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Finiteness properties for relatives of braided
Higman–Thompson groups

Rachel Skipper and Xiaolei Wu

Abstract. We study the finiteness properties of the braided Higman–Thompson group bVd;r .H/
with labels in H � Bd , and bFd;r .H/ and bTd;r .H/ with labels in H � PBd , where Bd is the
braid group with d strings and PBd is its pure braid subgroup. We show that for all d � 2 and
r � 1, the group bVd;r .H/ (resp. bTd;r .H/ or bFd;r .H/) is of type Fn if and only if H is. Our
result in particular confirms a recent conjecture of Aroca and Cumplido.

1. Introduction

The family of Thompson’s groups and the many groups in the extended Thompson family
have long been studied for their many interesting properties. Thompson’s group F is the
first example of a type F1, torsion-free group with infinite cohomological dimension [15],
while Thompson’s groups T and V provided the first examples of finitely presented simple
groups. More recently, the braided and labeled braided Higman–Thompson groups have
garnered attention in part due their connections with big mapping class groups.

The braided version of Thompson’s group V , which we refer to here as bV , was first
introduced independently by Brin and Dehornoy [11,18]. Brady, Burillo, Cleary, and Stein
introduced braided F , or bF . The groups bV and bF were shown to be finitely presented
in [14] and [9], respectively, and this was extended to show that both of these groups
are of type F1 in [17]. Braided T was mentioned in [17] and shown to be of type F1
in [39]. The ribbon version of Thompson’s group V was first constructed by Thumann and
proved to be type F1 as well in [38]. Moving to higher dimensions, Spahn showed the
braided Brin–Thompson groups are of type F1 [36]. Recently, Aroca and Cumplido [2]
broadened the definitions of braided groups in the extended Thompson family to what we
will refer to as labeled braided Higman–Thompson groups bVd;r .H/, which depend on
a choice of a subgroup H of the braid group Bd . For any subgroup H of the pure braid
group PBd , it is natural to also consider bFd;r .H/ and bTd;r .H/ which we do here.
Aroca and Cumplido prove that if H � Bd is finitely generated, the groups bVd;r .H/
are finitely generated for all r � 1 and d � 2. They conjectured the following in [2, Sec-
tion 4.3].
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Conjecture. For all d � 2 and r � 1, the group bVd;r .H/ is finitely presented when H
is finitely presented.

Recall that a group G is of type Fn if there exists an aspherical CW-complex whose
fundamental group is G and whose n-skeleton is finite. Being of type F1 is equivalent to
the group being finitely generated and type F2 is equivalent to the group being finitely
presented. A group is of type F1 if it is of type Fn for all n � 1. Our first theorem
confirms Aroca and Cumplido’s conjecture. In fact, we completely determine the relation-
ship between the finiteness properties of H and those of the braided Higman–Thompson
groups with labels in H .

Theorem 4.29. For any d � 2 and r � 1 and any subgroup H of the braid group Bd
(resp. of the pure braid group PBd ), the group bVd;r .H/ (resp. bTd;r .H/ or bFd;r .H/)
is of type Fn if and only if H is.

Remark. The collection of subgroups of Bd represents a class of groups with rich finite-
ness properties. In fact, Zaremsky showed in [41] that there exists a subgroup of PBd
which is of typeFn but notFnC1 for any 0� n� d � 3. In particular, our theorem provides
a new class of Thompson-like groups which is of type Fn but not of type FnC1 for each n.

When H is the trivial group, the groups bVd;r .H/, bFd;r .H/, and bTd;r .H/ are the
braided Higman–Thompson groups bVd;r , bFd;r , and bTd;r , hence we have the following.

Corollary 4.30. The braided Higman–Thompson groups bVd;r , bFd;r , and bTd;r are of
type F1.

Remark. Genevois, Lonjou and Urech in [22] introduced another braided version of the
Higman–Thompson group Td;r and proved that the groups they study are of type F1
as well. Their groups are different from the ones studied here as they naturally surject
onto Td;r with kernel being an infinite braid group, while our group bTd;r surjects natu-
rally onto Td;r with an infinite pure braid group as the kernel.

View the braid group Bd as the mapping class group of the disk with d marked points
and let C be the subgroup of Bd generated by the half twist around the boundary. Then
the corresponding group bVd;r .C / can be identified with the ribbon Higman–Thompson
group RVd;r . See Proposition 3.12 for a precise statement. Note also that when we take
the label group to be the index 2 subgroup of C which is generated by a full Dehn
twist around the boundary, we get the oriented ribbon Higman–Thompson groups RV C

d;r
,

RFC
d;r

, and RTC
d;r

.

Corollary 4.31. The ribbon Higman–Thompson groupRVd;r is of type F1. Likewise, the
oriented ribbon Higman–Thompson groups RV C

d;r
, RFC

d;r
, and RTC

d;r
are of type F1.

Remark. For a more thorough exploration of the ribbon Higman–Thompson groups
RVd;r and oriented ribbon Higman–Thompson groups RV C

d;r
, we direct the reader to [34]

where the authors showed these families of groups satisfy homological stability.
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There is a large amount of literature devoted to the finding of finiteness properties
of groups in the extended family of Thompson’s groups. Most often the groups are of
type F1, e.g., [5, 12, 17, 19, 20, 30, 31, 35, 38], though not always, e.g., Belk–Forrest’s
Basilica Thompson group TB [3] is type F1, but not F2 [40] and the simple groups of
type Fn but not FnC1 are given in [6, 33].

The “only if” part of Theorem 4.29 is proved using a quasi-retract argument inspired
by [6, Section 4]. For the “if” part, as in [17], our proof uses Brown’s criterion. Ultimately,
it reduces to proving that certain d -marked-point-disk complexes are highly connected.
See Sections 4.2 and 4.3 for the details. Given a surface S with m marked points, a k-
simplex in the d -marked-point-disk complex Dd .S/ is an isotopy class of a system of
disjointly embedded disks hD0; D1; : : : ; Dki such that each disk Di encloses precisely
d marked points in its interior. The face relation is given by the subset relation. Note
that except some singular cases, Dd .S/ can be viewed as a full subcomplex of the curve
complex first defined by Harvey [25]. The connectivity properties of the curve complex
played an important role in Harer’s proof of homological stability for the mapping class
groups [24]. We have the following.

Theorem 4.12. Let S be a surface withmmarked points. Then for any d � 2, the complex
Dd .S/ is .b mC1

2d�1
c � 2/-connected.

Outline of paper. In Section 2, we describe the connectivity tools that will be nec-
essary for the remainder of the paper. In Section 3, we introduce the definition of the
labeled braided Higman–Thompson groups using braided paired forest diagrams to define
the elements. Next, in Section 4, we build the Stein space on which the labeled braided
Higman–Thompson groups act and use it to prove the “if” part of Theorem 4.29 by apply-
ing a combination of Brown’s criterion with Bestvina–Brady discrete Morse theory. In the
same section, we then prove the “only if” part by a quasi-retract argument.

Notation and convention. All surfaces in this paper are assumed to be connected and
orientable unless otherwise stated. Given a simplicial complex X and a cell � 2 X , we
denote the link of � in X by LkX .�/ (resp. the star of � by StX .�/). When the situation
is clear, we quite often omit X and simply denote the link by Lk.�/ and the star by St.�/.
We also use the convention that .�1/-connected means nonempty and that every space
is .�2/-connected. In particular, the empty set is .�2/-connected. Finally, we adopt the
convention that elements in groups are multiplied from left to right.

2. Connectivity tools

In this section, we review some of the connectivity tools that we need for calculating the
connectivity of our spaces. A good reference is [27, Section 2], although not all the tools
we use can be found there.
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2.1. Discrete Morse theory

Let Y be a piecewise Euclidean cell complex, and let h be a map from the set of vertices
of Y to the integers, such that each cell has a unique vertex maximizing h. Call h a height
function, and h.y/ the height of y for vertices y in Y . For t 2 Z, define Y �t to be the
full subcomplex of Y spanned by vertices y satisfying h.y/ � t . Similarly, define Y <t

and Y Dt . The descending star St#.y/ of a vertex y is defined to be the open star of y
in Y �h.y/. The descending link Lk#.y/ of y is given by the set of “local directions”
starting at y and pointing into St#.y/. More details can be found in [7], and the following
Morse lemma is a consequence of [7, Corollary 2.6].

Lemma 2.1 (Morse lemma). Let Y be a piecewise Euclidean cell complex and let h be
a height function on Y .

(1) Suppose that for any vertex y with h.y/ D t , Lk#.y/ is .k � 1/-connected. Then
the pair .Y �t ; Y <t / is k-connected.

(2) Suppose that for any vertex y with h.y/ � t , Lk#.y/ is .k � 1/-connected. Then
.Y; Y <t / is k-connected.

Recall that we say a pair of spaces .X; Y / with Y � X is k-connected if the inclusion
map Y ,! X induces an isomorphism in �j for j < k and an epimorphism in �k .

2.2. Complete join

The complete join is another useful tool introduced by Hatcher and Wahl in [28, Section 3]
for proving connectivity results. We review the basics here.

Definition 2.2. A surjective simplicial map � W Y ! X is called a complete join if it sat-
isfies the following properties:

(1) � is injective on individual simplices.

(2) For each p-simplex � Dhv0; : : : ;vpi ofX , ��1.�/ is the join ��1.v0/���1.v1/�
� � � � ��1.vp/.

Definition 2.3. A simplicial complex X is called weakly Cohen–Macaulay of dimen-
sion n if X is .n � 1/-connected and the link of each p-simplex of X is .n � p � 2/-
connected. We sometimes shorten weakly Cohen–Macaulay to wCM .

The main result regarding complete join that we will use in this paper is the following
statement.

Proposition 2.4 ([28, Proposition 3.5]). If Y is a complete join complex over a wCM
complex X of dimension n, then Y is also wCM of dimension n.

Remark 2.5. If � W Y ! X is a complete join, then X is a retract of Y . In fact, we can
define a simplicial map sWX ! Y such that � ı s D idX by sending a vertex v 2 X to
any vertex in ��1.v/ and then extending it to simplices. The fact that s can be extended to
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simplices is granted by the condition that � is a complete join. In particular, we can also
conclude that if Y is n-connected, so is X .

2.3. The mutual link trick

In the proof of [17, Theorem 3.10], there is a beautiful argument for resolving intersec-
tions of arcs inspired by Hatcher’s flow argument [26]. They attributed the idea to Andrew
Putman. Recall that Hatcher’s flow argument allows one to “flow” a complex to its sub-
complex. But in the process, one can only “flow” a vertex to a new one in its link. The
mutual link trick will allow one to “flow” a vertex to a new one not in its link, provided
“the mutual link” is sufficiently connected.

To apply the mutual link trick, we first need a lemma that allows us to homotope
a simplicial map to a simplexwise injective one [17, Lemma 3.9]. Recall a simplicial map
is called simplexwise injective if its restriction to any simplex is injective. See also [21,
Section 2.1] for more information.

Lemma 2.6. Let Y be a compactm-dimensional combinatorial manifold. LetX be a sim-
plicial complex and assume that the link of every p-simplex inX is .m�p� 2/-connected.
Let  WY ! X be a simplicial map whose restriction to @Y is simplexwise injective. Then
after possibly subdividing the simplicial structure of Y ,  is homotopic relative @Y to
a simplexwise injective map.

Note that, as discussed in [22, Lemma 5.19], there is a mistake in the connectivity
bound given in [17] that has been corrected here.

Lemma 2.7 (The mutual link trick). Let Y be a closed m-dimensional combinatorial
manifold and f WY ! X be a simplexwise injective simplicial map. Let y 2 Y be a vertex
and f .y/D x for some x 2 X . Suppose x0 is another vertex of X satisfying the following
condition:

(1) f .LkY .y// � LkX .x0/,

(2) the mutual link LkX .x/ \ LkX .x0/ is .m � 1/-connected.

Then we can define a new simplexwise injective map gWY ! X by sending y to x0 and all
the other vertices y0 to f .y0/ such that g is homotopic to f .

See [34, Lemma 1.9] for a proof of the mutual link trick.

3. Higman–Thompson groups and their braided versions

In this section, we first give an introduction to the Higman–Thompson groups and then in-
troduce their braided version. The braided Thompson-like groups in the generality we will
consider here were first given by Aroca and Cumplido in [2]. Note that Aroca and Cumpli-
do’s exposition closely follows the original introduction of braided Higman–Thompson
groups by Brin [11] whereas we instead will follow the exposition in [17].
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3.1. Higman–Thompson groups

The Higman–Thompson groups were first introduced by Higman as a generalization of
the groups [29] given earlier in handwritten, unpublished notes of Thompson. First let us
recall the definition of the Higman–Thompson groups. Although there are a number of
equivalent definitions of these groups, we will use the notion of paired forest diagrams.
First we define a finite rooted d -ary tree to be a finite tree such that every vertex has
degree d C 1 except the leaves which have degree 1, and the root, which has degree d
(or degree 1 if the root is also a leaf). Usually we draw such trees with the root at the top
and the nodes descending from it down to the leaves. A vertex v of the tree along with
its d adjacent descendants will be called a caret. If the leaves of a caret in the tree are
leaves of the tree, we will call the caret elementary. A collection of r many d -ary trees
will be called a .d; r/-forest. When d is clear from the context, we may just call it an
r-forest.

Define a paired .d; r/-forest diagram to be a triple .F�; �; FC/ consisting of two
.d; r/-forests F� and FC both with l leaves for some l , and a permutation � 2 Sl , the
symmetric group on l elements. We label the leaves of F� with 1; : : : ; l from left to right,
and for each i , the �.i/-th leaf of FC is labeled i .

Define a reduction of a paired .d; r/-forest diagram to be the following: Suppose there
is an elementary caret in F� with leaves labeled by i; : : : ; i C d � 1 from left to right,
and an elementary caret in FC with leaves labeled by i; : : : ; i C d � 1 from left to right.
Then we can “reduce” the diagram by removing those carets, renumbering the leaves and
replacing � with the permutation �0 2 Sl�dC1 that sends the new leaf of F� to the new
leaf of FC, and otherwise behaves like �. The resulting paired forest diagram .F 0�; �

0; F 0C/

is then said to be obtained by reducing .F�; �; FC/. See Figure 1 below for an idea of
reduction of paired .3; 2/-forest diagrams. The reverse operation to reduction is called
expansion, so .F�; �; FC/ is an expansion of .F 0�; �

0; F 0C/. A paired forest diagram is
called reduced if there is no reduction possible. Define an equivalence relation on the set
of paired .d; r/-forest diagrams by declaring two paired forest diagrams to be equivalent if
one can be reached by the other through a finite series of reductions and expansions. Thus
an equivalence class of paired forest diagrams consists of all diagrams having a common
reduced representative. Such reduced representatives are unique.

1 2 3 4 5 6 7 8 4 61 32 7 58

1 2 3 4 5 6 2 41 5 36

Figure 1. Reduction, of the top paired .3; 2/-forest diagram to the bottom one.
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There is a binary operation � on the set of equivalence classes of paired .d; r/-forest
diagrams. Let ˛ D .F�; �; FC/ and ˇ D .E�; �; EC/ be reduced paired forest diagrams.
By applying repeated expansions to ˛ and ˇ, we can find representatives .F 0�; �

0; F 0C/ and
.E 0�; �

0;E 0C/ of the equivalence classes of ˛ and ˇ, respectively, such that F 0C DE
0
�. Then

we declare ˛ � ˇ to be .F 0�; �
0� 0; E 0C/. This operation is well defined on the equivalence

classes and is a group operation.

Definition 3.1. The Higman–Thompson group Vd;r is the group of equivalence classes
of paired .d; r/-forest diagrams with the multiplication �. The Higman–Thompson group
Fd;r is the subgroup of Vd;r consisting of elements where the permutation is the identity.
The Higman–Thompson group Td;r is the subgroup of Vd;r consisting of elements where
the permutation is cyclic, i.e., there exists some k such that for all i , the i -th leaf is mapped
to the .i C k/-th leaf (modulo the number of leaves).

The usual Thompson’s groups F , T , and V are special cases of Higman–Thompson
groups. In fact, F D F2;1, T D T2;1, and V D V2;1. Brown and Geoghegan showed in [15]
that F is of type F1 which provided the first example of a torsion-free group of type F1
but not of finite cohomological dimension. Later, in [12, Section 4] Brown showed the
following.

Theorem 3.2. The Higman–Thompson groups Vd;r , Fd;r and Td;r are all of type F1.

3.2. Braided Higman–Thompson groups with labels

In this subsection, we introduce braided and labeled braided Higman–Thompson groups.
Again, we follow the exposition in [17, Section 1] closely to define these groups.

For convenience, we will think of the forest FC drawn beneath F� and upside down,
i.e., with the root at the bottom and the leaves at the top. The permutation � is then indi-
cated by arrows pointing from the leaves of F� to the corresponding paired leaves of FC.
See Figure 2 for this visualization of (the unreduced representation of) the element of V3;2
from Figure 1.

Now in the braided version of the Higman–Thompson groups, the permutations of
leaves are simply replaced by braids between the leaves. We will need to go one step far-

Figure 2. An element of V3;2.
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ther to define the group bVd;r .H/. Here we further replace the permutations by labeled
braids as described in the next definition. Recall that an element in the braid groupBd con-
sists of d strings. We enumerate them by their initial points from left to right as 1;2; : : : ;d .

Definition 3.3. Given any group H , an element in the labeled braid group Bl .H/ is an
ordered pair .b; �/ where b is in the braid group Bl and �W ¹1; 2; : : : ; lº ! H is a map
called the labeling map. The group operation is given by stacking the two braids and
multiplying the labels using the multiplication in H . In other words, Bl .H/ Š Bn ËH l ,
where Bl acts on H l by permuting the coordinates using the canonical map �WBl ! Sl
and Sl is the symmetric group on l elements.

Definition 3.4. For a group H , a braided paired .H; d; r/-forest diagram is a triple
.F�; .b; �/; FC/ consisting of two .d; r/-forests F� and FC both with l leaves for some l
and a labeled braid .b; �/ 2 Bl .H/.

We draw braided paired forest diagrams with FC upside down and below F� with the
strands of the braid connecting the leaves and with each stand labeled by an element inH .
This is analogous to the visualization of paired forest diagrams in Figure 2 and examples
of braided paired forest diagrams can be seen in Figure 3.

h2 h2 h2h1 h3 h4 h5 h6

h2

h2h1 h3 h4 h5 h6

Figure 3. Reduction of braided paired forest diagrams.

Now to define the group bVd;r .H/, we will restrict ourselves to the case H � Bd ,
although the definition works as long as we have a homomorphism sWH ! Bd .

As in the Higman–Thompson group case, we can define an equivalence relation on
the set of braided paired forest diagrams using the notions of reduction and expansion.
This time, it is easier to first define expansion and then take reduction as the reverse of
expansion. Let �b 2 Sl denote the permutation corresponding to the braid b 2 Bl . Let
.F�; .b; �/; FC/ be a braided paired forest diagram. Label the leaves of F� from 1 to l ,
left to right, and for each i label the �b.i/-th leaf of FC by i . By the i -th strand of the braid
we will always mean the strand that begins at the i -th leaf of F�, i.e., we count the strands
from the top. The label for the i -th strand of the braid is given by �.i/. An expansion
of .F�; .b; �/; FC/ is the following: For some 1 � i � l , replace F˙ with forests F 0

˙

obtained from F˙ by adding a caret to the leaf labeled i . Then replace b with a braid
b0 2 BlCd�1, obtained from replacing the i -th strand of b with the braid �.i/. Finally,
we label the d new strands all by �.i/. We denote the new labeling system by �0 so that
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the triple .F 0�; .b
0; �0/; F 0C/ is an expansion of .F�; .b; �/; FC/. As with paired forest

diagrams, reduction is the reverse of expansion, so .F�; .b; �/; FC/ is a reduction of
.F 0�; .b

0; �0/;F 0C/. See Figure 3 for an idea of reduction of braided paired forest diagrams.
Note that in the picture, we draw a small circle on each string inside which we write
the corresponding label and we use a box with a label to indicate that the corresponding
strings are braided according to that label.

Two braided paired forest diagrams with labels in H are equivalent if one is obtained
from the other by a sequence of reductions or expansions. The multiplication opera-
tion � on the equivalence classes is defined the same way as for Vd;r . In more detail, let
˛ D .F�; .b1; �1/; FC/ and ˇ D .E�; .b2; �2/;EC/ be reduced braided paired .H; d; r/-
forest diagrams. By applying repeated expansions to ˛ and ˇ we can find representatives
.F 0�; .b

0
1; �
0
1/; F

0
C/ and .E 0�; .b

0
2; �
0
2/; E

0
C/ of the equivalence classes of ˛ and ˇ, respec-

tively, such that F 0C D E
0
�. Then we declare ˛ � ˇ to be .F 0�; .b

0
1; �
0
1/.b

0
2; �
0
2/; E

0
C/. This

operation is well defined on the equivalence classes and is a group operation as proved
in [2, Section 3].

Definition 3.5. Given any subgroup H � Bd , the braided Higman–Thompson group
bVd;r .H/ is the group of equivalence classes of braided paired .H; d; r/-forests dia-
grams with the multiplication �. For anyH �PBd , the braided Higman–Thompson group
bFd;r .H/ is the group of equivalence classes of braided paired .H; d; r/-forest diagrams
where the braids are all pure. Finally, for any H � PBd , the braided Higman–Thompson
group bTd;r .H/ is the group of equivalence classes of braided paired .H; d; r/-forest
diagrams where the permutations corresponding to the braids are all cyclic.

A convenient way to visualize multiplication in bVd;r .H/, bFd;r .H/, and bTd;r .H/
is via “stacking” braided paired forest diagrams. For g, h in bVd;r .H/, bFd;r .H/, or
bTd;r .H/, each pictured as a forest-braid-forest as before, g � h is obtained by attaching
the top of h to the bottom of g and then reducing the picture via certain moves. We
indicate four of these moves in Figure 4 for d D 3. A merge followed immediately by
a split, or a split followed immediately by a merge, is equivalent to doing nothing except
multiplying the labels, as seen in the top two pictures. Also, splits and merges interact
with braids in the ways indicated by the bottom two pictures. We leave it to the reader
to further inspect the details of this visualization of multiplication in these groups. This
is closely related to the strand diagram model for Thompson’s groups in [4]. See also
[11, Section 1.2].

From now on, we will just refer to the braided .H; d; r/-forest diagrams as being the
elements of bVd;r .H/, bFd;r .H/, or bTd;r .H/, though one should keep in mind that the
elements are actually equivalence classes under the reduction and expansion operations.
When H is the trivial group, we denote the groups simply by bVd;r , bFd;r , or bTd;r .

Theorem 3.6 ([17, 39]). The groups bV2;1, bF2;1, and bT2;1 are of type F1.

Another interesting class of relatives of the braided Thompson groups is the ribbon
Higman–Thompson groups. Let us explain this in more detail.
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D

h1

h01

h2

h02

h3

h03

h1h
0
1 h2h

0
2 h3h

0
3 D

h h h

h h

h1 h2

D

h1

h2

h2h2 h2
h1 h2

D

h1

h2

h1h1 h1

Figure 4. Moves to reduce braided paired forest diagrams after stacking.

Definition 3.7. Let	D
`l
iD1 Ii W Œ0;1�� ¹1; : : : ; lº!R2 be an embedding which we refer

to as the marked bands. A ribbon braid is a map RW .Œ0; 1� � ¹0; 1; : : : ; lº/ � Œ0; 1�! R2

such that for any 0 � t � 1, Rt W Œ0; 1� � ¹1; : : : ; lº ! R2 is an embedding, R0 D 	, and
there exists � 2 Sl such that R1.t/jIi D I�.i/.t/ or R1.t/jIi D I�.i/.1 � t /. The usual
product of paths defines a group structure on the set of ribbon braids up to homotopy
among ribbon braids. This group, denoted by RBl , does not depend on the choice of the
marked bands and it is called the ribbon braid group with l bands. A ribbon braid is pure
if � is trivial and we define PRBl to be the pure ribbon braid group with l bands. If
we further assume R1.t/jIi D I�.i/.t/, this subgroup is called the oriented ribbon braid
group RBC

l
. Similarly, we have the oriented pure ribbon braid group PRBC

l
.

Remark 3.8. Note that RBl Š Zl Ì Bl , where the action of Bl is induced by the sym-
metric group action on the coordinates of Zl . In particular, for the pure ribbon braid group
PRBl , we have PRBl Š Zl � PBl . Under this isomorphism,

RBC
l
Š .2Z/l Ì Bl and PRBC

l
Š .2Z/l � PBl :

Definition 3.9. A ribbon braided paired .d; r/-forest diagram is a triple .F�; r; FC/
consisting of two .d; r/-forests F� and FC both with l leaves for some l and a ribbon
braid r 2 RBl connecting the leaves of F� to the leaves of FC.

The expansion and reduction rules for the ribbon braids just come from the natural
way of splitting a ribbon band into d components and the inverse operation to this. See
Figure 5 for how to split a half twisted band when d D 2. Note that not only are the two
bands themselves twisted but the bands are also braided. Everything else will be the same
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Figure 5. Splitting a ribbon into 2 ribbons.

as in the braided case, so we omit the details here. As usual, we define two ribbon braided
paired forest diagrams to be equivalent if one is obtained from the other by a sequence
of reductions or expansions. The multiplication operation � on the equivalence classes is
defined the same way as for bVd;r .

Definition 3.10. The ribbon Higman–Thompson group RVd;r (resp. the oriented ribbon
Higman–Thompson group RV C

d;r
) is the group of equivalence classes of (resp. oriented)

ribbon braided paired .d; r/-forests diagrams with the multiplication �. The oriented
ribbon Higman–Thompson group RFC

d;r
is the group of equivalence classes of oriented

ribbon braided paired .d; r/-forest diagrams where the ribbon braids are all pure. Finally,
the oriented ribbon Higman–Thompson group RTC

d;r
is the group of equivalence classes

of oriented ribbon braided paired .d; r/-forest diagrams where the permutations corre-
sponding to the braids are all cyclic.

Remark 3.11. As in Definition 3.5, in order for the definition of the ribbon Higman–
Thompson groups to work for F and T , we need the ribbon braids to stay pure under the
expansion and hence the ribbon braids must be oriented.

View the braid group Bd as the mapping class group of the disk with d marked points.
Let C D h�i be the subgroup of Bd generated by the (counterclockwise) half Dehn twist
around the boundary, then the corresponding group bVd;r .C / can be identified with the
ribbon Higman–Thompson group RVd;r as follows. The group Bd .C / can be naturally
identified with the ribbon braid group RBd by mapping the label �k in each string to
a band twisted counterclockwise with angle k� . Moreover, the expansion and reduc-
tion and multiplication rule for braided paired .H; d; r/-forests diagrams and the ribbon
braided paired .d; r/-forests diagrams are exactly the same. Hence, we have identified
RVd;r with bVd;r .C /. The argument in fact shows the following.

Proposition 3.12. RVd;r Š bVd;r .C /, RV C
d;r
Š bVd;r .2C /, RFC

d;r
Š bFd;r .2C /,

RTC
d;r
Š bTd;r .2C /.

Thumann showed the following in [38, Section 4.6.2].

Theorem 3.13. The ribbon Higman–Thompson group RV2;1 is of type F1.
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4. Finiteness properties of braided Higman–Thompson groups

In this section, we will determine the finiteness properties of the braided Higman–Thomp-
son groups bVd;r .H/, bFd;r .H/ and bTd;r .H/. First, we will generalize the braided
paired forest diagrams to allow for the forests to each have an arbitrary number of trees.
This will be used to build a complex which the groups act on that will then allow us to
induce the finiteness properties of the corresponding braided Higman–Thompson groups.
Recall that in Definition 3.5, the label group H for bVd;r .H/ is a subgroup of Bd , while
for bFd;r .H/ and bTd;r .H/, it lies in PBd , although H will not play a big role in our
proof.

By the terminology in [17], given a braided paired forest diagram .F�; .b; �/; FC/,
where F�, FC are forests with l leaves and .b;�/ 2Bl .H/, we call a d -caret in F� a split.
Similarly, a merge is a d -caret in FC. With this terminology, the picture representing the
braided paired forest diagram is called a split-braid-merge diagram, abbreviated spraige.
We first draw one strand splitting up into l strands in a certain way, representing F�. Then
the l strands braid and are labeled with labels defined by �, representing .b;�/, and finally
according to FC we merge the strands back together.

Definition 4.1. An .n; m/-spraige is a spraige that begins on n strands, the heads, and
ends on m strands, the feet. As indicated above, we can equivalently think of an .n; m/-
spraige as a braided paired forest diagram .F�; .b; �/; FC/, where F� has n roots,
FC has m roots and both have the same number of leaves. By an n-spraige we mean
an .n; m/-spraige for some m, and by a spraige we mean an .n; m/-spraige for some n
and m. Let � denote the set of all spraiges, �n;m the set of all .n;m/-spraiges, and �n the
set of all n-spraiges.

Note that an n-spraige has n heads, but can have any number of feet. This gives a nat-
ural function, namely the “number of feet” function f W � ! N given by f .�/ D m if
� 2 �n;m for some n.

The pictures in Figure 6 are examples of spraiges. It is clear that the notion of reduction
and expansion generalizes to diagrams of arbitrary spraiges, and one can consider equiv-
alence classes under reduction and expansion. As is the case with paired forest diagrams
and braided paired forest diagrams, each such class has a unique reduced representative.
We will just call an equivalence class of spraiges a spraige, so in particular the elements
of bVd;r .H/, bFd;r .H/, and bTd;r .H/ are all sets of .r; r/-spraiges.

The operation � defined for braided Higman–Thompson groups can be defined in gen-
eral for spraiges via concatenation of diagrams. It is only defined for certain pairs of
spraiges, namely we can multiply �1 � �2 for �1 2 �n1;m1 and �2 2 �n2;m2 if and only
if m1 D n2. In this case, we obtain �1 � �2 2 �n1;m2 . In the figures, we will sometimes
lengthen a single-node tree to an edge for aesthetic reasons.

Note that for every n 2 N there is an identity .n; n/-spraige 1n with respect to �,
namely the spraige represented by .1n; .id; �/; 1n/, where � is the trivial function which
chooses the identity in H as the label for each strand. By abuse of notation, we are
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�

h1 h2 h3 h4 h5 h6

D

h01 h02 h03 h04 h05 h06 h1h
0
4 h2h

0
1 h3h

0
2 h4h

0
5 h5h

0
3 h6h

0
6

Figure 6. Multiplication of spraiges.

using 1n to also denote the trivial forest with n roots. Note also, given any .n;m/-spraige
.F�; .b; �/; FC/, there exists an inverse .m; n/-spraige .FC; .b; �/�1; F�/ with

.F�; .b; �/; FC/ � .FC; .b; �/
�1; F�/ D 1n

and

.FC; .b; �/
�1; F�/ � .F�; .b; �/; FC/ D 1m:

These two together give that � is a groupoid under the operation �.
Some forests will be important enough to the construction of the Stein space in Sec-

tion 4.1 that we name them now. For n 2 N and J � ¹1; : : : ; nº, define F .n/J to be the
forest with n roots and jJ j carets, with a caret attached to the i -th root for each i 2 J .
A characterizing property of these forests is that every caret is elementary and so we will
call such forests elementary. Define the spraige �.n/J to be the .n; nC .d � 1/jJ j/-spraige
.F

.n/
J ; .id; �/; 1nC.d�1/jJ j/, and the spraige �.n/J to be its inverse. If J D ¹iº, we will write

F
.n/
i , �.n/i and �.n/i instead. See Figure 7 for an example of an elementary forest and the

corresponding spraiges. Note that we did not draw the labels as they are all 1 2 H .

F
.5/

¹2;5º

�
.5/

¹2;5º

�
.5/

¹2;5º

Figure 7. The elementary forest F .5/
¹2;5º

, and the spraiges �.5/
¹2;5º

and �.5/
¹2;5º

.
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h1 h2 h3 h4 h5 h6 h7

D

h1 h2 h2 h2

h3

h4 h5 h5 h5 h6 h7

h2 h5

Figure 8. A splitting of a spraige.

Fix an .n; m/-spraige � . For any forest F with m roots and l leaves, define the split-
ting of � by F as multiplying � by the spraige .F; .id; �/; 1l / from the right. Similarly,
a merging of � by F 0 is right multiplication by the spraige .1m; .id; �/; F 0/, where F 0 now
has l roots and m leaves. In the case where F (resp. F 0) is an elementary forest, we call
this operation elementary splitting (resp. elementary merging). See Figure 8 for an idea of
splitting and Figure 9 for an idea of elementary merging.

In the special case that F D F .n/i for i 2 ¹1; : : : ; nº, we can think of a splitting by F as
simply attaching a single caret to the i -th foot of a spraige, possibly followed by reductions
such as a splitting move as seen in Figure 4. Similarly, a merging by F in this case can
be thought of as merging the i -th through .i C d � 1/-th feet together. In these cases, we
will also speak of adding a split (respectively merge) to the spraige.

The following types of spraiges will prove to be particularly important. First, a braige
is defined to be a spraige where there are no splits, i.e., a spraige of the form .1n; .b;�/;F /

for b 2Bn and F having n leaves. Also, when F is elementary, we will call .1n; .b;�/;F /
an elementary braige. Analogously to spraiges, we define n-braiges and elementary n-
braiges.
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D

h1 h2 h3 h4 h5 h5 h5 h6

h5

h1 h2 h3 h4 h5 h6

Figure 9. An elementary merging of a spraige.

h1 h2 h3 h4 h5 h6 h6h h5h
0 h4h

0 h3h
0 h2h h1h

hh0

h3h
0 h4h

0 h5h
0 h1h h2h h6h

h h0

Figure 10. Dangling.

To deal with bFd;r .H/ and bTd:r .H/, we make the following convention: Whenever
we want to only consider pure or cyclic labeled braids, we will attach the modifier “pure”
or “cyclic”, e.g., we can talk about pure n-spraiges or elementary cyclic n-braiges.

We can identify the labeled braid group Bn.H/ with a subgroup of �n;n via .b; �/ 7!
.1n; .b; �/; 1n/. In particular, for any n;m 2 N there is a right action of the labeled braid
group Bm.H/ on �n;m, by right multiplication. We can quotient out this action and we
refer to this quotient as dangling. See Figure 10 for an example of the dangling action
of B2.H/ on �6;2.

For � 2 �n;m, denote by Œ�� the orbit of � under this action, and call Œ�� a dangling
.n; m/-spraige. We can also refer to a dangling n-spraige or dangling spraige. Note that
the action of Bm.H/ preserves the property of being a braige or elementary braige, so the
notions of dangling braiges and dangling elementary braiges are well defined.

Let P denote the set of all dangling spraiges, Pn;m the dangling .n; m/-spraiges and
Pn the set of dangling n-spraiges. Note that if � 2 �n;m and �1; �2 2 �m;k with Œ� � �1�D
Œ� � �2�, then Œ�1� D Œ�2�. We will refer to this fact as left cancellation.
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There is also a poset structure on P . For x; y 2 P , with x D Œ�x �, say that x � y
if there exists a forest F with m leaves such that y D Œ�x � .F; .id; �/; 1m/�. In other
words, x � y if y is obtained from x via splitting. It is easy to see that this is a par-
tial ordering. Also, if x 2 Pn and y 2 P with x � y or y � x, then y 2 Pn. In other
words, two elements are comparable only if they have the same number of heads. We
further define a relation � on P as follows. If x D Œ�x � 2 P and y 2 P such that y D
Œ�x � �

.n/
J � for some n 2 N and J � ¹1; : : : ; nº, write x � y. That is, x � y if y is

obtained from x via elementary splitting, and this is a well-defined relation with respect
to dangling. If x � y and x ¤ y, then write x � y. Note that � and � are not transitive,
though it is true that if x � z and x � y � z, then x � y and y � z. This is all somewhat
similar to the corresponding situation for F and V discussed for example in [13, Sec-
tion 4]. We remark that a totally analogous construction yields the notion of a dangling
pure spraige and dangling cyclic spraige, where the dangling is now via the action of the
pure labeled braid group or cyclic labeled braid group. We also have dangling pure/cyclic
braiges and dangling elementary pure/cyclic braiges. All of the essential results above
still hold.

4.1. The Stein space

In this subsection, we construct a space X on which bVd;r .H/ acts and which we call
the Stein space for bVd;r .H/. A similar space can also be constructed using pure braids
and cyclic braids to get spaces X.bFd;r .H// and X.bTd;r .H// on which bFd;r .H/ and
bTd;r .H/ act, respectively, and we will say more about this at the end of the section.

Once we have the Stein space, we will apply Brown’s criterion to the action on X
to deduce the positive finiteness properties of the labeled braided Higman–Thompson
groups. First we recall Brown’s criterion [12, Theorems 2.2 and 3.2]. Recall that a fil-
tration .Xj /j�1 of X is called essentially n-connected if for every i � 1, there exists
i 0 � i such that �l .Xi ! Xi 0/ is trivial for all l � n.

Theorem (Brown’s criterion). Let n 2 N and assume a group G acts on an .n � 1/-
connected CW-complex X . Assume that the stabilizer of every k-cell of X is of type Fn�k .
Let ¹Xj ºj�1 be a filtration of X such that each Xj is finite mod G. Then G is of type Fn
if and only if ¹Xj ºj is essentially .n � 1/-connected.

For several of the results in this section, we direct the reader to [17, Section 2].
Although, that paper only directly addresses the case where d D 2, r D 1, and H is
the trivial group, their proofs often generalize directly to higher d , r and arbitrary H .
We first consider only the groups bVd;r .H/ and then remark on bFd;r .H/ and bTd;r .H/
at the end.

Our starting point is the poset Pr of dangling r-spraiges, i.e., dangling spraiges with r
heads. Consider the geometric realization jPr j, i.e., the simplicial complex with a k-
simplex for every chain x0 < � � � < xk in Pr . We will refer to xk as the top of the simplex
and x0 as the bottom. Call such a simplex elementary if x0 � xk .
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Definition 4.2. Define the Stein space X for bVd;r .H/ to be the subcomplex of jPr j
consisting of all elementary simplices.

Since faces of elementary simplices are elementary, this is indeed a subcomplex. There
is also a coarser cell decomposition of X , as a cubical complex, which we now describe.
First we define the cubes as well as their top and bottom.

Definition 4.3. For x � y, define the closed interval Œx; y� WD ¹z j x � z � yº. Similarly,
define the open and half-open intervals .x;y/, .x;y� and Œx;y/. Note that if x � y, then the
closed interval Œx; y� is a Boolean lattice, and so the simplices in its geometric realization
fit together into a cube. The top of the cube is y and the bottom is x.

Now observe that every elementary simplex is contained in such a cube, and the face of
any cube is clearly another cube. Also, the intersection of cubes is either empty or is itself
a cube; this is clear since if Œx; y�\ Œz;w� ¤ ;, then y and w have a lower bound, and we
get that Œx; y� \ Œz; w� D Œsup.x; z/; inf.y; w/�. Note that as in [17, Proposition 2.1], any
two elements in Pr have a least upper bound and when two elements have a lower bound,
they have a greatest lower bound. Therefore, X has the structure of a cubical complex, in
the sense of [10, p. 112, Definition 7.32].

Recall that a poset .Y;�/ is called conically contractible if there is a y0 in Y and
a map gWY ! Y such that z� g.z/� y0 for all z in Y . A consequence of a poset being
conically contractible is that its geometric realization is contractible. See the discussion
in [32, Section 1.5] for more details.

Lemma 4.4. For x < y with x 6� y, j.x; y/j is contractible.

Proof. We will prove that .x;y/ is conically contractible, and that then implies the lemma.
For x; y 2 Pr , we will declare x � y if and only if y � x. Now given any z 2 .x; y�,
define g.z/ to be the largest element of Œx; z� such that x � g.z/. By our hypothesis, g.z/
is in Œx; y/ and also clearly in .x; y�, so therefore g.z/ 2 .x; y/. Let y0 D g.y/: Note that
for any z 2 .x; y/, we have g.z/ � y0. Whence z � g.z/� y0 and .x; y/ is conically
contractible.

Corollary 4.5. The space X is contractible.

Proof. We first see that Pr is directed since any two elements have a least upper bound,
as discussed after Definition 4.3. Therefore, jPr j is contractible.

Now, as in [17], we will build up from X to jPr j by attaching new subcomplexes in
such a way as to not change the homotopy type. Given a closed interval Œx; y�, define

r.Œx; y�/ WD f .y/ � f .x/:

We attach the contractible subcomplexes jŒx; y�j for x 6� y to X in increasing order of r
value, attaching jŒx;y�j along jŒx;y/[ .x;y�j. This is the suspension of j.x;y/j and hence
is contractible by Lemma 4.4. Therefore, attaching jŒx; y�j does not change the homotopy
type and we conclude that X is contractible.
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There is a natural action of bVd;r .H/ on the vertices of X . Namely, for g 2 bVd;r .H/
and � 2 �r with xD Œ��, define gx WD Œg � ��. This action preserves the relations� and�,
and thus extends to an action on the whole space.

For each m 2 N, define X�m to be the full subcomplex of X spanned by vertices x
with f .x/ � m. Note that the X�m is invariant under the action of bVd;r . Now the same
proof in [17, Lemma 2.5] works to show the following.

Proposition 4.6. For each m � 1, the sublevel set X�m is finite modulo bVd;r .H/.

We now consider the vertex and cell stabilizers.

Definition 4.7. Let J � ¹1; : : : ; mº. Let b 2 Bm and let �b be the corresponding permu-
tation in Sm. If �b stabilizes J set-wise, call b a J -stabilizing braid. Let BJm � Bm be the
subgroup of J -stabilizing braids and

BJm.H/ Š H
m Ì BJm:

Proposition 4.8. Let x be a vertex in X , with f .x/ D n and x D Œ��, and let F .m/J be an
elementary forest. If y D Œ� � �.m/J �, then the stabilizer in bVd;r .H/ of the cube Œx; y� is
isomorphic to BJm.H/. In particular, if H is of type Fn, then so are the cell stabilizers.

Proof. The first part of the statement follows directly from the proofs of [17, Lemma 2.6
and Corollary 2.8]. For the second statement, observe that BJm.H/ has a finite index in
Bm.H/ Š H

m Ì Bm, that the braid groups are of type F1 and that finiteness properties
are preserved under extensions by a group of type F1 [23, Theorem 7.2.21].

The complex X and the filtration ¹X�mºm have so far been shown to satisfy all the
conditions of Brown’s criterion save one, namely that the filtration ¹X�mºm is essentially
.n � 1/-connected. We will prove this in Corollary 4.21, using the Morse lemma.

Note that every cell ofX has a unique vertex maximizing f , so f is a height function.
Hence we can inspect the connectivity of ¹X�mºm by looking at descending links with
respect to f . In the rest of this section, we describe a convenient model for the descending
links, and then analyze their connectivity in the following sections.

Recall that we identify Pr with the vertex set of X , and cubes in X are (geometric
realizations of) intervals Œy; x� with x; y 2 Pr and y � x. For x 2 Pr , the descending
star St#.x/ of x in X is the set of cubes Œy; x� with top x. For such a cube C D Œy; x�
let bot.C / WD y be the map giving the bottom vertex. This is a bijection from the set of
such cubes to the set D.x/ WD ¹y 2 Pr j y � xº. The cube Œy0; x� is a face of Œy; x� if
and only if y0 2 Œy; x�, if and only if y0 � y. Hence C 0 is a face of C if and only if
bot.C 0/� bot.C /, so bot is an order-reversing poset map. By considering cubes Œy;x�with
y¤ x and restricting toD.x/ n ¹xº, we obtain a description of Lk#.x/. Namely, a simplex
in Lk#.x/ is a dangling spraige y with y � x, the rank of the simplex is the number of
elementary splits needed to get from y to x (so the number of elementary merges to get
from x to y) and the face relation is the reverse of the relation < on D.x/ n ¹xº. Since X
is a cubical complex, Lk#.x/ is a simplicial complex.
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We proceed to describe a convenient model for the descending link. If f .x/ D m,
then thanks to left cancellation, Lk#.x/ is isomorphic to the simplicial complex EBm

d

of dangling elementary m-braiges Œ.1m; .b; �/; F
.m�.d�1/jJ j/
J /� for J ¤ ;, with the face

relation given by the reverse of the ordering � in Pr . See Figure 11 for an idea of the
correspondence between Lk#.x/ and EBm

d . We will usually draw braiges as emerging
from a horizontal line, as a visual reminder of this correspondence. We will prove that
EBm

d is highly connected in Corollary 4.21.

x

x x

x

 !

Figure 11. The correspondence between Lk#.x/ and EBm
d

.

We end this section with some remarks on bFd;r .H/ and bTd;r .H/. Restricting to
pure labeled braids or cyclic labeled braids everywhere in this section does not affect any
of the proofs, so we can simply say that X.bFd;r .H// and X.bTd;r .H// are the con-
tractible cubical complexes of dangling pure r-spraiges, understood in the same way as X
(though now dangling is only via pure labeled braids or cyclic labeled braids). We will also
denote by f the height function “number of feet” onX.bFd;r .H// andX.bTd;r .H//. The
filtration is still cocompact and the stabilizers are still of type Fn whenever H is, being
finite index subgroups of the corresponding labeled braid groups. As for descending links,
the descending link of a dangling pure .r; m/-spraige in X.bFd;r .H// is isomorphic to
the simplicial complex EP Bm

d of dangling elementary labeled pure m-braiges and in
X.bTd;r .H// to the simplicial complex ECBm

d of dangling elementary labeled cyclic
m-braiges.

4.2. The complex related to the descending link for bVd;r.H /

Let Sg
b;m

be a compact oriented surface of genus g with b boundary components and
m marked points or punctures such that the marked points are in the interior of the sur-
face.

A d -arc on the surface is an embedded path in Sg
b;m
n @S

g

b;m
that begins and ends at

marked points and passes through a total of precisely d marked points. We call a collection
of d -arcs ¹˛0; ˛1; : : : ; ˛kº a d -arc system if for all i ¤ j , the d -arcs ˛i and j̨ are disjoint
up to isotopy. Note that the isotopies here are required to fix the marked points.
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Definition 4.9. The d -arc matching complex MAd .S
g

b;m
/ on Sg

b;m
is the simplicial com-

plex with a k-simplex for each isotopy class of a d -arc system ¹˛0; ˛1 : : : ; ˛kº and the
face relation given by the subset relation.

When d D 2, our complex is just the matching complex MA.�m/ over the sur-
face Sg

b;m
in [17, Section 3].

Lemma 4.10. Assume m � 3, given finitely many homotopy classes of d -arcs Œ˛0�; Œ˛1�;
: : : ; Œ˛k �, there exist representatives ˛0; ˛1; : : : ; ˛k such that j˛i \ j̨ j is minimal among
all representatives of Œ˛i � and Œ j̨ � for 0 � i � j � k. In particular, any simplex is repre-
sented by disjoint d -arcs.

Proof. Notice that each d -arc corresponds to a collection of .d � 1/ 2-arcs and so it
suffices to show it is true for 2-arcs. But this was proven in [17, Lemma 3.2]. Basically,
one puts a hyperbolic metric on the interior of Sg

b;m
(viewing marked points as punctures)

and replaces each 2-arc in ˛i by a geodesic connecting the two punctures.

The lemma allows us to consider actual arcs instead of homotopy classes of arcs when
m � 3 which we will do in the rest of this section.

We now proceed to give a connectivity bound for the complex MAd .S
g

b;m
/ closely

following the strategy in [17, Section 3.3]. Let us label all the marked points in Sg
b;m

as
¹1; 2; : : : ; mº. We put a weight on all the marked points in Sg

b;m
via the following rule: if

p � d , we assign its weight to be 2p�1; if p > d , we assign its weight to be 0. With this we
can define a weight function q on any vertex ˛ in MAd .S

g

b;m
/ by assigning q.˛/ to be the

total weight of the marked points that ˛ passes through. Note that the zero set of q, which
we denote as MAd .S

g

b;m
/qD0, can be identified with the complex MAd .S

g

bCd;m�d
/.

Here the surface Sg
bCd;m�d

is obtained from S
g

b;m
by deleting a small open disk around

those marked points with positive weight. Now q defines a height function on the relative
complex .MAd .S

g

b;m
/;MAd .S

g

b;m
/qD0/. We will use the q to analyze the connectivity

of MAd .S
g

b;m
/.

Theorem 4.11. For any d � 2, the complex MAd .S
g

b;m
/ is .b mC1

2d�1
c � 2/-connected.

Proof. We prove the theorem by induction on m. Note that when m � d , the complex
MAd .S

g

b;m
/ is nonempty, hence the theorem is valid for m � 4d � 4. Now assume

m > 4d � 4. Given any vertex ˛ in MAd .S
g

b;m
/ such that q.˛/ ¤ 0, the descending

link of ˛ is the full subcomplex of MAd .S
g

b;m
/ with vertices ˛0 where q.˛0/ < q.˛/

and ˛0 is disjoint from ˛. The point here is that the descending link is again a d -arc
matching complex over some surface, and the new surface now has at least m � 2d C 1
marked points. In fact, in the worst case, q.˛/ D 1 and ˛ contains the marked point of
weight 1 and d � 1 marked points of weight 0. Thus any vertex ˛0 2 Lk#.˛/ must have
weight 0. This means ˛0 only passes those marked points of weight zero outside ˛. There-
fore, Lk#.˛/ in this case can be identified with MAd .S

g

bCd;m�2dC1
/, where the surface

S
g

bCd;m�2dC1
is obtained from S

g

b;m
by deleting a small open neighborhood of ˛ and
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the marked points 2; : : : ; d . By induction, the descending link is at least .b mC1
2d�1
c � 3/-

connected.
By the Morse lemma (cf. Lemma 2.1), the pair .MAd .S

g

b;m
/;MAd .S

g

b;m
/qD0/ is

.b mC1
2d�1
c � 2/-connected, that is, the inclusion �WMAd .S

g

b;m
/qD0 ,!MAd .S

g

b;m
/ induces

an isomorphism on �n for n � b mC1
2d�1
c � 3 and an epimorphism for n D b mC1

2d�1
c � 2.

We could now invoke induction and use that MAd .S
g

b;m
/qD0 is at least .b mC1

2d�1
c � 3/-

connected to conclude that MAd .S
g

b;m
/ is .b mC1

2d�1
c � 3/-connected as well. However,

since we want MAd .S
g

b;m
/ to be .b mC1

2d�1
c � 2/-connected, we need a different argument

and we may as well apply this for all n. It suffices to show that �n.MAd .S
g

b;m
/qD0 ,!

MAd .S
g

b;m
// is trivial for n� b mC1

2d�1
c � 2. In other words, for any n� b mC1

2d�1
c � 2, every

map x WSn !MAd .S
g

b;m
/qD0 can be homotoped to a constant map in MAd .S

g

b;m
/.

First we check the hypothesis on MAd .S
g

b;m
/ allows us to apply Lemma 2.6, namely

that the link of a k-simplex should be .n� k � 2/-connected. A k-simplex � is determined
by k C 1 disjoint d-arcs. Hence, the link of � is isomorphic to MAd .S

g

bCkC1;m�.kC1/d
/.

By induction, this is .bm�.kC1/dC1
2d�1

c � 2/-connected, which is at least .n � k � 2/-con-
nected.

Let Sn be a combinatorial n-sphere. Let x WSn !MAd .S
g

b;m
/qD0 be a simplicial

map and let  WD � ı x . It suffices by simplicial approximation [37, Theorem 3.4.8] to
homotope  to a constant map. By Lemma 2.6, we may assume  is simplexwise injec-
tive. Fix ˇ to be a d -arc passing through the marked points ¹1; 2; : : : ; dº according to the
order. Then ˇ is the concatenation of d � 1 arcs ˇ1; : : : ; ˇd�1, where ˇi is an arc con-
necting the marked point i and i C 1. We claim that  can be homotoped in MAd .S

g

b;m
/

to land in the star of ˇ, which will finish the proof. We will proceed in a similar way to
the Hatcher flow [26]. Note first that none of the d -arcs in the image of  pass through
any marked points with positive weight, but among the finitely many such d-arcs, some
might intersect nontrivially with ˇ. Pick one, say ˛, intersecting ˇ at a point, say w, clos-
est along ˇ to the marked point 1, and let x be a vertex of Sn mapping to ˛. Without
loss of generality, we can assume further that the intersection point lies in ˇ1. By sim-
plexwise injectivity, none of the vertices in LkSn.x/ map to ˛. We will replace the arc
component of ˛ which contains w by another arc ˛0 with the same endpoints but on the
other side of the marked point 1. In fact, the new arc component together with the part
of ˛ that contains w bound a disk D whose interior contains no boundary components
or marked points other than the marked point 1. See Figure 12 for an example. Note that
there is no edge from ˛ to ˛0, so none of the vertices in LkSn.x/ map to ˛0. Note also that
 .LkSn.x// � Lk.˛0/ by our choice of ˛.

We now want to apply the mutual link trick (cf. Lemma 2.7) to homotope the map  0

to a new simplexwise injective map  0WSn !MAd .S
g

b;m
/ that sends the vertex x to ˛0

and sends all other vertices y to  .y/. For that we only need to further check that the
mutual link LkX .˛/ \ LkX .˛0/ is .n � 1/-connected. But Lk.˛/ \ Lk.˛0/ is isomor-
phic to MAd .S

g

bC1;m�d�1
/, where the surface Sg

bC1;m�.dC1/
is obtained from S

g

b;m
by

removing an open neighborhood of D [ ˛ [ ˛0. Hence by induction, Lk.˛/ \ Lk.˛0/ is
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ˇ

˛

w

˛0
1 2 3 m

Figure 12. Pushing part of the d -arc ˛ over the marked point 1 to obtain the d -arc ˛0, as described
in the proof of Theorem 4.11.

.b m�d
2d�1
c � 2/-connected, and in particular .n � 1/-connected. In this way, after finitely

many steps, we can homotope  such that its image is disjoint from ˇ. In particular, for
any i � 2, we get rid of the intersection of  .Sn/ with ˇ in i steps: first push each inter-
section with ˇi to ˇi�1, then to ˇi�2, etc. In the last step, we push the intersections off ˇ1.
This has the benefit that the disk D between each ˛ and ˛0 will only bound one marked
point at a time. At the end, we can assume the image of  is disjoint from ˇ, hence it lies
in the star of ˇ. Therefore,  can be homotoped to a constant map.

As a by-product of Theorem 4.11, we also get connectivity bounds of certain disk
complexes which might have independent interest. Let us introduce them now. Given
a surface Sg

b;m
, a k-simplex in the d -marked-point-disk complex Dd .S

g

b;m
/ is an isotopy

class of a system of disjointly embedded disks hD0; D1; : : : ; Dki such that each disk Di
encloses precisely d marked points in its interior. Here again the face relation given by the
subset relation. Note that except some singular cases, Dd .S

g

b;m
/ can be viewed as a full

subcomplex of the curve complex first defined by Harvey in [25]. In fact, given a disk
enclosing d marked points, we can take their boundary curve which gives a vertex in the
curve complex unless the boundary curve bounds a disk, a punctured sphere, or an annu-
lus on the other side. It might also happen that two disks are disjoint up to isotopy but
their boundary curves are isotopic. This case occurs when the surface is a sphere with 2d
marked points, in which case its d -marked-point-disk complex is not a subcomplex of the
curve complex.

There is also a canonical map

N W MAd .S
g

b;m
/! Dd .S

g

b;m
/ (4.1)

mapping each d -arc to a small disk tubular neighborhood of it. We have the following.

Corollary 4.12. The map N is a complete join. In particular, for any d � 2, the complex
Dd .S

g

b;m
/ is .b mC1

2d�1
c � 2/-connected.

Proof. If two systems of d -arcs are isotopic, then their disk tubular neighborhoods are
isotopic. Hence the map is well defined on vertices. If a system of d -arcs is disjoint,
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we can choose their disk tubular neighborhoods to be disjoint. This shows N is well
defined and simplexwise injective. To show it is surjective, given any k-simplex � D
hD0; D1; : : : ; Dki, where each Di is a disk enclosing d marked points, we can choose
a d -arc in the interior of each disk which passes through the d marked points inside D.
The fact that any such d -arc system lies in the preimage of � says

N�1.�/ D N�1.D0/ � � � � �N
�1.Dk/:

Thus N is a complete join. The lemma now follows from Remark 2.5.

4.3. The complex related to the descending links for bFd;r.H / and bTd;r.H /

In this subsection, we introduce and calculate the connectivity for the complex related to
the descending links for bFd;r .H/ and bTd;r .H/.

Let us first set the stage. As before, list all the marked points in Sg
b;m

as ¹1; 2; : : : ; mº.
We call a d -arc linear (resp. cyclic) if the marked points it passes through, in order, are
given by p; p C 1; : : : ; p C d � 1 (resp. p; p C 1; : : : ; p C d � 1 mod m) for some p.
We will call p the initial marked point of the linear (resp. cyclic) d -arc. We define
the linear d -arc matching complex LMAd .S

g

b;m
/ (resp. cyclic d -arc matching complex

CMAd .S
g

b;m
/) to be the full subcomplex of the d -arc matching complex MAd .S

g

b;m
/

such that each vertex is a linear d -arc (resp. cyclic d -arc). Furthermore, for any subset Z
of ¹1; 2; : : : ; m � d C 1º, let LMAd .S

g

b;m
; Z/ be the full subcomplex of LMAd .S

g

b;m
/

spanned by those vertices whose initial point lies in Z. Similarly, for any subset Z of
¹1; 2; : : : ; mº, let CMAd .S

g

b;m
; Z/ be the full subcomplex of CMAd .S

g

b;m
/ spanned by

those vertices whose initial point lies in Z.
The proofs of the connectivity properties of LMAd .S

g

b;m
/ and CMAd .S

g

b;m
/ now

follow closely to that of Theorem 4.11 or [17, Section 3.3]. Let us focus on LMAd .S
g

b;m
/

first. Let Z be any subset of ¹1; 2; : : : ; m � d C 1º with maximum p0. We put a weight
on all the marked points in Sg

b;m
via the following rule: if p0 � p � p0 C d � 1, we

assign its weight to be 2p�p0 ; otherwise, we assign its weight to be 0. With this we can
define a height function q on any linear d -arc by assigning q.˛/ to be the total weight
of the marked points ˛ passes through. Note that the zero set of q, which we denote
by LMAd .S

g

bCd;m�d
; Z/qD0, can be identified with the complex LMAd .S

g

bCd;m�d
;

Z n .¹p0 � d C 1; : : : ; p0º \Z// as we have chosen p0 to be the greatest in Z. Here
the surface Sg

bCd;m�d
is obtained from S

g

b;m
by deleting a small open disk around those

marked points with positive weight. Now q defines a height function on the relative com-
plex .LMAd .S

g

b;m
;Z/;LMAd .S

g

b;m
;Z/qD0/. We will use q to analyze the connectivity

of LMAd .S
g

b;m
; Z/.

Theorem 4.13. For any d � 2, the complex LMAd .S
g

b;m
;Z/ is .b jZj�1

3d�2
c� 1/-connected.

Remark 4.14. In the theorem, the values of b and g do not play a role in our connectivity
bound of LMAd .S

g

b;m
; Z/ whereas the value of m only serves to give an upper bound
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on jZj. Recall by definition of Z, if z 2 Z, then z; z C 1; : : : ; z C d � 1 are legitimate
marked points, in particular m � z C d � 1.

Proof. We prove the theorem by induction on jZj. Note that as long as jZj > 0, the com-
plex LMAd .S

g

b;m
; Z/ is nonempty and hence the theorem is valid when jZj < 3d � 1.

Now assume jZj � 3d � 1. Recall that the definition of our height function q is based on
the greatest p0 2 Z. Given any linear d -arc ˛ in LMAd .S

g

b;m
; Z/ such that q.˛/ ¤ 0,

the descending link of ˛ is the full subcomplex of LMAd .S
g

b;m
; Z/ such that any ver-

tex ˛0 in it has the property that q.˛0/ < q.˛/ and ˛0 is disjoint from ˛. This complex
can be identified with the linear disk complex with LMAd .S

g

bC1;m�d
; Z0/ for some Z0,

where Sg
bC1;m�d

is obtained from S
g

b;m
by cutting out a small open disk around ˛. In the

worst case, q.˛/ D 1 and ˛ has an initial marked point p0 � d C 1. In this case, Z0 D
Z n .Z \ ¹p0 � 2d C 2;p0 � 2d C 2; : : : ;p0º/. Thus jZ0j � jZj � 2d C 1. By induction,
LMAd .S

g

bC1;m�d
; Z0/ is at least .b jZj�1

3d�2
c � 2/-connected.

As before, by the Morse lemma, the pair .LMAd .S
g

b;m
; Z/;LMA

qD0

d
.S
g

b;m
; Z//

is .b jZj�1
3d�2
c � 1/-connected, i.e., the inclusion �WLMA

qD0

d
.S
g

b;m
; Z/ ,! LMAd .S

g

b;m
/

induces an isomorphism in �n for n� b jZj�1
3d�2
c�2 and an epimorphism for nDb jZj�1

3d�2
c�1.

On the other hand, by induction LMA
qD0

d
.S
g

b;m
; Z/ is at least .b jZj�1

3d�2
c � 2/-connected.

Hence MAd .S
g

b;m
; Z/ is .b jZj�1

3d�2
c � 2/-connected. But this is not enough as we want

LMAd .S
g

b;m
; Z/ to be .b jZj�1

3d�2
c � 1/-connected. Just as in the proof of Theorem 4.11,

it is sufficient to show that �n.LMA
qD0

d
.S
g

b;m
; Z/ ! LMAd .S

g

b;m
; Z// is trivial for

n � b jZj�1
3d�2
c � 1. In other words, we will show that when n � b jZj�1

3d�2
c � 1, every map

x WSn ! LMA
qD0

d
.S
g

b;m
; Z/ can be homotoped to a point in LMAd .S

g

b;m
; Z/.

We sketch how to proceed as in the proof of Theorem 4.11. First, we can apply
Lemma 2.6 to  D � ı x and assume  is simplexwise injective. Now fix ˇ to be lin-
ear d -arc passing through the marked points ¹p0; p0 C 1; : : : ; p0 C d � 1º. We claim
that  can be homotoped in MAd .S

g

b;m
/ to land in the star of ˇ, which will finish the

proof. By assumption, none of the d -arcs in the image of  will pass through positive
valued marked points, but among the finitely many such d -arcs, some might intersect
nontrivially with ˇ. Pick one, say ˛, intersecting ˇ at a point closest along ˇ to the
marked point p0 C d � 1, and let x be a vertex of Sn mapping to ˛. We now use the
mutual link trick (cf. Lemma 2.7) to push the intersection with ˇ towards the p0 C d � 1
direction step by step. Note that our pushing direction is different from Theorem 4.11.
In each step, we replace ˛ by ˛0 by pushing the intersection point closest to p0 C d � 1
along ˇ towards p0 C d � 1 across precisely one marked point. At the end, the image
of  will be disjoint from ˇ. The only thing we need to worry about in order to do this
is the connectivity of the mutual link. Let D be the disk bounded by ˛ and ˛0 which con-
tains one extra marked point p0 2 ¹p0 C 1; : : : ; p0 C d � 1º in its interior. The mutual
link again can be identified with LMAd .S

g

bC1;m�d�1
; Z0/ for some subset Z0 of Z,

where the surface Sg
bC1;m�d�1

is obtained from S
g

b;m
by cutting out a small open neigh-

borhood of D [ ˛ [ ˛0. To obtain the subset Z0, we must remove any point from Z

which is a marked point that ˛ crosses. Note that the initial marked point of ˛ can be
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any point in Z. In the worst case, this results in removing the initial marked points in
Z \ ¹p˛ � d C 1;p˛ � d C 2; : : : ;p˛ C d � 1º, where p˛ is the initial marked point of ˛.
We also cannot have any d -arcs passing through p0. The worst case is when p0 D p0 C 1
which excludes linear d -arcs with an initial marked point ¹p0 � d C 2; : : : ; p0º. In total,
we are throwing away at most 3d � 2 points in Z, thus by induction the mutual link is
.b jZj�1
3d�2
c � 2/-connected.

Taking Z D ¹1; 2; : : : ; m � d C 1º, we have the following.

Corollary 4.15. For any d � 2, the complex LMAd .S
g

b;m
/ is .b m�d

3d�2
c � 1/-connected.

Similarly, we have the following theorem.

Theorem 4.16. The complex CMAd .S
g

b;m
;Z/ is .b jZj�1

3d�1
c � 1/-connected. In particular,

the complex CMAd .S
g

b;m
/ is .b m�1

3d�1
c � 1/-connected.

Sketch of proof. The proof runs parallel to that of Theorem 4.13. We can define a height
function q exactly as before except now there is no largest number p0 2 Z as Z is cycli-
cally ordered. So instead, we just pick an arbitrary p0. This will affect the following
calculations.

(1) The calculation of the descending link changes. Given any vertex ˛ in the complex
CMAd .S

g

b;m
; Z/ such that q.˛/ > 0, the descending link of ˛ can be identified with the

complex CMAd .S
g

b;m
; Z0/ for some Z0. In the worst case, q.˛/ D 1 and ˛ has an initial

marked point p0 � d C 1. In this case, Z0 D Z n .Z \ ¹p0 � 2d C 2; p0 � 2d C 3;

: : : ; p0 C d � 1º/. Thus jZ0j � jZj � 3d C 2. By induction, CMAd .S
g

b;m
; Z0/ is at least

.b jZj�1
3d�1
c � 2/-connected.

(2) The calculation of the mutual link changes. Suppose for some point x 2 Sn, its
image  .x/ D ˛ intersects with ˇ nontrivially. We will replace ˛ by ˛0, where ˛0 is
obtained from ˛ by pushing the intersection part along ˇ across one marked point. Let p˛
be the initial point of ˛. In the worst case, we have to remove from Z any vertices with
initial points inZ \ ¹p˛ � d C 1;p˛ � d C 2; : : : ;p˛ C d � 1º. We also cannot allow the
d -arcs which touch the marked point p0 2 ¹p0 C 1; : : : ; p0 C d � 1º in the disk bounded
by ˛ and ˛0, i.e., vertices with initial marked points p0 � d C 1; : : : ; p0. In total, we are
throwing away 3d � 1 elements in Z. Hence the mutual link is at least .b jZj�1

3d�1
c � 2/-

connected by induction.

TakingZ to be the set of all marked points, we get the second part of the statement.

Similarly to how one defines the disk complex Dd .S
g

b;m
/, one can define linear (resp.

circular) disk complexes, LDd .S
g

b;m
/ (resp. CDd .S

g

b;m
/) by requiring the disks to en-

close d adjacent vertices ordered linearly (resp. circularly). In this case, one can con-
sider the map N defined in (4.1) but with the restricted domain of LMAd .S

g

b;m
/ (resp.

CMAd .S
g

b;m
/). In either situation, the proof of Corollary 4.12 extends identically to give

the following corollary.
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Corollary 4.17. The maps

N jLMAd
W LMAd .S

g

b;m
/! LDd .S

g

b;m
/

and
N jCMAd

W CMAd .S
g

b;m
/! CDd .S

g

b;m
/

are complete joins. In particular, for any d � 2, the complex LDd .S
g

b;m
/ is .b m�1

3d�2
c � 1/-

connected and the complex CDd .S
g

b;m
/ is .b m�1

3d�1
c � 1/-connected.

4.4. Finiteness of H implies finiteness of braided Higman–Thompson groups

In this subsection, we prove the “if part” of Theorem 4.29 by studying the connectivity
properties of the descending links in the Stein space X with respect to the height func-
tion f . Recall that the descending link of a vertex x with f .x/ D m is isomorphic to
the complex EBm

d of dangling elementary .d; m/-braiges Œ.1m; .b; �/; F
.m�.d�1/jJ j/
J /�

with J ¤ ;. We will now construct a projection from EBm
d to the d -marked-point-disk

complex Dd .S
g

b;m
/ and show it is a complete join. Since we have calculated the connec-

tivity of Dd .S
g

b;m
/ already, we can then apply our connectivity tools from Section 2.2 to

obtain the necessary connectivity of EBm
d . We will wait until the end of the section to

mention the “pure” and “cyclic” cases.
Let Lm�1 be the linear graph with m vertices, that is the graph with m vertices

labeled 1 through m, and m � 1 edges, one connecting i to i C 1 for each 1 � i < m.
Call a subgraph of Lm�1 a d -matching on Lm�1 if each connected component of it is
a subgraph of length d � 1. Clearly, the set of d -matchings form a simplicial complex
called the d matching complex, denoted by Md .Lm�1/, where a matching forms a k-
simplex whenever it consists of k C 1 disjoint paths and the face relation is given by
inclusion.

We now observe that there is a bijection between the set of elementary d -ary forests
with m leaves and the set of d matchings on Lm�1: Under the identification, carets corre-
spond to paths of length d � 1. See Figure 13 for an example.

In light of the observation, we can denote an elementary .d;m/-braige by ..b; �/; �/,
where b 2 Bm, � is a labeling, and � is a d -matching on Lm�1. As usual, the equivalence
class under dangling will be denoted Œ.b; �/; ��.

7!

Figure 13. An example of the bijective correspondence between 3-ary elementary forests with 9
leaves and simplices of M3.L8/.
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Let S D S01;m be the unit disk with m marked points given by fixing an embedding
Lm�1 ,! S of the linear graph withm� 1 edges into S01;0. With these data in place we can
consider MAd .S/, the d -arc matching complex on S , and we have an induced embedding
of simplicial complexes Md .Lm�1/ ,!MAd .S/! Dd .S/ where the second map is the
map N given in equation (4.1). The braid group Bm on m strands is isomorphic to the
mapping class group of the disk with m marked points [8], so we have an action of Bm
on Dd .S/. We will consider this as a right action (in the same way as dangling is a right
action on braiges), so for b 2 Bm and � 2 Dd .S/ we will write .�/b to denote the image
of � under b.

Define a map � from EBm
d to Dd .S/ as follows. We view Md .Lm�1/ as a sub-

complex of MAd .S/, so we can associate to any d matching � a simplex in Dd .S/
denoted by �0. Thus we can map any elementary .d;m/-braige ..b; �/; �/ to the simplex
.�0/b

�1 in Dd .S/, forgetting the label �, taking a tubular neighborhood of � to get a set
of disks �0, and then applying b�1 to �0.

Lemma 4.18. The map

� W EBm
d ! Dd .S/; Œ..b; �/; �/� 7! .�0/b

�1:

is well defined on equivalence classes.

Proof. Suppose � corresponds to a q � 1 simplex of Md .Lm/, i.e., � is an elementary
forest with q carets. Let .b1; �1/ be in Bq.H/ so that

Œ..b; �/; �/� D Œ..b; �/; �/.1q; .b1; �1/; 1q/�:

Let � 0 and .b01; �
0
1/ be such that

..b; �/; �/.1q; .b1; �1/; 1q/ D ..b; �/.b
0
1; �
0
1/; �

0/ D .bb01; �
b01�01; �

0/:

Under � , this maps to .� 00/.bb
0
1/
�1. We need to show this is the same as .�0/b�1 or

equivalently that .� 00/.b
0
1/
�1 D �0 or .�0/b01 D �0: Note that b01 is obtained from b1

by turning each strand that corresponds to a root of � into d parallel strands and then
braiding them according to the appropriate label. Since these local braids are supported
on the interior of individual disks, they do not change the disk system and we conclude
.�0/b

0
1 D �0.

By construction, the map ..b;�/;�/ 7! .�0/b
�1 is well defined on equivalence classes

under dangling, so we obtain a simplicial map

� W EBm
d ! Dd .S/; Œ..b; �/; �/� 7! .�0/b

�1:

Note that � is surjective, but not injective at all.
One can visualize this map by first forgetting the labels and considering the merges

as d -disks, then “combing straight” the braid and seeing where the d-disks are taken, as
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f1 f2 f3 f4 f5 f6

Figure 14. From left to right the pictures show the process of flattening to a 3-matching, forgetting
the labels, expanding the matching to disks, and “combing straight” the braid.

in Figure 14. Note that the resulting simplex .�0/b�1 of Dd .S/ has the same dimension
as the simplex Œ..b; �/; �/� of EBm

d .
The next lemma and proposition are concerned with the fibers of � .

Lemma 4.19. Let E and � be simplices in Md .Lm�1/, such that E is a 0-simplex and �
is an e.�/-simplex. Let Œ..b1; �1/;E/� and Œ..b2; �2/; �/� be dangling elementary .d;m/-
braiges. Suppose that their images under the map � are contained in a simplex of Dd .S/.
Then there exists a simplex in EBm

d that contains Œ..b1; �1/; E/� and Œ..b2; �2/; �/�.

Proof. We may assume that Œ..b1; �1/; E/� is not contained in Œ..b2; �2/; �/�. There is an
action of Bm.H/ on EBm

d (“from above”), given by

.b; �/Œ..b0; �0/; � 0/� D Œ..b; �/.b0; �0/; � 0/�:

One can check that for each k � 0, this action is transitive on the k-simplices of EBm
d .

We can therefore assume without loss of generality that .b2; �2/ D .id; �/ where � is the
trivial labeling, and � is the d -matching of Lm�1 whose components are precisely those
subgraphs of length d � 1 with starting points j 2 ¹1; d C 1; : : : ; de.�/C 1º.

There is a d -disk ˛ representing �.Œ..b1; �1/; E/�/ that is disjoint from � . This dis-
jointness ensures that, after dangling, we can assume the following condition on .b1; �1/:
for each component of � say with endpoints j and j C d � 1, where j 2 ¹1; d C 1; : : : ;
de.�/ C 1º, b can be represented as a braid in such a way that from the j -th to .j C
d � 1/-st strands of b run straight down, parallel to each other, no strands cross between
them, and the labels on them are all trivial. In particular, Œ..b1; �1/; �/� D Œ..id; �/; �/�, so
Œ..b; �1/; � [E/� is a simplex in EBm

d with Œ.b1; �1; E/� and Œ..id; �/; �/� as faces.

Proposition 4.20. The map � WEBm
d ! Dd .S/ is a complete join.

Proof. We have already seen that the map � is surjective and injective on individual sim-
plices. Let � be a k-simplex in Dd .S/ with vertices v0; : : : ; vk . To prove � is a complete
join, it just remains to show

��1.�/ D
k

�
jD0

��1.vj /:



Finiteness properties for relatives of braided Higman–Thompson groups 29

“�”: This inclusion just says that vertices in ��1.�/ that are connected by an edge
map to distinct vertices under � which is clear.

“�”: We prove this by induction on k. Suppose ��1.�/ � �kjD0�
�1.vj / for k D r .

Now given an .r C 1/-simplex � D hv0; : : : ; vrC1i which is a join of � D hv0; : : : ; vri
and vrC1. We just need to show for any simplex x�; xvrC1 2 EBm

d such that �.x�/ D � ,
�xvrC1 D vrC1, we have a .r C 1/-simplex contains both x� and vrC1. But this is exactly
Lemma 4.19.

Corollary 4.21. The complex EBm
d is .b mC1

2d�1
c � 2/-connected. Hence for any vertex x

in X with f .x/ D m, Lk#.x/ is .b mC1
2d�1
c � 2/-connected.

Proof. We know that Dd .S/ is .b mC1
2d�1
c � 2/-connected according to Corollary 4.12.

For any k-simplex � in Dd .S/, Lk.�/ is isomorphic to Dd .S
0
kC2;m�d.kC1/

/, which is
.bm�d.kC1/C1

2d�1
c � 2/-connected, hence at least .b mC1

2d�1
c � 2 � .k C 1//-connected. Thus

Dd .S/ is wCM of dimension b mC1
2d�1
c � 1. Since � WEBm

d !Dd .S/ is a complete join, by
Proposition 2.4, EBm

d is wCM of dimension b mC1
2d�1
c � 1. In particular, it is .b mC1

2d�1
c � 2/-

connected.

In the other cases, we consider the descending links of vertices in X.bFd;r .H// and
X.bTd;r .H//. For a vertex x with m feet, Lk#.x/ is isomorphic to EP Bm

d or to ECBm
d ,

respectively. These project onto the complexes LDd .S/ and CDd .S/. Using the same
argument, we have the following.

Corollary 4.22. The complex EP Bm
d is .b m�d

3d�2
c � 2/-connected. Hence for any vertex x

in X.bFd;r .H// with f .x/ D m, the descending link Lk#.x/ is .b m�d
3d�2
c � 1/-connected.

The complex ECBm
d is .b m�1

3d�2
c � 2/-connected. Hence for any vertex x in X.bTd;r .H//

with f .x/ D m, the descending link Lk#.x/ is .b m�1
3d�1
c � 2/-connected.

Combining these with the Morse lemma, we obtain the following.

Corollary 4.23. For any k � 0, the filtration ¹X�mºm is essentially k-connected. The
same is also true for the filtration ¹X.bFd;r .H//�mºm and ¹X.bTd;r .H//�mºm.

Proof. By the Morse lemma (Lemma 2.1 (2)) and Corollary 4.21, we have for m � 1
the pair .X; X�m�1/ is .b mC1

2d�1
c � 1/-connected. On the other hand, by Corollary 4.5,

X is contractible. This means for any m such that b mC1
2d�1
c � 2 � k, we have �k.X�m/

is trivial. Therefore, for any k � 1, the filtration ¹X�mºm is essentially k-connected. The
same argument implies ¹X.bFd;r .H//�mºm and ¹X.bTd;r .H//�mºm are also essentially
k-connected for any k � 0.

We are now ready to prove the “if part” of Theorem 4.29.

Theorem 4.24. If H is of type Fn, then the groups bVd;r .H/, bFd;r .H/, and bTd;r .H/
are also of type Fn.
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Proof. Suppose that H is of type Fn. Consider the actions of bVd;r .H/, bFd;r .H/,
and bTd;r .H/ on the corresponding Stein spaces which are connected by Corollary 4.5.
Abusing notation, we will denote all of the Stein spaces by X . By Proposition 4.8, all
of the cell stabilizers are of type Fn and by Proposition 4.6, each X�m is finite modulo
the corresponding group. Finally, by Corollary 4.23, the filtration ¹X�mºm is essentially
k-connected for any k � 0. We conclude, by Brown’s criterion (Theorem 4.1), that if H
is of type Fn then so are each of groups bVd;r .H/, bFd;r .H/, and bTd;r .H/.

4.5. Quasi-retracts and finiteness properties

The purpose of this subsection is to show that the group bVd;r .H/ (resp. bFd;r .H/,
bTd;r .H/) is not of type Fn if H is not. The proof is inspired by [6, Section 4]. Basi-
cally, we will prove that H is a quasi-retract of bVd;r .H/ and bTd;r .H/ and a retract of
bFd;r .H/.

Recall first that a group Q is called a retract of a group G if there is a pair of group
homomorphisms

Q
i
,! G

r
� Q

such that r ı i is the identity on Q. Suppose Q is a retract of G. Then if G is of type Fn,
so is Q, see for example [16, Proposition 4.1]. The same holds if one replaces retract by
quasi-retract. Let us make this precise. Recall a function f WX ! Y is said to be coarse
Lipschitz if there exists constants C;D > 0 so that

d.f .x/; f .x0// � Cd.x; x0/CD for all x; x0 2 X:

For example, any homomorphism between finitely generated groups is coarse Lipschitz
with respect to the word metrics. A function �WX ! Y is said to be a quasi-retraction if
it is coarse Lipschitz and there exists a coarse Lipschitz function �WY ! X and a constant
E > 0 so that d.� ı �.y/; y/ � E for all y 2 Y . If such a function exists, Y is said to be
a quasi-retract of X .

Theorem 4.25 ([1, Theorem 8]). LetG andQ be finitely generated groups such thatQ is
a quasi-retract of G with respect to word metrics corresponding to some finite generating
sets. Then if G is of type Fn, so is Q.

Now let us define a map �F WH ! bFd;r .H/ via h 7! Œ1r ; .id; �h/; 1r �, where 1r is the
trivial forest and �h labels all the strings by h. Since bFd;r .H/ � bTd;r .H/ � bVd;r .H/,
we also have maps �V WH ! bVd;r .H/ and �T WH ! bTd;r .H/. We define another map
rV W bVd;r .H/! H given by ŒF�; .b; �/; FC� 7! �.1/. Restricting rV to bFd;r .H/ and
bTd;r .H/, we get the maps rF and rT . Note that only rF is a group homomorphism. One
easily checks that rF ı �F D id. Thus we have the following statement.

Lemma 4.26. The group H is a retract of bFd;r .H/.

We do also have rV ı �V D id and rT ı �T D id. But since rV and rT are not group
homeomorphisms now, the best we can hope for is that they are coarse Lipschitz. To prove
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this, we first need an understanding of the generating set. Let T1 be a .d; r/-forest such
that the first tree is a single caret and all other trees are trivial. Let �0WH ! bFd;r .H/ be
the inclusion sending h to ŒT1; .id; �0h/; T1�, where �0

h
labels the first string by h and all

other strings by 1 2 H . Note that �0.H/ naturally sits in bTd;r .H/ and bVd;r .H/. On the
other hand, we have bTd;r � bTd;r .H/ and bVd;r � bVd;r .H/ using the trivial labels on
all strings.

Proposition 4.27. The group bVd;r .H/ is generated by �0.H/ and bVd;r . Similarly, the
group bTd;r .H/ is generated by �0.H/ and bTd;r .

Proof. We prove the proposition for bVd;r .H/. The other case is similar. Let G be the
subgroup generated by �0.H/ and bVd;r , we prove G D bVd;r .H/ in four steps.

Step 1. Let F be a .d; r/-forest such that the first leaf has distance 1 to the root of the
tree it is part of. Then for any k � 1, elements of the form ŒF; .id; �k

h
/; F � lie in G,

where �k
h

labels the k-th string by h and all others by 1. In fact, let b be any braid whose
corresponding element in the symmetric group permutes 1 and k, then ŒF; .id; �k

h
/; F � D

ŒF; .b; �0/; F �
�1�0.h/ŒF; .b; �0/; F � 2 G, where �0 is the trivial labeling.

Step 2. Let F by any .d; r/-forest, and �h be a labeling of the strings such that only one
string is labeled nontrivially and it is labeled by h, then ŒF; .id; �h/; F � lies in G. If the
initial leaf of the string labeled nontrivially does not lie below the leftmost vertex that has
distance 1 to the root, it is already covered by step 1. If not, we can choose any element
as in step 1, and conjugate it to ŒF; .id; �h/; F � by an element in bVd;r using the same
strategy.

Step 3. Let F by any .d; r/-forest, and � be any labeling, then ŒF; .id; �/;F � 2 G. In fact,
let �k

h
be the labeling of the strings such that the k-th string is labeled by h and all other

string are labeled by 1. Then ŒF; .id; �/; F � 2 G is a product of ŒF; .id; �k
h
/; F �.

Step 4. Finally, let ŒF; .b; �/; F 0� be any element of bVd;r .H/, then

ŒF; .b; �/; F 0� D ŒF; .b; �0/; F
0�ŒF 0; .id; �/; F 0�;

where again �0 is the trivial labeling. Since ŒF; .b; �0/; F 0� 2 bVd;r � G and ŒF; .id; �/;
F 0� 2 G, we have ŒF; .b; �/; F 0� 2 G.

Theorem 4.28. The group H is a quasi-retract of bVd;r .H/ and bTd;r .H/.

Proof. We prove the theorem for bVd;r .H/. Fix finite generating sets SH for H , and SV
for bVd;r . By Proposition 4.27, �0.SH / [ SV is a finite generating set of bVd;r .H/. We
will show that the map rV W bVd;r .H/! H is coarse Lipschitz with respect to the word
metric on bVd;r .H/ and H . Now

(1) rV .g�0.s// 2 ¹rV .g/; rV .g/sº for all s 2 �0.SH / and g 2 bVd;r .H/,

(2) rV .gg0/ D rV .g/ for any g0 2 bVd;r and g 2 bVd;r .H/.



R. Skipper and X. Wu 32

It follows that rV is nonexpanding and hence coarse Lipschitz. Since �V is a group homo-
morphism, it must be coarse Lipschitz as well. As rV ı �V D idH , we conclude that rV is
a quasi-retraction. The proof for bTd;r .H/ is exactly the same.

Theorem 4.29. For any d � 2 and r � 1 and any subgroup H of the braid group Bd
(resp. of the pure braid group PBd ), the group bVd;r .H/ (resp. bTd;r .H/ or bFd;r .H/)
is of type Fn if and only if H is.

Proof. For n � 2, the theorem is immediate from Theorems 4.24, 4.25 and 4.28.
For nD 1, the only thing we need to prove is that the group bVd;r .H/ (resp. bFd;r .H/,

bTd;r .H/) is finitely generated, thenH is also finitely generated. SupposeH is not finite-
ly generated, then we have a sequence of proper subgroupsH1 Œ � � � ŒHi ŒHiC1 Œ � � �
of H such that

S
i Hi D H . Then we have a sequence of proper subgroups bVd;r .H1/ Œ

� � �Œ bVd;r .Hi /Œ bVd;r .HiC1/Œ � � � of bVd;r .H/ such that
S
i bVd;r .Hi /D bVd;r .H/.

This shows bVd;r .H/ is not finitely generated.

Note that ifH is the trivial group, then the groups bVd;r .H/, bFd;r .H/, and bTd;r .H/
are the braided Higman–Thompson groups bVd;r , bFd;r , and bTd;r . Hence, we have the
following immediate corollary.

Corollary 4.30. The braided Higman–Thompson groups bVd;r , bFd;r , and bTd;r are of
type F1.

Similarly, taking C to be the subgroup of Bd generated by the half Dehn twist (resp.
a full Dehn twist) around the boundary, we see that following Proposition 3.12, the same
is true for the ribbon Higman–Thompson groups.

Corollary 4.31. The ribbon Higman–Thompson groupRVd;r is of type F1. Likewise, the
oriented ribbon Higman–Thompson groups RV C

d;r
, RFC

d;r
, and RTC

d;r
are of type F1.
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