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Amenability and profinite completions of finitely
generated groups

Steffen Kionke and Eduard Schesler

Abstract. This article explores the interplay between the finite quotients of finitely generated resid-
ually finite groups and the concept of amenability. We construct a finitely generated, residually
finite, amenable group A and an uncountable family of finitely generated, residually finite non-
amenable groups, all of which are profinitely isomorphic to A. All of these groups are branch groups.
Moreover, picking up Grothendieck’s problem, the group A embeds in these groups such that the
inclusion induces an isomorphism of profinite completions. In addition, we review the concept of
uniform amenability, a strengthening of amenability introduced in the 70s, and we prove that uni-
form amenability is indeed detectable from the profinite completion.

1. Introduction

The profinite completion G ofa group G is the inverse limit of its finite quotients. If G is
residually finite, then G embeds into G and it is natural to wonder what properties of G
can be detected from G. Especially a question of Grothendieck, posed in 1970 [9], sparked
interest in this direction: Is an embedding ¢: H — G of finitely presented, residually finite
groups an isomorphism if it induces an isomorphism : H — G of profinite completions?
The answer is negative. Finitely generated counterexamples were constructed already in
1986 by Platonov and Tavgen’ [20]. The finitely presented case was settled almost 20 years
later by Bridson and Grunewald [6].

In this article, we explore the interplay between amenability and the profinite comple-
tion of finitely generated groups. Our interest was prompted by the following variation of
Grothendieck’s problem:

(*) Given two finitely generated residually finite groups A, G, where A is amenable.
Suppose i: A — G induces an isomorphism i: A — G. Is G amenable?

The answer is negative and we obtain the following result (a consequence of The-
orem 7.6 below).

Theorem 1.1. There are an uncountable family of pairwise non-isomorphic, residually
finite 18-generator groups (Gj)jej and a residually finite 6-generator group A with
embeddings 1;: A — G; such that the following properties hold:
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@))] Z; A— é; is an isomorphism,
(2) A is amenable,
(3) each G; contains a non-abelian free subgroup.

In particular, amenability is not a profinite invariant of finitely generated residually finite
groups.

We note that the fibre product construction used in [6,20] is unable to provide such
examples, since a fibre product P € H x H projects onto H and thus, it is non-amenable
exactly if H is non-amenable (e.g., a non-elementary word hyperbolic group as in [6]).
Uncountable families of finitely generated amenable groups with isomorphic profinite
completions were constructed in [18,21].

The groups in Theorem 1.1 are just-infinite branch groups with the congruence sub-
group property. The construction is inspired by a method of Segal [22] and influenced by
ideas of Nekrashevych [18]. The method is rather flexible and allows us to merge a per-
fect residually finite group (e.g., SL,(Z)) with a related amenable group in such a way
that the amenable group and the merged group have isomorphic profinite completions.
The first step bears similarity with the Sidki-Wilson construction of branch groups with
non-abelian free subgroups [23].

Let us note that without the requirement of finite generation in (), there are obvious
counterexamples. For instance, A = €, Alt(n) is amenable as a direct limit of finite
groups and G = [, Alt(n) = A = G contains a non-abelian free group. It would be
interesting to have finitely presented counterexamples to (). Since our family (G;)jes
is uncountable, it is clear that most of the groups cannot be finitely presented. We were
unable to verify that none of these groups admits a finite presentation.

Thinking of amenability as a concept of analytical nature (e.g., existence of a left
invariant mean on £°°(G)), it does not seem surprising that the answer to (x) is negat-
ive. From a different perspective, though, amenability is not far from being detectable on
finite quotients. Kesten [15] characterized amenability in terms of the spectral radius of
symmetric random walks. For a residually finite group G, a random walk can surely be
studied by looking at large finite quotients of G. Trying to exploit this relation, one real-
izes that a uniform behavior of all random walks on all finite quotients can be used to
deduce amenability of G.

In the 70s, Keller defined [14] a notion of uniform amenability by imposing that the
size of an ¢-Fglner set for a generating set S can be uniformly bounded in terms of ¢
and | S| (see Definition 2.1). A couple of years later the concept was independently defined
by Bozejko [5]. Wysoczédnski [25] showed that uniform amenability can be characterized
in terms of a uniform Kesten condition. This leads to the following result.

Theorem 1.2. Let G, G, be residually finite groups with G1 = G,. Then G is uniformly
amenable if and only if G, is uniformly amenable.
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As of today, the collection of finitely generated groups which are amenable but not
uniformly amenable is rather small and this explains why the construction of counter-
examples to (x) actually requires some effort. In turn, the group A of Theorem 1.1 is
a new example of an amenable group which is not uniformly amenable.

There are several ways to prove Theorem 1.2 and already Keller’s results [14] point
in this direction. Here we do not work out the random walk argument sketched above.
Instead, we first establish new characterizations of uniform amenability in terms of a uni-
form isoperimetric inequality and a uniform Reiter condition and use them to give a short
proof of the theorem. In addition, we give a new short proof that a uniformly amenable
group satisfies a law (a result of Keller [14]). This implies that the profinite completion
of a uniformly amenable group is positively finitely generated in the sense of Mann [17].
Our results on uniform amenability are discussed in Section 2.

We now give an overview of the remaining sections. In Section 3, we present the basic
construction which will be applied throughout. This construction takes a perfect, self-
similar subgroup G < Aut(Tx) of the automorphism group of a regular rooted tree Ty and
produces — under a condition introduced by Segal [22] — a branch group Fg < Aut(Ty).
The construction depends on a certain subset €2 of the boundary of the tree. In Section 4,
we show that these branch groups are just infinite and have the congruence subgroup
property. We deduce that the profinite completion is always an iterated wreath product
which only depends on the action of G on the first level of the tree. As a consequence, we
obtain a zoo of groups with isomorphic completions and inclusions between these groups
induce profinite isomorphisms. In Section 5, we use a rigidity result of Lavreniuk and
Nekrashevych [16] to show that the construction (without additional assumptions) gives
rise to an uncountable family of pairwise non-isomorphic groups. Finally, we discuss con-
crete examples in Sections 6 and 7. To obtain the amenable group A in Theorem 1.1, we
apply the construction to the special affine group ) % SL, (F,) acting on the p"-regular
rooted tree by rooted automorphisms. It follows from a result of Bartholdi, Kaimanovich
and Nekrashevych [3] that the result is an amenable group (for suitable parameters €2).
On the other hand, we apply the construction to the special affine group Z" x SL,(Z)
which acts self-similarly on the p”-regular rooted tree (obtained from the pro-p comple-
tion of Z"). Merging these groups with A, we obtain the family (G;) of non-amenable
groups in Theorem 1.1.

2. Uniformly amenable classes of groups

In this section, we study uniform amenability of groups and classes of groups. The concept
was introduced by Keller in [14] and independently by Bozejko [5]. Here we estab-
lish new equivalent characterizations and use them to prove that uniform amenability is
a profinite property. Let us begin with the usual characterization using a uniform Fglner
condition.
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Definition 2.1. A class of groups & is uniformly amenable if there is a function m: R x
N — N such that for every ¢ > 0, all G € &, and every finite subset S C G, there is
a finite set F € G satisfying

(D) |F| < m(e.|S),
) [SF| < (1+¢)|F|.

In this case, we say that & is m-uniformly amenable. We say that a group G is uniformly
amenable if the class consisting of G is uniformly amenable.

We will always assume that m is non-decreasing in the second argument; this can be
achieved by replacing m by m'(¢, N) = maxg<y m(e, k).

Example 2.2. (1) Letd € N be given. The class Fin, of all finite groups of order at
most d is uniformly amenable for the function m (e, N) = d; indeed, the finite
group G itself is always a suitable Fglner set.

(2) The class of abelian groups is uniformly amenable.

(3) Extensions of uniformly amenable groups are uniformly amenable [5, Theorem 3].
In particular, every virtually solvable group is uniformly amenable.

(4) Direct unions of m-uniformly amenable groups are m-uniformly amenable. In par-
ticular, ascending HNN-extensions of uniformly amenable groups are uniformly
amenable.

(5) Let K be a class of groups such that the free group F, of rank 2 is residually &,
then K is not uniformly amenable (this will follow from Corollary 2.12 below).
In particular, every class of groups which contains all finite symmetric groups is
not uniformly amenable.

Example 2.3. Let G be a finite group. The direct power G’ is uniformly amenable
for every set /. Given a positive integer n, the set of all n-tuples X := G” in G is

finite. We enumerate the elements, say X = {x(l), o ,x(k)}, where k = |G|". Here
x® = (xgi), R x,(li)). Consider the group G* with the “universal” n-element subset
U={u1,...,uy}, where u; = (x](-l),x](-z), .. ,x}k)).

Let S € G' be a subset with n-elements, say S = {s1,...,s,}. Forevery i € I, we

obtain an n-tuple S(i) := (s1(i),52(i),...,8,(i)) € X andamap¢: I — {1,...,k} such
that S(i) = x*@) . The homomorphism «: G¥ — G defined by «(g1....,gx) (i) = I410)
maps the universal set U to S. Therefore, the subgroup generated by S is isomorphic to
a subfactor of G¥ , and we deduce that G7 is uniformly amenable.

Definition 2.4. A class of groups K satisfies a uniform isoperimetric inequality if there
is a function m: R~ x N — N such that for all ¢ > 0, every G € K and every finite
symmetric subset S € G, there is a finite subset £ C G with |E| < (e, |S|), and
0sE| _
lE| — 7
where dg E = SE \ E denotes the S-boundary of E.
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Lemma 2.5. A class of groups & is uniformly amenable if and only if it satisfies a uniform
isoperimetric inequality.

Proof. Assume that & is m-uniformly amenable. We define 77i(e, N) := m(e, N + 1). Let
& > 0 be given, let G € & and let S € G be a finite symmetric subset. We define S* =
S U {1 }. Uniform amenability provides a Fglner set £ € G with |[E| <m(e, N + 1) and

IS*E| < (1+6)|El.

Since S*E = E U 0g E, the assertion follows.

Assume conversely that K satisfies a uniform isoperimetric inequality with respect
to /1. We define m(e, N) = maxg<on (e, k). Lete > 0, G € &, and a finite set S € G
be given. Define 7 =S U S -1 By assumption, there is a finite subset £ C G with |E| <
m(e, |T|) = maxg<z|s| (e, k) = m(e, |S|) which satisfies

orEl _,
[E]

We obtain
|SE| < |TE| <|E|+ |97 E| < (1 + ¢)|E]|. [

Definition 2.6. A class of groups K satisfies the uniform Reiter condition if there is a func-
tion r: R~ x N — N such that for all ¢ > 0, every G € K, and every finite subset S C G,
there is a finitely supported probability measure © on G such that [supp(u)| < r (e, |S])
and

IAg(w) — plle <& 2.1

forall g € S. Here A3 () denotes the pullback of 1 with respect to the left multiplication
with g, i.e., Az (1) (A) = u(gA).

Proposition 2.7. A class K of groups is uniformly amenable if and only if it satisfies the
uniform Reiter condition.

Proof. Assume that K is uniformly amenable. By Lemma 2.5, the class & satisfies a uni-
form isoperimetric inequality with respect to a function 771. Lete > 0,G € K and S € G
be given. Put S* = S U S™!. There is a finite subset £ C G with |E| < 7i(e, 2|S|)

for which |afE‘E| < ¢&. Let u be the uniform probability measure supported on E. Since

|0s+E| < ¢|E|, we have |g7' EAE| < ¢|E| for all g € S and thus

g EAE|

[Ag () = peller = E|

Conversely, assume that K satisfies the uniform Reiter condition. Let ¢’ > 0, G € & and
a finite symmetric subset S C G be given. Set ¢ = &'/|S|. Using the uniform Reiter con-
dition, we find a finitely supported probability measure © on G with |supp(p)| < r (s, |S])
which satisfies (2.1). Forall ¢ € [0, 1], we define the level set £, (1) ={g € G | u({g}) > t}.
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We claim that some level set satisfies a suitable isoperimetric inequality. Summing the

equality [Ag()({x}) — pn({xP| = fol 1E,1)(gx) — LE, ) (x)| dt over all x € G, we
obtain

1 1
500 =l = [ X e~ 1,0@ld = [ e EOABO .

xeG

Taking the sum over all g € S, we see that

1 1
¢ =18l > 150 - ula = [ Y le Eu0BEde = [ osEL0)]ar
ges 0 ges 0
Suppose for a contradiction that |05 E,,(t)| > &'| E, ()| for all z. Then the last integral can
be estimated by

1 1
/ |0s E(t)| dt > s’/ |E ()| dt =&
0 0
which yields a contradiction. ]

Remark 2.8. It was proven in [25] that uniform amenability of groups can be character-
ized by a uniform version of Kesten’s condition on random walks. The argument given
there — based on a theorem of Kaimanovich (see [12] or [13, Theorem 5.2]) — directly
generalizes to classes and shows that a uniformly amenable class of groups & satisfies
a uniform Kesten condition: There is a function x:R-¢ x N — N such that for every
e > 0, every G € K, every finitely supported symmetric probability measure © on G and

alln > « (e, [supp(u)]), .
P(X2, = 1g)2" > 1 —¢,

where X, denotes the p-random walk on G starting at the identity 1.

Proposition 2.9. Let K be a uniformly amenable class of groups. The class of all quotients
of groups in K is uniformly amenable.

Proof. Assume that & satisfies the uniform Reiter condition for a function r. Let G € &,
and let N C G be a normal subgroup. The canonical projection G — G/ N will be denoted
by 7. Given ¢ > 0 and a finite subset S € G/N, we lift S to a finite subset S’ in G, i.e.,
7(S’) = S and |S’| = |S|. There is a finitely supported probability measure i’ on G with
[supp(i’)| < r(s,|S|) that satisfies

1500y = 'ler <&

forall g € S’. Let u = m4(u’) be the pushforward measure on G/ N . Clearly, the support
of i has at most as many elements as the support of '. Moreover,

iy () =l = Y Ingxh) —pdxdl = > )Zu’({gw})—u’({w})

x€G/N x€G/N wex

< Y I dgh) — W Wl = 125 (1) — ' le <

heG
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for all g € S’. Therefore, the class of factor groups satisfies the uniform Reiter condition
for the same function r. ]

Theorem 2.10. Let G be a group and let ¥ be a filter base' of normal subgroups with
NF = {lg}. The group G is uniformly amenable if and only if the class {G/N | N € ¥}
is uniformly amenable.

Proof. Suppose G is uniformly amenable. It follows immediately from Proposition 2.9
that {G/N | N € ¥} is uniformly amenable.

For the converse statement, assume that {G/N | N € ¥} is uniformly amenable for
a function m. Let ¢ > 0 and a finite subset S C G be given. Let 7y: G — G/N denote
the canonical projection for N € ¥ .

Let Cx denote the set of finite subsets ' € G with 1 € F and |F| < m(e, |S|) that
satisfy |7y (SF)| < (1 4 €)| F|. By assumption, the sets C are non-empty and Cy € Cyy
whenever N C M. Since the cardinality of sets in Cy is bounded, the set Cy is closed
and hence compact in the Fell topology on the power set {0, 1}¢. By compactness, there is
a finite set F € (\yes Cn. By construction, 1 € F and F is non-empty. Now, let N € F
be sufficiently small such that distinct elements in SF represent distinct cosets in G/ N.
Then |SF| = |7n(SF)| < (1 4+ ¢)|F| and F is a Fglner set. L]

The following result shows that uniform amenability is a profinite property and imme-
diately implies Theorem 1.2.

Corollary 2.11. Let H be a profinite group. If some dense subgroup G € H is uniformly
amenable, then H is uniformly amenable.

Proof. Let ¥ be the filter of open normal subgroups of H. Now since G is uniformly
amenable, the class {G/(G N N) | N € ¥} is uniformly amenable. Since G is dense
in H, we have G/(G N N) = H/N for all open normal subgroups N < H. The uniform
amenability of H follows from Theorem 2.10. ]

The next result is due to Keller [14, Corollary 5.9]. As it will be used in the corollary
below, we include a new short proof based on the uniform Kesten condition.

Corollary 2.12. Every class & of uniformly amenable groups satisfies a common group
law.

Proof. 1t follows from the uniform Kesten condition that there is a number N such that
every pair of distinct elements in any group G € K satisfies some relation of length at
most N. Since there are finitely many such relations, we can form a nested commutator
involving all such relations (possibly involving a new letter to make sure that the result is
non-trivial); this nested commutator is a law in G. [

1% is a non-empty set of normal subgroups, such that for all N, M € ¥ the intersection N N M
contains an element of ¥ .
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Corollary 2.13. Let G be a finitely generated, uniformly amenable group. Then the profin-
ite completion G is positively finitely generated.

Proof. Since G satisfies a non-trivial law u, every subquotient satisfies the same law.
However, there is a finite group for which u is not a law (e.g., some large symmetric
group). In particular, this finite group is not a subquotient of G and similarly is not a sub-
quotient of G . 1t follows from [4, Theorem 1.1] that G is positively finitely generated. =

Remark 2.14. Keller asked whether every group that satisfies a law is amenable and
whether every amenable group that satisfies a law is uniformly amenable. The answer
to the first question is negative, since it is known by work of Adyan [1] that free Burn-
side groups of large exponent are non-amenable. In fact, they are even uniformly non-
amenable [19]. Zelmanov’s solution of the restricted Burnside problem implies that resid-
ually finite groups (not necessarily finitely generated) of bounded exponent are uniformly
amenable. From this perspective, it seems possible that the answers are affirmative for
residually finite groups. A similar question has been raised by de Cornulier and Mann
in [7, Question 14]: Is there a finitely generated, residually finite group which satisfies
a law and is not amenable? Combining this with Keller’s question leads to an appealing
problem.

Question 2.15. Is every family of finite groups which satisfies a common law uniformly
amenable?

Let us close this section by noting that in general the class of uniformly amenable
groups seems to be poorly understood and it would be fruitful to have more examples.
Are there uniformly amenable groups which are not elementary amenable? Are there uni-
formly amenable groups with intermediate growth?

3. Groups acting on rooted trees and the £2-construction

The purpose of this section is to introduce the basic construction of groups we will fre-
quently use. We begin by fixing some basic terminology from the theory of groups acting
on rooted trees.

3.1. Groups acting on rooted trees

By a rooted tree, we will always mean a tree T with a distinguished vertex, called the root
of T', which we will denote by @. An automorphism of 7 will always be assumed to fix the
root of T'. The group of all such automorphisms will be denoted by Aut(7"). Accordingly,
an action of a group G on a rooted tree 7 is an action by graph isomorphisms that fix the
root of 7. Let V(T') denote the vertex set of 7. The distance of a vertex v € V(T) to the
root @ is called the level of v and will be denoted by 1v(v). Two vertices v, w € V(T) are
called adjacent if they are connected by an edge. In this paper, we will mostly be interested
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in group actions on trees that arise as Cayley graphs of free monoids. More precisely, let X
be a non-empty finite set which one can think of as an alphabet. Let X* denote the free
monoid generated by X, i.e., the set of (finite) words over X with composition given by
concatenation of words. Let Ty denote the Cayley graph of X * with respect to X . Clearly,
Tx is a tree, and we consider Tx as a rooted tree where the root is the empty word @. Note
that the set X ¢ of words of length £ € N is precisely the set of vertices of level £ in T.
As every a € Aut(Ty) fixes the root of Ty, it follows that o preserves the level sets X ¢.
Thus for every subgroup G < Aut(Tx), we have a natural homomorphism from G to the
symmetry group Sym(X ). If £ = 1, we write 0¢ € Sym(X) to denote the image of g under
this homomorphism. On the other hand, every permutation o € Sym(X) gives rise to an
automorphism of Tx by defining o (xw) = o(x)w for all x € X and w € X*. To simplify
notation, this automorphism will be denoted by o as well. Automorphisms obtained in this
way will be called rooted (here we follow the terminology of [2]). Another important type
of automorphism is obtained by letting the direct sum Aut(7Tx)¥X := D, cx Aut(Tx) act
on Ty via ((gx)xex.yw) — ygy(w) forall y € X and w € X*. Together with the rooted
ones, these automorphisms can be used to decompose arbitrary automorphism of Tx as
follows.

Definition 3.1. Let X be a finite set and let « € Aut(7Tx). For each x € X, we define the
state of  at x as the unique automorphism o, € Aut(7x) that satisfies

a(xw) = 04 (x)ox(w)

for every w € X*. This gives us a decomposition @ = gy o (@y)xex Which is called the
wreath decomposition of «.

If the alphabet X is clear from the context, we will often just write (ctx) instead of
(ctx)xex - Note that the wreath decomposition endows us with an isomorphism

Aut(Tx) — Sym(X) x Aut(Ty)*, o oy - (ax).

Definition 3.2. Let G < Aut(Tx) be a subgroup and let v be a vertex of Tx. The subtree
of Tx whose vertex set is given by v X * will be denoted by (T ),. We write Stg (v) for the
stabilizer of v in G. The rigid stabilizer of v in G, denoted by RiStg (v), is the subgroup of
St (v) that consists of elements g € G that fix every vertex outside of (T ). For £ € Ny,
we further define the level { stabilizer subgroup

Stg () := () Ste(v)
veX!
and the rigid level £ stabilizer subgroup

RiStg (£) 1= ( U RiStG(v)>

veX?

inG.
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Let G be a group that acts on a rooted tree 7. We call G a branch group if the index
of RiStg (¢) in G is finite for every £ € N. For a subgroup G < Aut(Tx), we say that G
is self-similar if for each g € G, the elements g, in the wreath decomposition

g = 0g 0 (gx)xex
are contained in G.

Notation 3.3. Given a subgroup G < Aut(Tx) and a word v € X* of length £, we consider
the embedding t,: G — Aut(Tx) given by

1o (g) () = {”g(w) fu=v.

uw ifu#v
forevery g € G, w € X* andu € X*.

3.2. The 2 -construction

Let us fix a non-empty finite set X and an element o € X.Let X' := X \ {0} and let §
denote the space of infinite sequences (wy)nen over X T. We consider the left shift oper-
ator L:§ — § given by (w1, w3, w3, ...) — (w2, w3, .. .).

Definition 3.4. Given a sequence v = (w;) € S, we define the homomorphism
T Au(Ty) — Aut(Ty), o+ &° = (@x)xex,

where

al@ ifx = o,

Uy =1 if x = wq,

id otherwise.
If G is a subgroup of Aut(Tx), we write G® to denote the image of G under w. The
group generated by G and G will be denoted by I'g. More generally, for every non-

empty subset 2 € §, we define Fg as the subgroup of Aut(Ty) that is generated by all
groups I'¢ with w € Q.

Let G be a subgroup of Aut(Ty). Adapting a notion introduced by Segal [22], we say
that G has property H if for all x, y € X the following hold:
* G acts transitively on the first level of Ty, i.e., on X
o forall x # y in X there exists g € Stg(x) with g(y) # y.

Lemma 3.5. Let G < Aut(Tx) be a perfect, self-similar subgroup that satisfies prop-
erty H. For every ® = (wy)neN € S, we have 14, (G) C RiStre (w1).

Proof. Since G satisfies property H, we can find some & € G with h(w;) = w; and
h(o) # o. Let h = oy, - (hy) be the wreath decomposition of 4. Consider an arbitrary
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g € G and its image g% in G®. Recall that Z° = (gx), where g, = g%, g, = g and
gx = id otherwise. By conjugating g* with &, we obtain

hg?h™" = o3+ (hx) o (gx) o (hy") - 05, = on - (hxgxhi") -0
-1
= (hah(X)gUh(x)hoh(x))'
From the self-similarity of G, we see that
hoh(wl)gah(wl)h;hl(an) = hwlgwlh;11 = he, gh;ll

op(x) = = id for op(x) € X \ {0, w1}.
= id. Let k € G be a further element. Note

is an element of G. Further, we have hgh(x) Zopyh}

In particular, it follows that hs, (o) €0, (0) 11
that the commutator

op(0)

k2. hg°h™"] = (lkx. hoy 0 8o eyhg o))

and that
[kx» hUh(x)ggh(x)h;hl(x)] =id for x ;é w1i.
On the other hand, we have [k, , 14, (w1) &0, (wl)hah (wl)] [k, he, gh;ll]. Thus we see that

every element of the form (, ([k, 1y, ghwl ]) lies in RiStrg (w1). Since G is perfect and
g,k € G were chosen arbitrarily, it follows that ¢, (G) is contained in RiStre (w1). ]

For every non-empty subset Q2 C §, we consider its image
L) ={L(w) |weQ}cS$
under the shift operator.

Lemma 3.6. Let G < Aut(Tx) be a perfect, self-similar subgroup that satisfies prop-
erty H. For every non-empty Q C § and every x € X, we have RiSth (x) = tx (FIG‘(Q)).

Proof. Let v = (w,) € Q. By Lemma 3.5, we have (,, (G) C RiStre (w1). Since G is
self-similar and level-transitive, this implies

to(G) S RiStrg (o) © RiSth (0). 3.1
We observe that %, (g)"! = o(ZL@)) "and hence Lemma 3.5 implies further that
L(GL@) RiStrg (0). (3.2)
As w € Q is arbitrary, (3.1) together with (3.2) show that
L(Q .
L(TE) RiStpa (0) S Strg (0).

A further application of the level-transitivity and the self-similarity of G now gives us
(T L(Q)) c Rlstl—-ﬂ (x) for every x € X. On the other hand, each I'§; is generated by
elements of the form g = 0g - (gx) with either g, € e GL@ o gx €G. From this we see
that the reverse inclusion RiSthGz (x) C iy (Fé(m) is also satisfied. |
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Corollary 3.7. Let G < Aut(Ty) be a perfect, self-similar subgroup that satisfies prop-
erty H. For every non-empty Q2 C § and every word v € X* of length £, the restricted
stabilizer of v in FQ is given by Rlstrsz W) =ty (FL (Q)) Moreover, we have Rlstrsz )=
StrQ (€) for every K € Ng. In partlcular FG is a branch group and the action is level-
tmnszlzve

Proof. The proof is by induction on the length of v. If v is the empty word, then there is
nothing to show. Suppose now that the corollary holds for some £ € Ny. Let w € X¢+1
be a word of the forrnLué)H=va with v € X% and x € X. From Lemma 3.6, we know that
RiStFéz(Q) (x) =Ty ( )) for every x € X. We obtain

RiStF(s;z (w) = RiStRiStrg w(vx) = RiStlu(Fég(m)(vx)

. e+ e+
= Lv(RlstrLl(m(x)) = Lv([x(ré (Q))) =1y (Fé (Q)).
G

Since Fg is generated by elements of the form g = o, - (gx) with either g, € G or gx €

GL@®) for some w € 9, it follows that Strg (£) is contained in the group generated by all
subgroups of the form ¢, (F ‘@ )) with v of level £. Together with the first part this implies
Strn &) = RlSthz (£) and since Strn (€) is of finite index, we conclude that F is a branch
group. By property H, the group G acts transitively on the first level. Smce RIStFQ (v)
contains (,(G), it follows by induction that FG acts transitively on every level. ]

To finish this section, we show that the groups I‘g act like iterated wreath products
on each level. Recall that for groups G, H with actions on sets X and Y, the permuta-
tional wreath product G x H is defined as the semidirect product G x H X where G
acts on HX by permuting the coordinates. We define the natural action of G 2x H on the
product set X X Y by (g - (hx), (x,¥)) = (g(x). hx(y)).

Given a finite set X and a subgroup Q < Sym(X), we consider the iterated permuta-
tional wreath product of Q given by

0 =0x Qi (- (Qx Q):-).

Note that the natural action of an element o € ¢§ O on X" extends to a tree automorphism
on Ty by setting a(vw) = a(v)w for all v € X" and w € X*. In the following, we will
identify % Q with its image in Aut(7Ty ) under this action.

Proposition 3.8. Let G < Aut(Tx) be a perfect, self-similar subgroup that satisfies prop-
erty H. Let Q < Sym(X) denote the image of G under the canonical action on X. Then for
every non-empty subset Q C § and every { € N, the image of Fg in Aut(Tx )/ Staw(ry) (£)
is given by the permutational wreath product 2§( 0.

Proof. By construction, every g € Fg has a wreath decomposition

g = 0g o (gx). (3-3)
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where o, is a rooted automorphism that corresponds to an element in Q and g, € FL(Q)
for every x € X. Note that this implies that for every g € FQ and every word v = X1 ...Xg
over X, its image under g is given by

g) =o1(x1)...00(xe) 3.4

for some appropriate permutations o; € Q, i.e., the image of Fg lies in fo 0.

On the other hand, Lemma 3.6 tells us that RiStrst (x) =ty (Fé(m) for every x € X.
Together with (3.3), this shows that for every o € Q its corresponding rooted automor-
phism, also denoted by o, lies in I'; L@ From Corollary 3.7, it therefore follows that
(o) € R1Strg (v) for every v € X ¢ and every o € Q. In view of (3.4), this implies
that the image of F in Aut(Tx)/ Staw(ry) () is given by ZX 0. L]

4. The congruence subgroup property

Let T be a rooted tree. We make Aut(7') into a topological group by declaring the sub-
groups Stay(r) (1) to be a base of open neighbourhoods of the identity. Equipped with this
topology, the automorphism group Aut(7’) is a compact, totally disconnected Hausdorff
topological group, i.e., a profinite group.

Recall that the profinite completion of a residually finite group G is defined as the
inverse limit

G := lim G/N
N<51_fG
of the system of all normal subgroups of finite index in G. If G is a subgroup of Aut(7"),
we can further consider its tree completion G: the closure of G in Aut(T) with respect
to the profinite topology. In particular, G is a profinite group and G = I(Eln G/ Stg(n).
In this case, the universal property of the profinite completion gives rise to a canonical
homomorphism
resg: G—>G.

The homomorphism res? allows us to extend the action of G on T to an action of G
on 7. Since G is dense in both G and G, the map resr is always surjective. The goal of
this section is to formulate sufficient conditions under which resr is injective.

Definition 4.1. Let 7 be a rooted tree. A subgroup G < Aut(T') satisfies the congruence
subgroup property (CSP) if resT G — Gisan isomorphism.

Remark 4.2. From the definition, it directly follows that a subgroup G < Aut(7T') satisfies
the congruence subgroup property if and only if for every normal subgroup N < G of
finite index there is a number n € N such that St (n) is contained in N.

The following very useful observation was extracted by Segal [22, Lemma 4] from the
proof of [8, Theorem 4].



S. Kionke and E. Schesler 1248

Lemma 4.3. Let T be a rooted tree and let G < Aut(T') be a subgroup that acts level-
transitively on T . Then for every non-trivial normal subgroup N < G, there is somen € N
with RiStg (n)’ < N, where RiStg (n)’ denotes the commutator subgroup of RiStg (n).

Recall that an infinite group G is called just infinite if every proper quotient of G is
finite.

Corollary 4.4. Let T be a rooted tree and let G < Aut(T') be a subgroup that acts level-
transitively on T. Suppose that every rigid stabilizer RiStg(v) is perfect and that the
groups Stg (n) and RiStg (n) coincide for every n € N. Then G is just infinite and satisfies
the CSP.

Proof. Let N be a non-trivial normal subgroup of G. From Lemma 4.3, we know that
there is some n with RiStg (rn)” < N. Since the rigid stabilizers are perfect, it follows that

RiStg (v) = RiStg (v)’ < RiStg(n)’

for every vertex v of level n in T'. On the other hand, Stg (1) = RiStg(n) is generated by
the level n rigid vertex stabilizers RiStg (v). Thus we obtain Stg(n) = RiStg(n)’ < N,
which proves the claim. ]

This result can be applied to the groups Fg defined in the previous section.

Theorem 4.5. Let G < Aut(Tx) be a perfect, self-similar subgroup that satisfies prop-
erty H. Then for every non-empty subset Q2 C S, the group Fg is just infinite and satisfies
the congruence subgroup property.

Proof. From Corollary 3.7, we know that the groups RiStrg (¢) and Strg (€) coincide for
every £ € N. As each rigid stabilizer RiSth (v) is generated by isomorphic copies of the
perfect group G, it follows that RiSth (v) 1s perfect itself. Now the claim follows from
Corollary 4.4. ]

As a consequence of Theorem 4.5, we see that the action of Fg on Ty is a faith-
ful extension of the action of Fg on Tx and that Fg is isomorphic to Fg < Aut(Tyx).
In the following, it will be important for us to observe that under the assumptions of
Theorem 4.5 the tree completion Fg does not depend on 2.

In fact, the tree completion is always an iterated wreath product. Let X be a finite set
and let O < Sym(X). Consider the inverse limit :° Q := 1(i1_nn &% O of the iterated wreath
products, where the projection 2;’(“ 0 — % Q is given by restricting the natural action
of %0 on X n+1 to the first n coordinates. Then the iterated wreath product ¥ O acts
on Ty, and we identify §° O with its image in Aut(Ty) under this action. We note that
this is a closed subgroup of Aut(7Ty).

Since a closed subgroup of Aut(7Ty) is uniquely determined by its actions on all finite
levels of the tree, the following result is a direct consequence of Theorem 4.5 and Propos-
ition 3.8.
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Corollary 4.6. Let G < Aut(Tx) be a perfect, self-similar subgroup that satisfies H.
Let Q < Sym(X) denote the image of G under the canonical action on X. For every
non-empty subset Q C §, the canonical map resTg defines an isomorphism from Fg onto
¥ O < Aut(Ty).

Corollary 4.7. Let G, H < Aut(Tx) be perfect, self-similar subgroups that satisfy H.
If the_images of G and H in Sym(X) coincide, then the profinite completions T’ g
and Fls_}/ are isomorphic for all non-empty subsets Q, Q" C §. If moreover G is a sub-
group of H and Q C Q/, then I‘g is a subgroup of Fls_}/ and the inclusion map j induces
an isomorphism

S R 7Y
jiTg —=Tg.

Proof. The first assertion follows immediately from Corollary 4.6. Assume that G < H
and Q C Q. By definition Fg c Fg/. We observe that the following diagram commutes:

rg 512 —— Auy(Ty)

Lol

—~ A —— res

rg 1, 12 X, AuTy),

rg Q. . 2.
and we deduce that resTg = resT;’ o i. Now it follows from Corollary 4.6 that i is an

isomorphism. ]

5. Uncountably many groups up to isomorphism

The aim of this section is to prove that — under mild assumptions on G — the family of
groups Fg where Q2 runs through the non-empty subsets 2 € § contains uncountably
many isomorphism types of groups.

Let G be a group that acts via two homomorphisms ¢, ¢>: G — Aut(7) on a rooted
tree T. We say that the actions are conjugated if there is an automorphism y € Aut(7T')
such that ¢5(g) = y1(g)y~! forevery g € G.

Definition 5.1. Let T be a tree. We say that a subgroup G < Aut(T) is rigid if every
automorphism « of G is induced by a conjugation of 7. More precisely, this means that
there is some y € Aut(7T) with a(g) = ygy~! forevery g € G.

The following result is a special case of [16, Proposition 8.1].

Proposition 5.2. Let T be a rooted tree and let G < Aut(T') be a branch group. Sup-
pose that for every vertex v the rigid stabilizer RiStg (v) acts level-transitively on the
subtree Ty,. Then G is rigid in Aut(T).

Recall that we write G to denote the profinite completion of a residually finite group G.
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Lemma 5.3. Let T be a rooted tree and let Gy, G, < Aut(T') be two branch groups whose
restricted stabilizers RiStg, (v) act level-transitively on T, for every vertex v. Suppose
that Gy and G satisfy the congruence subgroup property and that G| = G, € Aut(T).
Then every isomorphism between G1 and G is induced by a conjugation in Aut(T).

Proof. Define G := G, = G,. Suppose that f: G, — G, is an isomorphism and let
f é\l — 6\2 be the corresponding isomorphism on the profinite completions. By the con-
gruence subgroup property, the restrictions resg G — G are isomorphisms between
the proﬁnlte completions and the tree completions. The homomorphism fy := resT o f o
(res 1)~ is thus an automorphism of G, i.e., the following diagram commutes:

156G,

G
G 2

2

"*!Q

G.

Since the rigid stabilizers of G contain those of G; (and G5), we can therefore apply
Proposition 5.2 to deduce that there is some y € Aut(T) with fo(g) = ygy ™! for all

g € G.Forevery g € G| C G, we therefore obtain f(g) = fo(g) = ygy L. |

Definition 5.4. Let X be a finite alphabet and let Tx be the corresponding | X |-regular
rooted tree with vertex set X *. Given a tree automorphism g € Aut(7Ty) and a number
£ € N, we consider the subset Fix;(g) € X" of vertices of level £ that are fixed by g. The
support volume of g is defined as

| X\ Fixe(g)|

vol(g) := X7

Given a tree automorphism g € Aut(7) and a vertex v with g(v) # v, it follows
that no descendant of v is fixed by g. Thus % is a non-decreasing sequence of
numbers that are bounded above by 1. In particular, this tells us that the limit vol(g) =
limy_; o % indeed exists. In fact, the support volume measures the set of elements
in the boundary of Ty which are moved by g. The support volume is invariant under
conjugation. Let @ € Aut(T') be an automorphism. Then Fixy(aga™') = a(Fix,(g)) and
hence vol(g) = vol(aga™!).

We return to the construction introduced in Section 3.2. Let X be a non-empty finite
set with an element 0 € X and define Xt = X \ {o}. Recall that § := (X ).

Theorem 5.5. Let X be a finite set with |X| > 3. Let G < Aut(Tx) be a non-trivial
subgroup. For every w € S, the set of real numbers

{(vol(g) | g e T o' € S} [0, 1]

is uncountable.
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Proof. Lett € G be an element, which acts non-trivially on Ty in particular, vol(z) > 0.
Since | X | > 3, we can pick an element z, € X \ {0, w,} foreveryn € N.Let S € N be
a set of natural numbers. We define o’ = w’(S) by

n

, {a),, ifnédsS,
1)

zp, ifneSs.

Consider the element g = (7©)~17%" € F{G‘”’w ! Then g acts like =" on (Tx) 14, and
like ¢ on (Tx)on-1,, for every n € § and acts trivially on all vertices not contained in one
of these subtrees. We obtain

vol(g) = 3 2vol®) _ 5 volr) 3 Ix|

n
nes |X| nes

and observe that this number uniquely determines the set S. Indeed, since | X | > 3 the first
non-zero term dominates the series. This completes the proof of the theorem, using that
there are uncountably many subsets S C N. ]

Corollary 5.6. Let G < Aut(Tx) be a countable, perfect, self-similar subgroup that satis-
fies property H. For every o € §, the family of groups (F{G“”w })a)’ES contains uncountably
many distinct isomorphism types.

Proof. Recall that by Corollary 3.7, the groups Fg are branch groups and the rigid stabil-
izers act level-transitively. By Theorem 4.5, these groups have the congruence subgroup
property and by Corollary 4.6, the closure of Fg in Aut(7x) does not depend on 2.
We conclude using Lemma 5.3 that every isomorphism between two of the groups Fg is
induced by a conjugation in Aut(7Ty ). In particular, this means that isomorphisms between
these groups preserve the support volume of elements.

We note that G is perfect and acts transitively on X, hence we must have | X | > 5. The-
orem 5.5 therefore shows that the set of support volumes of elements in the groups Fg"’w,}
is uncountable. However, G is countable and so the groups F{Gw’w/} are countably gen-
erated and thus countable. In conclusion, each isomorphism type contributes at most
countably many numbers to the uncountable set of support volumes and consequently
uncountably many isomorphisms types have to occur. ]

In the next section, we will discuss a concrete example of a group G where a sim-
ilar argument can be used to show that the number of isomorphism types in the family
(I'é)wes is uncountable.

Remark 5.7. We briefly return to Grothendieck’s question. If G < Aut(T) is a finitely
generated group which satisfies the assumptions of Corollary 5.6, then the groups
(Fg)ggs where €2 runs in the finite subsets of § form an uncountable directed system of
finitely generated residually finite groups in which every inclusion induces an isomorph-
ism between profinite completions (see Corollary 4.7).
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6. Matrix groups acting on trees

Given a prime number p and a natural number 1, we consider the set A, , 1= {0, ...,
p — 1}* which takes the role of the alphabet (called X in the previous sections). Let A;’n
denote the free monoid generated by 4, , i.e., the set of (finite) words over A ,,. Let T
denote the Cayley graph of A7 , with respect to sy, . Clearly, Tp 5 is a tree whose bound-
ary dTp,» can be identified with the set - 7%, of infinite sequences over 4 ,. The element
0=1(0,0,...,0) € A, is the distinguished element, and we write S, , to denote the

space of infinite sequences over 4 , \ {0}.

Definition 6.1. Given a commutative, unital ring R and a natural number n € N, we
write SAff, (R) to denote the group of affine transformations of R” whose linear part lies
in SL,, (R). We note that SAff, (R) = R" x SL,(R).

It is a well-known fact that SL,(Z) and SL,(F,) are perfect for n > 3 (see, for
example, [10, §1.2.15] and [24, p. 46]). In the following, we need an affine version of
this observation.

Lemma 6.2. The groups SAff, (Z) and SAff, () are perfect for n > 3.

Proof. For every v € Z" let Ty, denote the translation by v. Since SL, (Z) is perfect (for
n > 3), it suffices to show that every translation T¢; by a standard unit vector e; € Z"
can be written as a commutator in SAff,(Z). To see this, we consider the elementary
matrices E; ; € SL,(Z) for 1 <i < j < n which are defined by E; ; - ¢; = ¢; + ¢; and
E; j-ex = e fork # j. Then

[Tee;. Eij] = T, Ei j T E j = Toe; + Tk, ;e; = T-e; + Terre; = T

ijej
and the result for SAff(Z) follows. The same argument applies to SAff(IF,). ]

The set A7, can be identified with Z}, via (x,) Yo p'x; and similarly the £-th
level of the tree can be identified with (Z/p*Z)". In view of this, the natural action of

SAff,(Zp) on Zj, induces an action on Tp ,. In fact, the action on the {-th level factors
through SAff,(Z/ p*Z).

Lemma 6.3. The subgroup SAff, (Z) < Aut(T) ) is self-similar and satisfies property H.

Proof. Let A € SL,(Z), let b € Z", and let g € SAff,(Z) be the element defined by
g(v) = Av + b. Letu € Z, be an element of the form u = x 4+ pw with x € A, and
w € Zp. Let further x” € 4, , and b’ € Z, be such that Ax + b = x" 4+ pb’. Then we
have

gu) = A(x + pw) +b = Ax + b + pAw = x' + p(Aw + b),

which tells us that g, is given by gx(w) = Aw + b’. As Ax + b = x’ + pb’ implies
b’ € Z and g, € SAff,(Z), we deduce that SAff(Z) is self-similar.
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The action of SAff(Z) on the first level A, factors through SAff(IF,). In fact, this is
the natural action of SAff(FF,) on F. Since this action is 2-transitive, it clearly satisfies
property H. ]

Definition 6.4. Let w = (wy)neN € Sp,n. For g € SAft, (Z), we define the map g¢: ZZ —
7" by
p

g%u) = Pl + pte(v) ifu = plwy + ptv forsome £ € N and v € Z7,
u ifu # p*~lwy, mod pt for every £ € N.

Further, we define SAff, (Z)® := {g% | g € SAff,(Z)}.

From this definition, one can easily see that S/AW)“’ is a group and that
T SAff,(Z) — SAFf(2)°, g+ §°

is a group isomorphism. The elements g% can also be defined recursively with the left shift
operator

L: ‘A’Z?n — A;f’n, (x1,x2,Xx3,...) > (X2, X3, X4, ...).

Indeed, given a sequence @ = (Wp)neN € Sp,» and an element g € SAff, (Z), then we
can write

gw = (gx)xerAp,na
where
5@ jfx =0,
g&x=1¢g if x = wq,

id otherwise.

This is exactly the formula used in Definition 3.4. For every subset w € S, ,, we define
the subgroup I'y’, < Aut(7p,») to be the group generated by SAff, (Z) and SAff, (Z)“.
Recall that for a set 2 C S, ,,, we define the subgroup F;z,n < Aut(Tp,,) to be generated
by the groups I'}’, with @ € Q. Lemmas 6.2 and 6.3 allow us to use the results developed
in the foregoing sections. In particular, we obtain the following result.

Corollary 6.5. Letn > 3 and let 2, Q21,22 C Sy, be non-empty subsets.

(1) Then F;z’n is a level-transitive, just infinite branch group which contains a non-
abelian free group and satisfies the congruence subgroup property. The profinite
completion is isomorphic to the closure of ' IE%" in Aut(T}, ,) and does not depend

on Q.
Q) If FIEZ, » and F;% a are isomorphic, then they are already conjugated in Aut(T), ,).

(3) For Q1 C 2,, the inclusion Fpsf b= Fpsf % induces an isomorphism between the
profinite completions.
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Proof. It is well known that SL,(Z) contains non-abelian free subgroups. By Corol-
lary 3.7, the groups Fgfn are branch groups and the rigid stabilizers act level-transitively.
By Theorem 4.5, these groups have the congruence subgroup property and by Corol-
lary 4.6, the closure of F;z,n in Aut(7),,) is isomorphic to the profinite completion and
does not depend on 2. Lemma 5.3 shows that every isomorphism between two of the
groups is induced by a conjugation in Aut(7}, ,). The third assertion follows from Corol-
lary 4.7. ]

It follows from Corollary 5.6 that the number of isomorphism types among the groups
I‘é’f;{w/} is uncountable. A variation of the argument shows that we can also find uncount-
ably many groups up to isomorphism in the family (I';,)wes, - In particular, most of
these groups do not admit a finite presentation.

Proposition 6.6. For every n > 3 and every prime p, there are uncountably many iso-
morphism classes of groups of the form I'y,.

Proof. If two of the groups '}, are isomorphic, then they are conjugated in Aut(7},5)
(see Corollary 6.5) and since conjugation in Aut(7) ,) preserves support volumes, we
deduce that for isomorphic groups the sets

vol(I'y,) = {vol(g) | g € T, }

coincide. We note that the groups I';’,, are finitely generated and thus vol(I';,) is a count-
able set. In particular, it is sufficient to prove — following Theorem 5.5 — that the set
Uowes,, vol(I';,) is uncountable.

Let e1, ez, ..., e, denote the standard basis of Z”. Consider the elementary matrix
A= Ei5 €SL,(Z) with Ae; = ey and Aex; = ey + e2. Let T = T, € SAff,(Z) be
the translation with the first standard basis vector. For every subset S € N, we define
o = w(S) € S, such that

{el ifigS,
w; =

ey ifi €S.

Let now ' = Aw. Using the formula given in Definition 6.4, it is readily checked that
AT®A~' = T*'. We consider the commutator g = [A4, T®] € I';, and observe that

g =[AT® = AT?AY(T?)™' = T (T*)~.

In particular, g acts non-trivially exactly on the boundary points x € Z congruent to ples
or p'(e; + e;) withi € S. We obtain

vol(g) = Y =7 =23 p

ni
ieS p ieS

and observe that this number uniquely determines the set S. Since there are uncountably
many subsets S C N, this completes the proof. ]
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7. Amenable groups acting on trees

Let X be a finite set, let 0 € X and let Xt := X \ {o}. Let § denote the set of infinite
sequences over X . Our goal in this section is to introduce amenable groups that have
the same profinite completions as F;%n for n > 3. To this end, we introduce automatic
automorphisms of Ty . Recall that for every vertex v € Ty, we write (Tx), to denote the
subtree of Tx whose vertex set is given by v X*. For « € Aut(Tx), we have a((Tx)y) =
(Tx )a(v)- Thus we can define the state of « at v as the unique automorphism o, of Ty that
satisfies @ (vw) = a(v)oy (w) for every w € X *. The set of all states of « will be denoted
by S(@) := {oy, € Aut(Tx) | v € X*}.

Definition 7.1. An automorphism « of Ty is called automatic if S(«) is finite.

Example 7.2. Let o be a rooted automorphism of Ty and let w = (wy)¢en € S. Consider
the automorphism &® of Tyx. For v € X*, we have

GL @ if y = o for some £ € No,

a, =1« if v = oty for some £ € Ny,

id otherwise.

Thus the set of states of @ is finite if and only if {L*(w) € § | £ € N} is a finite subset
of §. From this we see that &® is automatic if and only if there is some N € N such that
LY (w) is periodic.

Definition 7.3. An automorphism « € Aut(Ty) is called bounded if there is some C > 0
such that

Hve X' a, #£id)| < C
for all £ € Ny.

Example 7.4. Let o be a rooted automorphism of Ty. Then & is clearly bounded for
every choice of w € §.

It can be easily seen that the set of all bounded automatic automorphisms of Ty forms
a group. In [3, Theorem 1.2], Bartholdi, Kaimanovich and Nekrashevych proved that this
group is amenable. As subgroups of amenable groups are amenable, it follows that every
subgroup of Aut(Ty) that is generated by bounded automatic automorphisms is amenable.
In view of Examples 7.2 and 7.4, we therefore obtain the following.

Proposition 7.5. Let G < Aut(Tx) be a group of rooted automorphisms and let Q@ C §
be a non-empty subset. Suppose that every w € Q2 is eventually periodic, i.e., there is
an Ny, € N such that LNe (w) is periodic. Then T g is amenable.

Now we are able to proof Theorem 1.1. Let p be a prime and let n > 3 be a natural
number. Consider the natural action of SAff, (F,) on Ap,, :=1{0,..., p — 1}". Let A;n
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denote the complement of 0 := (0,0,...,0) in 4, , and let S,, ,, denote the set of sequences
in :A;{,n. For every non-empty set Q2 C S, ,, we write A;{n = FSSE\ffn (F,)’ where SAff, (Fp)

is identified with the corresponding group of rooted automorphisms of 7 , := T, Let
further G, denote the subgroup of Aut(7},,) that is generated by the canonical actions
of SAff,(Fp) and SAff,(Z) on Tp . Let M, Q= FQ be the corresponding 2-group.
Equivalently, M), ,, is the subgroup of Aut(Tp ,,) that is generated by AQ and FQ

Theorem 7.6. Let n > 3 be a natural number, let p be a prime, let w € S, , be eventually
periodic, and let Q C S, , be a finite subset. Then the following hold:

(1) A7, is a finitely generated amenable group.
(2) M, 9 is finitely generated and contains a non-abelian free group.

(3) If w € Q, then the inclusion t: Ap n = Man induces an isomorphism I A;‘,’,n —

M §2 ", of profinite completlons
@) The Sfamily (M ;CZ ' )w/e S, Contains uncountably many pairwise non-isomorphic
groups.

Proof. The first assertion follows from Proposition 7.5. Since €2 is finite, it follows that
M, Q is finitely generated. Since M, Q contains I‘I?n,
group by Corollary 6.5.

To prove the third assertion, we verify the assumptions of Corollary 4.7. First we
observe that the groups SAff, (F,) and (SAff,(F,) U SAff,(Z)) are perfect (see Lem-
ma 6.2). In addition, these groups are self-similar and satisfy property H; to see this, one
can use the argument given in Lemma 6.3.

Finally, it follows from Corollary 5.6 that the family (Mp{fl,),’w,})w/egp!n of subgroups
contains uncountably many pairwise non-isomorphic groups ]

it contains a non-abelian free sub-

In order to deduce Theorem 1.1 from Theorem 7.6, it remains to determine the num-
ber of generators. It is known that SL,(Z) and SL, (F,) are 2-generated (see [11]), and
so SAff,(Z) and SAff,(IF) can be generated by 3 elements. Since A}, is generated by
two copies of SAft, (F,), it is 6-generated. Similarly, the group G, , is 6-generated and
SO Mliff,’w/} — which is generated by three copies of G, , — can be generated using 18 ele-
ments.

Funding. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation), Projektnummer 441848266.
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