d.x0; x/; d.x0; y/º, and we therefore have
equality.

Corollary 6.2. If X is a geodesic metric space such that for every r 2 Œ0;1/ and every
x; y 2 S.x0; r/ there exists a path 
 between x and y such that d.x0; 
/ > r , then TX is
isometric to Œ0;1/.

We would like to show that the reverse implication to Lemma 6.1 also holds. Note that
the " > 0 is necessary for this to be the case. For example, if we consider X to be an open
ball around some x0 in R2 with two points x and y added from its boundary, then it can
be seen that those boundary points would still collapse together in TX despite the lack of
any path such that d.x0; 
.t// > min¹d.x0; x/; d.x0; y/º.

To show the reverse implication to Lemma 6.1, we will need to look at the relationship
between the path components of X n B.x0; r/ and TX n B.Œx0�; r/.

Lemma 6.3. Let .X; d/ be a geodesic metric space. Let x; y 2 X and r 2 Œ0;1/. Then x
and y lie in the same path component of X n B.x0; r/ if and only if .Œx�; Œy�/�

Œx0�
> r .

Proof. Suppose x and y lie in the same path component of X n B.x0; r/. Then there
exist ı > 0 and a path 
 W Œ0; 1�! X between them such that d.x0; 
.t// > r C ı for all
t 2 Œ0; 1�. The existence of such a ı follows from the fact that 
 is continuous, as this
implies that 
.Œ0; 1�/ is a compact subset of X n B.x0; r/. If there existed a sequence of
points .xn/ in 
.Œ0; 1�/ such that d.x0; xn/! r , then there would exist x 2 
.Œ0; 1�/ such
that d.x0; x/ D r , a contradiction. Therefore, we can apply the same argument as in the
proof of Lemma 6.1 to get that .Œx�; Œy�/�

Œx0�
D .x; y/0x0 > r C ı > r .

Now suppose x and y do not lie in the same path component ofX nB.x0; r/. If x or y
lies in B.x0; r/, then it is immediate that

.Œx�; Œy�/�Œx0� D .x; y/
0
x0

6 min¹d.x0; x/; d.x0; y/º 6 r:
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If x and y lie in different path components of X nB.x0; r/, then any geodesic Œx; y� must
intersect B.x0; r/. Let z 2 Œx; y� \ B.x0; r/. As d.x0; z/ 6 r , by Lemma 2.10 we have
that .x; y/x0 6 r .

Let .x1; : : : ; xn/ be any sequence in Sx;y . As x1 D x and xn D y, and x and y lie
in different path components of X n B.x0; r/, there must be some pair xi , xiC1 such that
xi 2 B.x0; r/, or xiC1 2 B.x0; r/, or xi and xiC1 lie in different path components of
X n B.x0; r/. Therefore, .xi ; xiC1/x0 6 r , so as this sequence in Sx;y was arbitrary we
must have that .Œx�; Œy�/�

Œx0�
D .x; y/0x0 6 r .

Remark 6.4. This would not hold in general if we instead removed an open ball and
considered when .Œx�; Œy�/�

Œx0�
> r . To see this, we can again look at the example of X

being an open ball in R2 with two points added from its boundary.

Corollary 6.5. Let .X; d/ be a geodesic metric space. Let x; y 2 X , and let r 2 Œ0;1/.
We then have that x and y lie in the same path component of X n B.x0; r/ if and only
if Œx� and Œy� lie in the same path component of TX n B.Œx0�; r/.

Proof. As TX is a geodesic tree, we have that Œx� and Œy� lie in the same path component
of TX nB.Œx0�; r/ if and only if .Œx�; Œy�/�

Œx0�
> r , which by Lemma 6.3 is true if and only

if x and y lie in the same path component of X n B.x0; r/.

We can now give an alternative definition of the metric d� from the geometry of X .

Corollary 6.6. Let X be a geodesic metric space, and let x; y 2 X . Then .Œx�; Œy�/�
Œx0�
D

sup¹r 2 Œ0;1/W x and y lie in the same path component of X n B.x0; r/º.

Proof. This follows from the fact that TX is a tree, so .Œx�; Œy�/�
Œx0�
D d�.Œx0�; Œz�/, where

Œz� 2 TX is the unique point such that ŒŒx0�; Œz�� D ŒŒx0�; Œx�� \ ŒŒx0�; Œy��. We then simply
have to notice that d�.Œx0�; Œz�/D sup¹r 2 Œ0;1/W Œx� and Œy� lie in the same path compo-
nent of TX n B.Œx0�; r/º, and apply Corollary 6.5.

Remark 6.7. If X is an R-tree, then this confirms that TX D X as Corollary 6.6 tells us
that .x; y/x0 D .Œx�; Œy�/

�
Œx0�

, so d.x; y/ D d�.Œx�; Œy�/.

Remark 6.8. Recall that .Œx�; Œy�/�
Œx0�
D .x;y/0x0 . We can use this along with Lemmas 2.9

and 2.10 to give an alternative proof of the fact that when X is a quasi-tree, the inequality
.x; y/x0 6 .x; y/0x0 6 .x; y/x0 C�C 2ı holds, where � > 0 is the bottleneck constant
and ı > 0 is the hyperbolicity constant.

We can now obtain our improvement of Lemma 6.1.

Corollary 6.9. Let .X; d/ be a geodesic metric space, and let x; y 2 X . We have that
d�.Œx�; Œy�/ D jd.x0; x/ � d.x0; y/j if and only if for every " > 0 there exists a path

 W Œ0; 1� ! X from x to y such that d.x0; 
.t// > min¹d.x0; x/; d.x0; y/º � " for all
t 2 Œ0; 1�.
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Proof. If d�.Œx�; Œy�/ D jd.x0; x/ � d.x0; y/j, then

.Œx�; Œy�/�Œx0� D min¹d.x0; x/; d.x0; y/º;

so the forward implication follows from Corollary 6.6. The reverse implication is Lem-
ma 6.1.

As a particular case of this, we can see that two points in X will collapse together
in TX if and only if they lie on the same sphere and there exist appropriate paths between
them, as mentioned at the end of Section 3.

Corollary 6.10. Let .X; d/ be a geodesic metric space, and let x; y 2 X . We have that
Œx� D Œy� if and only if there exists r 2 Œ0;1/ such that x; y 2 S.x0; r/ and for every
" > 0, there exists a path 
 between them in X such that d.x0; 
/ > r � ".

Proof. Suppose Œx� D Œy�. Then d�.Œx0�; Œx�/ D d�.Œx0�; Œy�/, so d.x0; x/ D d.x0; y/,
and so d�.Œx�; Œy�/ D jd.x0; x/ � d.x0; y/j. Both directions now follow from Corol-
lary 6.9.

Remark 6.11. Suppose that two geodesic rays 
1W Œ0;1/!X and 
2W Œ0;1/!X based
at x0 have the property that for every t 2 Œ0;1/ and " > 0, the points 
1.t/ and 
2.t/
are in the same path component of X n B.x0; t � "/. Then Corollary 6.10 means that
Œ
1.t/� D Œ
2.t/� for every t 2 Œ0;1/, and, in particular, 
1 and 
2 are sent to the same
geodesic ray in TX .

6.2. Ends of TX for proper metric spaces

In this subsection, we will show that, whenX is a proper metric space, we can think of TX
as X with each of its ends collapsed into one geodesic ray. This justifies our description
of TX as the end-approximating tree of a metric space. In particular, we will show that
the space of ends of X is homeomorphic to the space of ends of TX , and as a result is
homeomorphic to the space of ends of a locally finite simplicial tree. These results are
somewhat obvious, but we include them for completeness.

We will define the space of ends for a proper geodesic metric space, for the more
general definition in topological spaces see [6, p. 144]. As before, we will assume a fixed
basepoint x0 2 X .

Definition 6.12. Let X be a proper metric space. A proper ray in X is a continuous map

 W Œ0;1/! X such that for every r 2 Œ0;1/, the set 
�1.B.x0; r// is bounded.

Definition 6.13. Let X be a proper metric space, and let 
1 and 
2 be proper rays in X .
We say that 
1 and 
2 converge to the same end if for every r 2 Œ0;1/, there exists
t 2 Œ0;1/ such that 
1.Œt;1// and 
2.Œt;1// are contained in the same path component
of X n B.x0; r/. This defines an equivalence relation on the proper rays in X . We denote
the equivalence class of a proper ray 
 by end.
/.
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The following lemma can be found in [6]. We will mimic its proof for Lemma 6.19.

Lemma 6.14. [6, Lemma I.8.28] Let X be a proper geodesic metric space. For every
proper ray 
 in X , there exists a geodesic ray 
 0 based at x0 2 X such that 
 0 2 end.
/.

The proof of the above lemma relies on the Arzelà–Ascoli theorem, we state the neces-
sary version of it here. For a stronger version, see [21, p. 290].

Theorem 6.15 (Arzelà–Ascoli theorem). Let X and Y be metric spaces, and let F be
a subset of the set ¹f WX ! Y W f continuousº. If F is equicontinuous, and the set Fx D

¹f .x/W f 2 F º has compact closure in Y for every x 2 X , then a subsequence of F

converges pointwise to a continuous function f WX ! Y .

The space of ends and the topology on it are defined as follows.

Definition 6.16. Let X be a proper metric space. The space of ends of X is the set of
equivalence classes of proper rays inX , denoted Ends.X/. A sequence of ends converges,
end.
n/! end.
/, if for every r 2 Œ0;1/ there exists a sequence of real numbers .Nn/n2N

such that 
n.ŒNn;1// and 
.ŒNn;1// lie in the same path component of X n B.x0; r/
for all n 2 N sufficiently large. The topology on Ends.X/ is induced by this conver-
gence.

If two proper metric spaces X and Y are quasi-isometric, then it is well known that
this quasi-isometry induces a homeomorphism between Ends.X/ and Ends.Y / [6, Propos-
ition I.8.29]. This means that when X is a quasi-tree, we automatically get that Ends.X/
and Ends.TX /will be homeomorphic. We will show that this is in fact true for every proper
metric space X .

Lemma 6.17. Let .X; d/ be a proper geodesic metric space. Let f WX ! TX be the end-
approximating map. For every proper ray 
 W Œ0;1/! X , the map f ı 
 W Œ0;1/! TX is
a proper ray.

Proof. We first recall that, as d�.Œx�; Œy�/ 6 d.x; y/, the function f is continuous. There-
fore, f ı 
 is continuous. Now let r 2 Œ0;1/, and note that f �1.B.Œx0�; r// D B.x0; r/.
As 
 is a proper ray, 
�1.f �1.B.Œx0�; r/// D 
�1.B.x0; r// is bounded, so we can con-
clude that f ı 
 is a proper ray.

Corollary 6.18. Let .X; d/ be a proper geodesic metric space. Let f WX ! TX be the
end-approximating map. Let 
1W Œ0;1/! X and 
2W Œ0;1/! X be proper rays in X .
Then 
2 2 end.
1/ if and only if f ı 
2 2 end.f ı 
1/.

Proof. We have that 
2 2 end.
1/ if and only if for every r 2 Œ0;1/, there exists t 2 Œ0;1/
such that 
1.Œt;1// and 
2.Œt;1// lie in the same path component of X n B.x0; r/.
By Corollary 6.5, this is true if and only if for every r 2 Œ0;1/, there exists t 2 Œ0;1/ such
that f .
1.Œt;1/// and f .
2.Œt;1/// lie in the same path component of TX n B.Œx0�; r/,
and this is equivalent to saying that f ı 
2 2 end.f ı 
1/.
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The proof of the following lemma uses the same idea as the proof of Lemma 6.14, as
found in [6].

Lemma 6.19. Let .X; d/ be a proper geodesic metric space. Let f WX ! TX be the
end-approximating map. Let 
 W Œ0;1/ ! TX be a proper ray in TX . Then there exists
a geodesic ray �W Œ0;1/! X such that f ı � 2 end.
/.

Proof. We know by Lemma 6.14 that there exists a geodesic representative 
 0 2 end.
/.
For every n 2 N, we choose xn 2 f �1.
 0.n//, then define �nW Œ0;1/! X by extending
the geodesic Œx0; xn� such that �n is constant on Œd.x0; xn/;1/. Note that this collection
of functions is equicontinuous.

We can also note that for any t 2 Œ0;1/, we have that ¹�n.t/W n 2 Nº � B.x0; t /,
so as X is proper the closure is compact. By the Arzelà–Ascoli theorem, there exists
a subsequence .�nk /k2N of .�n/n2N that converges pointwise to a continuous function
�W Œ0;1/! X . We want to show that � is geodesic and that f ı � D 
 0. The fact that �
is geodesic follows immediately from the fact that for every t 2 Œ0;1/, we have that
d.x0; �.t// D limk!1 d.x0; �nk .t//, and that d.x0; �nk .t// D t for large enough k.

As f is continuous, we also get that f ı �.t/ D limk!1 f ı �nk .t/. For k 2 N such
that nk > t , we have that �nk .t/ lies on the geodesic Œx0; xnk �, where xnk 2 f

�1.
 0.nk//.
Hence f ı �nk .t/ lies on the geodesic ŒŒx0�; 
 0.n/� in TX . As d�.Œx0�; f ı �nk .t// D t ,
and TX is a tree, we must have that f ı �nk .t/D 


0.t/. Therefore, f ı �.t/D 
 0.t/ for all
t 2 Œ0;1/, so f ı �D 
 0. We conclude that � is a geodesic ray such that f ı � 2 end.
/.

Proposition 6.20. Let .X; d/ be a proper geodesic metric space. Let f WX ! TX be the
end-approximating map, and let F W Ends.X/ ! Ends.TX / be defined by F.end.
// D
end.f ı 
/ for every end.
/ 2 Ends.X/. The map F is a homeomorphism.

Proof. The fact that F is well defined and injective comes from Corollary 6.18, and the
fact that it is surjective comes from Lemma 6.19. It remains to show that F and F �1 are
continuous.

Let V � Ends.TX / be closed. We want to show that F �1.V / is also closed. Let
.end.�n//n2N be a sequence in F �1.V / such that end.�n/! end.�/, and choose these
representatives to be geodesic rays. We want to show that end.�/ 2 F �1.V /.

We first note that .end.f ı �n//n2N gives a sequence in V . We want to show that
end.f ı �n/! end.f ı �/. Let r 2 Œ0;1/. As end.�n/! end.�/, there exists a sequence
of natural numbers .Nn/n2N such that �n.ŒNn;1// and �.ŒNn;1// lie in the same path
component of X n B.x0; r/ for large enough n. We can see that f ı �n.ŒNn;1// and
f ı �.ŒNn;1// lie in TX nB.Œx0�; r/ for large enough n, and by Corollary 6.5, they must
lie in the same path component. Hence end.f ı �n/! end.f ı �/, so as V is closed, we
must have that end.f ı �/ 2 V , so end.�/ 2 F �1.V /, so F �1.V / is closed. Therefore,
F is continuous.

The argument for F �1 is almost identical. Let U � Ends.X/ be closed. We want to
show that F.U / is closed. Let .end.
n//n2N be a sequence in F.U / such that end.
n/!
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end.
/, and choose these representatives to be geodesic rays. We want to show that
end.
/ 2 F.U /.

We pick geodesic rays �n; �W Œ0;1/ ! X such that end.f ı �n/ D end.
n/ and
end.f ı �/D end.
/, and note that .end.�n//n2N gives a sequence in U , as F is bijective.
We want to show that end.�n/! end.�/. Let r 2 Œ0;1/. As end.f ı �n/! end.f ı �/,
there exists a sequence of natural numbers .Nn/n2N such that f ı �n.ŒNn;1// and f ı
�.ŒNn;1// lie in the same path component of TX n B.Œx0�; r/ for large enough n.

Clearly, �n.ŒNn;1// and �.ŒNn;1// lie in X n B.x0; r/ for large enough n, and by
Corollary 6.5, they must lie in the same path component. Hence end.�n/! end.�/, so
as U is closed, we must have end.�/ 2 U , so end.f ı �/ 2 F.U /, so F.U / is closed.
Therefore, F �1 is continuous.

We can therefore obtain the following result.

Proposition 6.21. Let .X; d/ be a proper geodesic metric space. Then there exists a loc-
ally finite simplicial tree T such that Ends.X/ is homeomorphic to Ends.T /.

Proof. As the space of ends is preserved by quasi-isometry, it suffices to show that TX is
quasi-isometric to a locally finite simplicial tree. By Corollary 4.26, it therefore suffices
to show that TX is proper.

Let r > 0, and recall that for the end-approximating map f WX ! TX , we have that
f �1.B.Œx0�; r// D B.x0; r/. Let .Œxn�/ be a sequence in B.Œx0�; r/, and consider the
sequence of representatives .xn/ in B.x0; r/. As X is proper, B.x0; r/ is compact, so
there exist some subsequence .xnk / and some point x 2B.x0; r/ such that xnk ! x. As f
is continuous, we have that Œxnk �! Œx�. We know that Œx� 2 B.Œx0�; r/, so B.Œx0�; r/ is
compact.

Let Œy� 2 TX , and let R > 0. There exists r > 0 such that B.Œy�; R/ � B.Œx0�; r/.
Therefore, B.Œy�;R/ is a closed subset of a compact set, so is itself compact. We conclude
that TX is a proper metric space.

6.3. Visual metrics on the boundaries of quasi-trees

For a tree, its space of ends is homeomorphic to its boundary. This is consequently also
true for quasi-trees, as both the space of ends and the geodesic boundary are preserved up
to homeomorphism by quasi-isometries. In the case where X is a proper quasi-tree, the
result of Proposition 6.20 is a trivial consequence of this fact.

Not only is the topology on the boundaries preserved by quasi-isometries, some of the
metric structure is too. Given a quasi-isometry between two hyperbolic geodesic metric
spaces, the induced homeomorphism between their boundaries is known to be quasi-
symmetric [4, 6, 18]. There is a family of metrics on these boundaries such that this is
the case, known as the visual metrics.

When we have a .1; C /-quasi-isometry between spaces, it is known that the induced
homeomorphism between the boundaries will in fact be a bi-Lipschitz map with respect to



A. Kerr 1228

the visual metrics [4]. In particular, by how visual metrics are defined, this means that the
pullback of a visual metric on one of the boundaries will be a visual metric on the other,
so the homeomorphism can be instead viewed as an isometry.

In the case of R-trees, given a choice of parameter, the visual metrics on the boundary
with that parameter are all bi-Lipschitz equivalent to a visual metric which can be written
down explicitly in a standard way. By Proposition 4.2 and the above, we can choose a met-
ric on the boundary of a quasi-tree X such that it is isometric to the boundary of TX under
this standard metric. Moreover, this metric on the boundary of X is a natural extension of
the standard visual metric on the boundary of TX .

Many of the definitions and facts about boundaries used here are taken from the paper
on the topic by Kapovich and Benakli [14].

Convention 6.22. When working with metrics on boundaries of X , everything will be
done with respect to a basepoint x0 2 X . As in previous sections, this will be assumed
throughout to have already been chosen. The choice of basepoint does not matter (see
Remark 6.31).

Definition 6.23. Let .X;d/ be a hyperbolic metric space. A sequence .xn/ inX converges
to infinity if limi;j!1.xi ; xj /x0 D1. We say that two such sequences are equivalent, and
write .xn/ � .yn/, if lim infi;j!1.xi ; yj /x0 D 1. The sequential boundary of X is the
set of equivalence classes of sequences that converge to infinity, and is denoted by @X .

Notation 6.24. When p 2 @X , and a sequence .xn/ converging to infinity in X belongs
to the equivalence class p, we write xn ! p.

As mentioned before, it is possible to put metrics on this boundary, although there is
no single canonical metric. To define the family of metrics we are interested in, we first
note that the Gromov product can be extended to the sequential boundary.

Definition 6.25. Let X be a hyperbolic metric space. For p; q 2 @X the Gromov product
of p and q is

.p; q/x0 D sup
®
lim inf
i;j!1

.xi ; yj /x0 W xi ! �; yj ! 

¯
:

Definition 6.26. Let X be a hyperbolic metric space, and let a > 1. A metric d@X on @X
is a visual metric with respect to the visual parameter a if there exists C > 1 such that for
every p; q 2 @X

1

C
a�.p;q/x0 6 d@X .p; q/ 6 Ca�.p;q/x0 :

It is known that for any hyperbolic space X , there exists a0 > 1 such that for every
a 2 .1; a0/, the sequential boundary @X admits a visual metric with parameter a, see
[6, Chapter III.H] or [12], for example. If X is an R-tree, then a0 D 1, and for every
parameter a > 1, there is a standard visual metric given by d@X .p; q/ D a�.p;q/x0 .

There is another notion of boundary that applies when X is also a geodesic space.
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Definition 6.27. Let .X; d/ be a metric space, and let A and B be subsets of X . The
Hausdorff distance between A and B is

dH .A;B/ D inf¹" > 0WA � N.B; "/ and B � N.A; "/º;

where N.A; "/ is the closed "-neighbourhood of A.

Definition 6.28. Let .X; d/ be a proper, hyperbolic, and geodesic metric space. We say
that two geodesic rays pW Œ0;1/!X and qW Œ0;1/!X are equivalent, and write p � q,
if dH .p; q/ is finite. The geodesic boundary of X is the set of equivalence classes of
geodesic rays in X , and is denoted by @1X .

It is again possible to put a metric on this boundary, although as before there is no
single canonical metric.

Remark 6.29. For any such space X , and any p; q 2 @1X that are not equal, there will
exist a bi-infinite geodesic 
 WR ! X from p to q, in the sense that 
 jŒ0;1/ 2 q and
y
 jŒ0;1/ 2 p, where y
.t/D 
.�t /. WhenX is an R-tree, this bi-infinite geodesic is unique.

Definition 6.30. Let .X; d/ be a proper, hyperbolic, and geodesic metric space, and let
a > 1. A metric d@1X on @1X is a visual metric with respect to the visual parameter a
if there exists C > 1 such that for every p; q 2 @1X , and every bi-infinite geodesic 

from p to q, we have that

1

C
a�d.x0;
/ 6 d@1X .p; q/ 6 Ca�d.x0;
/:

As with the sequential boundary, for any such space X , there exists a0 > 1 such that
for every a 2 .1;a0/, the geodesic boundary @1X admits a visual metric with parameter a.
If X is an R-tree, then a0 D 1, and for every parameter a > 1, there is a standard visual
metric given by d@1X .p; q/ D a

�d.x0;
/ [14].

Remark 6.31. The visual metrics on the sequential and geodesic boundaries are defined
in terms of a basepoint, however on either boundary two visual metrics with the same
parameter but different basepoints will be bi-Lipschitz equivalent [7, 14].

It is well known that a quasi-isometry f between two hyperbolic spaces X and Y
induces a canonical homeomorphism @f W @X ! @Y , and if X and Y are also geodesic,
then the same is true for @1f W @1X ! @1Y . This homeomorphism has strong metric
properties depending on the strength of the quasi-isometry, see [7, 14], however we will
be interested in the following case.

Theorem 6.32 ([4, Theorem 6.5]). Let X and Y be hyperbolic geodesic metric spaces,
and let f WX ! Y be a .1; C /-quasi-isometry. Let d@X and d@Y be visual metrics with
parameter a > 1 on @X and @Y , respectively. Then the induced map @f W .@X; d@X /!
.@Y; d@Y / is bi-Lipschitz.
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This may not be immediately obvious from reading [4, Theorem 6.5], however we
note that what they call a .1; C /-rough similarity is exactly a .1; C /-quasi-isometry, and
moreover that if f WX ! Y is a .1; C /-quasi-isometry, then there exists K > 0 such that
for every x; y; x0 2 X , we have that

.x; y/x0 �K 6 .f .x/; f .y//f .x0/ 6 .x; y/x0 CK:

Their reasoning therefore gives us that @f is what they call a .1; �/-snowflake map, which
is precisely a bi-Lipschitz map.

Remark 6.33. As noted before, the family of visual metrics on a boundary with the same
parameter is a bi-Lipschitz equivalence class, so if we define a metric dX on @X by

d@X .p; q/ D d@Y .@f .p/; @f .q//;

then this would be a visual metric on @X , which would allow us to view @f as an isometry.

In a hyperbolic geodesic spaceX , it is well known that there is a natural homeomorph-
ism between @X and @1X , and moreover that visual metrics on @X and @1X with the
same parameter are bi-Lipschitz equivalent, for example, see [10, 13]. We therefore also
get the following from [4].

Corollary 6.34 ([4]). Let X and Y be hyperbolic geodesic metric spaces, and let the map
f WX! Y be a .1;C /-quasi-isometry. Let d@1X and d@1Y be visual metrics with parame-
ter a > 1 on @1X and @1Y , respectively. Then the induced map @1f W .@1X; d@1X /!
.@1Y; d@1Y / is bi-Lipschitz.

Corollary 6.35. Let X be a quasi-tree. For every a > 1, there exists a visual metric d@X
on @X with visual parameter a such that .@X;d@X / is isometric to .@TX ;d@TX /, where d@TX
is the standard visual metric on @TX with visual parameter a.

Proof. Let f WX ! TX be the end-approximating map. Then Proposition 4.2 tells us
that f is a .1; C /-quasi-isometry. Let @f W @X ! TX be the induced bi-Lipschitz homeo-
morphism between the boundaries, and for a > 1 let d@TX be the standard visual metric
with parameter a on @TX . Then

d@X .p; q/ D d@TX .@f .p/; @f .q//

is a visual metric on @X with visual parameter a, and @f acts as an isometry between the
boundaries.

The exact same statement holds if we replace TX by �X , the simplicial tree constructed
from TX in Section 4.2. We also get the same result for both TX and �X if we suppose
that X is a proper quasi-tree, and then consider the geodesic boundaries.

In the case where the metric on @X is the pullback of the standard visual metric on @TX
(with respect to some parameter and basepoint), we can in fact define this metric explicitly
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in a very natural way, using only the geometry ofX . We start with the sequential boundary.
Let p; q 2 @X . Then for any a > 1, we define

d@X .p; q/ D d@TX .@f .p/; @f .q// D a
�.@f .p/;@f .p//�

Œx0� :

Let xi ! p and yj ! q. The homeomorphism @f WX ! TX is defined such that Œxn�!
@f .p/ and Œyn�! @f .q/. From the definition of the Gromov product on the boundary, the
geometry of an R-tree, and Corollary 6.5 regarding path components, we can see that

.@f .p/; @f .q//�Œx0� D sup¹r 2 Œ0;1/W for Œxn�! @f .p/ and Œyn�! @f .q/, there are

infinitely many terms in each sequence that lie

in the same path component of TX n B.Œx0�; r/º

D sup¹r 2 Œ0;1/W for xn ! p and yn ! q, there are infinitely many

terms in each sequence that lie in the same path

component of X n B.x0; r/º:

Note that the metric on @X is given in terms of this value. In particular, it is clear that
if X is an R-tree, then this simply returns the standard visual metric with parameter a,
as expected given that f is the identity in this case.

We can do the same thing with the geodesic boundary. Let p; q 2 @1X . As f is an
isometry when restricted to geodesics based at x0, and TX is an R-tree, the image of the
equivalence class p under @1f will be a single geodesic in TX , with the same being true
for the image of q. For any a > 1, we define

d@1X .p; q/ D d@1TX .@1f .p/; @1f .q// D a
�d�.Œx0�;Œz�/;

where ŒŒx0�; Œz�� D p0 \ q0, with the geodesics p0 and q0 being the images of the equival-
ence classes p and q. In particular, we can see that

d�.Œx0�; Œz�/ D inf¹r 2 Œ0;1/W p0 n B.Œx0�; r/ and q0 n B.Œx0�; r/ lie in different path

components of TX n B.Œx0�; r/º

D inf¹r 2 Œ0;1/W rp n B.x0; r/ and rq n B.x0; r/ lie in different path

components of X n B.x0; r/; for any choice of rp 2 p

and rq 2 qº;

and we note that d@1X .p; q/ is given in terms of this value. Again, if X is an R-tree
then this will give us the standard visual metric with parameter a, so these metrics on the
boundaries of quasi-trees can be viewed as extensions of the standard visual metrics on
the boundaries of R-trees.
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